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The Role of Explainability in Assuring Safety of
Machine Learning in Healthcare

Yan Jia, John McDermid, Tom Lawton, and Ibrahim Habli

Abstract—Established approaches to assuring safety-critical systems and software are difficult to apply to systems employing ML

where there is no clear, pre-defined specification against which to assess validity. This problem is exacerbated by the “opaque” nature

of ML where the learnt model is not amenable to human scrutiny. Explainable AI (XAI) methods have been proposed to tackle this

issue by producing human-interpretable representations of ML models which can help users to gain confidence and build trust in the

ML system. However, little work explicitly investigates the role of explainability for safety assurance in the context of ML development.

This paper identifies ways in which XAI methods can contribute to safety assurance of ML-based systems. It then uses a concrete

ML-based clinical decision support system, concerning weaning of patients from mechanical ventilation, to demonstrate how XAI

methods can be employed to produce evidence to support safety assurance. The results are also represented in a safety argument to

show where, and in what way, XAI methods can contribute to a safety case. Overall, we conclude that XAI methods have a valuable

role in safety assurance of ML-based systems in healthcare but that they are not sufficient in themselves to assure safety.

Index Terms—Explainability, Machine Learning, Safety Assurance

✦

1 INTRODUCTION

IN healthcare, machine learning (ML) is used on various
problems, e.g. learning optimal treatments, or to detect

abnormalities in radiology images, where it has achieved
outstanding performance. However, assuring safety for such
systems employing ML remains a challenge. In many do-
mains there are well-established approaches and standards
for assuring safety-critical systems and software. Assurance
means establishing justified confidence in the system for its
intended use. The assurance principles underlying these
standards include validating that the system works as in-
tended and verifying that the system meets explicit safety
requirements. These assurance principles remain essential
for systems employing ML. However, the details of these
approaches and standards can be difficult to apply where
systems use ML.

First, the established approaches are based, implicitly
or explicitly, on the V life-cycle model moving from require-
ments, through design onto implementation then testing.
In contrast, the development of ML-based systems follows
a very different, much more iterative, life-cycle with four
main phases: data management, ML algorithm selection,
model learning, and model verification & validation, which
makes it hard to apply established methods. Some emerging
standards and guidance better reflect the ML life-cycle, e.g.
the US Federal Drug Administration (FDA) proposed reg-
ulatory framework on AI/ML-based Software as a Medical
Device (SaMD) [1] and Assurance of Machine Learning for
Autonomous Systems (AMLAS) [2].
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Second, because of the “black box” (opaque) nature of
the ML models [3], it is hard to assess what has been
learnt, which exacerbates the challenging of defining con-
crete requirements for the safety of SaMD in its clinical
context. Instead, human performance is often used as a
“gold standard” and the current practice is often to (seek to)
achieve performance that is better than humans. This makes
validation difficult as human performance is variable both
from individual-to-individual and over time for a single
individual. Also, performance will vary from patient-to-
patient, e.g., with comorbidities, and clinicians might not
agree on the best treatment strategy.

To overcome such problems, the ML community is ac-
tively studying “explainablity”, which is intended to “peek
inside the black box” and to illuminate the underlying work-
ings of the ML models. Explainability is often equated with
producing explainable artificial intelligence (XAI) methods,
which seek to provide human interpretable representations
of ML models [4]. Although there is considerable varia-
tion in the definition of terms such as explainability, in-
terpretability and transparency, in this paper we adopt the
view from the FDA AI/ML-enabled Medical Devices Trans-
parency Workshop [5] that explainability is one component
of transparency. Transparency is a much broader concept in
their definition and we see interetability as a necessary facet
of explainability, as suggested by Gilpin et al [6].

In this paper we consider the role of explainability in
assuring the safety of ML models in healthcare. Our focus
is on development activities and deployment decisions for
ML-based systems, but we briefly consider the potential role
of explainability in operations.

The primary contributions of this paper are as follows.
First, we developed a new conceptual model, a spider dia-
gram, which gives a heuristic view of safety and shows how
safety, as a cross-cutting concern, relates to other aspects of
an ML-based system, including the role of explainability.
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Then we show how to assure safety by meeting relevant
regulatory requirements, especially from the FDA. In par-
ticular, we show how XAI methods can be integrated into
the different phases of model development and what types
of XAI methods best provide safety evidence to meet the
regulatory requirements. Finally, we present a concrete case
study to illustrate the use of XAI methods in supporting a
safety case for ML systems.

The rest of the paper is structured as follows. Section
2 identifies relevant related work. Section 3 outlines the
potential role of XAI methods in the ML life-cycle. These
possibilities are then investigated in Section 4 using an
example of weaning patients from mechanical ventilation.
This is followed by a discussion and conclusions in Sections
5 and 6, respectively.

2 BACKGROUND & RELATED WORK

This section discusses established approaches to assurance
of safety-critical systems and identifies their limitations
when dealing with systems employing ML. This is followed
by an introduction to the concepts of explainability and an
overview of the different types of XAI methods.

2.1 Established Assurance Approaches and the Chal-

lenges of ML

We use the term assurance to mean confidence that the system
behaviour is as intended in the environment of use, where as in-
tended includes being safe. In this context, we are interested
in assurance of patient safety when ML-based systems are
used in a healthcare context.

Most approaches to assurance emphasise verification
and validation, although the definitions of the terms can
vary. The International Medical Devices Regulator Forum
(IMDRF) define the terms as follows:

• Verification – confirmation through provision of ob-
jective evidence that specified requirements have
been fulfilled [7];

• Validation – confirmation through provision of ob-
jective evidence that the requirements for a specific
intended use or application have been fulfilled [7].

To interpret these definitions we can say that validation
is concerned with building the right system, including defin-
ing requirements that meet our intent and that verification
is concerned with building the system right by demonstrat-
ing that the system meets these requirements. Verification
and validation (V&V) need to encompass identified safety
requirements, which are often derived to control the risk
associated with hazards, i.e. undesirable situations that pose
risk to life. Typically, risk is a combination of the likelihood
and the severity of the harm arising from the hazard,
although the detailed computations vary from domain to
domain. Where risks are deemed too high, derived safety
requirements (DSRs) are identified to reduce the likelihood
of hazard occurrence, e.g. by controlling hazard causes, or
to mitigate the consequences of the hazard should it arise.
In healthcare, such ideas underpin some of the relevant
standards, e.g. [8] produced by NHS Digital in the UK.

We have previously investigated how to adapt tradi-
tional safety engineering processes to healthcare systems

which employ ML. We have shown that, in some cases,
it is possible to adapt classical safety methods to identify
hazards and then to establish DSRs on the ML elements of
systems [9]. Clinical judgement is also needed to produce
such DSRs. Where requirements are not stated explicitly,
XAI methods can help by providing explanations that en-
able direct validation of the ML model as a whole, e.g.
showing that predictions are based on valid clinical factors
and are consistent with clinical knowledge.

In many domains, including healthcare, it is accepted
good practice for the safety work to culminate in the pro-
duction of a safety or assurance case, see [8]. In general, a
safety case is “an argument, supported by evidence, that a
systems is safe to be deployed in its context of use”. It is
common to express the argument graphically, e.g., using the
Goal Structuring Notation (GSN) [10], as a means of mak-
ing the argument clear and open to review. The evidence
underpinning the safety case includes the results of hazard
and risk analysis, as well as the outputs from V&V activities
and in this paper we will show that XAI methods can also
provide such evidence.

There are a number of initiatives concerned with the
assurance of ML in safety-critical systems both in healthcare
and more generally. For example, AMLAS defines a process
for assurance of the safety of ML-based systems to reflect
the ML development life-cycle, which identifies both evi-
dence artefacts and argument patterns (standard forms of
argument that can be instantiated for a particular system) in
GSN. AMLAS also considers issues of the robustness of ML-
based systems, e.g. response to unexpected inputs. The FDA
also proposed a total life-cycle regulatory approach for ML-
based SaMD [1]. However, these approaches are evolving in
that they provide good high-level guidance and objectives,
but how to meet such objectives is not sufficiently detailed.
The work we present here is intended to be complementary
to, and build on, these approaches and shows how XAI
methods can provide evidence to meet these objectives, and
thus contributes to improving their maturity.

In addition, it is always desirable to consider assurance
“through life”, as proposed by the FDA [1], not just as
an activity undertaken prior to deployment. This includes
getting feedback from operations to check whether or not
the assumptions made in pre-deployment assurance activ-
ities are sound. This is even more important for ML-based
systems than it is for “conventional” systems because of the
opacity of ML models.

2.2 Explainable AI Methods

ML includes a range of different methods such as decision
trees, support vector machines and neural networks (NNs).
The study of XAI methods seeks to provide insight into
how and why ML models make such predictions. Work
on explainable AI includes formalising definitions of ex-
plainability, development of XAI methods themselves and
establishing evaluation methods. In this section we provide
a brief overview of XAI methods. For a more complete view
of XAI, please refer to some well-cited surveys, e.g. [11], [6].
There are many different ways to categorise XAI methods,
e.g. local or global based on the scope of the explanation
or model agnostic or specific based on whether the XAI
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methods can work for any class of ML models or only work
for a specific class of models. Here we adopt the taxonomy
of XAI in [11] and present XAI methods in two different
classes based on the explanation generating mechanism, as
shown in Table 1.

Some ML models are perceived as intrinsically inter-
pretable to the user, so we refer to these as interpretable mod-
els. This includes linear/logistic regression, decision trees,
K-nearest neighbours, decision rules, Bayesian models, gen-
eral additive models (GAMs), etc. Note that, although often
these models are viewed as intrinsically interpretable, when
the number of input features are beyond human ability to
grasp or when the input features are heterogeneous which is
not uncommon in healthcare, it can be difficult for humans
to interpret the model and care needs to be taken [12].

When it comes to explaining more complex or opaque
ML models, e.g. support vector machines, tree ensembles,
and NNs, which are not intrinsically interpretable, a post-
hoc explanation can be used to provide insights without
knowing the mechanisms by which the model works. We
present four main post-hoc explanation classes as follows
along with some popular techniques as illustrations.

• Explanation by approximation aims to use surrogate
models, e.g. linear models, decision trees or deci-
sion rules to approximate the underlying complex
or opaque model. These can include local or global
surrogates depending on whether they are approxi-
mating a single prediction or the whole model. For
example, LIME (Local Interpretable Model-Agnostic
Explanations) [13] focuses on training a local surro-
gate to provide explanations for an individual pre-
diction, which is based on the assumption that it
is possible to fit a surrogate model around a single
input sample that mimics the local behaviour of the
complex ML model. Like LIME, Anchors [14] deploy
a perturbation based strategy to generate local expla-
nations for predictions in a local region resulting in
if-then rules. In contrast, model extraction proposed
in [15] trains a global surrogate to approximate a
complex model. The three methods mentioned above
are model-agnostic so they would also work for NNs.

• Explanation by example explains the ML model by
selecting particular instances from the dataset or by
creating new instances. It comprises counterfactual
examples, adversarial examples, influential instances
and prototypical examples. Counterfactual exam-
ples can be thought of as “what is not, but could have
been” and are intended to produce a sparse human-
interpretable example by changing some input fea-
tures to achieve a different output, i.e. the user’s
desired output (what could have been). Adversarial
examples are typically generated by adding small,
intentional perturbations to the input features to
cause an ML model to make an incorrect prediction.
Adversarial examples are intended to deceive the ML
model instead of interpreting the model. Therefore,
the changes in the inputs are often imperceptible for
a human observer. Influential instances are intended
to identify which input instances have a strong effect

on the trained model. They can be identified by
measuring the impact of a training point on a partic-
ular prediction or on the model overall. Prototypical
examples can summarise and represent a complex
underlying data distribution, which then can be used
to provide a global understanding of the model by
examining prototypes along with their model pre-
dictions or a local explanation for a specific instance
by identifying the most similar training instance
according to the trained model. This is different to
influential instances because the training example
might be influential but not representative.

• Feature relevance explanation techniques rank or
score the input features based on their influence,
relevance or importance on the model prediction
where higher scores mean that the corresponding
features are more important for the model. Such
scores are often obtained by perturbation or gradient-
based methods. For example, SHAP (SHapley Ad-
ditive exPlanations) [16] is one of the perturbation
methods based on Shapley values, which are used to
explain a model prediction by treating input features
as the players in a cooperative game and the model
prediction as the gain resulting from the game. It
includes KernelSHAP, a model agnostic weighted
linear regression approximation of the exact Shapley
value inspired by LIME, and TreeSHAP, a model-
specific efficient estimation approach for tree-based
models. The work on SHAP has wider significance
as it has defined a new class of additive feature
importance measures, unifying several existing XAI
methods [16].

• Visual explanation techniques aim to facilitate
model understanding by using visualisation, e.g.
showing how features interact with the predicted
output or other features. Such methods can involve
using sensitivity analysis (SA) or partial dependence
to inspect the relationship between the uncertainty in
the predicted output and its input features, e.g. [17]
presented several visualisations for the SA results
and [18] introduced Individual Conditional Expecta-
tion (ICE) to show how the prediction of a particular
instance changes along with the input features.

Due to the popularity of deep learning (DL), a different
classification scheme for XAI in DL is proposed by Gilpin et
al [6], and it is often treated as a subfield of XAI per se.

• Explanations of deep network processing. This can
be achieved by producing a “saliency map” which
is a rendering of weights for the input features that
highlight the salient features for the prediction. A
“saliency map” can be produced by perturbation-
based methods, e.g. LIME, or by calculating the
gradient of the output with respect to the input, iden-
tifying which parts of the input have a significant
influence on the classification [19]. Due to some lim-
itations of directly using gradients, e.g. saturation,
there are also a number of other methods proposed,
for example, Integrated Gradients [20], LRP [21], and
DeepLIFT [22].
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TABLE 1: Categorisation of XAI Methods with Examples

Type of explanation Scope

Model

Specific/

Agnostic

Examples of XAI methods

Interpretable Models Global Specific

A model by itself interpretable,

e.g. linear/logistic regression,

decision tree, GAM, etc.

Post-hoc

explanation

Explanation by

Approximation

Local Agnostic LIME

Local Agnostic Anchors

Global Agnostic Model extraction

Explanation by

example

Local Agnostic Counterfactual examples

Local Agnostic Adversarial examples

Local Agnostic Influential instances

Local Agnostic Prototypical examples

Feature

relevance

Explanation

Local Agnostic KernelSHAP

Local Specific TreeSHAP

Local Specific LRP

Local Specific Integrated Gradient

Local Specific DeepLIFT

Visual

Explanation

Global Agnostic Partial dependence plot

Local Agnostic ICE

• Explanations of deep network representations. This
type of explanation aims to inspect what the model
learnt. Feature visualisation [23] is helpful to under-
stand how an NN builds up its understanding of
input images throughout the network by maximis-
ing activation for the unit of interest, e.g. a specific
neuron, or a specific layer, or a convolution channel.
Further, there are concept-based methods, e.g. TCAV
[24], attempting to detect concepts that are human-
interpretable but embedded within the latent space
learnt by the network.

• Explanation-producing systems. For example,
attention-based networks learn a function by
providing weights of the input or internal features
of a NN in order to force the model to attend to the
important regions with respect to the target task.
Although the attention-mechanism could render an
attention map to provide some insights or intuitive
feeling of the model, it is important to note that the
interpretation of attention as explanation is currently
the subject of debate [25] [26].

Some further details on XAI methods we have used in
our case study are included in Section 4.

3 THE ROLE OF EXPLAINABILITY IN SAFETY AS-

SURANCE

Assurance of safety is a multi-faceted, multi-dimensional
concern. We start by presenting our new conceptual model
as a spider diagram to show the role of explainability in
safety assurance generally, and how this relates to regula-
tory requirements. Then, we exemplify how explainability
can contribute to safety assurance in the context of the ML
life-cycle.

3.1 Explainability and Safety

Fig. 1, which we refer to as the spider diagram, shows the
different aspects of a ML-based system, e.g. performance
and explainability, that relate to safety in its context of use.
This illustrates that safety is a cross-cutting concern, rather
than being a separate dimension. Fig. 1 gives an impression

Fig. 1: Spider diagram illustrating the role of explainability
and safey

of safety, where safety is related to six dimensions of ML-
based systems and the area within the hexagon can be
viewed as a heuristic evaluation of safety. Note that the
dimensions in Fig. 1 are not exhaustive; we have chosen
them as they provide a good engineering perspective.

Performance of the ML can be assessed using accuracy or
other metrics, which are well known. Data management for
ML is crucial as the quality of data has a significant impact
on the model learnt, e.g. if the data is biased, then the model
might also learn discriminatory behaviour or even amplify
it. Human-machine interface is also very important for safety
as certain types of interface can be prone to human operator
errors. Here we think of Robustness as the model prediction
being stable, particularly in the presence of small variations
in the input features. Explainability can be achieved using
intrinsically interpretable models or post-hoc XAI methods.
However, explanations of intrinsically interpretable models
are more accurate than post-hoc XAI methods, in the sense
that they have high fidelity to the task model, and this
has led to some authors suggesting that only such models
should be used for safety-critical tasks [27]. Finally, Other
safety specific controls can be thought of as means to satisfy
DSRs at the system level, which are not covered by the
above dimensions. This is task dependent, e.g. in an online
healthcare triage system, it is important to have a safety net
where specific words should trigger an emergency response
rather than continuing to ask questions. As shown in Fig.
1, performance also matters for safety but if an intrinsically
interpretable model can achieve similar performance to a
“black box” model, then the interpretable one should be
preferred.

To draw the spider diagram for a particular ML-based
system requires metrics for the different dimensions. Per-
formance is readily quantified, but it is less obvious how
to measure or quantify the other dimensions; we return to
this issue in Section 5. In theory, if we could identify all
the relevant dimensions and quantify the area in the spider
diagram this would give a good basis for safety assurance.
In practice, regulators are defining regulatory requirements
with the intent that if these requirements are satisfied, the
system can be approved as safe enough to be marketed.
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In the next subsection, we focus on explanability and
further investigate how it can contribute to safety in the
context of the ML life-cycle, and show how the evidence
generated by XAI methods can contribute to meeting the
relevant FDA regulatory requirements.

3.2 Explainability in the ML life-cycle

The development process for ML typically includes data
management, ML algorithm selection, model learning and
model V&V [2], as shown in Fig. 2. Fig. 2 makes explicit the
need for a deployment decision prior to operation (which
may be supported by a safety case). It also shows the
stakeholders who might be interested in the explanations in
the different phases. Our focus here is on the development
activities, but we briefly consider the potential role of ex-
plainability in operation, see Section 3.2.5; for a discussion
of the wider role of explainability including incident and
accident investigation see [28].

The rest of this section discusses the role of explainability
for each stage of the process shown in Fig. 2.

3.2.1 Data Management

The first phase of the ML development process is data
management, and this aligns directly with the spider dia-
gram. Most XAI methods are not applicable to this stage
but prototypes are relevant; they can help to understand the
datasets especially when the datasets are large and complex,
although prototypes can also be used to approximate the
learnt model [29].

The Royal Society’s Policy Briefing on XAI emphasises
that data quality and provenance is part of the explainability
pipeline, specifically saying that “Understanding the quality
and provenance of the data used in AI systems is therefore an
important part of ensuring that a system is explainable” [30].
This includes showing that the data comes from appropriate
sources for the problem addressed. A widely accepted,
harmonised framework for assessment of Electronic Health
Record (EHR) data quality highlights conformance, complete-
ness and accuracy [31]; we prefer accuracy to the original term
plausibility because plausibility means that the values are in
the possible range but accurate means that the data is not
only possible but correct. These criteria would be applicable
to any ML systems developed using EHR data. Further, we
also identify data relevance and balance as being particularly
important to ML model development [2]. As real world data
may contain biases, errors, or be incomplete, explaining how
these five criteria are met can be at least as important as
explaining the ML model itself.

The evidence to ensure data quality is essentially techni-
cal, for example data conformance would include showing
that data observes defined formats, e.g. correct units for
weight [31]. However, demonstrating data relevance and data
balance would include a judgement that the training data
contained clinically relevant factors and are balanced for
the problem being addressed. We acknowledge that often
it is not possible to choose data that gives both feature
balance and class balance. Instead, it might be useful to ex-
plain that some important features are reasonably balanced,
e.g. gender, if the model is intended to be used for both
male and female patients. Class balance has long been an

active research area in the ML community. In the case of
skewed dataset, prototypes can be generated to understand
the data distribution and can be used to train a model. There
is evidence showing that using prototypes can help with
class balance. For example, Gurumoorthy et al [32] have
demonstrated that using good prototypes to train a model
can give better performance than using the whole dataset or
randomly sampled subsets to balance the classes.

It should be noted that data management is both crucial
and labour intensive. Indeed, it may consume more effort
than the rest of the ML life-cycle. Judgement of the extent
to which the data meets these five criteria would be used to
assess an AI/ML system in the data management dimension
in the spider diagram.

Data 

management

ML 

algorithm 

selection 

Model 

verification 

& validation

Developers

Authorities*

Operation
Users

Assessment & 

improvement

Deployment 

decision

Development process

* may involve regulators,

hospital managers,

developers, insurers

Model 

learning 

Fig. 2: Process for development and use of an ML System

3.2.2 ML Algorithm Selection

The second phase in the development process is ML algo-
rithm selection (also referred to as model selection, here we
use the term ML algorithm selection to avoid the confusion
with model selection in the training phase where the ML
algorithm is the same but hyperparameters of the model
are tuned to be different). It is important to understand
what kind of problem is being addressed and what kind
of ML methods are suitable for the problem at hand,
e.g. classification, regression, or finding an optimal policy.
Another important aspect to consider at this stage is the
explainability and performance dimensions of the ML model
as shown in the spider diagram. In Section 2.2 we identified
that some ML models are intrinsically interpretable whereas
others need to be supplemented with post-hoc XAI methods.
Guidelines on ML algorithm selection, balancing model per-
formance against explainability, have been proposed [33].

When it comes to ML algorithm selection, safety re-
quirements are often implicitly transformed into explain-
ability and performance requirements. Note that sometimes
people make statements such as “use of deep NNs is
not safe”. When they make this kind of statement, they
are implicitly making the judgement that deep NNs are
opaque, i.e. not interpretable. The spider diagram helps to
show that this is over-simplistic. There is no binary choice
“opaque/interpretable”, rather explainability and performance
are two of the dimensions; both matter for safety in an
AI/ML application. This is why we argue that safety re-
quirements are partially, but not wholly, transformed into
explainability requirements. It would be ideal to have an
interpretable model which can achieve performance as high
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as black box models. When this is not the case, a trade-off be-
tween explainability and performance would be necessary
[33] and post-hoc explanations should be considered either
in later phases of development or in operation to produce
effective explanation. The rationale for the ML algorithm
choice, including the performance-explainability trade-offs,
needs to be documented in the safety case.

3.2.3 Model Learning

The third phase in the development process is model learn-
ing. The essential aim of this stage is to train a “good”
model, and performance and robustness are especially im-
portant at this stage. For model learning, hyperparameter
selection, loss function definition and class balance need
to be considered in order to meet safety requirements. In
addition, XAI methods can have a role in improving both
performance and robustness, e.g. through model debugging
and adversarial training.

Automated robustness improvement – adversarial ex-
amples are often added to training data to improve model
robustness in object classification tasks. This is referred to
as adversarial training or robustness training [34]. There are
many techniques for generating adversarial examples, e.g.
by minimising the distance between the adversarial example
and the input instance, which is similar to counterfactual
examples (see Section 3.2.4 for more discussion). Popular
distance metrics include: L0, L1, L2 and L∞, all of which
are Lp norms [35]. L0 counts the number of features that
have changed between the two instances, L1 measures the
sum of the magnitudes of the change, L2 measures the
Euclidean distance between the two instances, and L∞

measures the maximum change among all of the features.
Use of adversarial examples to improve model robustness
is becoming widespread in domains such as autonomous
vehicles, for example in improving performance at reading
road signs under adverse conditions, but we believe it has
wider applicability, e.g. for image classification in radiology.

“Model debugging” – influential instances are useful as
they can help to understand model behaviour, specifically
they can help to debug domain mismatch or fix problematic
training instances where the label or input features might
be incorrect [36]. We can investigate influential instances
for a specific prediction or for the model overall. For ex-
ample, when the test instances are being misclassified by
the model, we can identify the most responsible training
instances for such instances. This enables exploration of the
causes of the problem, e.g. errors in the training instances, or
domain mismatch, i.e. poorly represented subgroups in the
dataset, which can therefore be unduly influential. Domain
mismatch is not uncommon in healthcare as the population
from the intended use hospital can be very different from
the population used for developing the model. Further, we
can also investigate the most influential training instances
for the model overall, e.g. we can assess the influence
of removing a certain training instance on the model by
measuring the change in loss of this training instance before
and after it is removed; the bigger the change in the loss
the more influential the instance. Intuitively if the model
has to “try hard” to accommodate the instance, then that
instance is highly influential. In reality, labels in the training
dataset can be noisy and it is unrealistic to expect human

experts to manually review all of the data. In this case, it
is useful to investigate the most influential instances for the
model overall to direct the human experts’ attention to the
instances that actually matter.

Two approaches for identifying influential instances are
often used – deletion diagnostics and influence functions.
Deletion diagnostics is not practical for big training datasets
as it needs to remove a single training instance every time
to observe the effect of this instance until the effect of all
of the training data has been observed. However, influence
functions can be used to approximate the effect without
deleting the training instance (see Section 4.2 for details).

In addition to the uses of the two XAI methods described
above, current research is also exploring how to guide the
learning process to enable the models to produce the desired
form of explanations, for example by including explainable
regularisers in the loss function. In [37], the authors penalise
the gradient of a NN to force it to focus on regions which
contain important information for the task. Others are ex-
ploring how to penalise the neighbourhood fidelity [38] in
order to improve the quality of the explanation. This is an
important research direction, but it relies on understand-
ing what constitutes a good explanation and what metrics
enable the “goodness” of the explanation to be evaluated,
e.g. neighbourhood fidelity or stability [38]. We expect such
methods to be significant for safety assurance, once the
understanding of what is a good explainable regulariser is
more mature, which depends on progress in the domain of
explainability itself.

3.2.4 Model Verification and Validation

The final phase in the development process is model V&V.
We believe that explainability has a particular role in val-
idation, but could also have a role in verification if there
are specific explainability requirements to verify. However,
such explainability requirements need to be defined in a
specific situation, therefore our focus here is on validation.
We derived three distinct objectives, reconciling approaches
proposed by the FDA [1] and the IMDRF [7], which reflect
key criteria for use of ML models in healthcare, although
we note that explanations cannot guarantee that all these
criteria are met [33].

First is performance, which can be measured using stan-
dard ML practices, e.g. evaluation of the proportion of false
positives and false negatives, or the AUC-ROC. This is
necessary but not sufficient to assure safety of ML.

The second objective is analytical or technical validation,
showing that the software for the ML models is correctly
constructed, and that it is accurate and reliable. Further,
the ML model implementations produce repeatable results,
giving the same predictions from the same inputs. This
objective can be met by employing established safety-critical
software development practices including formal specifica-
tions, traceability from specification to implementation, use
of test coverage criteria and static code analysis methods
[39]. We do not see a role for XAI methods for this aspect of
validation.

Third is clinical validation which measures the ability of
the system to generate a clinically meaningful output for its
intended use in its operational environment. Here we define
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two specific sub-objectives where we believe XAI methods
have a role in supporting clinical validation:

• Clinical association – demonstrate that the associ-
ation between the system output and the targeted
clinical condition in the intended population is sup-
ported by evidence;

• Robustness – demonstrate the ability to distinguish
the different classes of intended condition or recom-
mended treatment without over-reliance on a specific
input feature.

These explicitly relate to the explainability and robustness
dimensions in the spider diagram.

Feature relevance explanations can help to demonstrate
clinical association by showing that the output predictions
are based on clinically meaningful and relevant factors of
the input. This involves ranking input features based on
their importance score or contribution score and making the
rankings visible to clinicians so that they can exercise clinical
judgement. One might argue that rule-based explanation
can also help in this case, for example, using Anchors to
generate relevant rules for clinicians to judge whether a
valid clinical association has been learnt. However, for the
following reasons, we believe that feature relevance expla-
nations should be preferred in this context. First, clinicians
consistently stated that knowing the feature importance
driving the model outcome is crucial. This allows them
to compare model decisions to their clinical judgement,
especially in case of a discrepancy [40]. Second, ML is most
valuable when it is used in complex clinical tasks where
there are no agreed set of rules. In this case, it is easier
to agree on the important and unimportant factors than
on rules. For example, there is evidence [41] showing that
even if an extracted rule provides 100% accuracy in the
test dataset, an individual clinician still might not have
confidence in it, let alone achieving consensus amongst the
clinicians. Third, using feature importance can facilitate the
regulatory approval process, and this avoids hampering
the adoption of ML until universal rules are found and
agreed by experts. However, we acknowledge that rule
based methods are useful for knowledge discovery. Feature
relevance explanation also has its limitations in explaining
image-based datasets where the highlighted regions in a
saliency map might not correspond well to high level con-
cepts that are meaningful to humans. In this case, concept-
based approaches, e.g. TCAV [24], that can quantify the
degree to which a user-defined concept is important to a
prediction, would be more appealing. In healthcare, such
concepts would be pre-defined by clinicians.

Example-based explanation, especially counterfactual ex-
amples, can help to assess model robustness. Counterfactuals
are generated by minimising the distance from the original
input whilst producing a different prediction. As we men-
tioned in Section 3.2.3, the distance metrics for adversarial
examples are still valid for counterfactuals, although among
them L1 is the most widely explored in the literature and
L∞ is rarely used, which is unsurprising as L1 can enforce
sparsity in the generated example. As pointed out in [42],
sparsity is one of the desirable properties of a good coun-
terfactual. Intuitively, a counterfactual will be more imple-
mentable, and easier to understand, if fewer features have

to be changed. Additional desirable properties for good
counterfactuals are proximity (as close as possible to the
original instance), plausibility (it is possible for the features
to take that value) and diversity (multiple ways of achiev-
ing the desired prediction). On-going research seeks novel
loss functions to incorporate these properties to generate
the counterfactuals. When using counterfactuals to assess
model robustness, proximity is the most important property,
in other words if the counterfactual methods don’t satisfy
this property, they should not be used to assess robustness.
Intuitively, the greater the distance from an initial input to
a counterfactual, the more robust the ML model is, i.e. the
model is “harder to fool”. Therefore, distance metrics can be
used to define a robustness score for the ML model, which
links to the robustness dimension of the spider diagram. For
example, [43] used the L1 distance metric to define the score.
However, we suggest that the L2 distance metric might be
most appropriate to use based on the findings in [35] which
indicates that achieving robustness against L2 also achieves
robustness against other distance metrics.

The use of XAI methods in support of ML model V&V
will contribute evidence to the safety case, complement-
ing other activities including performance assessment and
safety-critical software engineering. It should be noted that
explanations should be re-generated when the ML models
are updated so that they reflect the state of the models.

3.2.5 Operation

As discussed in Section 2.1, assurance should be considered
to be a “through life” activity. This would include, for
example, a clinician seeking assurance about a particular
prediction, especially if acting on it can have a profound
impact on patient safety. XAI methods can play a role
here. Local feature relevance explanation may be helpful
but counterfactuals also have a role, e.g. helping a clinician
to decide whether or not a proposed change in treatment
is likely to bring about the desired effect for a particular
patient. Further, prototypes might also be able to help clini-
cians to make informed decisions for specific patients. How-
ever, current research, e.g. [29], often presents prototypes to
laymen rather than domain experts to assess whether this
will help them to make decisions, so more work needs to be
done to see whether clinicians can benefit from prototype
explanations. The role and significance of explainability in
operation is examined in more detail in [28].

4 CASE STUDY

This section presents a concrete healthcare case study to
illustrate the role of XAI methods, introduced in Section
3. The case study doesn’t cover data management, but
see our previous work for an illustration of the rationale
for data inclusion for this case study [44]. The case study
focuses on use of mechanical ventilation in Intensive Care
Units (ICUs). Provision of mechanical ventilation is complex
and consumes a significant proportion of ICU resources
[45]. Invasive mechanical ventilation is used when patients
cannot breathe unaided, and requires the insertion of a
tube into the trachea of the patient. The term intubation
is used for insertion of tube and extubation for removal of
the tube. It is of critical importance to determine the right
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TABLE 2: Performance of ML models

Model AUC-ROC (95%CI)

Convolutional Neural Network 0.923 ± 0.010

Artificial Neural Network 0.784 ± 0.031

Logistic Regression 0.827 ± 0.000

Random Forest 0.748 ± 0.040

Decision Tree 0.808 ± 0.008

Support Vector Machine 0.826 ± 0.000

time to wean the patient from mechanical ventilation. Both
early and late weaning are problematic. Early extubation
can lead to the need for re-intubation, which may become
urgent. Late extubation exposes a patient to discomfort and
continued risk of complications such as pneumonia from
prolonged intubation.

The case study is particularly concerned with predicting
patient readiness for extubation so as to avoid the nega-
tive side effects of mis-timed extubation using the features
shown in Fig. 5. Put simply, the safety requirement is
“prediction of readiness for extubation is timely”. The case
study is based on the MIMIC-III dataset [46] and used a
convolutional NN (CNN) to predict readiness for extubation
in the next hour.

4.1 ML Algorithm Selection

ML Algorithm selection is strongly influenced by perfor-
mance, as previously indicated. There are a range of per-
formance metrics, e.g. false positives, which in this case
study would mean indicating that a patient is ready for
extubation when it was actually premature. Here we use the
AUC-ROC performance measure. The ROC curve plots the
true positives against the false positives at various threshold
settings. AUC-ROC represents the degree to which the
model is capable of distinguishing between classes. For a
“random” model the AUC-ROC would be 0.5 and for a
“perfect” model it would be 1.

For the case study, the performance of a number of
ML models, including CNNs, were evaluated on the same
dataset to support this phase, see Table 2. CNNs have
the best performance and more importantly, achieve bet-
ter performance than decision trees and logistic regression
which, as noted above, are often viewed as intrinsically
interpretable. As mentioned in section 3.2.2 there is a trade-
off between performance and explainability. If performance
over-rides the need for explainablility, then CNN should be
chosen. Whilst if intrinsic interpretability is more important,
then logistic regression should be chosen. In this case study,
CNNs have been chosen, and post-hoc XAI methods are used
to explain the model, see the rest of the section for details.

4.2 Model Learning

As we indicated in Section 3.2.3, two XAI methods can
be helpful at this stage: adversarial examples and influ-
ential instances. Because adversarial examples are difficult
to generate for tabular data, here we focus on the use of
influential instances for “model debugging”. This shows
how they provide assurance about the appropriateness of

the ML model learning process, in the context of the safety
requirement.

When preparing the dataset for the case study, one issue
that came up was whether or not to include the extuba-
tion failure patients. Here extubation failure is defined as
the need for re-intubation within 48 hours. The causes of
extubation failure are complex and unclear, but some of the
literature suggests that premature extubation could cause
extubation failure [45]. Therefore, including extubation fail-
ure patients in the training dataset might not be optimal,
as it might negatively influence the prediction. To explore
this issue further, we trained two CNN models to predict
the readiness for extubation in the next hour in order to
observe the effect of extubation failure patients. In the first
model, we excluded all of the extubation failure patients
in the training dataset. In the second model, we included
all of the extubation failure patents in the training dataset.
The accuracy of the second model is slightly changed by
comparison with the first model. We randomly picked one
of the test instances that was “interesting” in that the two
models produced different predictions. For this instance,
the first model predicted the patient should continue to be
intubated, which is also the true label. However, the second
model predicted that the patient was ready for extubation
in the next hour. We used influence functions to identify the
influential training instances for this test instance.

The key idea behind influence functions is to up-weight
the loss of a training instance by an infinitestimally small

step ϵ, which results in new model parameters, θ̂ϵ,z =
argmin(1 − ϵ) 1

n

∑n

i=1
L(zi, θ) + ϵL(z, θ), where θ is the

model parameter vector and θ̂ϵ,z is the model parameter
after upweighting z by ϵ. L is the loss function used for
training the model. The influence of upweighting z on the

parameters θ̂ given by Cook and Weisberg [47] is as follows:

Iup,params(z) =
dθ̂ϵ,z

dϵ
|ϵ=0= −H−1

θ̂
∇θL(z, θ̂) (1)

Where H
θ̂

is the Hessian matrix and ∇θL(z, θ̂) is the loss

gradient with respect to the parameters θ̂ for the training
instance z. Next, we can apply the chain rule to calculate
the influence of upweighting instance z on the loss of a test
instance ztest:

(2)

Iup,loss(z, ztest) =
dL(ztest, θ̂ϵ,z)

dϵ
|ϵ=0

= ∇θL(ztest, θ̂)
T dθ̂ϵ,z

dϵ
|ϵ=0

= −∇θL(ztest, θ̂)
TH−1

θ̂
∇θL(z, θ̂)

In this work, we use the influence functions algo-
rithm developed by Koh and Liang [36] to calculate
−Iup,loss(zi, ztest) for each training instance zi for this test
instance. Fig. 3 shows the top 15 helpful training instances
(most positive −Iup,loss(zi, ztest)) and the top 15 harmful
training instances (most negative −Iup,loss(zi, ztest)) for this
test instance. From the figure, it shows there are three
instances of patients who had extubation failure among the
harmful training instances, which indicates that including
the extubation failure patients made the predictions for the
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test instance worse. Fig. 4 shows some of the most influential
data points (magnitude of −Iup,loss(zi, ztest) is large) from
the extubation failure patients and that more of them have a
negative influence than a positive influence. This suggests
that the inclusion of extubation failure could make the
prediction ready to extubate when it is not the case. Thus,
we decided to exclude the extubation failure patients from
the training dataset and the first CNN model was taken
forward to the V&V stage. In a more general situation when
prior knowledge is not available, i.e. we don’t know what
subset of the data could be problematic, we can still choose
a test instance where the prediction is wrong and identify
the influence of the training instances on this prediction.
Then, further investigation could be done to understand
what input features strongly impact the influence score, e.g.
by perturbation [36] or by using decision trees.

Training instances

−
I
u
p
,
l
o
s
s

Fig. 3: Top 30 most influential training instances

Training instances

−
I
u
p
,
l
o
s
s

Fig. 4: Distribution of influential instances

4.3 Model Verification and Validation

In this section, we focus on clinical validation, as set out
in Section 3.2.4, and illustrate the use of XAI methods for
demonstrating clinical association and robustness. We do
not consider analytical validation here.

4.3.1 Feature relevance explanations

Here we illustrate the role of feature relevance in satisfying
the clinical association safety assurance objective. This is
done using DeepLIFT [22] which is a model-specific XAI
method for deep NNs. It compares the activation of each
neuron to its “reference activation” and attributes to each
input feature an importance score based on the difference.
The “reference activation” is obtained through some user-
defined reference input and in this case, the reference sam-
ple is the minimum values of all of the input features
obtained from the data set. We chose this method for two
main reasons. First, it deals effectively with discontinuities
in the gradient of the CNN model as it uses a difference
from reference approach. Second, it avoids the problem of

Fig. 5: Feature Importance for the CNN Model

model saturation where using gradients would just assign
zero to the features [22].

An overview of the results of using DeepLIFT is shown
in Fig. 5; these values are averaged over the whole dataset,
so this can be viewed as global feature importance. The
feature ranking correlates well with clinical expectations,
helping to give confidence in the model. Those features
that score near zero in Fig. 5, e.g. ethnicity, gender and
age, have little influence on the weaning decision, which
is as expected. The top five features also align with clinical
evidence. Patients who are undergoing invasive mechani-
cal ventilation are often sedated to maintain physiological
stability and to control pain levels. Sedation is reflected in
the Richardson Agitation Scale (RAS) with negative values
representing sedation and 0 meaning that they are alert and
calm, thus more likely to be suitable for extubation. This
is consistent with the first entry in the weaning checklist
used in [48] that patients are “cooperative and pain free”.
The second most important feature is “Inspired O2 fraction”
which is the third checklist entry in [48]. The third most im-
portant feature is “ventilator category”, which is the mode
used for ventilation and is under direct clinician control;
some modes are unsuitable for spontaneous breathing so
cannot easily support weaning. The fourth and fifth most
important features, peak inspiratory pressure and positive
end-expiratory pressure (PEEP) set are airway pressures
representing how hard the ventilator is having to work;
PEEP is also the third entry in the weaning checklist in [48].

Here we have demonstrated valid clinical association
through clinical evidence (relevant literature support) and
expert opinion (consultation with clinicians). Overall, the
benefit of the feature importance results is that they enable
clinical judgement to be applied despite the opacity of the
CNN model which contributes to safety assurance.
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4.3.2 Counterfactual explanations

TABLE 3: Counterfactual examples for a given instance

Features Original instance
Counterfactual Examples
1 2 3

Admit Type Emergency — — —
Ethnicity White — — —
Gender Female — — —
Age 78.2 — — —
Admission Weight 86.5 — — —
Heart Rate 119 — 110 —
Respiratory Rate 24 26 — —
SpO2 98 — — 96
Inspired O2 Fraction 100% — 40% —
PEEP set 10 5 5 5
Mean Airway Pressure 14 — 10 —
Tidal Volume (observed) 541 — — 560
PH (Arterial) 7.46 — — —
Respiratory Rate(Spont) 0 — 24 —
Richmond-RAS Scale -1 — 0 —
Peak Insp. Pressure 21 — — —
O2 Flow 5 — — —
Plateau Pressure 19 — — —
Arterial O2 pressure 124 108 118 —
Arterial CO2 Pressure 33 — — —
Blood Pressure (systolic) 101 — — —
Blood Pressure (diastolic) 65 — — —
Blood Pressure (mean) 76 — — —

Spontaneous breathing trials No result
Successfully
Completed

Successfully
Completed

Successfully
Completed

Ventilator Mode
CMV/ASSIST/
AutoFlow

PCV+ SIMV/PSV SIMV/PSV

Predicted outcome 0.93 0.44 0.17 0.36

One of the concerns in model V&V is robustness and
here we show how to use counterfactuals to demonstrate
robustness. Diverse Counterfactual Examples (DiCE) [42] is
used to generate the counterfactual examples. The reason
we use DiCE is that it is one of the few methods to satisfy all
of the four properties of a good counterfactual, i.e. sparsity,
proximity, plausibility and diversity, introduced in Section
3.2.4. Table 3 shows a set of counterfactual examples for a
particular patient identifying which features need to change
in order to “flip” the prediction from continued intubation
to extubation using DiCE. The left hand column shows the
25 features used by the model and the prediction of the ML
model is included in the bottom row. The original instance
is shown first, with the three rightmost columns showing
counterfactual examples. Certain features cannot be varied,
e.g. age and gender, in order to satisfy the plausibility
criterion; the dashes in the rightmost three columns indicate
no change from the original input. The change in prediction
is shown in the bottom row where a value >0.5 indicates
that mechanical ventilation should continue.

In this case, as shown in Table 3, the minimum number of
features that have to change to “flip” the prediction is five,
showing robustness for this instance. However, one instance
is not sufficient to show ML model robustness. More of the
input instances in the dataset need to be investigated in
order to generate a robustness score as defined in [43].

4.4 Operational use of the ML Model

The operation of ML models is often uncertain. Thus there is
merit in extending the notion of assurance to operation, pro-
viding support to a clinician to give confidence to act on the
particular model prediction. One way of approaching this is
to use local explanations. For example, we can generate the
feature importance for a specific patient, similarly to Fig. 5.

However, clinicians might want to find out when the
patient would be ready to extubate. This brings us back to
counterfactuals. The counterfactual examples shown in Ta-
ble 3 could potentially help the clinician to identify actions
to take so that the patient becomes ready to extubate. The

model does not directly recommend a course of action; the
counterfactual examples act to draw clinicians’ attention to
pertinent information so that they can formulate a plan from
their own knowledge and experience. Note our model has
not been used in operation yet, so we have just illustrated
the possibilities.

4.5 Safety arguments

As explained in Section 2.1, it is common practice to present
the arguments and evidence that provide assurance that a
system is acceptably safe to deploy in a safety case. In this
case study, the safety argument is presented using GSN.
Before we describe the safety argument we have developed,
we briefly introduce the notation.

Fig. 6: Goal Structuring Notation

A legend showing the key elements of GSN is presented
in Fig. 6; a detailed description of the notation can be found
in [10]. The goals – claims that we wish to make and support
– are shown as rectangles and they can be decomposed into
sub-goals, thus forming a tree. Goals are understood in a
context, e.g. the operating environment for the system or the
safety requirements. Where the decomposition of goals is
not obvious this is explained through a strategy, represented
as a rhombus. The leaf-level goals are supported by solu-
tions, represented as circles; the solutions provide references
to evidence that supports the argument. Incomplete parts of
the argument are shown with a diamond, meaning that part
of the argument is to be developed.

Fig. 7 presents a partial safety argument for the wean-
ing case study, highlighting the role of explainability, e.g.
solutions Sn2, Sn4 and Sn6 reflect XAI methods. The top
goal (G0), which states that the ML model meets its safety
requirement, is set out in the context of the definition of
the ML model and the associated safety requirement – that
“prediction of readiness for extubation is timely”.

The top-level argument strategy is decomposition across
the stages of the ML development process. As the pa-
per does not consider data management and analyti-
cal/technical validation in detail, the corresponding goal
(G1) and goal (G5) are left undeveloped.

G2: ML algorithm selection considers trade-off between
performance and explainability – this is supported by the
analysis in Section 4.1 (Sn1) which shows that the CNN
outperforms other available ML methods, and suitable post-
hoc XAI methods are available.

G3: Model learning reflects safety requirement – this is
partially supported by G15 which in turn is supported by
the use of influential instances (Sn2) which show the ratio-
nale for excluding extubation failure patients in the trained
model. Note that other evidence is needed (so G3 is shown
as needing development), e.g. to show appropriateness of
parameter selection for model training.
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Fig. 7: Partial Safety Argument for Weaning ML Model emphasising Explainability

G4: Model V&V shows safety requirements met – this
is broken down into G5: analytical/technical validation,
G6: performance demonstrated and G7: clinical validation
which is decomposed into two sub-goals covering the V&V
criteria introduced in Section 3.2.4.

G6: Performance demonstrated – this is directly sup-
ported by the AUC-ROC in Table 2 which shows the su-
periority of the CNN performance to others.

G9: Robustness demonstrated, which is decomposed
into two subgoals, G11 concerning the reason for the choice
of the specific XAI method and G12 concerning the results of
using the method. It is important to document the rationale
for choosing the method, which will benefit from a more
systematic evaluation metric for XAI methods, see Section
5 for details. G9 needs further development as G12 only
shows robustness for a single instance. More input instances
need to be investigated to understand the model robustness.

G10: Valid clinical association demonstrated, which is
decomposed into two subgoals, G13 concerning the reason
for the choice of the specific XAI method and G14 concern-
ing the results of using the method. G14 is further supported
by clinical evidence in the literature and expert review by
clinicians. Meeting G10, demonstrating valid clinical associ-
ation, does not entail trust. Trust is a more complicated topic
[33] and is outside the scope of this paper.

The evidence presented above should not be taken as

sufficient to justify deployment of the CNN model described
here in a clinical context. For example, clinical trials will of-
ten be needed to obtain further clinical safety evidence and
the necessary regulatory approval. However, the explain-
ability argument and the supporting evidence presented in
this section is a valuable part of the overall safety case.

5 DISCUSSION

Safety assurance of ML models in healthcare is an active
area of research. Although explainability is often said to help
in safety assurance of ML, few studies so far have explored
the possibilities systematically and identified precisely how
explainability can help safety assurance. This paper seeks to
fill this gap. We first presented the spider diagram in Fig.
1 which conceptualises how explainability relates to safety.
Through the analysis in Section 3 and the case study in
Section 4 we illustrated how explainability can help in safety
assurance in the context of the ML life-cycle, as summarised
in Table 4 along with the interested stakeholders. Although
using explainability can help safety assurance, there are also
associated challenges.

First is the difficulty of evaluating XAI methods. A con-
siderable number of evaluation metrics have been suggested
for assessing the quality of XAI methods. For explanation by
approximation, fidelity is often proposed as the evaluation



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3171314, IEEE

Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, OCTOBER 2021 12

TABLE 4: Role of XAI Methods in different phases

Phases Activity XAI methods Stakeholders

Development

Data Management Prototypes

ML developers

Regulators

Hospital managers

ML Algorithm

Selection

Trade-off performance &

explainability
ML developers

Model Learning
Adversarial examples

Influential instances
ML developers

Model V & V
Global feature importance

Counterfactual explanations

ML developers

Regulators

Hospital managers

Insurers

Operation Decision Support
Local feature importance

Counterfactual explanations

Expert users:

clinicians

Decision recipients:

patients

metric. For example, in [13] [38], fidelity is used to mea-
sure how accurately the approximate model matches the
task model locally. For feature relevance explanation, their
ideal properties, e.g. implementation invariance (the feature
importance are always identical for two functionally equiv-
alent networks) and sensitivity (if a feature changes and a
prediction changes, then this feature should not have zero
attribution), have been defined using axiomatic evaluation
methods [20]. For explanation by examples, humans are of-
ten involved in assessing whether the explanation is useful
or not. For example, in [29] prototypes were presented to
users and then human accuracy, i.e.the proportion of the
human predictions that correctly match the model’s pre-
diction, was measured. Among these proposed evaluation
metrics, some are subjective and some are objective. One
of the useful taxonomies was proposed by Doshi-Velez and
Kim [49] for evaluating XAI: application-grounded, human-
grounded, and functionality-grounded. However, there is
still a lack of agreed formal evaluation metrics enabling a
more systematic evaluation of methods. For example, [50]
found Gradients & GradCAM passed their sanity checks
based on their model parameter randomization test and the
data randomization test, while in [51] they found GradCAM
is one of the most interpretable and reliable XAI methods
but gradient didn’t stand out based on their evaluation
metrics. This highlights the importance of ongoing research
developing systematic evaluation metrics which will allow a
formal and fair comparison of available XAI methods. This
should help to guide the selection of an appropriate XAI
method in a specific situation as many different XAI meth-
ods can provide similar explanations, e.g. feature relevance.

Second is the limitation of explainability itself. Even if
the evaluation metrics are improved, there are some intrinsic
limitations of the current XAI methods. As pointed out by
Rudin [27] post-hoc explanations “must be wrong” as if they
were completely faithful to the task model, then we only
need the explanation model. Further, as illustrated in [52],
current XAI methods only provide descriptive accounts of
the task model rather than normative evaluation to justify
the model behaviour. Whilst this is valid, it is unrealistic
to expect XAI methods to “close the loop” by themselves;
instead this is the role of clinical judgement, as discussed
above. Put more positively, explanation “serves as the unac-
knowledged bridge” between the task model and normative
evaluation [52]. What these examples make clear is that,

although the use of XAI methods can contribute to safety
assurance, it is not enough to assure safety by itself, as
recognised by others [33] [52].

Next, we will identify some relevant complementary
methods that also contribute to safety assurance. First, it
is important to adapt established methods from safety-
critical software engineering for AI/ML-based SaMD. One
such method is static analysis, analysing the code without
executing it, to look for “bugs” (see [39] for an illustration).
It is also standard practice to measure test coverage of the
software, e.g. ensuring that all branches in the code have
been executed at least once, when undertaking V&V. The
obvious analogy for NNs is neuron coverage, although there
is some debate about whether or not this is an appropriate
criterion [53]. Nonetheless, coverage is significant when
considering safety, as assurance is clearly undermined if
there are significant parts of the ML model for which we
have no test evidence. Consequently, it seems likely that
understanding of what are appropriate coverage criteria
will improve as experience of using AI/ML-based SaMD
increases. Second, there are assurance methods that address
the specific challenges of V&V for AI/ML-based software.
It is possible to apply formal methods (mathematical tech-
niques of verification) to ML models including for assessing
properties such as robustness. A recent survey of such
approaches can be found in [54]; it covers static analysis
as well as methods such as Satisfiability Module Theories
(SMT) and identifies some tools that are capable of scaling
to very large models, e.g. NNs with millions of neurons.

Safety is a cross-cutting concern which interacts with
technology, ethics, trust, etc. Earlier we introduced the
spider diagram in Fig. 1 as a heuristic representation of
the engineering aspects of safety; we now briefly consider
how to make it more concrete, i.e. how the area inside the
hexagon might be estimated. There are candidate quantitative
measures for some of the dimensions, e.g. AUC-ROC (see
Table 2) for performance, and distance metrics to define ro-
bustness scores [43]. There is a conceptual basis for some of
the other dimensions, e.g. fidelity and interpretability for ex-
plainability [33], and conformance with the five criteria for
data management which also links to the safety argument.
However, as we mentioned earlier more work is needed to
develop systematic evaluation metrics for XAI methods. It is
hard to measure the other safety specific controls dimension
but the structured representation of controls in [9] might
give a starting point. There is ongoing work on utility of
explanations and what form of explanations are preferred
by clinicians [55], but more empirical work is needed. At
this point, the spider diagram remains a heuristic model,
but we believe it is possible to make it a more “formal” tool
for evaluating (comparing) alternative ways of developing
SaMD, from a safety assurance perspective.

6 CONCLUSIONS

To our knowledge, this is the first systematic attempt to
explore the role of explainability in assuring safety of ML,
with a focus on pre-deployment decision-making. We be-
lieve this will be of interest to regulators, as it illustrates how
to use XAI methods to provide evidence to support relevant
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safety objectives, e.g. for clinical association, articulated by
the FDA and IMDRF.

We first presented a spider diagram to the general rela-
tionship between explainability and safety. Then we extrap-
olated the safety objectives at the different phases of the ML
development process and illustrated how XAI methods can
help at each phase. Finally, we used a concrete healthcare
case study to demonstrate how XAI methods can help to
meet these safety objectives, particularly in model learning
and model V&V. Specifically, we have shown the value of
influential instances for model debugging during model
learning, which is of particular interest to ML developers.
Further, we have shown the value of feature relevance
and counterfactuals in model V&V, which is of particular
interest to ML developer, regulators and others involved
in deployment decisions, see Table. 4. The case study also
shows how the use of these XAI methods feeds into a safety
case, e.g. as required by healthcare standards [8].

We suggest future work should place more effort on
developing and applying systematic evaluation metrics for
XAI methods, which in turn will guide others in selecting
appropriate XAI methods. Further, there is a need for more
empirical studies to evaluate how XAI methods can best
assist the end-users. This might usefully be combined with
a deeper exploration of trust.

The code for applying various XAI methods is available
at: https://github.com/ Yanjiayork/mechanical ventilator.
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