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Nonlinear multiscale gyrokinetic simulations of a Joint European Torus edge pedestal are used to
show that electron-temperature-gradient (ETG) turbulence has a rich three-dimensional structure,
varying strongly according to the local magnetic-field configuration. In the plane normal to the
magnetic field, the steep pedestal electron temperature gradient gives rise to anisotropic turbulence
with a radial (normal) wavelength much shorter than in the binormal direction. In the parallel
direction, the location and parallel extent of the turbulence are determined by the variation in the
magnetic drifts and finite-Larmor-radius (FLR) effects. The magnetic drift and FLR topographies
have a perpendicular-wavelength dependence, which permits turbulence intensity maxima near the
flux-surface top and bottom at longer binormal scales, but constrains turbulence to the outboard
midplane at shorter electron-gyroradius binormal scales. Our simulations show that long-wavelength
ETG turbulence does not transport heat efficiently, and significantly decreases overall ETG transport
– in our case by ∼40 % – through multiscale interactions.

I. INTRODUCTION

In tokamaks, strong magnetic fields and plasma cur-
rents generate nested magnetic flux surfaces. On a flux
surface, illustrated in Figure 1, particles move much
faster parallel to the magnetic field than perpendicular
to it, causing equilibrium quantities such as tempera-
ture and density to be constant within flux surfaces [1].
The radial gradients of equilibrium quantities drive tur-
bulence at scales comparable to ion and electron gyro-
radii [2–4]. Such turbulence has a perpendicular eddy
length that is very short compared to the perpendicular
equilibrium length scale [5, 6], and is radially inhomo-
geneous from the core to the edge [7–9]. In the toka-
mak core, turbulence is found to vary slowly along mag-
netic field lines [10–12]. In these conditions, the turbu-
lence amplitude typically peaks at the outboard midplane
– the low magnetic-field side where an interchange-like
plasma instability is strongest – and decreases in ampli-
tude smoothly in the parallel direction away from the
outboard midplane [10, 13]. Thus, core turbulence typ-
ically varies strongly in the plane perpendicular to the
magnetic field, but has a predictable profile in the paral-
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28th Fusion Energy Conference (Nice, France, 10-15 May 2021).

FIG. 1: A circular (blue) flux surface in the tokamak core
and a highly shaped (red) flux surface in the edge pedestal
with a magnetic field line that completes a 2π turn in
poloidal angle θ. At the outboard midplane, we label the
curvilinear coordinate system with radial ∇x, binormal ∇y,
and field-line b̂ directions defined around Equation (2). In
this work, we study this highly shaped flux surface.

lel direction.
In contrast, for the turbulence in the edge pedestal

of tokamak plasmas – a region of steep pressure gradi-
ents in high-performance discharges [14] – we show that
both the parallel and perpendicular physics become in-
triguingly complex, giving turbulence a highly inhomoge-
neous character. This inhomogeneous turbulence is due
to steep pressure gradients and the strong parallel varia-
tion in the perpendicular physics of magnetic drifts, gen-
erating modes with very different character at different
parallel (and, therefore, poloidal) locations. The flux sur-
faces in the pedestal are highly ‘shaped’ [15–18], unlike
the more circular flux surfaces in the plasma core [19, 20].
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In Figure 1, we show both a highly shaped and circular
flux surface. We find that the strong magnetic-field vari-
ation in the parallel direction and the steep temperature
gradients in the edge pedestal create a non-trivial topog-
raphy of regions that determines where turbulence can
and cannot reside. This topography gives edge pedestal
turbulence a novel three-dimensional structure not seen
in the core.
Due to the steep gradients in the pedestal, we find that

the parallel spatial structure of the turbulence is particu-
larly inhomogeneous and peaked away from the outboard
midplane at wavelengths as long as the ion gyroradius,
kyρi ∼ 1, where ky is the wavenumber in the binormal
direction y and ρs is the Larmor radius for a species s.
Note that the binormal length scale is still determined by
electron physics, not intrinsically by ρi, but it is quan-
titatively comparable to ρi at the relevant JET param-
eters. Thus, the ion-electron scale separation is broken
in this system. In contrast, at electron-gyroradius binor-
mal scales, kyρe ∼ 1, turbulence becomes confined to the
tokamak’s low magnetic-field side.
To reveal the importance of the kyρi ∼ 1 ETG turbu-

lence and its unusual parallel structure, we performed
multiscale [21–26] nonlinear gyrokinetic simulations of
a JET pedestal using the gyrokinetic code stella [27].
These multiscale simulations are novel because they re-
solve the spatiotemporal scales that are needed to observe
the complex parallel dynamics and multiscale interac-
tions of kyρi ∼ 1 ETG turbulence. By means of these
numerical experiments, we will show that the electron-
temperature-gradient (ETG) turbulence at kyρi ∼ 1 re-
duces transport due to ETG turbulence at kyρe ∼ 1.

ETG turbulence is one of many important transport
mechanisms in the edge pedestal. The pedestal, which is
a key ingredient in a fusion reactor, appears once exter-
nal plasma heating crosses a threshold value [28]. This
steep-gradient region significantly increases a reactor’s
core pressure and hence fusion power [29]. The transport
properties of the pedestal are determined by the nature of
the turbulence, which is driven by the strong gradients.
These turbulent fluxes constrain the pedestal’s magne-
tohydrodynamic stability [30–34], neoclassical transport
[35], and scrape-off-layer processes [36]. Extensive exper-
imental, numerical, and analytic results suggest that ion-
temperature-gradient (ITG) [3, 37, 38], ETG [4, 39], mi-
crotearing [40], kinetic-ballooning [41, 42], and trapped-
electron modes [43] are responsible for anomalous heat
losses in the pedestal [26, 44–56]. Pedestal instability and
turbulence peaking away from the outboard midplane has
been observed for ETG [57–59], ITG [60], microtearing
[48, 53, 61], and trapped-electron modes [61].
The rest of this paper is organized as follows. We in-

troduce the gyrokinetic formalism in Section II. In Sec-
tion III, we describe the consequences of steep tempera-
ture gradients for pedestal ETG physics. Results of lin-
ear and nonlinear gyrokinetic simulations are described
in Sections IV and V, respectively. In Section VI, we
analyze a temperature-gradient scan for nonlinear simu-

lations. Section VII describes the relation between geo-
metric topography and turbulence. In Section VIII, we
use a numerical experiment to show that kyρi ∼ 1 ETG
turbulence reduces transport at kyρe ∼ 1. We conclude
in Section IX.

II. GYROKINETIC TURBULENCE

In the presence of a strong magnetic field, plasma per-
turbations are anisotropic relative to the mean magnetic
field, k‖/k⊥ ∼ ρ∗s ≪ 1, and slow relative to the Larmor
frequency, ω/Ωs ∼ ρ∗s. Here k‖ and k⊥ are wavenum-
bers parallel and perpendicular to the mean magnetic
field, ρ∗s = ρs/Lp where Lp is the pedestal width, ω
is the turbulent frequency, Ωs = ZseB/msc is the gy-
rofrequency, Zs is the charge number, e is the proton
charge, B is the magnetic field strength, ms is the mass,
and c is the speed of light. Such plasma fluctuations are
well-described by gyrokinetics [62–67]. The distribution
function of particles of species s is split into equilibrium
and turbulent components, fs = FMs + f tbs , where FMs

is a Maxwellian and the turbulent distribution f tbs satis-
fies f tbs ∼ ρ∗sFMs. We study turbulence governed by the
gyrokinetic equation

∂hs
∂t

+ (v‖b̂+ vMs + 〈vtb
E 〉ϕ) · ∇hs

=
ZseFMs

Ts

∂〈φtb〉ϕ
∂t

− 〈vtb
E 〉ϕ · ∇FMs,

(1)

where hs = (Zseφ
tb/Ts)FMs + f tbs , t is time, Ts is the

equilibrium temperature, v‖ is the parallel velocity, b̂ =

B/B, vMs is the magnetic drift velocity, v
tb
E = c(b̂ ×

∇φtb)/B is the E×B drift velocity, φtb is the turbulent
electrostatic potential, 〈. . .〉A is an average with respect
to the variable A, and ϕ is the gyrophase angle.
Since the turbulence is anisotropic, behaving differ-

ently in the directions perpendicular and parallel to the
magnetic field, we can solve Equation (1) in a numer-
ically efficient field-following domain called a flux tube
[11], which has a narrow perpendicular extent centered
on a magnetic field line, but extends far along the field
line, typically performing a 2π poloidal circuit. To de-
scribe the directions perpendicular to the magnetic field,
we use the flux coordinates

x =
qc
rcBc

ψ, y =
1

Bc

∂ψ

∂r
(ζ − qθ − Ωζt− ν), (2)

where qc is the safety factor, rc is a minor-radial flux co-
ordinate, both evaluated at the flux tube’s center, ψ is
the poloidal flux divided by 2π, Bc is a reference mag-
netic field, ζ is the toroidal angle, θ is the poloidal angle,
Ωζ is the toroidal flow’s angular frequency, and ν(r, θ) is
a function 2π-periodic in θ [68] that is nonzero when a
magnetic field line’s pitch angle at a poloidal location θ
differs from the mean pitch angle ∝ 1/q on the flux sur-
face; |ν| is larger for highly shaped flux surfaces than for
the more circular ones in the core. The quantities q(r)



3

and ν(r, θ) are defined so that B ·∇y = 0. The angle θ is
defined so that θ = 0 is the outboard midplane, θ = ±π
is the inboard midplane (see Figure 1), and θ = ±π/2 is
approximately the flux surface’s top/bottom. We Fourier
transform locally in the perpendicular plane,

φ̃(x, y, θ, t) =
∑

kx,ky

φ̂kx,ky
(θ, t) exp(ikxx+ ikyy), (3)

where the normalized potential is φ̃ = eφtb/Tiρ∗i and

φ̂kx,ky
(θ, t) are its Fourier coefficients.

We will frequently use the electron magnetic-curvature
drift frequency ωκe and the grad-B drift frequency ω∇Be,

ωκe =
v2tek⊥

Ωe
·
[
b̂×

(
∇ lnB +

4π

B2

∂p

∂r
∇r

)]
,

ω∇Be =
v2tek⊥

Ωe
·
(
b̂×∇ lnB

)
,

(4)

related to vMe through vMe · k⊥ = ωκev
2
‖/v

2
te +

ω∇Bev
2
⊥/2v

2
te, where v⊥ is the perpendicular velocity,

vts =
√

2Ts/ms is the thermal speed, and p is the equi-
librium pressure. The perpendicular wavenumber is

k⊥ =kx∇x+ ky∇y = ky

[
ŝ(θ0 − θ)− γEt+

r

q

∂ν

∂r

]
∇x

+
∂ψ

∂r

1

Bc
ky

[
∇ζ +

(
∂ν

∂θ
− q

)
∇θ

]
,

(5)

where ŝ = (r/q)(∂q/∂r) is the magnetic shear, θ0 =
kx/(ky ŝ) the ballooning angle, and γE = −(r/q)∂rΩζ

the radial shear of the toroidal flow. At θ = 0 and
t = 0, the radial wavenumber is proportional to θ0:
k⊥ · ∇x = ky ŝθ0|∇x|2. Another important frequency
is

ωT
∗e = ky

c

Bc

Te
ZeeLTe

, (6)

which is the electron drift frequency associated
with the temperature gradient length scale LTe ≡
−(∂ lnTe/∂r)

−1. This frequency appears in the linear-
drive term on the right-hand side of Equation (1) and is
particularly large in the pedestal due to steep tempera-
ture gradients. Typically, ωT

∗e is comparable in size to the
frequency of drift waves [3, 69], as has been shown for the
pedestal ETG modes [58] considered in this paper. Cru-
cially, the magnetic drift frequencies ωκe and ω∇Be are
proportional to k⊥, but ω

T
∗e is proportional only to ky.

In this paper, we perform linear and nonlinear lo-
cal, electrostatic, collisionless gyrokinetic simulations for
JET-ILW discharge #92174 [70] at r/a = 0.974. This
flux surface was chosen due to its large value of the
flow shear γEa/vti = 0.56, which is an important pa-
rameter for turbulence suppression [71–73]. On this sur-
face, we use the following simulation parameters [58]:
a/LTe = 42, a/LTi = 11, a/Ln = 10, ρi/LTe =
0.12, Te/Ti = 0.56, Ti = 0.71 keV, ŝ = 3.36, q =
5.1, νeea/vti = 0.83, νiia/vti = 0.006, where the minor

radius at the midplane is a = 0.91 m, the density gra-
dient is Ln ≡ −(∂ lnn/∂r)−1 for equilibrium density n,

νss′ =
√
2πns′Z

2
sZ

2
s′e

4 ln(Λss′)/
√
msT

3/2
s , and ln(Λss′)

is the Coulomb logarithm. For the flux surface shape,
shown in Figure 1, we use a Miller geometry prescrip-
tion [74]. For linear simulations, we use the parameters
described in [58] with γE = 0.

III. PEDESTAL ETG CHARACTERISTICS

Steep temperature gradients in the pedestal drive
strong ETG instability far away from the outboard mid-
plane, particularly at kyρe ≪ 1. This is in stark contrast
to the tokamak core, where the linear ETG growth rate
and nonlinear field amplitudes peak at the outboard mid-
plane at kyρe ∼ 1 [39, 59]. For the JET pedestal region
investigated in this paper, two branches of ETG domi-
nate: toroidal and slab ETG modes, which are unstable
drift waves mediated by electron magnetic drifts and par-
allel streaming, respectively [3, 4, 37, 39, 75–77].
For a strong toroidal ETG instability to be present,

i.e., for the growth rate to be γ ∼ ωT
∗e, it has been shown

that ωT
∗e/ωκe ≃ A must be satisifed, where A ≃ 3 − 20

[58]. Note that A is a dimensionless constant for the
toroidal ETG instability, and is not specific to the dis-
charge analyzed in this paper. We find

ωT
∗e

ωκe
∼ ky
k⊥

R

LTe
≃ A, (7)

where R is the major radius. Since R/ALTe ≫ 1 in the
pedestal, for a strong toroidal ETG instability, we must
have

k⊥
ky

∼ R

ALTe
≫ 1. (8)

In the simple case where γE = ν = 0, for a mode
with θ0 = 0, as θ is increased away from the outboard
midplane, k⊥/ky becomes large due to magnetic shear,
k⊥ ∼ ky ŝ|θ|. For ŝ ∼ 1, Equation (8) implies

|θ| ∼ R

ŝALTe
≫ 1, (9)

and so we expect linear toroidal ETG modes to be local-
ized away from the outboard midplane. In Section IV,
we show numerically that in our JET equilibrium, this is
indeed the case for most values of θ0.
For a strong ETG instability, we also require the finite-

Larmor-radius (FLR) effects not to be too strong: signif-
icant FLR damping occurs for k⊥ρe >∼ 1 as an electron’s
gyromotion averages over the smaller-scale perpendicular
wavelength, decreasing the linear growth rate. Thus, for
a strong instability, we must have

k⊥ρe <∼ 1. (10)

Combining Equations (7) and (10) we find strong toroidal
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ETG instability for

kyρe <∼
ALTe

R
. (11)

Since pedestal parameters often satisfy ALTe/R <∼ ρe/ρi,
this implies that toroidal ETG modes can be driven lin-
early at kyρi ∼ 1. We stress that strong toroidal ETG
instability at kyρi ∼ 1 is a quantitative coincidence of
ALTe/R <∼ ρe/ρi, and is not a fundamental consequence
of kinetic ion physics. However, for notational conve-
nience, we will frequently refer to ‘kyρi ∼ 1 ETG modes.’

Linear slab ETG modes dominate in the JET equilib-
rium used for this paper at most kyρi values for θ0 = 0.
One also finds strong sub-dominant slab ETG instability
for θ0 6= 0 [58]. In Section VII, by examining the to-
pographies of k⊥ and ω∗e/ωκ,e for this JET equilibrium,
we show that, for kyρe ≪ 1, both linear toroidal and slab
ETG modes are expected to be unstable far away from
the outboard midplane.
Nonlinearly, we also expect the ETG turbulence in-

jection scale – the outer scale – at long binormal wave-
lengths. To estimate the wavenumber koy associated with
this outer scale, we observe that the nonlinear decorre-
lation rate at the outer scale must be the same as the
energy injection rate by the instability, ωT

∗e, and then we
‘critically balance’ this rate with the parallel streaming
rate vte/l‖ [12, 78, 79], to find

koyρe ∼
LTe

l‖
≪ 1. (12)

In the pedestal, we expect the parallel correlation length
l‖ to be determined by the characteristic parallel length
of the local magnetic drifts and perpendicular wavenum-
ber. In contrast, in the core, the length l‖ is usu-
ally assumed to be of the order of the length of one
poloidal turn along a magnetic field line, qR [12], giv-
ing koyρe ∼ (1/q)(LTe/R).
In our equilibrium, we find that at the outer scale,

l‖ ≈ qR/2, giving LTe/l‖ ≈ 1/300 ≪ ρe/ρi. Therefore,
nonlinear pedestal ETG simulations that aim to capture
the full ETG turbulence cascade require a wide range
of binormal modes from kyρi ∼ (LTe/l‖)(ρi/ρe) <∼ 1 to

kyρe >∼ 1.

IV. LINEAR SIMULATIONS

We perform linear gyrokinetic simulations using the
code GS2 [39, 80] for 0.7 ≤ kyρi ≤ 150. Due to tokamak
toroidal symmetry, the linear system is 2π periodic in θ0
[1, 3, 81]. For this reason, in Figures 2 and 3 we plot θ0
between −π and π only. In Figure 2(a), we plot the linear
growth rate, γa/vti versus kyρi and θ0. In Figure 2(b), we
indicate the fastest-growing linear mode, which for this
equilibrium is associated with either toroidal or slab ETG
instability. In Figures 3(a)-(d), we plot some properties
of the fastest-growing modes in the kyρi <∼ 20 region,
where turbulent amplitudes in the nonlinear simulation
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FIG. 2: (a) The maximum linear growth rate γa/vti and (b)
the dominant mode type, versus kyρi and θ0 = kx/(ky ŝ), for
the linear GS2 simulation described in Section IV. Green
dashed curves in (a) denote the edge of the perpendicular
(θ0, ky) grid for the nonlinear simulation Base150 in
Section V.
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FIG. 3: Linear and nonlinear mode properties for the ky
region where nonlinear potential amplitudes are highest,
kyρi <∼ 20. (a) Linear growth rate γ, (b) poloidal location

|θmax|/π of maximum amplitude |φ̂| for the linear mode, (c)
perpendicular wavenumber evaluated at the linear mode’s
maximum and divided by the binormal wavenumber, viz.,
k⊥,max/ky, and (d) the fastest growing mode’s type, all
versus kyρi and θ0 for the linear simulation described in
Section IV. The dashed curves in (a)-(c) denote the
perpendicular grid boundary for nonlinear simulations. (e)

The nonlinear amplitude log
10
〈|φ̂|2〉t,θ and (f) |θmax|/π

versus kyρi and θ0 for nonlinear simulations in Section V;

these are calculated using φ̂ averaged over
tvti/a ∈ [14.8, 15.9].
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FIG. 4: Time traces of the potential Φ2 and heat flux Q̃e,
defined in Equations (13) and (14), respectively, for Base150
nonlinear simulation (see row one of Table I).

described in Section V are largest. In this region, toroidal
ETG modes dominate except for kyρi >∼ 5 where θ0 ≈
0. In Figure 3(a), we show that the maximum linear
growth rate, γ, peaks at θ0 6= 0. In Figure 3(b), we plot
|θmax|, the poloidal angle at which the linear modes have

maximum amplitude |φ̂|. Due to steep gradients, toroidal
ETG modes with kyρe ≪ 1 peak away from the outboard
midplane [58], as predicted in Equation (9). Toroidal
ETG modes also satisfy k⊥/ky ≫ 1 [see Equation (8)],
and k⊥ρe <∼ 1 [see Equation (10)], shown in Figure 3(c).
In Figure 3(d), we indicate the linear mode type at each
(ky, θ0), showing dominant toroidal ETG instability.
Since the dominant linear instabilities found by us are

ETG modes satisfying k⊥de ≫ 1, where de is the elec-
tron skin depth, electromagnetic effects [4, 39, 82–84] are
likely unimportant for these ETG modes. However, since
electromagnetic modes often dominate in other pedestals
[47, 48, 54, 85–87], we cannot rule out linearly subdom-
inant electromagnetic instabilities being important non-
linearly.
We have adopted the collisionless limit because the

growth rates of the modes that we find are unaf-
fected by collisionality [58]. Linear parameter scans in
a/LTe, a/Ln, ŝ, and Te/Ti are performed in [58]. These
scans reveal the prevalence of toroidal and slab ETG in-
stability across a wide range of parameter values, pro-
viding confidence that our simulations capture the ETG
physics of the experimental point.
Since the dominant modes that we simulate satisfy

KxLTe ≫ 1, where Kx = k⊥ · (∇x)/|∇x| is the lo-
cal radial wavenumber, our local flux-tube approach is
justified. However, simulations of modes with longer ra-
dial wavelengths may require radially ‘global’ approaches
to better capture the physics of radial profile variation
[48, 88–92].

V. NONLINEAR SIMULATIONS

Simulating turbulence away from the outboard mid-
plane imposes demanding radial-resolution requirements,
necessitating large numbers of radial grid points [59]. Ad-
ditionally, capturing the fine structure in the linear spec-
tra in Figures 2 and 3 requires narrow perpendicular grid
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FIG. 5: (a) Heat flux 〈q̃e,ky 〉t, defined in Equation (13),
versus kyρi from Base150 nonlinear simulation [see Table I]
at two θ locations. The heat flux is averaged over
tvti/a ∈ [0.7, 1.7] (early), tvti/a ∈ [7.5, 8.8] (intermediate),
and tvti/a ∈ [14.8, 15.9] (late). (b) 〈q̃e,ky 〉t versus kyρi and
θ/π at early times. (c) 〈q̃e,ky 〉t versus kyρi and θ/π at late
times.
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FIG. 6: (a): log
10

Φ versus time and θ/π. (b) Φ and (d) q̃e versus θ/π evaluated at two times: tvti/a = 0.9 and tvti/a = 15.9.
(c) Φ and (e) q̃e projection onto the flux surface, both also evaluated at tvti/a = 15.9. The quantities q̃e and Φ are defined in
Equations (13) and (14), respectively. Data from simulation Base150 [see Table I].

Simulation ky,max
ρi ∆kyρi

a
LTe

a
Ln

a
LTi

Dhy

(10−7)
nakx naky nzed

Base150 105.8 0.71 42 10 11 10 67 150 128
Radial100 70.5 0.71 42 10 11 30 134 100 128
Scan100a
(Ln fixed)

87.6 0.88 34 10 11 17 67 100 128

Scan100b
(ηe fixed)

87.6 0.88 34 8 11 17 67 100 128

Scan100c
(Ln fixed)

141.0 1.41 21 10 11 4.6 67 100 128

Scan100d
(ηe fixed)

141.0 1.41 21 5 11 4.6 67 100 128

Scan100e
(circle,
ηe fixed)

176.3 1.76 4 1 1 2.6 67 100 32

Scan200f
(circle)

70.5 0.35 42 10 11 30 67 200 64

TABLE I: Nonlinear simulations with varying box sizes.
Base150 is the main simulation used throughout the text,
Scan100 and Scan200 are used for a/LTe scans in
Section VI, with ∆ky ∝ a/LTe, except for cases with circular
flux surfaces, where we retain relatively small ∆ky to resolve
possible kyρi ∼ 1 ETG turbulence. Radial100, performed to
test radial resolution, has double nakx of other simulations.
Quantities nakx, naky, and nzed are the number of kx and
ky wavenumbers and parallel grid points, respectively.

spacing in θ0 and ky. Given that there is strong linear
instability for kyρe ≫ 1, we also need a large maximum
kyρi.
We perform nonlinear simulations that attempt to sat-

isfy these demanding resolution requirements using the
gyrokinetic code stella. We simulate the non-adiabatic
response of both ions and electrons by evolving hs for
both species according to Equation (1). Simulations
have ∆kxρi = 1.38, ∆kyρi = 0.71, 150 ky modes, 67 kx
modes, 128 parallel grid points, 12 µ = msv

2
⊥/(2B) grid

points, and 48 v‖ grid points. These simulation param-
eters are referred to as the ‘Base150’ simulation. Sim-
ulations are performed with an experimentally relevant

flow-shear value γEa/vti = 0.65 [58], without which ETG
streamers [39] at kyρi ∼ 1 appear at long times (we found
them at tvti/a ≃ 12 in a simulation with γE = 0). Hy-
perviscosity in ky prevents spectral pile-up at kyρe >∼ 1,
and is discussed further around Equation (16).
In Figure 2(a), the green dashed curves denote the edge

of the kyρi and θ0 grids for our nonlinear simulations.
The variable θ0 is not periodic in 2π in nonlinear sim-
ulations, but we can ignore |θ0| > π because we find
very low turbulent amplitudes for these higher values of
kx. For kyρi ≫ 1, the |θ0| gridpoints have small values
since θ0 ∼ 1/ky, limiting the resolution of turbulence at
kyρi ≫ 1 away from θ0 = 0. This limitation occurs be-
cause the radial grid in nonlinear simulations is evenly
spaced in kx, but not in θ0. We checked this limitation
in θ0 for our nonlinear simulations by doubling the num-
ber of radial modes in a cheaper simulation (referred to
as Radial100 in Table I) using 100 ky modes (rather than
150 ky modes in Base150). This doubles the maximum
|θ0| value included in the simulation at any given kyρi,
allowing us to resolve more structure in θ0. We found
that doubling the number of radial modes did not quali-
tatively change the nature of the turbulence.

In Figure 3(e), we plot the turbulence amplitude

log10〈|φ̂|2〉t,θ averaged over tvti/a ∈ [14.8, 15.9] from our
nonlinear simulations versus kyρi and θ0, zoomed in to

the kyρi <∼ 20 region where log10〈|φ̂|2〉t,θ is the largest.

In Figure 3(f), we plot the θ location where log10〈|φ̂|2〉t
has a maximum for each (kyρi, θ0) value. For lower kyρi
modes, the mode amplitudes peak far away from θ = 0.

In our simulation, the fastest-growing modes at kyρi ≈
1 and kyρi ≈ 90 have linear growth rates γa/vti ≃ 1 and
γa/vti ≃ 70, respectively. To resolve these modes and
their nonlinear interactions, the simulation must satisfy
t ≫ 1/γslowest, where γslowesta/vti ≃ 3.5 is the slowest
linear growth rate over all dominant modes with kyρi <∼
20 in our simulation domain. This is demonstrated by
the simulation time traces in Figure 4. For 0 < tvti/a <∼
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kyρe ∼ 1 ETG).
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(d) Late times (dominant
kyρi ∼ 1 ETG).
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(h) Late times (dominant
kyρi ∼ 1 ETG).

FIG. 7: (a) - (d) electrostatic potential φ̃ at early
(tvti/a = 1.1, left column) and late (tvti/a = 15.9, right
column) times. (e) - (h) Correlation functions at early
(tvti/a = 1.1, left column) and late (tvti/a = 15.9, right
column) times. The contour of value 1/e is plotted in green
to indicate a correlation length. Note that the plot ranges in
(h) are much larger than in (e), (f), and (g). In (h), a yellow
box shows the plot ranges of (g). Data from simulation
Base150 [see Table I].

2, the heat flux is dominated by faster high-kyρi slab
ETG modes similar to ‘conventional’ ETG, with the heat
flux peaked at kyρe ∼ 1 at θ = 0, shown by the ‘early’
curves of the heat flux in Figure 5(a) and the heat flux
contours in Figure 5(b). Figures 5(a) and (b) show local
contributions in θ to the electron heat flux, q̃e,ky

, due
to the turbulence at particular kyρi values. The total
turbulent electron heat flux through the flux surface is
then

Q̃e(t) =

∫
q̃edθ, q̃e(θ, t) =

∑

ky

q̃e,ky
(ky, θ, t). (13)

Here, Q̃e is normalized to ion gyroBohm units, QgB =
(ρi/a)

2pivti, where pi is the equilibrium ion pressure. At
the early times 0 < tvti/a <∼ 2, while the heat flux ap-
pears steady and one might erroneously believe that sat-
uration has been reached, the total electrostatic potential

Φ2(t) =

∫
Φ

2
dθ, Φ

2
(θ, t) =

∑

kx,ky

∣∣∣φ̂kx,ky
(θ, t)

∣∣∣
2

, (14)

is, in fact, still increasing (see Figure 4). We plot the
parallel structure of Φ and q̃e in Figures 6(b) and 6(d),
showing their maximum amplitudes near the outboard
midplane at early times.
At later times (tvti/a >∼ 2), the slower-growing ETG

modes increase in amplitude, causing turbulence to peak
away from the outboard midplane. Figure 5(a) shows
non-negligible heat transport at lower kyρi from modes
near the flux surface’s top/bottom at ‘intermediate’ and
‘late’ times. ‘Intermediate’ times are averaged over
tvti/a ∈ [7.5, 8.8] and ‘late’ times are averaged over the
saturated state for tvti/a ∈ [14.8, 15.9]. Figure 5(c) fur-
ther demonstrates that the largest individual q̃e,ky

contri-
butions are at θ ≃ ±π/2 and kyρi ≃ 1. However, while
the individual heat flux contribution q̃e,ky

per ky from
such modes is very high, in Section VIII we will show
that summed over a small ky interval 0.7 < kyρi ≤ 4.3,
these modes not only transport little heat, but decrease

the total heat flux in the simulation substantially through
multiscale interactions.
These slower-growing kyρi ∼ 1 ETG modes also have

maximum Φ amplitudes at θ ≃ ±π/2; Figure 6(a) shows
how fluctuations at θ ≃ ±π/2 grow to be largest at
tvti/a >∼ 3, which suppress q̃e at smaller |θ|. This is

evidenced in Figures 6(b) and (d), which show Φ and
q̃e becoming less peaked at θ = 0 and, in the case of
Φ, reaching their highest values away from the outboard
midplane due to low kyρi ETG modes. In Figures 6(c)

and (e), we project Φ and q̃e onto the flux surface at later
times, revealing the maximum turbulent amplitudes (but
not heat flux) far away from θ = 0.
Despite Φ having substantial magnitude near the in-

board midplane (θ = ±π), evidenced in Figure 6(b), the
heat flux at the inboard midplane, shown in Figure 6(d),

is strikingly small. This is due to a combination of φ̃, the
turbulent electron temperature Te, and the cross-phase

angle between φ̃ and Te all being small near the inboard
midplane [59]. Numerical constraints also limit the max-
imum value of |θ0| at high kyρi, which may artificially
suppress some turbulence near the inboard midplane. As
discussed further in Section VII, the magnetic geometry
allows slab ETG turbulence to be driven strongly near
the inboard midplane, even though the heat flux there
is small. The non-twisting-flux-tube approach [93] might
do better at resolving this high-|θ0| turbulence near the
inboard midplane and determine its importance defini-
tively.

In Figure 7, we compare snapshots of φ̃ and its corre-
lation functions at the early (left column) and late (right
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column) times. In panels (a) and (b), we plot φ̃ versus
θ and x at fixed y. At late times, radially narrow eddies
that are extended in θ emerge. These are responsible for
reducing overall heat transport in the outboard midplane
(see Figure 6(d)). In the (y, θ) cross-sections shown in
panels 7(c) and (d), the fluctuations that emerge at later
times are seen to have kyρi ∼ 1. In panels 7(e)-(h), we
plot the (time averaged) correlation functions

〈Cφ(x, y)〉t =
〈 ∑

kx,ky

|φ̂kx,ky
|2eikxx+ikyy

∑
kx,ky

|φ̂kx,ky
|2

〉

t

, (15)

at θ = 0 and θ = 1.57 at early and later times. At
θ = 1.57, the correlation length in y increases signifi-
cantly with time, indicating the importance of the slower
growing, low-kyρi modes away from θ = 0, as anticipated
in Section III.
To test for convergence, we performed scans in the

number of parallel and perpendicular velocity and spa-
tial grid points, and in hyperviscosity. We are unable
to resolve turbulence at kyρe >∼ 1 fully, due to compu-
tational resource constraints, which currently prevent us
from substantially increasing the maximum value of kyρi
in the simulation at fixed ∆kyρi < 1. However, we be-
lieve that our results are close to reality thanks to our
use of hyperviscosity.
We used dimensionless hyperviscous coefficents Dhy =

10−6 and Dhx = 3.5×10−7, with the hyperviscous damp-
ing rate γh given by [59]

γh
a

vti
= −Dhx(kxρi)

4 −Dhy (kyρi)
4
. (16)

This was the weakest hyperviscosity possible that still
admitted a well-converged simulation at high kyρi. To
determine whether this value of hyperviscous damping
is physically acceptable, we performed nonlinear simula-
tions with a 60% smaller perpendicular box size (∆kyρi =
1.75) at a fixed number of binormal wavenumbers (and
so a much larger maximum kyρi value), and used much
smaller hyperviscous coefficients Dhx = Dhy = 10−9. We
found that the heat-flux peak for θ = 0 in Figure 5(a) re-
mained at kyρi ≃ 30. We do not show these simulations
with a larger maximum kyρi and smaller hyperviscosity
because they fail to capture low-kyρi physics that reg-
ulates the heat flux at higher kyρi values, discussed in
Section VIII. We refer the reader to Refs. [52, 94, 95]
for thorough investigations of kyρe >∼ 1 pedestal ETG
turbulence.
To determine whether the low-kyρi heat flux is wholly

due to toroidal ETG turbulence, we performed simula-
tions with no magnetic drifts, vMs = 0. We found large
heat flux and turbulent amplitudes driven by slab ETG
modes at kyρi ∼ 1 away from the outboard midplane
and at kyρe ∼ 1 at the outboard midplane. This shows
that at kyρi ∼ 1, both toroidal and slab ETG modes
are driven strongly away from the outboard midplane.
Even so, the toroidal ETG modes are important because,

FIG. 8: Root-mean-square perturbations of temperature
〈T e〉t, density 〈N e〉t, and potential 〈Φ〉t, averaged over
tvti/a ∈ [16.7− 17.8] for Base150 and normalized so that the
maximum value for each is one.

when vMe 6= 0, we observe the poloidally extended radial
structures, shown in Figure 7(b), which are absent when
vMe = 0.
We now show density and temperature fluctuations for

ETG turbulence. We define the perturbed density ntbs
and temperature T tb

s as

ntb
s =

∫
d3v〈f tbs 〉r =

∫
d3v

(
〈hs〉r −

Zse

Ts
φtbFMs

)
,

T tb
s =

1

ns

∫
d3v

(
msv

2

3
− Ts

)
〈f tbs 〉r,

(17)

where 〈. . .〉r is a gyrophase average performed at fixed r.
Normalizations for the density and temperature are

ñs =
ntb
s

niρ∗i
, N 2

s(θ, t) =
∑

kx,ky

∣∣n̂s,kx,ky
(θ, t)

∣∣2 ,

T̃s =
T tb
s

Tiρ∗i
, T 2

s(θ, t) =
∑

kx,ky

∣∣∣T̂s,kx,ky
(θ, t)

∣∣∣
2

,

(18)

where T̂kx,ky,s and n̂kx,ky,s are the Fourier coefficients

of T̃s and ñs, respectively. In Figure 8, we plot poten-
tial, density, and temperature fluctuations averaged over
tvti/a ∈ [16.7 − 17.8] for Base150, showing that while
Φ(θ), N e(θ), and T e(θ) are largest away from θ = 0,
T e(θ) also has a high amplitude at θ ≈ 0, which gives
rise to high electron heat transport around θ ≈ 0.

Figure 9(a) shows that T̃e features thin radial layers

similar to φ̃ [see Figures 7(b) and (d)], but unlike φ̃, has
prominent radially elongated structures around θ ≈ 0
that cause heat transport. Figure 9(b) shows that like

φ̃, the temperature T̃e also has low-kyρi structure away
from θ = 0 and fine-scale kyρi structure around θ ≈ 0.
The perturbed density ñe often has similar amplitudes

to φ̃ [see Figures 7(b) and (d)], but with the opposite

sign, demonstrated by plots of (ñe + φ̃)/(|ñe| + |φ̃|) in

panels 9(c) and (d). We find that (ñe + φ̃)/(|ñe| + |φ̃|)
is smallest in regions of highest amplitudes of ñe and φ̃,
where toroidal ETG turbulence satisfying k⊥ρi ≫ 1 re-

sides. The property ñe ≈ −φ̃ is expected for ETG turbu-
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(d) (ñe + φ̃)/(|ñe|+ |φ̃|).

FIG. 9: (a) and (b) temperature fluctuations, (c) and (d)
potential plus density fluctuations, showing a near
cancellation at many locations, particularly where |ñe| is

largest. Definitions for T̃e and ñe are given in
Equations (17) and (18).

lence with adiabatic ions (k⊥ρi ≫ 1), using |〈hi〉r| ≪
|(eφtb/Ti)FMi| [see Equation (17)] and quasineutrality

ñe = ñi. Given that ñe ≃ −φ̃, we find density fluctu-
ations to cause little electron heat transport [59, 96, 97],
while temperature fluctuations cause∼99% of heat trans-
port.

VI. TEMPERATURE-GRADIENT SCAN

We now study the effect of the electron temperature
gradient and flux-surface shape on pedestal ETG turbu-
lence. The heat flux’s scaling with the temperature gra-
dient is found by performing a scan in a/LTe with values
less than the experimental a/LTe = 42. To save compu-
tational resources, we performed this scan using simula-
tions with 100 binormal modes, rather than 150 modes.
For these simulations (denoted by Scan100a, Scan100b,
etc, in Table I), we used a hyperviscosity determined by
the maximum kyρi value in the simulation. We changed
∆kx and ∆ky, scaling them with LTe [12]. We were un-
able to resolve satisfactorily simulations with values of
a/LTe above the experimental value. The scan in a/LTe

was performed in two ways: (1) with ηe = Ln/LTe fixed,
and (2) with Ln fixed. As we changed LTe and Ln,
the pressure gradient ∂p/∂r was changed consistently. A
relatively large value of ∂p/∂r, which appears in Equa-
tion (4) and implicitly in other geometrical coefficients,
is known to stabilize turbulence [98]. We kept all param-
eters not shown in Table I constant.
The heat flux’s scalings with a/LTe are shown in Fig-

ure 10(a). With Ln fixed, Q̃e ∝ (a/LTe)
4, which is a

steeper scaling than in strongly driven core toroidal ITG

turbulence: Q̃i ∝ (a/LTi)
3 [12]. With ηe fixed, the scal-

ing much is shallower, Q̃e ∝ (a/LTe)
2. Both scalings

are consistent with previous findings in [52, 95]. In Fig-
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FIG. 10: Results from the temperature gradient scan in
Section VI. (a) Heat flux versus a/LTe with either Ln or ηe
fixed for pedestal geometry; (b) q̃e,ky versus kyρi for selected
a/LTe values for pedestal geometry; (c) normalized q̃e versus
θ/π for selected a/LTe values for pedestal geometry; (d)
normalized heat flux q̃e versus θ/π for circular flux-surface
geometry with two a/LTe values. The fluxes are
time-averaged over the saturated state. See Equation (13)
for definitions. The up-down asymmetry in (c) and (d) is
explained in Section VII.

ure 10(b), we plot q̃e,ky
versus ky for several a/LTe values

keeping either Ln fixed or ηe fixed. The peak in q̃e,ky
in

Figure 10(b) exhibits the trend koy ∝ LTe [12] that is con-
sistent with Equation (12) if l‖ is fixed; we verified that
l‖ is indeed fixed at l‖ ≈ qR/2 at the ETG turbulence
outer scale for all scans shown in Figure 10(b).
In Figure 10(c), we plot q̃e versus θ. With both ηe fixed
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and Ln fixed, the dependence of q̃e on LTe is complicated.
With Ln fixed, the shape of q̃e is similar for a/LTe = 42
and a/LTe = 34, but has the maximum value of q̃e away
from the outboard midplane for a/LTe = 21. With ηe
fixed, the intermediate temperature gradient a/LTe =
34 has the highest relative off-midplane transport. The
reasons behind this dependence of the heat flux’s poloidal
profile on the temperature gradient are beyond the scope
of this work, but the different sensitivity of the growth
rates and stability boundaries of toroidal and slab ETG
modes to ηe may be playing a role [58, 99].
We also performed two simulations with the circular

flux-surface geometry (by setting Miller shaping param-
eters to ‘circular’ values), one with the experimental gra-
dient for the pedestal (a/LTe = 42) and a second with
core-like gradients (a/LTe = 4.2, ηe fixed, and a/LTi

decreased by a factor of ten to a/LTi = 1.1). These
two simulations are denoted by Scan200f and Scan100e
in Table I, respectively. The simulation with a/LTe = 4.2
had ∆kyρi = 1.76. We chose a relatively small ∆ky for
this simulation because we wished to determine whether
significant kyρi ∼ 1 ETG turbulence would appear,
which it did not. The circular-geometry simulation with
a/LTe = 42 had ∆kyρi = 0.35 — we required this very
small ∆kyρi to resolve significant kyρi ∼ 1 ETG turbu-
lence. To make the a/LTe = 42 simulation affordable,
we used 64 parallel gridpoints.
For the a/LTe = 4.2 simulation, the heat flux’s profile

versus θ, shown in Figure 10(d), resembles that observed
in core ETG/ITG turbulence simulations, peaked at the
outboard midplane and decaying smoothly in the parallel
direction [10, 11]. In contrast, for the a/LTe = 42 sim-
ulation, the heat flux had substantial off-midplane con-
tributions, shown in Figure 10(d), due to ETG modes
away from the outboard midplane. This demonstrates
that even in circular flux-surface geometry, steep gradi-
ents can produce turbulence with a novel parallel struc-
ture.

VII. TOPOGRAPHY OF TURBULENCE

In this section, we show how FLR effects and magnetic-
drift profiles determine the parallel distribution of tur-
bulence. These influences act at different scales: while
the magnetic-drift profiles ωT

∗e/ωκe are independent of
ky (at fixed θ0), the strength of electron FLR damp-
ing, measured by the reduction in the linear instability’s
growth rate and the resulting turbulence amplitude, is
almost always greater at higher k⊥ρe values [58]. The
ωT
∗e/ωκe topography is mostly relevant for toroidal ETG

modes, whereas the k⊥ρe topography is important for
both toroidal and slab ETG modes.
In order for ETG turbulence and transport to be

strong, the FLR damping, occurring when k⊥ρe >∼ 1, can-

not be too large. Therefore, we expect |φ̂| to be higher
in regions of the flux surface where k⊥ρe is lower. In
Figure 11(a), we plot the ratio k⊥/ky for our flux sur-
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FIG. 11: Effect of FLR (k⊥ρe) topography (a) on the spatial

distribution of the turbulent amplitudes |φ̂| in (b), (c), and
(d). Contours of k⊥ρe = 1 in (a) are strongly correlated with
(c) and (d), indicating the importance of FLR effects for the
distribution of slab ETG turbulence at higher kyρi values.
The amplitudes are averaged over tvti/a ∈ [14.8− 16.8]. The
ETG turbulence is driven mainly by toroidal instability in
(b), but is driven mainly by slab instability in (c) and (d).
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face as a function of (θ, θ0). It is important to note that
k⊥/ky is independent of ky at fixed θ0. Due to strong
magnetic shaping in the pedestal, the quantity k⊥ varies
more strongly in θ and θ0 than for flux-surface shapes
characteristic of the core. Therefore, we expect turbu-
lence and transport in the pedestal to have a stronger
dependence on θ than in the core. To map out the re-
gions of weaker FLR damping at different kyρi values, in
Figure 11(a), we plot the curves of k⊥ρe = 1 for differ-
ent kyρi values. In the areas bounded by these curves,
k⊥ρe ≤ 1, so, heuristically, we expect weaker FLR damp-
ing there, and hence stronger turbulence.
For slab ETG turbulence, amplitudes are inversely cor-

related with k⊥ρe. This can be seen by comparing values

of k⊥/ky at given (θ, θ0) in Figure 11(a) with |φ̂|2 in (c)
and (d) at the same (θ, θ0). Figures 11(c) and (d) show

|φ̂|2 for kyρi = 12.0 and kyρi = 28.9, respectively. We see

that |φ̂|2 becomes narrower in θ and θ0 at higher kyρi.
This is because, in Figure 11(a), there are fewer regions
of k⊥/ky satisfying the weak FLR-damping constraint,
k⊥ρe <∼ 1, at higher values of kyρi. At lower values of
kyρi, k⊥ρe <∼ 1 is satisfied at more values of θ0 and θ.
Therefore, at lower kyρi, we expect slab ETG turbulence
to be present over more of the (θ, θ0) plane.
However, slab ETG turbulence does not dominate for

all values of kyρi. In Figure 11(b), we plot |φ̂|2 for a

relatively small kyρi = 2.8: clearly, |φ̂|2 does not occupy
the lowest k⊥ρe values from Figure 11(a). This is be-
cause the turbulence at kyρi = 2.8 is primarily toroidal
ETG turbulence. While the parallel extent of slab ETG
turbulence is constrained primarily by k⊥ρe increasing
along the field line, the parallel extent and location of
toroidal ETG turbulence is subject to two constraints.
Namely, for strong toroidal ETG turbulence to exist at
a given parallel location, not only must FLR damping
be relatively weak (k⊥ρe <∼ 1), but also the value of
ωT
∗e/ωκe must allow strong toroidal ETG instability, re-

quiring ωT
∗e/ωκe ≈ A ≃ 3 − 20 [see discussion around

Equation (7)].
In Figure 12(a), we plot ωT

∗e/ωκe for our flux surface,
which shows a topography very different to the FLR con-
straints in Figure 11(a). While the FLR damping in
Figure 11(a) tends to be weakest around θ0 ≃ 0 and
θ ≃ 0, the magnetic drifts are most favorable to the ex-
citation of turbulence at θ0/π ≈ ±1 and θ 6= 0. Since
the ratio ωT

∗e/ωκe is independent of ky, but k⊥ρe is not,
at lower kyρi values where FLR damping is weaker, we
expect toroidal ETG modes to be freer to occupy θ lo-
cations where ωT

∗e/ωκe is optimal. For example, in Fig-
ure 12(a), the dashed green line shows the rough FLR
damping boundary, k⊥ρe = 1, for kyρi = 2.8. Within
this region, ωT

∗e/ωκe has optimal values for strong toroidal
ETG instability, and hence we expect strong toroidal
ETG turbulence at kyρi = 2.8. Indeed, the turbulent

amplitude |φ̂|2 for kyρi = 2.8 and 1.4 in Figure 11(b)
and Figure 12(b), respectively, has maxima in the op-
timal regions of ωT

∗e/ωκe of Figure 12(a), demonstrating

−1.0 −0.5 0.0 0.5 1.0
θ/π

−3

−2

−1

0

1

2

3

θ 0
/
π

k ⟂
ρ e
=
1.
0,
(k

y
ρ i
=
2.
8)

k ⟂
ρ e
=
1.
0,
(k
y
ρ i
=
4.
9)

 ω
T ∗e
/ω

κ
e
=
10

 

 ω
T∗e /ω

κ
e
=
10 

 ω
T∗e /ω

κ
e =

10 

 ω T∗e/ωκe =10 

<-200

-150

-100

-50

0

50

100

150

>200
ωT
∗e/ωκe

(a) Pedestal geometry: ωT
∗e/ωκe versus θ and θ0. Dashed and

dotted lines show k⊥ρe = 1 for different kyρi values.
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FIG. 12: The turbulent amplitudes (b) for kyρi = 1.4 are
localized in regions where ωT

∗e/ωκe ∼ 10 (a), demonstrating
the importance of magnetic drifts for the spatial distribution
of toroidal ETG turbulence.

that at these binormal scales, the turbulence has a strong
toroidal ETG character.
At higher values of kyρi, FLR damping becomes

stronger in regions where ωT
∗e/ωκe has optimal values for

the excitation of toroidal ETG modes and so toroidal
ETG turbulence must occupy regions with less favorable,
in this case higher, values of ωT

∗e/ωκe. For example, at
kyρi = 12.0 and 28.9 in Figures 11(c) and (d), respec-
tively, the turbulence has a stronger slab ETG charac-

ter, as suggested by the fact that the amplitudes |φ̂|2 are
inversely correlated with k⊥/ky. The stronger competi-
tion between magnetic drifts and FLR damping at higher
values of kyρi causes toroidal ETG turbulence to be less
virulent than slab ETG turbulence at these scales. Note
that, as discussed earlier, the decrease in the maximum
|θ0| value with increasing kyρi due to grid and computa-
tional resource constraints may also artificially suppress
toroidal ETG turbulence at higher kyρi.
In the core, the effect of magnetic drifts and FLR
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(a) Circular flux-surface geometry with a/LTe = 4.2: ωT
∗e/ωκe

versus θ and θ0. Dashed and dash-dotted lines show k⊥ρe = 1 for
different kyρi values.
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(c) Circular flux-surface geometry with a/LTe = 42: ωT
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FIG. 13: Profiles of ωT
∗e/ωκe in (a) and (c), and k⊥/ky in (b)

for the circular flux-surface geometry. In (a), a/LTe = 4.2;
in (c), a/LTe = 42.

damping on toroidal ETG instability is qualitatively dif-
ferent from the one in the pedestal. In the pedestal,
the toroidal ETG instability at the outer scale [given by
Equation (12)] is strongest away from the outboard mid-
plane, whereas in the core, it occurs at higher kyρi due
to gentler gradients and is strongest at θ ≈ 0. In Fig-
ure 13(a), we plot ωT

∗e/ωκe for the circular flux-surface
geometry with a/LTe = 4.2 [see Scan100e in Section VII
and table I]. This confirms that the most favorable values
of ωT

∗e/ωκe for toroidal ETG instability in the core are at
θ ≈ 0 and θ0 = 0. The grey regions indicate parallel
locations where ωκe is too large (0 < ωT

∗e/ωκe
<∼ 2) for

instability, even in bad-curvature regions [58]. In Fig-
ure 13(b), we plot k⊥/ky for the tokamak core geometry.
As in the pedestal, FLR effects in the core typically fa-
vor the outboard midplane as the preferred location for
unstable modes with higher kyρi. Thus, while toroidal
ETG instability in the pedestal is favored at low kyρi
because FLR effects damp the modes at higher kyρi,
toroidal ETG instability in the core can be strong at
higher kyρi. This is because, in the core, unlike in the
pedestal, there is an alignment of favorable FLR effects
and values of ωT

∗e/ωκe at higher kyρi. In Figure 13(a),
we also plot contours of k⊥ρe = 1 for kyρi = 42, near the
approximate outer scale for the core turbulence, showing
that strong toroidal ETG instability is driven at θ ≈ 0.
Recall that unlike the pedestal gradients, core gradients
cannot support kyρi ∼ 1 ETG turbulence because a/LTe

is too small, according to the outer scale estimate in
Equation (12) for the core, koyρi ∼ (ρi/ρe)(LTe/qR) ≫ 1,
where we used l‖ ∼ qR.
If we keep the circular flux-surface geometry but in-

crease the gradient to the pedestal value a/LTe = 42,
strong toroidal ETG turbulence is pushed away from
θ ≈ 0 [see Scan200f in Figure 10(d) and Table I]. In-
creasing a/LTe from 4.2 to 42 increases ωT

∗e/ωκe in Fig-
ure 13(a) by a scalar factor of 10, resulting in Fig-
ure 13(c). Notably, this transformation leaves the k⊥/ky
profile unchanged because for the circular flux-surface
geometry, we set ∂p/∂r in Equation (5) to zero. Fig-
ure 13(c) reveals that regions where linear toroidal ETG
instability is most virulent, viz., 3 <∼ ωT

∗e/ωκe
<∼ 20, are

now located away from the outboard midplane. The
emergence of favorable ωT

∗e/ωκe regions away from the
outboard midplane, as well as a decrease in the outer
scale koyρi due to steeper a/LTe, explains why the set-
up with circular flux-surface geometry and a/LTe = 42
in Figure 10(d) exhibits significant contributions to the
heat flux from off-midplane turbulence, whereas the case
with a/LTe = 4.2 does not: in circular flux-surface ge-
ometry with a/LTe = 42, both slab and toroidal ETG
turbulence at lower kyρi values are supported, and can
be driven away from the outboard midplane.
It is important to recall that our Miller geometry is

up-down symmetric [100–105]. Accordingly, so are the
perpendicular-wavenumber and magnetic-drift topogra-
phies in Figures 11 to 13, viz., they are invariant under
the transformation (θ, θ0) → (−θ,−θ0). In contrast, in-
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spection of the poloidal dependence of q̃e and φ̂ in Fig-
ures 6(d), 10(c), 10(d), 11(b), 11(c), and 12(b) reveals
an up-down asymmetry in the parallel spatial distribu-
tion of turbulence. Thus, in Figures 6(d), 10(c), 10(d),
11(b), 11(c), and 12(b), near θ ≈ 0, q̃e is larger for θ > 0,
whereas away from θ ≈ 0, q̃e is larger for θ < 0. Averag-
ing over longer time periods confirms this up-down asym-
metry. It is caused by flow shear, with opposite asymme-
try for toroidal and slab ETG turbulence. We have veri-
fied numerically that the asymmetry is reversed when the
sign of γE is reversed. The asymmetry occurs because
toroidal ETG modes prefer sign(θ0) = −sign(θ), as is
seen by inspecting regions of ωT

∗e/ωκe > 0 in Figure 12(a).
In contrast, examination of Figure 11(a) shows that slab
ETG modes usually prefer regions of sign(θ0) = sign(θ)
where k⊥ is lower. For γE > 0, the effective θ0 decreases
with time [see Equation (5)] [106, 107] and, as a result,
turbulence amplitudes peak at negative values of θ0. In
turn, toroidal ETG moves to θ > 0 and slab ETG to
θ < 0. Thus, the effect of flow shear on the relative
up-down poloidal distribution of slab and toroidal ETG
transport can be predicted qualitatively by inspecting the
k⊥ and ωT

∗e/ωκe topographies.

VIII. MULTISCALE ETG-ETG INTERACTIONS

We now demonstrate that kyρi ∼ 1 ETG turbulence
decreases overall ETG transport substantially, in our case
by ∼40%. We show this by introducing artificial damping
for low kyρi modes from an initial condition correspond-
ing to the saturated state of our Base150 calculation.
We damp modes with kyρi ≤ ky,cutoffρi = 4.3 to test

whether kyρi ∼ 1 ETG turbulence affects kyρe ∼ 1 ETG
turbulence and transport. To damp kyρi ∼ 1 modes, we
multiply the perturbed distribution function f tbs for these
modes by 10−4 at each timestep. At t = t0, just before
these modes are damped, there is a significant heat flux
contribution from each low kyρi value. In Figure 14(a),
we show how q̃e,ky

evolves after time t0 when we begin
damping them.

At the time immediately after these modes are
damped, the heat flux drops by roughly 5%. This instan-
taneous decrease in the heat flux represents the loss of
heat flux carried by the now-damped kyρi ≤ ky,cutoffρi =
4.3 modes. At this time, modes with kyρi > ky,cutoffρi
still carry information about multiscale interactions with
the kyρi ≤ ky,cutoffρi modes. Therefore, we will call the

heat flux at this time Q̃e,before and use it as the point of
comparison with the heat flux in the new saturated state

at later times, 〈Q̃e〉t,after.
As t increases, there is negligible heat flux from kyρi ≤

ky,cutoffρi modes and there is a significant increase in q̃e,ky

at larger values of kyρi. Figure 14(b) shows how, over a
period of several linear times of the slowest undamped

linear modes, the total electron heat flux Q̃e increases

from Q̃e,before ≃ 5.2 to 〈Q̃e〉t,after ≃ 8.4 in the new steady
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FIG. 14: Numerical experiment where modes with
kyρi ≤ 4.3 are artifically damped starting at time t0. (a)
Heat flux q̃e,ky [see Equation (13)] versus kyρi for different

times. (b) Heat flux Q̃e and potential Φ2 versus time, with
vertical lines denoting the instances for which q̃e,ky is

plotted in (a), in matching colors. In (b), Q̃e,before is the
heat flux at the time immediately after the kyρi ≤ 4.3

modes are damped, and 〈Q̃e〉t,after is the time-averaged heat
flux in the saturated state after the kyρi ≤ 4.3 modes are
damped. Low-kyρi modes reduce turbulent heat transport
by higher-kyρi modes. This numerical experiment was
performed with Base150-like parameters [see Table I].

state. Thus, there is a ∼40 % reduction in Q̃e when the
lower-kyρi modes are allowed to play a role. We have
demonstrated that kyρi ∼ 1 ETG turbulence suppresses
higher-kyρi ETG transport.

We have shown that retaining kyρi ∼ 1 ETG modes
is crucial to capture correctly the kyρe ∼ 1 electron heat
flux. This is relevant for tokamak turbulence modeling
[52, 108–113] that aims to predict experimental fluxes
accurately. While this result is not the first to show
kyρi ∼ 1 turbulence suppressing kyρe ∼ 1 turbulence
[21, 23, 24, 114], it is the first to show ETG turbulence
at kyρi ∼ 1 suppressing ETG turbulence and transport at
kyρe ∼ 1. It is important to re-emphasize that the ETG
turbulence at kyρi ∼ 1 is strongly-driven not because
of kinetic-ion physics, but because the pedestal temper-
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ature gradients are so steep [see discussion surrounding
Equation (12)].
The multiscale mechanism for the suppression of

electron-scale transport in the pedestal remains to be
investigated in future work. In the core, cross-scale in-
teractions between electron-scale turbulence (driven by
ETG instability) and ion-scale turbulence (driven by ITG
and other instabilities) can suppress electron-scale and
enhance ion-scale transport [22–24, 114]. In contrast,
because steep temperature gradients in the pedestal
break electron-ion scale separation, interactions between
electron-scale turbulence and ion-scale turbulence, where
turbulence at both scales is driven by ETG instability, is
possible.

IX. DISCUSSION

The main result of this paper is that electron-
temperature-gradient turbulence in a typical JET
pedestal has a rich three-dimensional spatial structure
in directions both parallel and perpendicular to the mag-
netic field. This structure arises due to the steep temper-
ature gradient and the highly shaped magnetic geometry.
Steep temperature gradients enable strong ETG turbu-
lence to be driven at much longer binormal wavelengths
than in core tokamak plasmas, often at wavelengths nu-
merically comparable to the ion gyroradius, kyρi ∼ 1.
The kyρi ∼ 1 ETG turbulence has the highest fluctua-
tion amplitudes but produces modest heat transport due
its short radial correlation length, and also reduces the
overall turbulent heat transport through multiscale in-
teractions.
Experimental measurements of off-midplane potential

fluctuations are needed to test our predictions, but could
prove challenging due to turbulence diagnostics conven-
tionally being located at the outboard midplane, with
some exceptions [2, 115]. Our results might be consis-
tent with Beam-Emission-Spectroscopy measurements of
ion-gyroradius scale turbulence in MAST, showing cor-
relation lengths that are longer in the binormal direction
than in the radial direction [79, 116], hinting at experi-
mental signatures of k⊥ ≫ ky anisotropic turbulence of
a nature described in this paper.
The parallel spatial distribution of toroidal and

slab ETG turbulence at all scales can be qualita-
tively predicted from the perpendicular-wavenumber and
magnetic-drift profiles [see Figures 11(a) and 12(a)].
Both have complex topography due to strong magnetic
shaping in the pedestal. Due to finite-Larmor-radius
damping, turbulence and transport are highest in the
outboard midplane for kyρe ∼ 1, but for kyρi ∼ 1,
electrostatic-potential fluctuations are largest near the
flux surface’s top and bottom [see Figures 11 and 12].
The adiabatic ion nature of toroidal ETG turbulence pre-
vents large heat transport arising from large density fluc-
tuations away from the outboard midplane.

The results of Sections VII and VIII suggest using
magnetic shaping to optimize transport in the pedestal
and internal transport barriers. This could be achieved
by modifying parallel correlation lengths and hence the
outer scale of the turbulence [see Equation (12)] using
FLR effects and magnetic-drift profiles, and by maneu-
vering toroidal and slab ETG turbulence into similar
poloidal locations, so that their multiscale interactions
could suppress kyρe ∼ 1 transport.

X. CODE AND DATA AVAILABILITY

The data used for the material in this paper are avail-
able at the following dataset archive [117].
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