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Abstract 

Our study on the exact timing, and potential climatic, environmental and evolutionary 

consequences of the Laschamps Geomagnetic Excursion has generated a novel hypothesis that 

geomagnetism represents an unrecognised driver in environmental and evolutionary change 

(1). It is important that this is tested with new data, and encouragingly, none of the studies 

presented by Picin et al. (2) undermine our model. 

 

Main Text 

Numerous geomagnetic excursions have occurred throughout geological time, but 

currently we know very little about their potential impacts (1). During the late Quaternary, 

ancient DNA records have demonstrated that major population (and even species) extinction 

and replacement events have occurred relatively frequently, but often remain invisible within 

the fossil record (3). As a result, it is unclear what impact many earlier geomagnetic excursions, 

such as the Blake (~114ka) and post-Blake (~109ka), may have had on Neanderthal populations 

as mentioned by Picin et al (2). However, recent studies on European Neanderthal populations 

around this time (4) suggest that environmental changes caused population fragmentation 

around 115-100ka, while Spanish Neanderthal populations underwent a major population 

replacement around ~112-107ka, similar to the Laschamps observations. 

As we noted (1), the environmental changes at 42ka are more obvious in sediment and 

glacial records in the Pacific region, whereas the pronounced Dansgaard-Oeschger cycles in 

the North Atlantic potentially obscure similar impacts. In this regard, it is important to 

recognise that the Greenland ice records do not represent global climate, but preserve northern 

Atlantic regional environmental changes. Nevertheless, the refined timing created via the kauri 

record reveals that the periods of collapsed magnetic field strength and implied cooling impacts 

during the Laschamps align very closely to Greenland Stadial-11 and the climatically 

anomalous GS-10 (1,5) (Fig. 1). 

The staggered spatiotemporal pattern of European Neanderthal extinctions during the 

repeated (cold) stadials GS-12 to GS-10 has been explained as competitive exclusion from 

invading Anatomically Modern Human (AMH) populations re-expanding more rapidly after 

each cycle (6). Neanderthal population sizes and genetic diversity were decreasing throughout 

the Late Pleistocene but their survival through multiple glacial-interglacial cycles makes it 

seem unlikely that a standard Greenland Stadial (i.e. GS-10) alone could have caused their 

extinction. However, we know very little about the nature or rate of change of geomagnetic-
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caused environmental changes during GS-10, which arguably could have been much faster or 

had more severe impacts (Fig. 1). We used the most comprehensive available compilation of 

high-quality radiocarbon dates (7) to show that the final ages of western European Neanderthal 

populations were coincident with the Laschamps excursion. This conclusion has been further 

reaffirmed by studies re-dating anomalously young dates such as from the site Spy (8), the 

impacts of the latest radiocarbon calibration curve (IntCal20) for this period (9), and seemingly 

by the additional data and figure presented by Picin et al. (2) (Fig. 1). 

Picin et al. point out that in Europe ‘Homo sapiens clearly survived the climatic 

consequences of the Laschamps’ (2), however a recent study (led by one of the co-authors) 

demonstrated that the AMH populations before and after the Laschamps represent two 

genetically different populations (10), separated by a complete replacement around the 

Laschamps (Fig. 1). Specifically, Initial Upper Paleolithic AMH populations were replaced 

sometime after 45.3-42.6ka, immediately before Laschamps, while the subsequent Aurignacian 

populations appear during or shortly after the Laschamps. Indeed, both the (alternative) short 

and long Early Upper Paleolithic chronologies presented by Picin et al. (2) indicate a major 

transition associated with the Laschamps (Fig. 1), while the start of the Early Aurignacian is 

contemporaneous when calibrated with IntCal20 (9) or kauri-Hulu (1). More remarkably, the 

Aurignacian itself appears to end during the next major geomagnetic excursion, Mono Lake at 

35ka (11) (Fig. 1), after which it is genetically replaced by Gravettian populations which first 

appear in eastern Europe at that time (12). The AMH record is important as there are few other 

detailed European megafaunal genetic records around Laschamps, making it challenging to 

detect local extinction events. However, a cluster of megafaunal genetic extinction events is 

apparent around Mono Lake, where records are more detailed (1,3). 

We specifically stated that high UV levels during the Laschamps seem unlikely to have 

caused major negative impacts on early AMH populations such as extinctions or altered 

migration patterns (1). However, our climatic and solar physics models suggested the intense 

UV light radiation and other associated phenomena during short (1-2 day) Solar Energetic 

Particle (SEP) events during the Laschamps would be consistent with a sudden increase in 

global cave use, including a clear intensification in the appearance and diversification of early 

figurative cave art, and red ochre utilisation including hand stencils (1). As we suggested, the 

sudden increase in figurative art in disparate locations across Europe and southeast Asia 

probably represented a preservation bias associated with the increased use of caves (potentially 

as short-term shelter during SEP events). We also clearly stated that the quality and diversity 

of cave art at ~42ka implied figurative art was already well established, likely in the external 

environment such as rockshelter and cliff walls. 

In the Southern Hemisphere, the peak of megafaunal extinction events in Australia has 

previously been estimated at 42ka (13), while recent work in northeast Australia (14) referred 

to by Picin et al. (2) reveals that the youngest megafaunal layers (dated between 41.8-38.4ka, 

1sd) appear to be associated with environmental deterioration starting around this period (Fig. 

1). Similarly, the youngest radiocarbon-dated megafaunal remains in Tasmania are 41.9-40.9ka 

(1) when calibrated using the new kauri-Hulu curve. Within southern Africa, spatiotemporally-

staggered patterns of cultural transitions complicate interpretation, although we noted that the 

fully developed expression of Late Stone Age technologies ~42ka (Fig. 1) recorded at Border 

Cave matched parallel megafaunal changes at Boomplaas Cave. Importantly, we had 
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overlooked equatorial African palynological records which also detail major changes in 

vegetation patterns and moisture levels 43-40ka (16), parallel to those we report in the Pacific 

(1). 

 Our hypothesis that the Adams Transitional Geomagnetic Event and Laschamps 

excursion caused major global environmental (and climatic) impacts is based on precisely-

aligned records and global chemistry-climate modelling. We do not claim to have resolved the 

full details of the mechanisms that drove global change or contemporaneous evolutionary 

events, as this will require further testing and analysis. However, Picin et al. (or Hawks) do not 

present any data that challenges our hypothesis, such that geomagnetic excursions remain a 

potentially important new environmental and evolutionary driver that has been previously 

overlooked. 
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