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Abstract4

Wiggle matching is an important and powerful technique in radiocarbon dating5

that can be used to improve the precision of calendar age estimates. All radiocarbon6

determinations require calibration to provide calendar age estimates. This calibration is7

achieved by comparing the determinations against a calibration curve µ(·) to calculate8

the probability the sample arises from any particular calendar age t. Wiggle matching9

involves the calibration of a set of radiocarbon determinations taken from samples10

with known separations between their calendar ages. Since the calendar age separations11

between samples are known, all the calendar ages are known functions of one particular12

age, T1 — commonly the most recent calendar age. Dating the sequence then reduces13

to considering p(T1 = t1|data), the probability of the calendar age t1 given the set14

of radiocarbon determinations. In previous work, a Bayesian approach has been used15

to derive a nice formula for this quantity under the assumption we have independent16

pointwise estimates of the calibration curve µ(t). In this paper, we derive a generalization17

of this formula showing how to incorporate covariance information from the calibration18

curve under an assumption of multivariate normality.19
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Introduction20

Wiggle matching is a powerful technique used in radiocarbon dating to improve the precision21

with which one can estimate calendar ages of samples (Pearson, 1986). The classic usage of22

the technique is when seeking to estimate the calendar ages of a series of tree-ring samples23

for which, due to ring counting, the number of calendar years separating the samples is24

known precisely. By calibrating multiple determinations jointly within a wiggle match we25

can improve the precision in our absolute calendar age estimates compared with the estimate26

we would obtain with just a single determination.27

Suppose we are dating such a tree-ring sequence consisting of N determinations from28

consecutive annual rings, such that we know that the true, calendar ages must be T1, T2 =29

T1 +1, T3 = T1 +2, . . . , TN = T1 +N − 1. Given T1, all the other ages are known and so this30

is the only unknown we need to estimate. We obtain radiocarbon data for each tree ring,31

and then try to match the ups and downs in the data to ups and downs in the calibration32

curve, knowing that we have N consecutive years.33

Bayesian theory has been applied to make this method quantitative, (see for example,34

Christen and Litton, 1995; Bronk Ramsey et al., 2001). The net result is an expression, in35

terms of the data, for p(T1 = t1|data), the probability for the unknown age T1 given the36

set of N radiocarbon determinations. This expression is also dependent upon the value of37

the calibration curve µ(t1), ..., µ(t1 + N − 1). The formulae given in these papers assume38

pointwise estimates of the calibration curve which are independent from one another and39

ignore any potential covariance information between the estimates at adjacent times.40

The importance of such covariance structure in the calibration curve has long been41

understood, see for example Blackwell and Buck (2008) and Millard (2008). Millard (2008)42

discusses wiggle matching and covariance, and provides results of several wiggle matching43

calculations which incorporate the covariance information from the calibration curve.44

Our goal in this brief note is to derive a generalization of the usual Bayesian wiggle-45

match formulation for p(T1 = t1|data), to show how this result is modified by the covariance46

effects under the assumption that the calibration curve is modelled as a multivariate normal47

distribution. Our final answer, a new expression for p(T1 = t1|data), is given by equations48

(8) - (10). It has the same general structure as the usual formula, and it explicitly shows49

how the covariance information from the calibration curve enters into the result. The next50

section contains our derivation. As much as possible, we use the approach and notation51

already developed for this type of analysis — for examples, see Heaton et al. (2009, 2020),52

Bronk Ramsey (2015), Niu et al. (2013), and Blackwell and Buck (2008).53

Bayesian theory54

We denote the true, unknown calendar ages of our N samples by {Ti}
N
i=1

, and the observed55

radiocarbon determinations (either radiocarbon ages or 14C/12C ratios) by y = (y1, . . . , yn)
T .56

We denote the unknown true value of the calibration curve (either the true radiocarbon age57

or 14C/12C ratio for calendar age t cal BP) in any calendar year by µ(t). Thus, we have58

p(yi|Ti = ti, µ(ti)) =
1

√

2πσ2

i

exp(−
(yi − µ(ti))

2

2σ2

i

), (1)
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where σi is the uncertainty in the radiocarbon measurement. We do not know the true value59

of the calibration curve (i.e., the true value of radiocarbon age or 14C/12C ratio corresponding60

to calendar age t cal BP) but we do have pointwise estimates µ̂(t) in any given year, so that61

we have62

µ(t) = µ̂(t) + ǫ(t). (2)

The ǫ(t) denotes our uncertainty in the calibration curve at time t. Typically there will be63

covariance in these values — ǫ(t) will not be independent of ǫ(t+1). If we assume that these64

uncertainties have a multivariate Gaussian form and consider any sequence of N consecutive65

calendar years t = (t, t+ 1, . . . , t+N − 1)T :66

p(ǫt) = (2π)−N/2 det(Σt)
−

1

2 exp

(

−
1

2
ǫTt Σ

−1

t ǫt

)

, (3)

where ǫt = (ǫ(t), . . . , ǫ(t + N − 1))T and Σt is the covariance matrix which encodes the67

correlations in the ǫt uncertainties, and in general will depend on t. According to equation68

(2), for any vector of calendar ages t, we have µt = µ̂t + ǫt. Here µt denotes the vector of69

true radiocarbon ages or 14C/12C ratios (to correspond to choice of the yi’s) for the sequence70

of calendar age t, and µ̂t the corresponding pointwise estimates.71

We are now ready to begin our derivation. We first note that the quantity we want is72

f(t1) = p(T1 = t1|data) = p(T1 = t1|y). To calculate this we use Bayes’ Theorem:73

f(t1) = p(T1 = t1|data) = p(T1 = t1|y) = ap(y|t1)π0(t1) (4)

Here, a is a normalization constant, and π0(t1) is the prior probability for T1. We expand
p(y|t1) to obtain (to save writing, we denote tj = t1 + j − 1, the calendar age of the jth

determination in the sequence to be wiggle-matched)

f(t1) = a

∫

. . .

∫
[

{

N
∏

j=1

∫

p(yj|t1, µ(tj))p(µ(tj)|t1, ǫ(tj)) dµ(tj)
}

× p(ǫ(t1), . . . , ǫ(tN)|t1)π0(t1)

]

dǫ(t1) . . . dǫ(tN), (5)

We note that p(µ(tj)|t1, ǫ(tj)) = δ(µ(tj)− µ̂(tj)−ǫ(tj)), where δ() is the Dirac delta function.
Thus we have

f(t1) = a

∫

. . .

∫
[

{

N
∏

j=1

∫

exp

(

−
(yj − µ(tj))

2

2σ2

j

)

δ(µ(tj)− µ̂(tj)− ǫ(tj)) dµ(tj)
}

× p(ǫ(t1), . . . , ǫ(tN)|t1)π0(t1)

]

dǫ(t1) . . . dǫ(tN). (6)

Note that we keep absorbing into the normalization constant a those factors that do not
depend on t1. Doing the integral over µ(t1), . . . , µ(tN) gives

f(t1) = a

∫

. . .

∫
[

exp

(

−
N
∑

j=1

(yj − µ̂(tj)− ǫ(tj))
2

2σ2

j

)

× det(Σt1)
−

1

2 exp

(

−
1

2
ǫTt Σ

−1

t ǫt

)

π0(t1)

]

dǫ(t1) . . . dǫ(tN). (7)
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Finally, we do the integral over the ǫ(t1), . . . , ǫ(tN) to get74

f(t1) = a

√

det(Σ−1

t1
)

det(T t1)
exp(−

1

2
(µ̂t1 − y)TW t1(µ̂t1 − y))π0(t1). (8)

This is our final answer; it is similar to usual Bayesian result in being a multivariate Gaussian75

in µ̂t1−y. However, it now involves the N×N matrix W t1 , which in general has off-diagonal76

terms. This matrix is given by77

[Wt1 ]ij =
1

σ2

i

δij −
1

σ2

i σ
2

j

[

T−1

t1

]

ij
[Tt1 ]ij =

[

Σ−1

t1

]

ij
+

1

σ2

i

δij. (9)

In general these matrices, as well as the determinants of Σ−1

t1
and T t1 , will depend on t1.78

The matrix W t1 can be written in a more compact, elegant form. If we define a diagonal79

matrix Dij = σ2

i δij, containing the variances of the radiocarbon determinations y on the80

diagonal, then we may write81

W t1 = (D +Σt1)
−1. (10)

To derive this, we can go back to equation (4), and evaluate p(y|t1) in the following way.82

We note that the N -dimensional random variable y− µ̂t1 can be viewed as the sum of two,83

independent, multivariate Gaussians, each with a mean of zero, and with covariance matrices84

given by Σt1 and by D. It is well known that the probability density of this sum is itself a85

Gaussian, with a covariance matrix given by D +Σt1 . The equivalence of these two forms86

for W t1 , given in equations (9) and (10), is shown in the Appendix.87

Special Cases88

Certain special cases are instructive. First, suppose that there are no correlations among89

the ǫ(tj). This implies that Σ is a diagonal matrix:90

Σij = s2jδij (11)

Thus, s2j is the variance in the calibration curve at time tj. It is then straightforward to91

show that the W matrix becomes92

Wij =
1

σ2

j + s2j
δij (12)

This is the usual Bayesian result (Christen and Litton, 1995; Bronk Ramsey et al., 2001),93

which we recover for this case; any differences in W from this usual result thus are totally94

due to correlations among the ǫ(tj).95

Another special case to consider is if the radiocarbon determinations are very precise,96

so that all of our uncertainty comes from the calibration curve, Taking σj → 0 then gives97

W = Σ−1

t . The Gaussian in the wiggle matching formula (8) then directly reflects the98

covariance matrix from the calibration curve.99
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Figure 1: An illustration of the correlation in the IntCal20 calibration curve. Panel a) shows
the correlation between the value of the calibration curve at 1000 cal BP, i.e. µ(1000), and
µ(t) for 950 ≤ t ≤ 1050 (50 calendar years either side). Panel b) the correlation between
µ(3000) and µ(t), for 2950 ≤ t ≤ 3050. The quantity plotted on the y-axis is given by
equation (15).
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Role of the covariance matrix Σ100

It is perhaps not easy to understand the role played in the wiggle matching equation by101

the off-diagonal elements of the covariance matrix Σij; these would be Cov(ǫ(ti), ǫ(tj)) for102

i 6= j. To gain some insight, we can consider the following special case: suppose that the103

off-diagonal elements of Σ are much smaller than the diagonal elements. Thus we write104

Σij = s2i δij +Gij (13)

where Gij = 0 for i 6= j. If we now assume that the elements of G are small compared to105

the diagonal elements, we can derive the following result: to first order in G we have106

Wij ≈
1

σ2

j + s2j
δij −

Gij

(σ2

i + s2i )(σ
2

j + s2j)
(14)

The effect of the diagonal first term is clear: when inserted into equation (8) it will assign107

higher probabilities to values of t1 which make the magnitudes of the various yi − µ(ti) as108

small as possible. The second, off-diagonal term will favor values of t1 which cause the109

various products (yi − µ̂(ti))(yj − µ̂(tj)) to have the same sign as Gij. Thus, if, for example,110

G23 is positive, the off-diagonal term will favor values of t1 which make (y2−µ̂(t2))(y3−µ̂(t3))111

positive.112

To give some sense of how large the off-diagonal terms can be, we present examples of113

the correlations in the IntCal20 curve, and how they decay as the distance between calendar114

ages increases. In Figure 1 we plot the correlation between µ(t) and µ(t⋆) for t⋆ = 1000,115

and for t⋆ = 3000 cal BP. In terms of our present notation, the correlation function C(t, t⋆)116

plotted is given by117

C(t, t⋆) =
< ǫ(t)ǫ(t⋆) >

√

< ǫ2(t) >< ǫ2(t⋆) >
(15)

where the brackets indicate the expectation over the random variables ǫ(t).118

We see that the off-diagonal terms are comparable to the diagonal ones over about 10 -119

20 years in both cases; thus, over the range of a short wiggle-match (ca. 20 calendar years),120

correlations can be significant.121

Discussion122

We have discussed a generalization of the usual Bayesian approach to wiggle matching. The123

key ingredients in this formulation are the pointwise mean estimates of the calibration curve124

µ̂(t), and the corresponding curve covariance which for any set of N consecutive years we125

assume can be encoded in an N ×N covariance matrix Σ. As we have shown, information126

about these quantities can be provided by the constructors of the calibration curve; for127

relevant discussion of the newly presented calibration curves, see, for example Heaton et al.128

(2020), Reimer et al. (2020) and van der Plicht et al. (2020).129

The ultimate origins of the correlated uncertainties in the calibration curve (the off-130

diagonal elements of Σij) should perhaps be discussed. When constructing the radiocarbon131

calibration curve, we assume that the underlying curve µ(t) one is trying to estimate is132
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somewhat smooth, i.e., that the level of 14C in the atmosphere in calendar year t is similar133

to that in year t + 1. This is the basis of most statistical regression techniques and means134

that information on the value of the curve in one calendar year also informs you about what135

its value is likely to be in neighbouring years. Indeed, it is this assumption of smoothness136

which allows you to borrow and combine information from multiple 14C observations over a137

neighbourhood to strengthen the curve estimate in any individual year and prevent overfitting138

to the data. Without it, you could make no prediction about the value in a calendar year in139

which you did not have a direct observation.140

This smoothness creates a level of dependence in the resultant curve estimate that141

provides more information than, and goes beyond, just the pointwise intervals for ˆµ(t). It is142

unlikely that the true atmospheric 14C levels will flip from the top of the curve’s probability143

interval to the bottom in the space of a single year. Rather if the true value of the curve lies144

towards the top (bottom) of the probability interval in year t, it is likely to also lie towards145

the top (bottom) of the interval in nearby times t′. In our notation, ǫ(t) and ǫ(t′) are likely146

to have the same sign when t′ is in the neighbourhood of t.147

The level of smoothness, and hence dependence, in the calibration curve will be affected148

by the nature of the reference 14C data used to construct the calibration curve (to which we149

aim to adapt) and, in the case of IntCal20, the number and placement of the knots in the150

underlying spline. Over time spans with a lower density of knots, the resulting estimate for151

the calibration curve will however be smoother, and this will tend to create longer lasting152

curve covariance. There are also specific times, during solar proton (SPE or Miyake) type153

events, where the smoothness of the IntCal curve is permitted to be reduced.154

The diverse nature of the 14C data used to construct the IntCal curve will also influence155

the covariance in the final calibration curve estimate. In particular, in the older portion of156

the calibration curve (> 14, 000 cal yr BP) where the calendar ages and 14C measurements157

of the reference data themselves exhibit significant covariance. Here the calibration curve is158

informed by 14Cmeasurements from floating tree-ring sequences (Adolphi et al., 2017; Turney159

et al., 2010, 2016) for which the internal chronologies are known, but the absolute ages are160

not — these are adaptively wiggle-matched, during curve construction, to fit with the rest161

of the reference 14C data. The calendar ages of the macrofossils from Lake Suigetsu (Bronk162

Ramsey et al., 2020) also possess covariance, as do the foraminifera from ocean sediments163

(Bard et al., 2013; Hughen and Heaton, 2020) which are linked to the Hulu Cave timescale164

by the tying of global abrupt palaeoclimatic events (Heaton et al., 2013). The speleothem165

14C measurements (e.g., Cheng et al., 2018; Southon et al., 2012) share a common dead166

carbon fraction; and the marine based 14C measurements (e.g., Bard et al., 2013; Hughen167

and Heaton, 2020) also share a 14C offset due to the modelling of the marine reservoir age168

(Butzin et al., 2020). All these covariances within the constituent IntCal reference data will169

affect, and tend to increase, the covariance on the final curve estimate µ̂)(t) in this time170

period, see Heaton et al. (2020) for details.171
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Appendix175

We want to prove that the two expressions (9) and (10) given for the matrixW are equivalent.176

The normalising constant obtained in (8) can also be shown to be equivalent to the approach177

using the result that the sum of two multivariate Gaussians is Gaussian, although we do not178

show this here. In this Appendix, all the symbols represent N ×N matrices, so we omit the179

bold face notation. The two forms are:180

WA = D−1 −D−1(Σ−1 +D−1)−1D−1 WB = (D + Σ)−1 (16)

where D and Σ are defined in the main text. WA is the form given by equation (9), while181

WB is the form given by equation (10). It is sufficient to show that W−1

B WA = I, where I is182

the identity matrix. One useful relation is that for two matrices, (HY )−1 = Y −1H−1. Thus183

D−1 + Σ−1 = D−1(I +DΣ−1) (D−1 + Σ−1)−1 = (I +DΣ−1)−1D (17)

So we evaluate184

W−1

B WA = (D + Σ)(D−1 −D−1(Σ−1 +D−1)−1D−1) (18)

or185

W−1

B WA = I + ΣD−1 − (I +DΣ−1)−1 − ΣD−1(I +DΣ−1)−1 (19)

or186

W−1

B WA = I +K − (I +K)(I +K−1)−1 (20)

where K = ΣD−1. Note that187

I +K−1 = K−1(I +K) (I +K−1)−1 = (I +K)−1K (21)

Finally we have188

W−1

B WA = I +K − (I +K)(I +K)−1K = I (22)
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