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Abstract

In this article we study the effect of a transitional layer in a magnetic tube on the real part

of the frequencies of kink oscillations. In our analysis, we use the model of a straight mag-

netic tube with the density and cross-section radius varying along the loop, and the thin-tube

thin-boundary (TTTB) approximation. First, we calculate the correction to the fundamental

frequency and show that it is positive and of the order of the ratio of the transitional layer

thickness to the loop radius ℓ. The increase in the fundamental frequency results in the de-

crease in the estimate of the magnetic-field magnitude. Then we study the effect of the transi-

tional layer on the ratio between the fundamental frequency and the first overtone frequency

that is used for estimating the atmospheric scale height. We show that the correction to the

frequency ratio is of the order of ℓ2, and thus it can be neglected for moderate values of ℓ.

Keywords Sun · Plasma · Magnetohydrodynamics · Waves · Oscillations

1. Introduction

Transverse oscillations of coronal magnetic loops were first observed by the Transition Re-

gion and Coronal Explorer (TRACE) mission in 1998. The results of these observations

were reported by Aschwanden et al. (1999) and Nakariakov et al. (1999). They were inter-

preted as kink oscillations of the magnetic-flux tubes. After that, the transverse oscillations

of coronal magnetic loops were continuously observed by space missions (e.g., Erdélyi and

Taroyan, 2008; Duckenfield et al., 2018; Su et al., 2018; Abedini, 2018, and references
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therein). Kink oscillations were also observed in prominence threads (e.g., Arregui, Oliver,

and Ballester, 2018). These oscillations are characterised by large amplitudes and quick

damping.

The simplest model of a coronal magnetic loop is a straight magnetic tube with constant

density inside and outside the tube and with immovable ends. Kink oscillations of such a

tube were first studied in the thin-tube (TT) approximation, that is under the assumption

that the tube radius is much smaller than the tube length, by Ryutov and Ryutova (1976)

(see also Edwin and Roberts, 1983; Roberts, 2019). Later more advanced models of coro-

nal magnetic loops were developed (see, e.g., the reviews by Ruderman and Erdélyi, 2009;

Nakariakov et al., 2021). In particular, a straight magnetic tube with a transitional layer

where the plasma density decreases from its value inside the tube to that of the plasma sur-

rounding the tube was considered. The existence of the transitional-layer results in damping

of kink waves caused by resonant absorption. Ruderman and Roberts (2002) calculated the

decrement of kink oscillations of a magnetic tube with a transitional layer at its boundary.

Using this result, they showed that the observed oscillation amplitude and the damping time

can be used in coronal seismology to estimate the ratio of the thickness of the transitional

layer to the tube radius [ℓ] and thus obtain information on the internal structure of coronal

loops. Goossens, Andries, and Aschwanden (2002) used this approach to estimate the ratio

of the thickness of the transitional layer to the tube radius for eleven coronal magnetic loops.

Dymova and Ruderman (2006) extended the analysis by Ruderman and Roberts (2002) to

take the density variation along the magnetic loop into account, while Shukhobodskiy and

Ruderman (2018) also included the cross-section radius variation along the loop. All ana-

lytical studies were carried out in the thin-tube and thin-boundary (TTTB) approximation.

To go beyond this approximation, the numerical solution of the linearised magnetohydro-

dynamic (MHD) equations was used. The numerical study carried out by Van Doorsselaere

et al. (2004a) showed that the TB approximation provide a fairly good approximation for

the ratio of the transitional-layer thickness to the tube radius up to 0.5, that is in cases when

the transitional layer does not look really thin. For a review of resonant damping of coronal-

loop kink oscillations, see Goossens, Andries, and Arregui (2006) and Goossens, Erdélyi,

and Ruderman (2011).

The presence of the transitional layer not only causes resonant absorption but also af-

fects the oscillation frequency. Van Doorsselaere et al. (2004a) numerically calculated the

complex eigenfrequency of kink oscillations of one-dimensional magnetic tube with the

transitional layer. Although the article by Van Doorsselaere et al. (2004a) mainly deals with

the damping due to resonant absorption, it was also obtained that the presence of transi-

tional layer causes the increases of oscillation frequency. Later, the effect of the transitional

layer on the oscillation frequency and its application to coronal seismology was studied by

Soler et al. (2014) and Pascoe, Hood, and Van Doorsselaere (2019). In particular, they also

found that the presence of the transitional layer increases the oscillation frequency. Hence,

accounting for the transitional-layer presence can affect the seismological estimate of the

magnetic-field magnitude in coronal loops. Usually, the kink oscillations of coronal loops

are studied in the cold-plasma approximation. However, the same result is valid for a finite

plasma-β that is appropriate for using in applications to photosphere. Hence, the oscillation

frequency increase due to the presence of transitional layer is a general property of kink

oscillations.

The observations of coronal-loop kink oscillations are used in coronal seismology not

only to obtain the information on the loop transverse structure and to estimate the magnetic-

field magnitude, but also to estimate the atmospheric scale height in the corona. The latter

estimate is based on the observation of the frequencies of the fundamental mode and the
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first overtone of the coronal-loop kink oscillations. To our knowledge, the effect of the tran-

sitional layer on this estimate has not been discussed yet. To do so is the main aim of this

article.

The article is organised as follows: In the next section we formulate the problem. In

Section 3 we present the expression for the correction of the kink-oscillation frequency

caused by the presence of the transitional layer. In Section 4 we study the effect of the

transitional layer on the estimate of the magnetic-field magnitude. In Section 5 the effect

of the transitional layer on the ratio of the periods of the fundamental mode and the first

overtone is analysed. Section 6 contains the summary of the results and our conclusions.

2. Problem Formulation

We consider plasma motion using the zero-β approximation. The equilibrium state is the

same as in the article by Shukhobodskiy and Ruderman (2018: Article I). We model a coro-

nal loop as a straight, thin, and expanding magnetic tube with a circular cross-section. The

tube consists of a core and a transitional region where the density monotonically decreases

from a higher value inside the tube to a lower value representing the surrounding plasma. In

cylindrical coordinates r,φ, z with the z-axis coinciding with the tube axis, the equilibrium

density is given by

ρ(r, z) =

⎧

⎪

⎨

⎪

⎩

ρi(r, z), r ≤ R(z)(1 − ℓ/2),

ρt(r, z), R(z)(1 − ℓ/2) ≤ r ≤ R(z)(1 + ℓ/2),

ρe(r, z), r ≥ R(z)(1 + ℓ/2),

(1)

where R(z) is the tube radius, ℓ is a constant, ρe(r, z) < ρi(r, z), ρt(r, z) is a monotonically

decreasing function of r , ρ(r, z) is continuous at r = R(z)(1 ± ℓ/2), and ℓR(z) is the thick-

ness of the transitional layer. The domain defined by r ≤ R(z)(1 − ℓ/2) is the core part

of the magnetic tube, while R(z)(1 − ℓ/2) ≤ r ≤ R(z)(1 + ℓ/2) is the transitional region.

Below the subscripts “i” and “e” indicate that a quantity is calculated in the core part of

the magnetic tube and in the external plasma, respectively. The equilibrium magnetic field

is B = (Br(r, z),0,Bz(r, z)). We assume that the boundaries of the transitional layer are

magnetic surfaces. A sketch of the equilibrium is shown in Figure 1. We use the TTTB ap-

proximation and assume that R(z) ≪ L and ℓ ≪ 1, where L is the loop length. We also

assume that the characteristic scale of variation of ρi, ρe, and B in the radial direction is L.

On the other hand, the characteristic scale of variation of ρt in the radial direction is ℓR∗,

where R∗ is a typical value of R(z). Below we use the notation R∗/L = ǫ. The tube ends

are assumed to be frozen in the dense plasma at z = ±L/2. It follows from Equation 1 that

the ratio of the transitional-layer thickness to the tube radius is independent of z. In the thin

tube approximation B and R are related by

BR2 = const. (2)

Plasma motion is described everywhere by the linearised ideal MHD equations, except

in the vicinity of a resonant surface, where the oscillation frequency coincides with the local

Alfvén frequency. In this vicinity, the viscosity is taken into account in order to remove a

singularity in the ideal MHD equations.
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Figure 1 Sketch of the

equilibrium state.

3. Expression for Oscillation Frequency

The frequency of magnetic-tube kink oscillation with the account of the transitional-layer

effect was calculated in Article I. In this article the following scaled variables were intro-

duced:

� = ǫ−1ω, Z = ǫz, (3)

where ω is the oscillation frequency. The plasma displacement perpendicular to B and in

the planes φ = const. is ξ⊥. Below we use the variable η = ξ⊥/R(z), where ξ⊥ is calculated

on the tube axis. The solution in Article I is given in the form of expansions

η = η0 + ℓη1 + · · · , � = �0 + ℓ�1 + · · · (4)

The solution in Article I is obtained in the form of Fourier expansions with respect to eigen-

functions of the following boundary-value problem:

V 2
A

∂2Y

∂Z2
= −λY, Y (±R∗/2) = 0, (5)

where V 2
A = B2(μ0ρ)−1 is the Alfvén speed and μ0 is the magnetic permeability of free

space. The eigenvalues of this problem constitute a monotonically increasing sequence {λn},
λn → ∞ as n → ∞ (Coddington and Levinson, 1955). The eigenfunctions of the boundary-

value problem satisfy the orthogonality condition

∫ R∗/2

−R∗/2

V −2
A YnYm dZ = 0, for m 	= n, (6)

and they are normalised by the condition

∫ R∗/2

−R∗/2

V −2
A Y 2

n dZ = 1. (7)
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In particular, the following expansion was used (Equation 40 in Article I):


 =
∞

∑

n=1


nYn(Z), (8)

where


 =
V 2

AiQi

R2
, Q = ǫ−2 P

B2
, (9)

and P is the perturbation of the magnetic pressure. The coefficient 
n in Equation 8 is given

by (Equation 39 in Article I)


n =
∫ R∗/2

−R∗/2

V −2
A 
Yn dZ. (10)

In Article I the flux function ψ is defined by

Br = −
1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
. (11)

The function ψ is used as an independent variable instead of r . In the thin-tube approxima-

tion, the relation between ψ and r is given by

ψ =
1

2
r2B. (12)

It was assumed in Article I that the density in the transitional layer can be factorised and

written as the product of two functions: one depending on Z, and the other depending on ψ .

As a result, we obtain (Equation 35 in Article I)

V 2
A(ψ,Z) = V 2

Ai(Z)g(ψ), g(ψi) = 1, g(ψe) =
V 2

Ae

V 2
Ai

, (13)

where ψ = ψi and ψ = ψe are the equations of the internal and external boundaries of the

transitional layer, and

ψi =
1

2
BR2(1 − ℓ/2)2, ψe =

1

2
BR2(1 + ℓ/2)2. (14)

We note that the eigenvalues [λn] and eigenfunctions [Yn] of the boundary value problem in

Equation 5 depend on ψ .

The eigenfrequency �0 and the corresponding eigenfunction η0 are defined by

C2
k

d2η0

dZ2
+ �2

0η0 = 0, C2
k =

2B2

μ0(ρi + ρe)
, η0 = 0 at Z = ±R∗/2. (15)

In Article I the equation determining �1 is obtained (Equation 71). It reads

�0�1

∫ R∗/2

−R∗/2

η2
0

C2
k

dZ = −
1

ℓ

∫ R∗/2

−R∗/2

η0L1[η0]
2C2

k

dZ − iϒ, (16)
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where (Equation 67 in Article I)

L1[η] =
μ0ρe

BR2(ρi + ρe)
P

∫ ψe

ψi

g(ψ)

∞
∑

n=1

[�2
0 − λn(ψe)]
nYn(Z)

�2
0 − λn(ψ)

dψ

+
2ℓB2Qi

R2(ρi + ρe)
+

�2
0η

ρi + ρe

(

1

BR2

∫ ψe

ψi

ρ dψ − ℓ(3ρi − ρe)

)

, (17)

ϒ is a real quantity, and P indicates the principal Cauchy part of the integral. We do not

give the expression for ϒ because it will not be used below. It follows from Equation 16 that

ℜ(�1)

∫ R∗/2

−R∗/2

η2
0

C2
k

dZ = −
1

ℓ�0

∫ R∗/2

−R∗/2

η0L1[η0]
2C2

k

dZ, (18)

where ℜ indicates the real part of a quantity. Finally, the quantity Qi is defined by (Equa-

tion 75 in Article I)

Qi =
ρiψi

B3
[�2

0 − λN (ψi)]η0, (19)

and N is determined by the condition that there is a value ψ such that λN (ψ) = �2
0. It was

assumed in Article I that the intervals [λn(ψi), λn(ψe)], n = 1,2, . . . , do not intersect. This

condition guarantees that N is defined uniquely. However, in fact the analysis in Article I

remains valid if we impose a weaker restriction that there is only one value of N such that

�2
0 ∈ (λN (ψi), λN (ψe)). (20)

4. Effect of Transitional Layer onMagnetic-Field Estimate

Using observations of the transverse oscillations of the coronal magnetic loops is one of

the most popular methods of coronal seismology. The first application of these observations

for estimating the magnetic-field magnitude in coronal loops was made by Nakariakov and

Ofman (2001). Following this article, we consider a magnetic tube homogeneous in the axial

direction. The only difference is that Nakariakov and Ofman (2001) considered a magnetic

tube with a sharp boundary, while we consider a tube with a transitional layer. Since now B ,

ρi, and ρe are constants, it follows from Equation 15 that for the fundamental mode

�0 =
πCk

R∗
, η0 = cos

πZ

R∗
. (21)

Since VA is independent of Z it follows from Equations 5 and 7 that

λ2n−1 =
π2(2n − 1)2V 2

A

R2
∗

, Y2n−1 = VA

√

2

R∗
cos

π(2n − 1)Z

R∗
,

λ2n =
4π2n2V 2

A

R2
∗

, Y2n = VA

√

2

R∗
sin

2πnZ

R∗
,

(22)

where n = 1,2, . . . The condition λ1(ψ) = �2
0 reduces to

2ρt(r) = ρi + ρe. (23)
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Since ρe ≤ ρt(r) ≤ ρi and ρt(r) is a monotonically decreasing function, it follows that there

is exactly one value r = rA for which Equation 23 is satisfied. On the other hand, the con-

dition �2
0 < λ2(ψi) reduces to an obvious inequality 2(ρi + ρe) > ρi. Hence, Equation 20 is

satisfied only for N = 1.

Using Equations 14, 15, 19, and 21 we obtain

Qi =
π2(ρi − ρe)

2μ0(ρi + ρe)
cos

πZ

R∗
+O(ℓ). (24)

It follows from this result and Equations 10 and 22 that


1 =
π2V 2

Ai(ρi − ρe)
√

2R∗

4μ0R2VA(ρi + ρe)
, 
n = 0, n = 2,3, . . . (25)

To calculate L1[η0] we need to specify the function ρt(r). Two popular forms of this

function are linear and sinusoidal. Below we consider a more general density profile defined

by

ρt(r) =
ρi + ρe

2
−

ρi − ρe

2
χ(r), (26)

where χ(r) is a monotonically increasing odd function of r −R for r ∈ [R(1 − ℓ/2),R(1 +
ℓ/2)] satisfying the conditions χ(R(1−ℓ/2)) = −1 and χ(R(1+ℓ/2)) = 1. Now, it follows

from Equation 23 that rA = R. Using Equations 12, 13, 14, 22, and 25 we obtain

P

∫ ψe

ψi

g(ψ)

∞
∑

n=1

[�2
0 − λn(ψe)]
nYn(Z)

�2
0 − λn(ψ)

dψ = 0. (27)

This result follows from the fact that ρt(C
2
k − V 2

A) is an odd function of r − R. With the

aid of this result and Equations 14, 21, 24, 26, and 27 we obtain from Equation 17 in the

leading-order approximation with respect to ℓ

L1[η0] = −
ℓ(2ρi − ρe)

ρi + ρe

�2
0 cos

πZ

R∗
. (28)

We emphasise that this equation is valid for the general density profile defined by Equa-

tion 26 with the function χ satisfying the conditions formulated after that equation. In

particular, it is valid both for the linear as well as sinusoidal density profile. Substituting

Equation 28 in Equation 18 and using Equation 21 yields

ℜ(�1) =
�0(2ρi − ρe)

2(ρi + ρe)
. (29)

Hence, the oscillation frequency calculated with an accuracy of up to terms of the order of

ℓ is

� = �0

(

1 +
ℓ(2ρi − ρe)

2(ρi + ρe)

)

. (30)

We see that the presence of a transitional layer increases the fundamental oscillation fre-

quency. A similar result was previously obtained by Van Doorsselaere et al. (2004a),

Goossens, Andries, and Arregui (2006), and Pascoe, Hood, and Van Doorsselaere (2019).



   72 Page 8 of 13 M.S. Ruderman, N.S. Petrukhin

We also see that the second term in the brackets is smaller than ℓ/2. When there is no

transitional layer, the magnetic field is given by

B =
ω0L

π

√

μ0(ρi + ρe)

2
, (31)

where ω0 = ǫ�0 is the non-scaled frequency of the fundamental mode of the kink oscilla-

tion, calculated without taking into account the transitional-layer effect. Using Equation 30,

we rewrite this equation as

B ≈
ωL

π

√

μ0(ρi + ρe)

2

(

1 −
ℓ(2ρi − ρe)

2(ρi + ρe)

)

. (32)

Hence, if we take the effect of the transitional layer into account, then the estimate for

the magnetic field must be reduced. Goossens, Andries, and Aschwanden (2002) used the

observed damping rate of kink oscillations to estimate the thickness of transitional layer

for 11 coronal magnetic loops. The maximum value they found was ℓ = 0.49. This implies

that the second term in brackets in Equation 32 is less than 1/2, but it can be close to this

value. Therefore, accounting for the transitional-layer effect can reduce the estimate of the

magnetic-field magnitude by almost 50%.

Nakariakov and Ofman (2001) were the first who used the observed kink oscillations

of coronal loops to estimate the magnetic-field magnitude in coronal loops. They used the

event observed by TRACE on 14 July 1998 and obtained that the magnetic-field magnitude

is between 4 G and 30 G. Using the observed damping of the loop oscillations, Ruderman

and Roberts (2002) found ℓ = 0.23. Both Nakariakov and Ofman (2001) and Ruderman and

Roberts (2002) took ρi/ρe = 10. Hence, accounting for transitional-layer effect reduces the

estimate obtained by Nakariakov and Ofman (2001) by 17%. Therefore, the new boundaries

for the magnetic-field magnitude are 3.3 G and 25 G. We can see that the reduction in the

estimate of the magnetic-field magnitude introduced by the account of the transitional-layer

effect is small in comparison with the uncertainty introduced by other factors.

5. Effect of Transitional Layer on Estimate of Atmospheric Scale Height

Verwichte et al. (2004) reported for the first time the simultaneous observations of the funda-

mental harmonic and the first overtone of the transverse oscillation of the coronal magnetic

loops. A very important result was that the first overtone was less than twice the frequency

of the fundamental mode. Andries, Arregui, and Goossens (2005) suggested that this effect

is related to the density variation along the loop, and they developed a method of estimation

of the atmospheric scale height in the corona using the ratio of frequencies of the first over-

tone and the fundamental mode of coronal-loop transverse oscillations. Ruderman, Verth,

and Erdélyi (2008), Verth and Erdélyi (2008), and Verth, Erdélyi, and Jess (2008) extended

the analysis by Andries, Arregui, and Goossens (2005) to take the loop expansion into ac-

count. For a review of the method of the atmospheric-scale-height estimation using the ratio

of the frequencies of the first overtone and the fundamental mode of coronal-loop transverse

oscillations, see Andries et al. (2009). In all these articles, a model of the magnetic tube with

a sharp boundary was used. In this section we study the effects of transitional layer on the

estimate of the atmospheric scale height.

We assume that a coronal magnetic loop is in a vertical plane, has a half-circular shape,

and is immersed in an isothermal atmosphere. We also assume that the plasma temperature
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is the same inside and outside the loop. Van Doorsselaere et al. (2004b) showed that the

effect of curvature on the frequencies of coronal-loop transverse oscillations is of the order

of ǫ. Since for a typical coronal loop ǫ is of the order of 0.02, we can safely neglect the

effect of curvature on the oscillation frequencies. Hence, the loop shape only affects the

density variation along the loop caused by gravity. Since the temperature is the same inside

and outside the loop, we obtain

ρe(z) =
ρi(z)

ζ
, ζ = const. (33)

The assumption that the characteristic scale of variation of ρi and ρe in the radial direction

is L enables us to neglect the radial dependence of these quantities and assume that they

only depend on z. The density in the transitional layer [ρt(r, z)] is given by Equation 26.

Below we use the notation �f and ηf for the frequency and eigenfunction of the fundamental

mode, and �h and ηh for the frequency and eigenfunction of the first overtone. �f0 and ηf0

are defined by Equation 15 with the condition that it does not have nodes in the interval

(−R∗/2,R∗/2). The frequency and eigenfunction of the first overtone are defined by

C2
k

d2ηh0

dZ2
+ �2

h0ηh0 = 0, ηh0 = 0 at Z = −R∗/2 and Z = 0, (34)

with the condition that it does not have nodes in the interval (−R∗/2,0).

Using Equation 13, we transform Equation 5 to

V 2
Ai

∂2Y

∂Z2
= −

λ(ψ)

g(ψ)
Y, Y (±R∗/2) = 0. (35)

It follows from this equation that

λn(ψ) = g(ψ)λn(ψi), Yn = Yn(Z), (36)

that is Yn is independent of ψ . It follows from this result and Equations 9, 10, 12, 14, and

19 that in the leading-order approximation with respect to ℓ


n =
�2

0 − λN (ψi)

2μ0

∫ R∗/2

−R∗/2

V −2
A η0(Z)Yn(Z)dZ. (37)

Comparing the eigenvalue problems defined by Equations 15 and 35, and using Equation 33,

we obtain that

�2
f0 =

C2
kλ1(ψi)

V 2
Ai

=
2ζλ1(ψi)

ζ + 1
, �2

h0 =
C2

kλ2(ψi)

V 2
Ai

=
2ζλ2(ψi)

ζ + 1
. (38)

Then, using Equations 12 and 26, we obtain that �2
f0 = λ1(ψA) and �2

h0 = λ2(ψA), where

ψA is defined by equation

g(ψA) =
2ζ

ζ + 1
. (39)

Since g(ψ) monotonically increases from 1 to ζ in the interval [ψi,ψe] there is exactly

one value ψA defined by this equation. It follows from Equations 36 and 38 that �f0 ∈
(λ1(ψi), λ1(ψe)) and �h0 ∈ (λ2(ψi), λ2(ψe)). We assume that �f0 < λ2(ψi) and λ1(ψe) <
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�h0 < λ3(ψi). Then it follows that N is uniquely defined, and N = 1 for the fundamental

mode and N = 2 for the first overtone. Below we describe the conditions when N is uniquely

defined for a particular equilibrium.

Finally, it follows that ηf0 is proportional to Y1 and ηh0 is proportional to Y2. Since η has

the dimension of length and, in accordance with Equation 7, Y has the dimension of velocity

divided by the square root of the length, we can take

ηf0(Z) = AY1(Z), ηh0(Z) = AY2(Z), (40)

where A = V −1
∗ R

3/2
∗ and V∗ is the characteristic value of the Alfvén speed.

First, we calculate ℜ(�f1). Using Equations 6, 7, 37, 38, and 40 yields


1 =
A(ζ − 1)

4μ0ζ
�2

f0, 
n = 0, n = 2,3, . . . (41)

With the aid of Equations 36, 38, 40, and 41, we obtain

∞
∑

n=1

[�2
0 − λn(ψe)]
nYn(Z)

�2
0 − λn(ψ)

=
(ζ − 1)2�2

f0ηf0(Z)

4μ0[(ζ + 1)g(ψ) − 2ζ ]
. (42)

Using this result and Equations 13, 17, and 38, we transform Equation 19 to

L1[ηf0] =
W�2

f0ηf0(Z)

ζ + 1
, (43)

where

W =
(ζ − 1)2

4BR2
P

∫ ψe

ψi

g(ψ)dψ

(ζ + 1)g(ψ) − 2ζ
+

ζ

BR2

∫ ψe

ψi

dψ

g(ψ)
−

ℓ(5ζ − 1)

2
. (44)

It is straightforward to show that W/ℓ is independent of ℓ, that is W is a linear homogeneous

function of ℓ. Substituting this expression in Equation 16 and using Equation 43 yields

ℜ(�f1) = −
W�f0

2ℓ(ζ + 1)
. (45)

Repeating the same calculation, but for the first overtone, we obtain

ℜ(�h1) = −
W�h0

2ℓ(ζ + 1)
. (46)

Using Equations 45 and 46 yields

ℜ(�h)

ℜ(�f)
=

�h0 + ℓℜ(�h1)

�f0 + ℓℜ(�f1)
+O(ℓ2) =

�h0

�f0

+O(ℓ2). (47)

Hence, we see that the effect of the transitional layer on the ratio of the frequencies of the

first overtone and the fundamental mode is weak, of the order of ℓ2 at best. Therefore, it

can be safely neglected for ℓ � 0.3. This conclusion is based on a few assumptions. One

important assumption is that N is uniquely defined both for the fundamental mode and the

first overtone. This assumption is equivalent to two conditions:

�2
f0 < λ2(ψi), (48)
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Figure 2 Dependence of κ on ζ

defined by Equation 52.

λ1(ψe) < �2
h0 < λ3(ψi). (49)

Using Equation 38, it is straightforward to show that the inequality in Equation 48 follows

from the inequality in Equation 49. Then, again using Equation 38, we reduce the condition

given by Equations 48 and 49 to

ζ + 1

2
λ1(ψi) < λ2(ψi) <

ζ + 1

2ζ
λ3(ψi). (50)

As we have already pointed out, it is difficult to obtain conditions that must be imposed

on a loop of arbitrary shape and with arbitrary variation of the cross-section radius along

the loop to satisfy the conditions given by Equations 48 and 49. Hence, we only consider a

particular case of a coronal magnetic loop of a half-circular shape with the constant cross-

section radius. The density in this loop is given by

ρi(z) = ρ0 exp

(

−
L

πH
cos

πz

L

)

, (51)

where ρ0 is the plasma density at the loop foot points, H = kBT/mg the atmospheric

scale height in the corona, kB ≈ 1.38 × 10−23 m2 kg s−2 K−1 the Boltzmann constant,

g = 274 m s−2 the gravity acceleration at the solar surface, and m the mean mass per particle

(approximately equal to 0.6 times the proton mass). Equation 51 contains one free dimen-

sionless parameter κ = L/πH , which is the ratio of the loop height to the atmospheric scale

height. Hence, the eigenvalues λn depend on κ and we can write λn(ψ;κ). The curve in

Figure 2 is defined by the equation

λ2(ψi;κ) =
ζ + 1

2
λ1(ψi;κ). (52)

The left inequality in Equation 50 is satisfied for points (ζ, κ) that lie below the curve in

Figure 2. We verified numerically that the right inequality in Equation 50 is satisfied at least

for κ ≤ 10. Hence, we conclude that the condition given by Equation 50 is satisfied for
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points (ζ, κ) lying below the curve in Figure 2. In particular, if we take ζ = 3 as a typical

value for coronal magnetic loops, then Equation 50 is satisfied for κ � 3, that is even for the

largest coronal loops.

6. Summary and Conclusion

In this article we studied the effect of a transitional layer on the frequency of kink oscillations

of coronal magnetic-flux tubes. Traditionally, the main attention is paid to the imaginary part

of this frequency that is responsible for the damping of the kink oscillations. However, in

this article we studied the effects of transitional layer on the real part of the frequency. In

our analysis, we used the results obtained by Shukhobodskiy and Ruderman (2018). These

results were obtained using the model of a straight magnetic-flux tube with the density and

radius of the tube cross-section varying along the tube, and the TTTB approximation.

First, we studied the effect of the transitional layer on the estimate of the magnetic-

field magnitude. This estimate is based on the observed fundamental frequency of the kink

oscillation. We showed that the presence of transitional layer increases the fundamental

frequency. Previously, this result was obtained by Van Doorsselaere et al. (2004a), Goossens,

Andries, and Arregui (2006), and Pascoe, Hood, and Van Doorsselaere (2019). The increase

in the oscillation frequency leads to the decrease in the estimated magnetic-field magnitude.

In particular, when the ratio of the transitional layer thickness and the tube radius [ℓ] is equal

to 0.5, the estimate of the magnetic-field magnitude is two times less than that obtained

modelling coronal loops as magnetic tubes without a transitional layer.

The main aim of our analysis was to study the effect of the transitional layer on the

ratio of frequencies of the fundamental mode and first overtone that is used to estimate the

atmospheric scale height. The corrections for each of the two frequencies are of the order of

ℓ. However, we showed that the correction to the ratio of the frequencies is of the order of ℓ2

at best. Of course, when ℓ = 0.5 this correction can be not very small, however for ℓ � 0.3

it is less than or of the order of 10% and, thus, can be neglected.
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