

This is a repository copy of *Rewetting global wetlands effectively reduces major greenhouse gas emissions*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/188181/</u>

Version: Accepted Version

Article:

Zou, J, Ziegler, AD, Chen, D et al. (14 more authors) (2022) Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nature Geoscience, 15 (8). pp. 627-632. ISSN 1752-0894

https://doi.org/10.1038/s41561-022-00989-0

© The Author(s), under exclusive licence to Springer Nature Limited 2022. This is an author produced version of an articlepublished in / accepted for publication in Nature Geoscience. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Rewetting global wetlands effectively reduces major greenhouse gas emissions
2	Junyu Zou ¹ , Alan D. Ziegler ² , Deliang Chen ³ , Gavin McNicol ⁴ , Philippe Ciais ⁵ , Xin Jiang ¹ ,
3	Chunmiao Zheng ¹ , Jie Wu ^{1,6} , Jin Wu ^{7,8} , Ziyu Lin ^{1,7} , Xinyue He ^{1,9} , Lee E. Brown ¹⁰ , Joseph
4	Holden ¹⁰ , Zuotai Zhang ¹ , Sorain J. Ramchunder ¹¹ , Anping Chen ¹² , Zhenzhong Zeng ^{1*}
5	¹ School of Environmental Science and Engineering, Southern University of Science and
6	Technology, Shenzhen 518055, China
7	² Faculty of Fisheries and Aquatic Resources, Mae Jo University, Chiang Mai, Thailand
8	³ Regional Climate Group, Department of Earth Sciences, University of Gothenburg,
9	Gothenburg, Sweden
10	⁴ Department of Earth and Environmental Science, University of Illinois, Chicago, Chicago,
11	Illinois, United States
12	⁵ Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA CNRS UVSQ, 91191
13	Gif Sur Yvette, France
14	⁶ Department of Geoscience and Natural Resource Management, University of Copenhagen,
15	Copenhagen, Denmark
16	⁷ School of Biological Sciences and Institute for Climate and Carbon Neutrality, The University
17	of Hong Kong, Pokfulam Road, Hong Kong, China
18	⁸ State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong
19	Kong, China
20	⁹ School of Earth and Environment, University of Leeds, Leeds, UK
21	¹⁰ water@leeds, School of Geography, University of Leeds, Leeds, UK
22	¹¹ Department of Geography, National University of Singapore, Singapore, Singapore

23	¹² Department of Biology and Graduate Degree Program in Ecology, Colorado State University,
24	CO 80523, USA
25	* Correspondence to: <u>zengzz@sustech.edu.cn</u>
26	
27	Manuscript for Nature Geoscience
28	May 9, 2022
29	

Carbon and nitrogen losses from degraded wetlands, and methane emissions from flooded 30 wetlands, are both significant sources of greenhouse gas emissions. However, the net 31 exchange dependence on hydro-thermal conditions and wetland integrity remains unclear. 32 Using a global-scale *in-situ* database on net greenhouse gas exchanges, we show diverse 33 hydrology-influenced emission patterns in CO₂, CH₄ and N₂O. We find that total CO₂ 34 35 equivalent emissions from wetlands are kept to a minimum when the water table is near the surface. In contrast, greenhouse gas exchange rates peak in flooded and drained conditions. 36 By extrapolating the current trajectory of degradation, we estimate that between 2021 and 37 2100, wetlands could result in greenhouse gas emissions equivalent to around 408 gigatons 38 of CO₂. However, rewetting wetlands could reduce these emissions such that the radiative 39 forcing caused by CH₄ and N₂O is fully compensated by CO₂ uptake. As wetland greenhouse 40 gas budgets are highly sensitive to changes in wetland area, the resulting impact on climate 41 from wetlands will depend on the balance between future degradation and restoration. 42

43

Wetlands have continuously accumulated organic carbon since the Last Glacial Maximum¹, 44 forming a dense carbon pool that stores over one third of global soil organic carbon in only 6% of 45 the total land area^{2,3}. Alarmingly, since the Industrial Revolution, more than half of wetlands have 46 47 been degraded by anthropogenic activities, including drainage, deforestation, afforestation, agricultural expansion, urbanization, and climate change⁴⁻⁸. A phenomenon commonly associated 48 49 with wetland degradation is the lowering of the water table, which exposes carbon pools above the water table to decomposition and releases CO₂, while simultaneously altering the natural exchange 50 of other greenhouse gases (GHGs) including methane (CH4) and nitrous oxide (N2O)⁹⁻¹¹. Given 51 that degraded wetlands are important sources of GHG emissions to the atmosphere¹¹⁻¹⁴, there is a 52

54

critical need to determine the impact of widespread wetland degradation on GHG exchanges, but also to assess the potential for wetland restoration in reducing GHG emissions.

55

Fluxes of CO₂, CH₄, and N₂O in wetlands are mediated by the water level relative to the surface^{9,15-} 56 ¹⁶. Electron acceptor limitation in the soils of saturated wetlands is favorable to the production of 57 methane^{17,18}, forming the world's largest natural source of CH₄ emissions¹². Meanwhile, 58 substantial CO₂ is consumed through photosynthesis by wetland vegetation; and the anaerobic 59 conditions significantly reduce the decomposition of organic carbon, generating a major terrestrial 60 carbon sink over long time scales^{1-3,19,20}. By contrast, the degradation of wetlands, either through 61 drainage or desiccation, exposes stored organic matter to aerobic decomposition, resulting in the 62 emission of CO₂ and N₂O to the atmosphere^{11,15,16,21}. Previously, the relationship between GHG 63 emissions and water table in wetlands has been examined for only one or two greenhouse gases²², 64 and for one single wetland category (e.g. managed peatland^{14,23,24}) or various wetland categories 65 at local scales^{11,25,26}. Lacking is a global assessment involving the three main GHGs to guide the 66 development of effective climate change mitigation strategies and to inform the potential to restore 67 68 the functioning of wetland ecosystems across moisture and temperature regimes worldwide.

69

We address this issue by building a global database containing *in-situ* observations of exchange rates of GHGs for wetlands, drawn from 3,704 site-year records (Extended Data Figure 1; refer to *Methods* for details). Each record contains data on wetland environmental conditions and flux information that allows quantitative assessments of the net fluxes of CO_2 , CH_4 , and N_2O under various wetness conditions. The reported details of the environmental conditions from each siteyear record allow us to perform a novel multi-gas assessment for a variety of wetland types and moisture regimes worldwide. In doing so we classify the wetness condition of each site-year in the growing season into six categories that are related to the water-table/level (*WTL*) depth below (negative number) and above (positive) the surface: *WTL*-3 \leq -70 cm; -70 cm < *WTL*-2 \leq -50 cm; -50 cm < *WTL*-1 \leq -30 cm; -30 cm < *WTL*0 \leq -5 cm; -5 cm < *WTL*1 \leq 40 cm; and 40 cm < *WTL*2. We illustrate differences related to temperature regimes by assessing responses across three climate zones (boreal, temperate, and tropical; defined by thresholds of multi-year average surface air temperature).

83

84

The non-linear hydro-thermal influence on GHG exchange

We call the CO₂ net-exchange flux at the water/land-atmosphere interface net ecosystem exchange 85 86 (*NEE*) (Equation 1; positive/negative values indicate GHG sources/sinks). Through establishing 87 relationships between *NEE* and the total GHG flux (sum of CO₂, CH₄, and N₂O in CO₂ equivalent) based on the records containing complete data, we observe the following: (1) almost all (173/174) 88 89 records show the total GHG flux values exceed NEE for the same site-year, and (2) the differences between the NEE and total GHG flux are highly dependent on moisture conditions (Figures 1a-b). 90 91 These results indicate clearly that the wetness regulation pattern for CH₄ or N₂O emissions is different from CO₂ (ref. 27). By mapping the distribution of wetness control for the three GHGs 92 93 for various types of wetlands (inter alia bogs, fens, marshes, swamps, floodplain and water bodies; see Methods), we identify nonlinear (parabolic) exchange patterns for NEE and the sum of GHGs, 94 and opposing monotonic patterns for CH4 and N2O (Figures 1c-f, Extended Data Figures 2a-b, 3b, 95 96 4a-b). Maximum emission of CH4 occurs when flooded wetlands have water levels well above the soil surface (WTL2; water level > 40 cm); and the minimum occurs when the water table is well 97 below the surface of the wetland (*WTL*-2&-3; water table \leq -50 cm), indicative of a drained or 98

desiccated state. In contrast, the highest emissions of N₂O occur during dry conditions (*WTL*-3); and the lowest occur in flooded conditions (*WTL*2). Emissions of CO₂ exhibit relative extremes both for high water level and low water-table conditions (Figure 1d, Extended Data Figure 4b).

102

101

These hydrology-dependent emission patterns are in line with the expectation that CH₄ is produced 103 in the anaerobic conditions that are associated with waterlogged soils^{21,28}. Lower emissions of N₂O 104 occur during flooded conditions because facultative anaerobic denitrifying bacteria reduce N₂O to 105 N2 in the oxygen-depleted water column^{21,29}. As the water table falls below the soil surface, aerobic 106 decomposition of organic matter results in an increase in CO₂ emissions^{11,15,21}. As expected, the 107 highest CO₂ emission was observed in WTL-3, where the water table is lower than 70 cm (Figure 108 1d, Extended Data Figure 4a). The relatively high CO₂ emissions observed in wetlands under flood 109 conditions (WTL2) are likely driven by the lateral movement of organic matter across the 110 landscape, the leaching of organic carbon into a dissolved state, and subsequent oxidation by 111 heterotrophs^{30,31}. Finally, the lowest emission of the sum of all three GHGs (CO₂, CH₄, and N₂O) 112 113 occurs when the water table is near the ground surface (WTL0; ranging from -30 cm to -5 cm), 114 with near zero emissions. This nonlinear wetness pattern is in agreement with the recent report by Evans et al.²⁴ which only studied selected peatland sites and did not incorporate N₂O (Extended 115 116 Data Figure 2a-b).

117

The parabolic pattern in GHG flux varies across boreal, temperate, and tropical regimes (Figure 2, Extended Data Figure 3b), demonstrating that climate influences the dependency of wetland GHG emission on the wetness regime. The net GHG flux in each temperature regime tends to be approximately neutral when the water table is near the ground surface, although it requires higher 122 WTL (-5~40 cm) to approach GHG equilibrium for the tropical sites (see Figure 2c, Extended Data Table 1). Using the empirical GHG exchange rates in the WTL2 group for different temperature 123 regimes (Methods), we estimate the annual GHG emissions from global water bodies (lakes & 124 reservoirs) to be 1.0 Gt yr⁻¹ CO₂ and 127.5 Tg yr⁻¹ CH₄, which are similar to the previous 125 reports^{32,33} of 1.2 Gt yr⁻¹ CO₂ and 175.2 Tg yr⁻¹ CH₄ (Supplementary Figure S1). In addition, we 126 estimate the CH₄ emission from natural freshwater wetlands to be 144.4 Tg per year, 127 corresponding well with the 148.6 Tg CH₄ reported by ref. 12. Furthermore, the GHG emissions 128 per area for wetlands with a low water table ($WTL \le -70$ cm) are 19.7 and 11.2 tCO₂eg ha⁻¹ yr⁻¹ for 129 boreal and temperate regimes, respectively. These values are consistent with both Evans et al.²⁴ 130 (17.60 t CO₂eq ha⁻¹ yr⁻¹ in the case of -70cm water level) and Leifeld *et al.*¹³ who determined the 131 drainage-related GHG emission rates for boreal & temperate zones (16.1 tCO₂eq ha⁻¹ yr⁻¹). These 132 validated empirical values in the nonlinear relationship between WTL and GHG emissions then 133 represent a novel opportunity to assess the global GHG emissions resulting from wetland 134 degradation. 135

136

137

GHG emissions from wetland degradation

We evaluate past and future scenarios of wetland degradation by integrating the natural Wetland Extent Trends (WET) index^{4,5} (Supplementary Figure S2) with the Global Lakes and Wetlands Database³⁴ (GLWD). We assess the historical emissions from degraded wetlands at the global scale based on GHG intensities at low (deep) water table conditions, which reflect wetland drainage/desiccation (*WTL*-3 \leq -70 cm; Extended Data Table 1, Supplementary Figure S3). Historically, over the past 71 years (1950 to 2020), 46.22% of global wetlands have been degraded (4.85 Mkm²), producing 276.4±175.5 Gt CO₂eq (95% confidence interval of GHG emissions) to

145	the atmosphere (Figure 3a, Extended Data Table 2). Russia, Brazil, and Canada were the largest
146	emitters because of their vast wetland areas with a high density of soil organic carbon, contributing
147	to nearly one half of global wetland GHG emissions: 18.6%, 15.1%, and 14.6%, respectively
148	(Figures 3b, 4a, Extended Data Figure 5a).
149	
150	Following a history-derived, business-as-usual scenario for the future, we project that continued
151	wetland degradation (7.76 Mkm ² , 74.0%) would release an estimated total of 407.9±251.5 Gt
152	CO ₂ eq into the atmosphere from 2021 to the end of the 21 st century (Figure 4b). Of these, 155.6
153	Gt CO2eq (38.1%) were emitted from freshwater marsh and floodplain, and 96.7 Gt CO2eq
154	(23.7%) from peatlands, with the latter emitting an average of 1.21 Gt per year, which is consistent
155	with 1.32 Gt yr ⁻¹ or 1 Gt yr ⁻¹ reported by Günther <i>et al.</i> ¹⁴ and Ojanen <i>et al.</i> ²³ . Carbon dioxide would
156	contribute the highest emissions: 306.1±159.4 Gt (Extended Data Figure 6; Extended Data Table
157	2). Regionally, 71.1%, 4.6%, and 24.3% of the GHG emissions would be from boreal, temperate,
158	and tropical regions, respectively. The estimate for the tropics is lower than that reported by Leifeld
159	et al. ¹³ , because we consider the depletion of the carbon pool during 2021-2100 (Extended Data
160	Figure 7). Furthermore, we recognize the potential for strong, positive climate feedback in the
161	boreal region stemming from the loss of substantial carbon storage in the future ^{11,35} .

163 **Emission reduction potential under rewetting scenarios**

To explore the potential for reducing GHG release from degraded wetlands, we consider two peak clipping schemes based on the rewetting of all degraded wetlands (ALL) and rewetting wetlands that only contain high-organic carbon stocks (high-*OCS*) (*Methods*; Supplementary Figure S3).

167	We find that of a total of 4.85 Mkm ² of degraded wetlands until 2020, fewer than half (2.02 Mkm ²)
168	were still emitting GHGs, and the remaining 2.83 Mkm ² were completely degraded
169	(Supplementary Figure S4). In the case of the latter, the soil carbon pool limits the duration for
170	which GHGs are potentially emitted from ecosystems ^{36,37} . We then estimate that a widespread
171	rewetting of degraded wetlands, with restoration rates of the same magnitude as the historical
172	degradation rates, can potentially reduce GHG emissions by 248.7±154.6 Gt CO2eq (ALL
173	rewetting scenario) and 156.4±94.2 Gt CO2eq (high-OCS scenario) by 2100 (Figure 4c, Extended
174	Data Table 2). The latter contribution was mainly from freshwater marshes and floodplains
175	(48.6%), and peatlands (38.2%). The reduction of emissions from peatlands is an average 0.75 Gt
176	CO ₂ eq yr ⁻¹ , consistent with 0.5 Gt yr ⁻¹ reported by Evans <i>et al.</i> ²⁴ based on the "optimal re-wetting"
177	scenario in which 65% of peat is under cropland and grassland (0.77 Gt in 100% peat). The
178	corresponding CO ₂ reductions are 192.9 \pm 104.4 Gt (accounting for 77.6% of the sum of the three
179	GHGs at 248.7 Gt CO2eq) and 107.0±48.7 Gt (68.4%), respectively, for the two scenarios.
180	Although the area proportion of high-OCS to ALL wetlands is only 42.9% (-0.92+2.92 Mkm ²
181	versus 1.34+2.92 Mkm ² , Supplementary Figure S4), the GHG emission reduction potential is as
182	high as 62.9% (156.4 Gt CO ₂ eq versus 248.7 Gt CO ₂ eq), owing to the differences in the higher
183	carbon density.

These projections are presumed to consider the effects of various types of wetlands and a changing climate. The duration of potential degradation related to GHG emissions from wetlands is constrained by the initial carbon pool and degradation rate (Equation 4, Supplementary Figure S5), which vary according to wetland type and the climate regime. However, in our extension of this assessment to the future, we assume the effect of climate change will be negligible on emission 190 rates, although there would be an unknown additional climate effect. We base this assumption on the similarity in GHG emissions rates between temperate and boreal regions for drained conditions 191 (WTL-3; <-70cm) (Figures 2a-b and Extended Data Table 2). The similarity suggests emissions in 192 cold regions would not change greatly with the magnitude of anticipated warming. Although the 193 same comparison applied to the temperate versus tropical wetlands indicates a non-negligible 194 impact of warming, the overall impact should be limited because of the low proportion of total 195 emissions from temperate wetlands (4.6%; Extended Data Figure 7). In contrast, emissions of 196 GHGs in the tropics would likely be sufficient to deplete the carbon pool prior to 2100 (Extended 197 198 Data Figure 7a&d). Another issue of consideration is the effect that individual wetland categories would have on the effectiveness of the rewetting measures. However, there are consistent GHG 199 exchange rates across various wetland categories (Supplementary Figure S6 a-f) that are similar to 200 the sum exchange of GHGs across different climate regimes (e.g., WTL0, Figures 2a-c and 201 Extended Data Table 2), although for which CO₂ and CH₄ fluxes vary significantly 202 (Supplementary Figure S7 a-c). 203

204

A general limitation in our assessment stems from the natural WET index being produced at an 205 intercontinental scale, rather than at a local scale^{4,5}. This limitation prevents the development of a 206 more detailed assessment of the GHG budgets associated with wetland degradation and/or 207 restoration. In addition, we could not consider fire disturbances for wet versus dry conditions^{38,39} 208 or the response of substratum over one meter deep. Thus, our estimated GHG emissions from 209 degraded wetlands may be conservative, and the GHG-reduction potential of rewetting programs 210 is likely to be underestimated. Nevertheless, our estimated annual emissions from degraded 211 212 wetlands for CO₂ and N₂O, or from whole natural freshwater wetlands for CH₄, are significantly

213	correlated with their respective annual growth rates in atmospheric concentration ⁴⁰ during the past
214	three decades ($P < 0.05$; Extended Data Figure 8, more details in <i>Methods</i> section: <i>Wetland GHG</i>
215	budgets and inter-annual atmospheric GHG growth rates), supporting the utility of our method of
216	integrating the natural WET index with the empirical GHG emission rates. Furthermore, the
217	magnitudes of the estimated CO ₂ , CH ₄ , and N ₂ O emissions from the wetlands, equaling to
218	10.8 \pm 6.2%, 38.5 \pm 16.7%, and 30.5 \pm 19.4% respectively of the anthropogenic sources ^{12,41,42} , are in
219	line with the aforementioned correlations.

Despite uncertainties, we find that wetland rewetting is an effective nature-based solution to 221 mitigate climate change. The rewetting ALL scenario and the high-OCS scenario require 222 preserving or restoring 4.26 Mkm² and 2 Mkm² areas of degraded wetlands, respectively, 223 compared with the business-as-usual scenario derived from historical trends (Supplementary 224 Figure S4). The two rewetting scenarios can reduce GHG emissions by 583.8 tCO₂eq ha⁻¹ and 782 225 tCO₂eq ha⁻¹, respectively. The potential of GHG reduction from wetland restoration at this scale 226 is higher than that from the rehabilitation of other types of ecosystems, for example, forest 227 regrowth equivalent to 394.2 tCO₂ ha⁻¹ across 6.78 Mkm² of afforestation under the 'maximum' 228 scenario, or 504.3 tCO₂ ha⁻¹ across 3.49 Mkm² under the 'national commitments' scenario⁴³. At 229 present, Indonesia, Europe, and North America have already shown the benefits of raising water 230 tables by both artificial and natural means⁴⁴⁻⁴⁷. In cases where the water table is lowered by 231 groundwater extraction, water conservancy measures may be needed to regulate water use-and 232 the potential negative impacts of doing so should be balanced^{48,49}. 233

235 Conclusion

In conclusion, the non-linear thermal-wetness influence on wetland GHG fluxes, whereby a near-236 surface water table produces near-neutral GHG flux across broad temperature gradients, suggests 237 that rewetting wetlands is an effective nature-based solution to mitigate climate change. A volume 238 equivalent to ten percent of anthropogenic CO₂ emissions could be reduced through wetland 239 restoration. By quantifying the impact of natural wetland area changes on multiple GHG budgets 240 under several scenarios, we provide primary information for nature-based solutions predicated on 241 wetland restoration for countries aiming to achieve net-zero emission targets⁵⁰. Furthermore, we 242 emphasize the enormous loss of organic matter and GHG emissions from over half of the global 243 wetland ecosystems due to drying, as well as future emissions from these sources can be mitigated 244 or even halved by rewetting wetlands to a near-surface water table. 245

246

247 Acknowledgments

We thank many individuals for measuring and providing *in-situ* GHG net fluxes from wetlands. 248 Funding: This study was supported by the National Natural Science Foundation of China (grant 249 no. 42071022), the start-up fund provided by the Southern University of Science and Technology 250 (grant no. 29/Y01296122), and the High-level Special Funding of the Southern University of 251 Science and Technology (grant no. G02296302). J.W. was in part supported by the Innovation and 252 Technology Fund (funding support to State Key Laboratories in Hong Kong of Agrobiotechnology) 253 254 of the HKSAR, China. D. C. was supported by Swedish National Strategic Research Programs: Biodiversity and Ecosystem Services in a Changing Climate (BECC) and ModElling the Regional 255 and Global Earth system (MERGE). P.C. acknowledges support from the CLAND Convergence 256 257 Institute 16-CONV-0003.

259	Author contributions
260	J.Z. and Z.Z. designed the research; J.Z. performed the analysis; J.Z., Z.Z. and A.D.Z. wrote the
261	draft. All authors contributed to the interpretation of the results and the writing of the paper.
262	Correspondence and requests for materials should be addressed Z.Z. (zengzz@sustech.edu.cn).
263	
264	Competing interests
265	The authors declare that they have no competing interests.
266	

267 Figure Legends.

Figure 1. Water table level effects on global wetland net ecosystem exchange (NEE) and total 268 greenhouse gas (GHG) emissions. (a) Relationship between NEE and sum of three GHGs (CO₂, 269 CH₄, N₂O) net-flux in different WTLs, drawn from 174 site-year records that reported three 270 greenhouse gases. (b) NEE, CH₄, N₂O and sum of three net fluxes for different WTL conditions. 271 (c-f) Total and individual GHG fluxes for the 6 different WTLs considered. Points in each box are 272 sampled from the original dataset (3,672 site-year records totally) with 1,000 bootstraps. Different 273 letters in the boxes indicate significant differences (P < 0.01) between various WTLs based on 274 nonparametric Wilcoxon signed-rank tests. Bold vertical lines show the median, boxes indicate 275 the middle two quartiles, horizontal lines indicate the nonoutlier range. Note that X-axes have been 276 truncated for enhanced readability. 277

278

Figure 2. Non-linear hydro-thermal influence on GHG exchange. Dependency of GHG emissions in boreal (a), temperate (b), and tropical (c) regions to water table level and climate. The "mean" groups (d) are calculated from equilateral weighted averages in each climate regime. Dots and shadows represent mean \pm 1.96SEs. (e-h) Contribution ratios of NEE, CH₄, and N₂O to the sum of three GHGs net-flux in the three climatic regions and the mean.

284

Figure 3. Greenhouse gas (GHG) emissions from degraded wetlands under different scenarios. (a) Time-series of GHG emissions from degraded wetlands under three scenarios since 1950. The emissions are constrained by natural WET index and soil organic carbon pool. 'History trend' is history-derived scenario. 'Rewet (ALL)' and 'Rewet (High-OCS)' are based on the rewetting restoration of all and only high organic carbon stock wetlands, respectively. (b) GHG net flux from degraded wetlands in main countries and continents over different periods. 'Others'
refers to the sum of GHGs from countries that were not in the top ten of GHG emitters. 'EU', 'NA',
'SA', 'AS&OA', 'AF' are Europe, North America, South America, Asia and Oceania, and Africa,
respectively.

295	Figure 4. Spatial pattern of the greenhouse gas emissions owing to wetland degradation (a,
296	b) and reduction potential via rewetting wetlands (c). The GHG emissions under history-driven
297	scenario in 1950-2020 (a) and under history-driven, business-as-usual scenario in 2021-2100 (b).
298	(c) The reduction potential under rewetting all degraded wetland area scenario in 2021-2100.

299	99 References		
300	1	Lindgren, A., Hugelius, G., Kuhry, P. Extensive loss of past permafrost carbon but a net	
301		accumulation into present-day soils. Nature 560, 219-222 (2018).	
302	2	Nichols, J. E., & Peteet D. M. 2019. Rapid expansion of northern peatlands and doubled	
303		estimate of carbon storage. Nat. Geosci. 12, 917-921.	
304	3	Bridgham, S. D. et al. The carbon balance of North American wetlands. Wetlands 26,	
305		889–916 (2006).	
306	4	Dixon, M.J.R. et al. Tracking global change in ecosystem area: The wetland extent trends	
307		index. Biol. Conserv. 193, 27-35 (2016).	
308	5	Darrah S. E. et al. Improvements to the Wetland Extent Trends (WET) index as a tool for	
309		monitoring natural and human-made wetlands. Ecol. Indic. 99, 294–298 (2019).	
310	6	Asselen, S. et al. Drivers of wetland conversion: a global meta-analysis. PloS One 8,	
311		e81292 (2013).	
312	7	Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in	
313		global wetland area. Mar. Freshw. Res. 65, 934-941 (2014).	
314	8	Galatowitsch, S. M. Natural and anthropogenic drivers of wetland change. In The	
315		Wetland Book II: Distribution, Description, and Conservation (eds Finlayson, C.M. et	
316		al.) pp. 359-367 (Springer, Netherlands, 2018).	
317	9	Limpert, K. E. et al. Reducing emissions from degraded floodplain wetlands. Front.	
318		<i>Environ. Sci.</i> 8 , 1–18 (2020).	
319	10	Laine, J. et al. Effect of water-level drawdown on global climatic warming: Northern	
320		peatlands. AMBIO 25, 179–184 (1996).	

321	11	Ise, T. et al. High sensitivity of peat decomposition to climate change through water-table
322		feedback. Nat. Geosci. 1, 763–766 (2008).
323	12	Saunois, M. et al. The global methane budget 2000–2017. Earth. Syst. Sci. Data 12,
324		1561–1623 (2020).
325	13	Leifeld, J. et al. Intact and managed peatland soils as a source and sink of GHGs from
326		1850 to 2100. Nat. Clim. Chang. 9, 945–947 (2019).
327	14	Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite
328		methane emissions. Nat. Commun. 11, 1644 (2020).
329	15	Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeoscience
330		9, 1053–1071 (2012).
331	16	Prananto, J. A. et al. Drainage increases CO2 and N2O emissions from tropical peat soils.
332		<i>Glob. Chang. Biol.</i> 26 , 4583–4600 (2020).
333	17	Jauhiainen, J. et al. Carbon dioxide and methane fluxes in drained tropical peat before
334		and after hydrological restoration. Ecology 89, 3503–3514 (2008).
335	18	Bridgham, S. D. et al. Methane emissions from wetlands: biogeochemical, microbial, and
336		modeling perspectives from local to global scales. Glob. Chang. Biol. 19, 1325-1346
337		(2013).
338	19	Schuldt, R. et al. Modelling Holocene carbon accumulation and methane emissions of
339		boreal wetlands – an Earth system model approach. <i>Biogeosciences</i> 10, 1659–1674
340		(2012).
341	20	McNicol, G. et al. Effects of seasonality, transport pathway, and spatial structure on
342		greenhouse gas fluxes in a restored wetland. Glob. Chang. Biol. 23, 2768-2782 (2017).

343	21	Yu, K. et al. Redox window with minimum global warming potential contribution from
344		rice soils. Soil Sci. Soc. Am. J. 68, 2086–2091 (2004).
345	22	Huang, Y., Ciais, P., Luo, Y. et al. Tradeoff of CO2 and CH4 emissions from global
346		peatlands under water-table drawdown. Nat. Clim. Chang. 11, 618-622 (2021).
347	23	Ojanen, P., & Minkkinen K. Rewetting offers rapid climate benefits for tropical and
348		agricultural peatlands but not for forestry - drained peatlands. Glob. Biogeochem. Cycles
349		34 , e2019GB006503 (2020).
350	24	Evans, C.D. et al. Overriding water table control on managed peatland greenhouse gas
351		emissions. Nature 593, 548–552 (2021).
352	25	Strack, M., Keith, A. M., & Xu, B. Growing season carbon dioxide and methane
353		exchange at a restored peatland on the Western Boreal Plain. Ecol. Eng. 64, 231-239
354		(2014).
355	26	Karki, S., Elsgaard, L., Kandel, T. P. et al. Carbon balance of rewetted and drained peat
356		soils used for biomass production: a mesocosm study. Gcb. Bioenergy 8, 969–980 (2016).
357	27	Whiting, G. J., & Chanton, J. P. Greenhouse carbon balance of wetlands: Methane
358		emission versus carbon sequestration. Tellus B Chem. Phys. Meteorol. 53, 521-528
359		(2001).
360	28	Moore, T. R. et al. A multi-year record of methane flux at the Mer Bleue Bog, Southern
361		Canada. Ecosystems 14, 646–657 (2011).
362	29	Zhu, X. et al. Ammonia oxidation pathways and nitrifier denitrification are significant
363		sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. U.S.A. 110,
364		6328–6333 (2013).

365	30	Cole, J. J. <i>et al.</i> Plumbing the global carbon cycle: Integrating inland waters into the
366		terrestrial carbon budget. Ecosystems 10, 171–184 (2007).
367	31	Holgerson, M. A., & Raymond, P. A. Large contribution to inland water CO ₂ and CH ₄
368		emissions from very small ponds. Nat. Geosci. 9, 222-226 (2016).
369	32	Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503,
370		355–359 (2013).
371	33	Rosentreter, J. A. et al. Half of global methane emissions come from highly variable
372		aquatic ecosystem sources. Nat. Geosci. 14, 225-230 (2021).
373	34	Lehner, B., & Döll, P. Development and validation of a global database of lakes,
374		reservoirs and wetlands. J. Hydrol. 296, 1-22 (2004).
375	35	Schuur, E. A. et al. The effect of permafrost thaw on old carbon release and net carbon
376		exchange from tundra. Nature 459, 556–559 (2009).
377	36	Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in
378		terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).
379	37	Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine
380		learning. PLoS One 12, e0169748 (2017).
381	38	Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest
382		soils. Nature 572, 520–523 (2019).
383	39	Baird, A. J. et al. Validity of Managing Peatlands with Fire. Nat. Geosci. 12, 884-85
384		(2019).
385	40	Our World In Data: Atmospheric concentrations (eds Ritchie, H., & Roser, M.).
386		https://ourworldindata.org/atmospheric-concentrations

- P. Friedlingstein *et al.* Global Carbon Budget 2019. *Earth Syst. Sci. Data* 11, 1783–1838 (2019).
 Tian, H. *et al.* A comprehensive quantification of global nitrous oxide sources and sinks. *Nature* 586, 248–256 (2020).
- 43 Cook-Patton, S. C. *et al.* Mapping carbon accumulation potential from global natural
 forest regrowth. *Nature* 585, 545–550 (2020).
- Jaenicke, J. *et al.* Planning hydrological restoration of peatlands in Indonesia to mitigate
 carbon dioxide emissions. *Mitig. Adapt. Strateg. Glob. Chang.* 15, 223–239 (2010).
- Wohl, E. Landscape-scale carbon storage associated with beaver dams. *Geophys. Res. Lett.* 40, 3631–3636 (2013).
- Law, A. *et al.* Using ecosystem engineers as tools in habitat restoration and rewilding:
 Beaver and wetlands. *Sci. Total. Environ.* 605–606, 1021–1030 (2017).
- Brown, L. E. *et al.* Macroinvertebrate community assembly in pools created during
 peatland restoration. *Sci. Total Environ.* 569, 361–72 (2016).
- 48 Finlayson, C. M., & Rea, N. Reasons for the loss and degradation of Australian wetlands.
 402 *Wetl. Ecol. Manag.* 7, 1–11 (1999).
- 403 49 Liu, J., *et al.* Water conservancy projects in China: Achievements, challenges and way
 404 forward. *Glob. Environ. Change* 23, 633–643 (2013).
- 405 50 Rogelj, J. et al. in Global Warming of 1.5°C: An IPCC Special Report on the Impacts of
- 406 Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse
- 407 *Gas Emission Pathways, in the Context of Strengthening the Global Response to the*
- 408 Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty

- 409 (eds Flato, G., Fuglestvedt, J., Mrabet, R. & Schaefer, R.) Ch. 2, 93–174 (IPCC/WMO,
- 410 2018).
- 411
- 412

413 Methods

414 In-situ database of GHGs

We searched for literature through the Web of Science using the following strings: (greenhouse 415 gases flux (greenhouse gas* OR GHG* OR carbon dioxide OR CO2 OR net ecosystem 416 productivity* OR NEP OR net ecosystem exchange* OR NEE OR carbon OR methane OR CH4 417 OR nitrous oxide OR N₂O OR flux* OR emission* OR global warming potential OR GWP) OR 418 (degradation* OR decline*) and wetland (wetland* OR water* OR peatland* OR bog* OR fen* 419 OR swamp* OR mire* OR soil* OR river* OR paddy OR pool* OR floodplain* OR reservoir* 420 OR coastal* OR saltmarsh*)). The search returned 33,835 papers after excluding those in 421 422 irrelevant fields. After screening the manuscripts to ensure that the records contained measured data from field monitoring projects, 2,563 papers were manually selected, from which we read to 423 extract the following information: 1) Gas sample collection methods (this content may be missing, 424 e.g., eddy covariance method (EC) measured CO₂ and/or CH₄ fluxes without collecting gas 425 samples) and measurement techniques; 2) Time intervals and the duration of sample collection. 426 We specified that the monitoring span during the growing season should be at least three months 427 in temperate regions; 3) Detailed site information, in particular geographic coordinates or maps 428 429 that could be georeferenced, as well as topography, ecosystem type, plant species, and soil carbon features. After screening, we obtained 504 papers with valid data (Supplementary Data S1). Parts 430 of those data were extracted from figures by GetData Graph (version 2.26). 431

432

433 *Record details*

We constructed a GHG net-flux database consisting of 3,704 site-years (1,875 sites) for locations
situated between 81°48' N and 78°01' S (Extended Data Figure 1a-c) across all the continents, but

436	mainly in Asia, Europe, and North America. The sample collection method and measurement
437	technique used in these field monitoring projects usually depended on the type of wetland and
438	associated environmental conditions. Common collection methods included the static chamber
439	method ⁵¹ , dynamic chamber method ⁵² and floating chamber method ⁵³ . Common measurement
440	techniques involve the use of infrared gas analyzer (IRGA), and the combination of gas
441	chromatography (GC) with physical model methods [e.g., EC ⁵⁴ , CO ₂ /CH ₄ -diffusivity formula ⁵³ ,
442	oxygen diffusivity formula ⁵⁵ , or chlorophyll-dissolved oxygen model ⁵⁶]. We assume that these
443	GHG exchange rates from peer-reviewed papers based on different sampling methods are of
444	equivalent accuracy, although there may be differences in precision.

Nomenclature corresponding to the exchange of CO₂ between the ecosystem and the atmosphere 446 used in various methods is diverse. The EC method generally uses a net ecosystem exchange (NEE) 447 to characterize the flux, while the chamber method adopts the net ecosystem production (NEP) 448 approach. While a few sites measure both vertical exchange and transverse flow of GHGs^{2,30}, most 449 of the sites only report the measurements of vertical fluxes. Consequently, the data sets we built 450 describe the fluxes in the vertical direction. In cases where data were reported for the growing 451 seasons (Extended Data Figure 1b), we filled in the missing data using linear regression, based on 452 complete data containing both growing and annual records (Supplementary Table S1). There was 453 no significant interaction effect of climate regimes on the slope, and only a subtle effect on the 454 intercept of the NEE regression equation for temperate zones. Therefore, we chose linear 455 regression equations that did not take into account the interaction of the climate regimes. 456

$$NEE = Re - GPP = Rh - NPP \tag{1}$$

459	where Re is ecosystem respiration, GPP is gross primary productivity, Rh is heterotrophic		
460	respiration, and NPP is net primary productivity. Positive values of NEE indicate carbon loss via		
461	CO ₂ emission to the atmosphere, whereas negative values indicate carbon gain because CO ₂ is		
462	retained/stored in the ecosystem.		
463			
464	Building on equation (1), we calculated the total flux of three GHGs, carbon dioxide, methane		
465	and nitrous oxide as		
	$GHGs = NEE + 34CH_4 + 298N_2O $ ⁽²⁾		
466	where CO ₂ is substituted by NEE. Units for all terms are kg CO ₂ eq ha ⁻¹ yr ⁻¹ ; the weights 34 and		
467	298 are global warming potential (GWP) for CH4 and N2O to CO2 equivalent by weights on a 100-		
468	year perspective with feedbacks considered ⁵⁷ , respectively.		
469			
470	Uncertainty is represented by incorporating 95% confidence intervals (CI):		
	$GHGs_CI = NEE_CI + 34CH_4_CI + 298N_2O_CI $ (3)		
471	where the CI of three GHGs on the right side of these originate from within groups, whereby		
472	uncertainties in empirical GHGs emission rates are obtained for 18 groups, including 6 WTL		
473	categories × 3 climatic zones.		
474			
475	Wetland categories		
476	The majority of the records collected in this study were measured in natural wetlands, including		
477	bogs, fens, mires, swamps, marshes, floodplains, etc.; we also considered water bodies as		
478	extensions. We distinguished peatlands from non-peatlands based on the soil organic layer		

479	thickness (i.e. peatlands ≥ 40 cm) ⁵⁸ , in order to explore the influence of soil organic matter on
480	multi-GHG fluxes. We divided all sites into six water categories based on either the water level
481	(flooded) or the water table height (non-flooded) relative to the surface (water-table/level, WTL),
482	for three climatic regions (tropical, temperate, boreal, or high-altitude areas; using 4 °C and 17 °C
483	of multiyear-average annual temperature as thresholds) ⁵⁹ . We also treat water level as a continuous
484	variable in Extended Data Figure 2, using 2,318 site-year records that reported exact water levels.
485	Unfortunately, reports with high quality water level records from the tropics accounted for only
486	7% of the total. As such, the trend for the tropics using the continuous variable approach has more
487	uncertainty for other climates. Therefore, we segmented all the water table/level data. The WTL
488	classes were separated by mean water table/level during the growing season due to the
489	discontinuity of the reported hydrological records during wintertime at most sites. Six classes are
490	divided from <i>WTL</i> -3 to <i>WTL</i> 2: \leq -70; -70 to -50; -50 to -30; -30 to -5; -5 to 40; > 40 cm. Positive
491	numbers indicate that the water level is above the surface. This classification is based on the
492	empirical water level critical value of the soil moisture conditions, ranging from drought to moist
493	to near-saturated to oversaturated ⁶⁰ . We used an empirical value of 40 cm water level as a threshold
494	to classify high water levels as they usually inhibit the establishment of emergent plants. We
495	defined the start/end of a growing season as the time when the daily mean temperature for five
496	continuous days was above/below 5 °C for the first time ⁶¹ .

We extracted the global natural wetland map from the Global Lakes and Wetlands Database level 3 (GLWD-3, classes 4, 5, 8-12)³⁴, which provides reliable areas of global wetlands, with tropical peatlands distinguished⁶²⁻⁶⁴. Its classification of wetlands also agrees with most records in the literature we selected. Gridded long-term mean annual air temperature was calculated using the

502	monthly data from the latest ECMWF reanalysis (ERA5 (ref. 66)) for 1978-2018. Gridded wetland
503	soil organic carbon stock (OCS) was obtained from SoilGrids ³⁷ , which indicates that natural
504	freshwater wetlands cover 7.66 million km^2 and store 329.5 Gt C in the upper one meter of the soil
505	(Extended Data Table 2). The proportion of wetlands in boreal, temperate, and tropical regions are
506	45.8%, 10.8%, and 43.4%, respectively.
507	
508	Dynamic area of wetlands under three scenarios
509	Means and 95% CIs of GHG net-fluxes in <i>WTL</i> -3 (\leq -70 cm) for different climatic zones were used
510	as the emission potential from degraded wetlands (Extended Data Figure 2b, Extended Data Table
511	1). We employed the mean OCS for each wetland category in each country as a constraint, and
512	then calculated the duration potential (DP, Supplementary Figure S5) of soil carbon efflux from
513	degraded wetlands for 21 wetland types (3 climate zones (i.e., tropical, temperate, boreal or high-
514	altitude zones) \times 7 wetland category groups (including bog, fen, mire, swamp forest, flooded
515	forest, freshwater marsh, floodplain) at the national scale as follows:
	$DP = (OCS - OCSt) / NEE, DP \ge 1 $ (4)
516	We used an OCS_t (threshold) of 50 t ha ⁻¹ (ref. 36), after which an ecosystem has no potential for
517	net CO ₂ emission from the soil layer. To avoid double-counting, we did not consider the other
518	GHG exchanges of completely degraded wetlands, which have been definitely converted into
519	farmland or pasture, etc. These are included in the estimate of land use and agriculture emissions
520	by the Carbon Budget Project ³⁵ and FAO ⁶⁶ .
521	
522	We rebuilt the historical trend and predicted the future wetland degradation rate at the continental
523	scale using the natural Wetland Extent Trends (WET) index ^{4,5} for 1970-2015 (Supplementary

524	Figure S2). The WET index is a multi-source composite index to represent the proportion of
525	wetland degradation or construction during 1970-2015 (Europe in 1970-2013). We extended the
526	time series to 1950-1969 and 2016-2100 from regressions using the 1970-1990 and 2000-2015
527	data (Europe predicted by 2000-2013 due to the data restriction); these calculations are for the
528	history-derived scenario (history-derived). We used two wetland restoration benchmarks: one
529	considered all wetlands (ALL) and the other only involved the high-OCS wetlands (high-OCS)
530	(Supplementary Figure S3). High-OCS wetlands were determined as those with a duration
531	potential > 80 years. The total area of high- OCS wetlands worldwide is 3.29 M km ² , of which
532	34.5% are degraded. The ALL and high-OCS scenarios were both grounded on the assumption
533	that the restoration rate of those degraded wetlands would exceed that of the historical degradation
534	rate in all continents by 2030. Thus, prior to 2030, restoration proceeded at a rate equivalent to the
535	absolute value of the degradation rate during 2000-2015 (2000-2013 for Europe). The increase
536	stopped when the natural WET index recovered to the level in 1950 (Supplementary Figure S2).

A *completely degraded* wetland was defined as having no potential for soil carbon loss, and *the wetland during degradation* was defined as those with continuous loss of carbon and nitrogen (*WTL-3*) to the atmosphere. The remainder were classified as *initial & rewetted* wetlands. The component of dynamic wetland area under three scenarios in Supplementary Figure S4 shows the trends of the area in three conditions during 1950-2100 (more details in Supplementary Data S1).

- 543
- 544 Supporting calculations

545 *Empirical GHG exchange rates*

546	Based on the empirical values (WTL0, WTL2) in the relationship between WTL and GHG
547	emissions across different temperature regimes (Extended Data Table 1), we calculated that the
548	GHG emissions from global water bodies (lakes & reservoirs) are $1.0^{+0.93}_{-0.93}$ Gt CO ₂ and $127.5^{+49.4}_{-49.4}$
549	Tg CH ₄ , and CH ₄ emissions from natural freshwater wetlands is 144.4 ^{+67.9} _{-67.9} Tg. These results agree
550	with previous reports, whose corresponding values are $1.2_{-0.95}^{+1.91}$ Gt CO ₂ (ref. 32), and 175.2_{-81}^{+81} Tg
551	CH4 (ref. 33), 148.6 ^{+15.2} _{-15.2} Tg CH4 (ref. 12) respectively (Supplementary Figure S1).
552	
553	The GHG emissions from boreal and temperate regimes in <i>WTL</i> -3 (\leq -70 cm) are 19.7 and 11.2
554	tCO ₂ eq ha ⁻¹ yr ⁻¹ respectively, which are similar to the drained- <i>induced</i> GHG emission factor 16.1
555	tCO ₂ eq ha ⁻¹ yr ⁻¹ for boreal & temperate in Leifeld <i>et al.</i> ¹³ . Furthermore, the CO ₂ emission rate in
556	the boreal regime is $13.43^{+5.49}_{-5.59}$ tCO ₂ ha ⁻¹ yr ⁻¹ , which is similar to the cultivated northern peatlands
557	emission factor $13.2_{-1.1}^{+0.73}$ tCO ₂ ha ⁻¹ yr ⁻¹ in Qiu <i>et al</i> . ⁶⁷ from a process-based land surface model.
558	
559	Estimation of GHG emissions from degraded wetlands under three scenarios
560	We estimated the changes of GHG emissions driven by the degraded wetland area and OCS in
561	various wetland types under three scenarios (history-derived, ALL, and high-OCS) and across
562	different scales. At the national scale, countries with large OCS were the dominant emitters of
563	GHGs, mainly CO ₂ . The top 10 GHG emitting countries contributed to 79.6% of the total
564	emissions in the period 1950-2020 (Figure 3, Extended Data Figures 5-6). At the continental scale,
565	the top two continents, South America (SA) and North America (NA); accounted for 37.7% and
566	22.7%, respectively. With respect to climate regime, countries in tropical and boreal regions
567	occupied 55.4% and 39.7% due to their potent outflow and high OCS.

569	In the scenario for which the historical trend continues during the period 2021-2100 (history-
570	derived scenario), the wetland degradation area will increase to 74.0% by the end of the 21st
571	century, and the induced GHGs will be enlarged by 1.48 times to 407.9 Gt (Figures 3-4, Extended
572	Data Table 2). In addition, the present geographical pattern of outflow will change: in tropical
573	regions, along with the loss of most soil OCS, emissions will reduce from 155.2 Gt to 99.1 Gt,
574	while boreal regions will become the dominant emission source, increasing from 107.9 Gt to 290.0
575	Gt (39.0% to 71.1%).
576	
577	Under the wetland restoration scenarios for which rewetting occurs for all degraded wetlands
578	(ALL) or only high-OCS degraded wetlands (high-OCS), the total GHG emissions could reduce
579	by 248.7 or 156.4 Gt, respectively. The emission reduction mainly results from the reduced GHG
580	emissions over boreal regions. In the high-OCS scenario, CO2 accounted for 79.2% of the global
581	total GHG emissions (Extended Data Table 2), higher than that in the ALL scenario (71.2%) and
582	the history-derived scenario (75.0%). This finding results from a large percentage of the degraded
583	low-OCS wetlands being distributed in the tropics but is not restored in the high-OCS scenario,
584	where the tropics contribute to the largest portion of global CO_2 emissions with the highest CO_2
585	outflow potential in the per area (Figure 2, Extended Data Figure 5).
586	
587	All of the above conclusions are based on a GWP for CH4 of 34-fold that of CO2 by weights over
588	a 100-year period. We have also supplemented our assessment of emissions and reductions with a
589	28-fold GWP or a 45-fold sustained GWP (sGWP) ^{68,69} . The results of GHG emission estimation
590	show differences of +0.23% and -0.43%, respectively, compared to the history-derived scenario

591	with a 34-fold base in 1950-2100. The estimation of GHG emission reduction change in 0.37%
592	and -0.67% under the rewetting all scenario, 0.22% and -0.41% under the rewetting high-OCS
593	scenario in 2020-2100, respectively.

595 Wetland GHG budgets and inter-annual atmospheric GHG growth rates

There are significant correlations between annual growth rates in atmospheric concentrations and 596 597 changes in the wetland-induced flux for CO₂, CH₄, and N₂O in 1979-2018, respectively (P < 0.05; Extended Data Figure 8a-i, N2O is in 1979-2016). The sum of N2O emissions from degraded 598 wetland and FAO agriculture-total⁶⁶ also is also significantly correlated with atmospheric 599 concentration growth rates (P < 0.05; note that N₂O data exclude two early extremes values in 600 1979 and 1982). Emissions of CO₂ from degraded wetlands are highly consistent with those from 601 land-use changes in the Carbon Budget Project³⁵, with the former being $\sim 81.4\%$ (ranging from 602 64.5% to 97.5%) of the latter across 30 years. The net CH4 emissions from both degraded and 603 initial & rewetted wetlands exhibited a downward trend during 1979-2018. This change may have 604 605 contributed to the decline of atmospheric methane growth rates before 2005, which is reversed by the increase of emissions from other major sources (e.g. agriculture⁶⁸) since then. The evident 606 correlations between wetland budgets and atmospheric growth of three key GHGs indicate the 607 608 non-negligible impact of wetland degradation. Indeed, CO₂, CH₄, and N₂O emissions from wetlands were equal to $10.8 \pm 6.2\%$, $38.5 \pm 16.7\%$, and $30.5 \pm 19.4\%$ of those from anthropogenic 609 sources^{12,41,42}, which are similar to their contribution of 19%, 21% and 34% of the variation in 610 atmospheric concentrations during 1979-2018 (Extended Data Figure 8). 611

613 Uncertainties

614 *Wetland area*

Although many global wetland area products using diverse classification rules have been 615 released^{34,70-75}, uncertainty remains in wetland characterizations and distribution worldwide. In 616 particular, human-made wetlands have been increasing greatly in recent years, and natural 617 wetlands continue to degrade^{4,5,76}. The natural wetland classes (i.e., bog, fen, mire, swamp/flooded 618 forest, freshwater marsh, floodplain) of GLWD-3 were built from the following three datasets in 619 the 1990s: ArcWorld⁷⁷, DCW⁷⁸, and WCMC⁷⁹. We conservatively considered the area of wetlands 620 in GLWD-3 as the background value in 1990. The GLWD-3 did not include wetlands smaller than 621 0.1 km²; however, this threshold ensured that the hydrologic features and biogeochemical 622 processes of degraded wetlands can be restored to their initial states in a short term⁸⁰. 623

624

625 Degradation trend of natural wetlands

Many countries lack baseline wetland inventories that allow us to accurately track the lengthy and 626 complex degradation of natural wetlands⁸¹. The WET index represents area change based on over 627 2,000 wetland area records in long-term time series from six regions, and distinguishes between 628 human-made and natural wetland changes from 1970 to 2015. Given the differences between 629 natural and artificial wetlands in the basal features (e.g., OCS, hydrologic features) and disturbance 630 (e.g., artificial landscape, artificial nitrogen input), we only considered natural wetlands, via down-631 632 scaling the natural WET index from six continents to countries and/or regions. Therefore, additional surveys and remote sensing data would provide for a more accurate assessment at a finer 633 scale in the future. 634

636	According to the WET index, the degraded wetland areas were 4.85 Mkm ² for 1950-2020 (46.22%
637	of the global natural wetlands). Under a history-derived, business-as-usual scenario for the future,
638	we projected that continued wetland degradation will reach 7.76 Mkm ² (74.0%) by the end of the
639	2021-2100 period. Note that these overall estimates include not only those wetlands degraded by
640	land-use change (e.g., reclamation, draining), but also by other factors affecting the hydrological
641	characteristics of wetlands (desiccation) ⁸² . For example, the peat loss to extraction or farming in
642	Europe accounts for only 11% of European peatlands ⁶⁷ , but the water levels in another 50% of
643	European peatlands are also declining, causing degradation ⁸³ .
644	
645	Wetland categories
646	Empirical parameter generalization is based on the premise that there is no difference in emission
647	potential across various wetland categories. Indeed, we found that, in the WTL0 group where GHG
648	emissions are close to neutral (Figure 2, Extended Data Table 1), there is almost no significant
649	difference in GHG emissions among the main wetland categories both for tropical and temperate
650	regimes (Supplementary Figure S6). However, because of the lack of various types of wetlands in
651	boreal regions (dominated by peatlands), we did not test the differences in GHG emissions across
652	diverse categories for boreal climates. In the WTL-3 group, due to the lack of various wetland
653	categories for comparison, we used the OCS to calculate the duration potential, which is further
654	used to constrain the empirical parameter generalization for the estimate of the potential GHG
655	emissions from degraded wetlands (see Equation 4).

657 Data availability

658	GLDW dataset is available at http://www.wwfus.org/science/data.cfm. Soilgrids dataset is
659	available at https://soilgrids.org. ECMWF reanalysis climate data is available at
660	https://cds.climate.copernicus.eu/#!/home. FAOSTAT emissions database is available at
661	http://www.fao.org/faostat/en/#data/GT. Atmospheric concentrations data is available at
662	https://ourworldindata.org/atmospheric-concentrations. All GHGs data is available in the main
663	text or the supplementary materials. The database of global, in-situ, GHG exchange information
664	for wetlands, drawn from 3,704 site-year records is summarized in Supplementary Data 1.
665	
666	Code availability
667	The scripts used to generate all the results are MATLAB (R2018a), R-4.1.0, Python 2.7 based on
668	arcpy. Analysis scripts are available at: https://github.com/XiaoBai0417/Multi-greenhouse-gas-
669	assessments.
670	
671	

672	Refere	ences
673	51	Svensson, B. H., & Rosswall, T. In situ methane production from acid peat in plant
674		communities with different moisture regimes in a subarctic mire. Oikos 43, 341–350
675		(1984).
676	52	Waddington, J. M., & Roulet, N. T. Atmosphere-wetland carbon exchanges: Scale
677		dependency of CO ₂ and CH ₄ exchange on the developmental topography of a peatland.
678		Glob. Biogeochem. Cycles 10, 233–245 (1996).
679	53	Kling, G. W. et al. The flux of CO ₂ and CH ₄ from lakes and rivers in arctic Alaska.
680		<i>Hydrobiologia</i> 240 , 23–36 (1992).
681	54	Humphreys, E. R. et al. Two bogs in the Canadian Hudson bay lowlands and a temperate
682		bog reveal similar annual net ecosystem exchange of CO ₂ . Arct. Antarct. Al. Res. 46,
683		103–113 (2014).
684	55	Caffrey, J. M. Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries
685		27, 90–101 (2004).
686	56	Roberts, B. J. et al. Multiple scales of temporal variability in ecosystem metabolism
687		rates: Results from 2 years of continuous monitoring in a forested headwater stream.
688		Ecosystems 10, 588–606 (2007).
689	57	Myhre, G. et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013:
690		The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
691		Report of the Intergovernmental Panel on Climate Change (eds Stocker, T.F. et al.)
692		pp.710–714 (Cambridge Univ. Press, 2013).

693	58	Glenn, A. J. <i>et al.</i> Comparison of net ecosystem CO ₂ exchange in two peatlands in
694		western Canada with contrasting dominant vegetation, Sphagnum and Carex. Agric. For.
695		Meteorol. 140, 115–135 (2006).
696	59	Bond-Lamberty, B., & Thomson, A. Temperature-associated increases in the global soil
697		respiration record. Nature 464, 579-582 (2010).
698	60	Zhao, J, Malone, SL, Oberbauer, SF. et al. Intensified inundation shifts a freshwater
699		wetland from a CO ₂ sink to a source. <i>Glob Change Biol.</i> 25 : 3319–3333 (2019).
700	61	Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water
701		table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ.
702		Res. Lett. 9, 55006 (2014).
703	62	Peng, Z. & Peng, G. Suitability mapping of global wetland areas and validation with
704		remotely sensed data. Sci. China Earth Sci. 57, 2883–2892 (2014).
705	63	Zhang, B. et al. Methane emissions from global wetlands: An assessment of the
706		uncertainty associated with various wetland extent data sets. Atmos. Environ. 165, 310-
707		321 (2017).
708	64	Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands
709		reveals South America as the largest contributor. Glob. Chang. Biol. 23, 3581-3599
710		(2017).
711	65	European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5 monthly
712		averaged data on pressure levels from 1979 to present (2020). doi:
713		10.24381/cds.6860a573
714	66	FAO, 2020. FAOSTAT Emissions Database, Agriculture, Agriculture Total.
715		http://www.fao.org/faostat/en/#data/GT

- 716 67 Qiu, C. *et al.* Large historical carbon emissions from cultivated northern peatlands. *Sci.*717 *Adv.* 7, eabf1332 (2021).
- Frolking, S., Roulet, N. and Fuglestvedt. J. How northern peatlands influence the earth's
 radiative budget: Sustained methane emission versus sustained carbon sequestration. J. *Geophys. Res. Biogeo.* 111: G01008 (2006).
- Neubauer, S. C., and J. P. Megonigal. Moving beyond global warming potentials to
 quantify the climatic role of ecosystems. *Ecosystems* 18:1000-1013 (2015).
- 723 70 Matthews, E., & Fung, I. Methane emission from natural wetlands: global distribution,
 724 area, and environmental characteristics of sources. *Glob. Biogeochem. Cycles* 1, 61–86
 725 (1987).
- 726 71 Kaplan, J.O. A composite map of global wetland distribution at 0.5 degree resolution
 727 (2007); http://arve.epfl.ch/pub/wetlands/index.html.
- 728 72 Papa, F. et al. Interannual variability of surface water extent at the global scale, 1993–
 729 2004. J. Geophys. Res. Atmos. 115, D12111 (2010).
- Junk, W.J. *et al.* Current state of knowledge regarding the world's wetlands and their
 future under global climate change: a synthesis. *Aquat. Sci.* **75**, 151–167 (2013).
- 732 74 Schroeder, R. *et al.* Development and evaluation of a multi-year fractional surface water
 733 data set derived from active/passive microwave remote sensing data. *Remote Sens.* 7,
 734 16688–16732 (2015).
- 735 75 Vanessa, R. *et al.* A Global Assessment of inland wetland conservation status. *Bioscience*736 6, 523–533 (2017).
- 737 76 Davidson, N. *et al.* Global extent and distribution of wetlands: trends and issues. *Mar.*738 *Freshw. Res.* 69, 620-627 (2018).

739	77	Environmental Systems Research Institute (ESRI): ArcWorld 1:3 Mio. Continental
740		Coverage. Redlands, CA. Data obtained on CD (1992).
741		http://www.oceansatlas.org/subtopic/en/c/593/
742	78	Environmental Systems Research Institute (ESRI): Digital Chart of the World 1:1 Mio.
743		Redlands, CA. Data obtained on 4 CDs (1993). http://www.nlh.no/ikf/gis/dcw/
744	79	WCMC (World Conservation Monitoring Centre): Wetlands in Danger, P. Dugan, Ed.
745		(1993).
746		https://www.arcgis.com/home/item.html?id=105a402642e146eaa665315279a322d1
747	80	Moreno-Mateos, D. et al. Structural and functional loss in restored wetland ecosystems.
748		<i>PLoS Biol.</i> 10 , e1001247 (2012).
749	81	Ramsar Convention Secretariat. Ramsar COP12 DOC.8. Report of the Secretary General
750		to COP12 on the implementation of the Convention. (Ramsar Convention Secretariat:
751		Gland, Switzerland.) (2015).
752	82	Page, S. E. et al. Peatlands and global change: response and resilience. Annu. Rev.
753		Environ. Resour. 41, 35–57 (2016).
754	83	Swindles G. T. et al. Widespread drying of European peatlands in recent centuries. Nat.
755		<i>Geosci.</i> 12 , 922–928 (2019).
-		

	Boreal		Temperate		Tropical	
WTL	GHGs	95%CI	GHGs	95%CI	GHGs	95%CI
2	8.89	4.82	23.32	10.45	34.90	18.78
1	6.41	2.24	9.35	5.56	8.89	16.89
0	5.10	4.36	4.27	2.46	10.90	14.37
-1	7.45	3.48	12.21	4.69	25.25	8.20
-2	11.69	9.38	19.57	11.45	13.07	19.39
-3	19.67	11.34	11.25	13.18	61.20	38.50*

Extended Data Table 1. Wetland greenhouse gas (GHG) net fluxes in different climate regimes under various water level groups (*WTL*).

unit: tCO₂eq ha⁴ yr⁴; * data from J. Leifeld et al., 2019 (ref. 19).

Continent	Area (million km²)	OCS* (Gt C)	GHG net-flux from degraded wetland (Gt CO2eq)				
			1950-2020 discharged	2021-2100 projected from historical trend	2021-2100 rewetting all wetlands scenario	2021-2100 rewetting high OCS wetlands scenario	
Europe	1.27	99.51	$53.94 \pm 32.66 \\ (68.38\%)^{\dagger}$	$\begin{array}{c} 199.70 \pm 120.69 \\ (68.38\%) \end{array}$	$\begin{array}{c} 66.11 \pm 39.93 \\ (68.37\%) \end{array}$	$\begin{array}{c} 66.40 \pm 40.26 \\ (68.39\%) \end{array}$	
North America	2.71	158.81	$\begin{array}{c} 62.64 \pm 40.67 \\ (70.19\%) \end{array}$	$\begin{array}{c} 100.77 \pm 61.55 \\ (68.69\%) \end{array}$	$75.05 \pm 45.28 \\ (68.41\%)$	$78.25 \pm 48.36 \\ (68.79\%)$	
Latin America	1.37	31.05	$\begin{array}{c} 104.15 \pm 65.83 \\ (95.62\%) \end{array}$	$52.39 \pm 33.17 \\ (95.57\%)$	$9.95 \pm 6.31 \\ (95.50\%)$	$52.39 \pm 33.17 \\ (95.57\%)$	
Asia & Oceania	1.23	26.88	$\begin{array}{c} 36.07 \pm 23.96 \\ (89.83\%) \end{array}$	$\begin{array}{c} 35.70 \pm 23.93 \\ (89.03\%) \end{array}$	6.17 ± 4.22 (87.34%)	$\begin{array}{c} 35.08 \pm 23.32 \\ (89.38\%) \end{array}$	
Africa	1.08	13.23	$\begin{array}{c} 19.64 \pm 12.37 \\ (95.73\%) \end{array}$	$\begin{array}{c} 19.30 \pm 12.18 \\ (95.67\%) \end{array}$	$\begin{array}{c} 1.87 \pm 1.18 \\ (95.52\%) \end{array}$	$\begin{array}{c} 19.30 \pm 12.18 \\ (95.67\%) \end{array}$	
Total	7.66	329.48	$\begin{array}{c} 276.44 \pm 175.49 \\ (83.80\%) \end{array}$	$\begin{array}{c} 407.87 \pm 251.51 \\ (75.05\%) \end{array}$	$\begin{array}{c} 159.14 \pm 96.92 \\ (71.14\%) \end{array}$	$251.42 \pm 157.28 \\ (79.20\%)$	
Reduction					$248.72 \pm 154.59 \\ (77.55\%)$	$156.44 \pm 94.23 \\ (68.37\%)$	

Extended Data Table 2. Wetland characteristics and GHG emissions for each continent per indicated period.

*: OCS represents organic carbon stocks in soil layers from zero to one meter deep. [†]: The figures in the parentheses indicate the percentage of CO₂ emissions.