
This is a repository copy of Towards real-time predictions using emulators of agent-based
models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/188177/

Version: Accepted Version

Article:

Kieu, M, Nguyen, H, Ward, JA orcid.org/0000-0002-2469-7768 et al. (1 more author)
(2022) Towards real-time predictions using emulators of agent-based models. Journal of
Simulation. ISSN 1747-7778

https://doi.org/10.1080/17477778.2022.2080008

© 2022 The Operational Research Society. This is an author produced version of an article
published in Journal of Simulation. Uploaded in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Towards Real-Time Predictions using Emulators of Agent-Based

Models

Le-Minh Kieu1[0000−0001−7798−6195], Hoang Nguyen3[0000−0002−1489−0142], Jonathan A.
Ward4,5[0000−0002−2469−7768], and Nick Malleson2,5[0000−0002−6977−0615]

1 Department of Civil and Environmental Engineering, University of Auckland, Auckland 1010, New Zealand
http://www.cee.auckland.ac.nz/

2 School of Geography, University of Leeds, LS2 9JT, UK https://environment.leeds.ac.uk/geography
3 Data61, CSIRO, Eveleigh NSW 2015, Australia https://data61.csiro.au/

4 School of Mathematics, University of Leeds, LS2 9JT, UK https://eps.leeds.ac.uk/maths
5 Alan Turing Institute, NW1 2DB, UK https://www.turing.ac.uk/

Abstract. The use of Agent-Based Models (ABMs) to make predictions in real-time is hindered by their high
computation cost and the lack of detailed individual data. This paper proposes a new framework to enable the
use of emulators, also referred to as surrogate models or meta-models, coupled with ABMs, to allow for real-
time predictions of the behaviour of a complex system. The case study is that of pedestrian movements through
an environment. We evaluate two different types of emulators: a regression emulator based on a Random Forest
and a time-series emulator using a Long Short-Term Memory neural network. Both emulators perform well,
but the time-series emulator proves to generalise better to cases where the number of agents in the system is
not known a priori. The results have implications for the real-time modelling of human crowds, suggesting that
emulation is a feasible approach to modelling crowds in real-time, where computational complexity prohibits
the use of an ABM directly.

Keywords: agent-based modelling, emulators, meta-modelling, machine learning

1 Introduction

Agent-based modelling is a class of computer simulation that excels in its ability to simulate complex systems
(Bonabeau 2002). Instead of deriving aggregated equations of system dynamics, agent-based models (ABMs) encap-
sulate system-wide characteristics from the behaviours and interactions of individual agents, for instance, humans,
animals or vehicles. ABMs have traditionally been used to understand the dynamics of a system in a wide variety
of contexts, such as delays in urban traffic (Balmer et al. 2009) and emergency evacuations (Schoenharl and Madey
2011).

However, the use of ABMs to analyse systems is not usually possible in real-time. For example, ABMs are
ideally suited to simulating crowds of people (Henein and White 2005), but such models are currently constrained
to ‘offline’ use and cannot inform the management of busy places in real-time. It is, in fact, very challenging to
develop real-time ABMs (Swarup and Mortveit 2020) because there are serious methodological issues associated
with updating agent-based models in response to new data that need to be overcome (Clay et al. 2020). In addition,
even relatively simple ABMs can become extremely computationally intensive as the number of agents increases,
which poses technical challenges as simulation results are required rapidly to be useful for the real-time management
of systems. Existing studies report a drastic increase (sometimes exponential) in computation time as the population
of agents increases in size (Niemann et al. 2021).

It is also often impractical, from a data perspective, to implement a 1-to-1 simulation of a human system in
real-time. Most crowd data are aggregated in the first place – e.g. those created through the use of footfalls sensors
or pedestrian counters – and the introduction of regulations such as the General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act make it more difficult to capture individual-level data and
hence for modellers to model a real person and their intentions in a human system. Aggregated data can be easily
handled by statistical and machine learning models for real-time purposes, but these approaches face two challenges.
Firstly, statistical models are often purely data-driven and cannot provide additional outputs that are important in
understanding the inherent system dynamics, as ABMs can do. For instance, machine learning models can learn to
predict future aggregate estimates, such as future footfall counts, but cannot provide additional processed outputs
such as delays or pedestrian density, which are provided when using an ABM to simulate the system from the
‘bottom up’. Secondly, it can be very difficult to obtain the substantial volume of data required to train a versatile

statistical model. Even if data are collected over a long period, some system states may never be observed, and a
statistical model will struggle to make out-of-sample predictions in these cases.

This leads us to the core idea of this paper. Rather than attempting to use ABMs directly to conduct real-time
analyses, we use the explanatory power and flexibility of ABMs to empower another model that can be used in
real-time for prediction and management purposes. The ABM can be used to simulate the complex system, then in
real-time another model, that can make faster predictions, can be used to represent the ABM. Hence this paper aims
to develop an emulators framework, also referred to as surrogate models or meta-models that provides a mapping
between some aggregated data (that we assume are available in real-time) and outputs from an ABM. In effect, an
ABM is used offline to create a large volume of data to train an emulator, and the trained emulator can then use
real-world aggregate data to make future predictions in real-time. We also compare two main types of emulators: a
regression and a time-series emulator to find out which one is more suitable to make predictions in real-time.

The remainder of this manuscript is structured as follows. Section 2 reviews the literature on emulators for
computer codes in general and ABMs specifically. Section 3 outlines the ABM and emulation methods developed
in this research. Section 5 describes the results of several numerical case studies that compare the performance of
the two emulators considered. Finally, Section 6 concludes and suggests several directions for future research. The
source codes for the ABM, as well as the emulators can be found at [TBA link to our Github].

2 Literature Review

An emulator is a statistical representation of a simulator, where the simulator itself is considered an unknown
function (Bastos and O’Hagan 2009). The emulator attempts to depict the relationship between the input and
output variables of the simulator (Rasouli and Timmermans 2013), ideally producing output much more efficiently
than the simulator. This section reviews the existing approaches to building emulators for complex simulators,
including ABMs. The emulator is a fundamental concept in the physical sciences, commonly used in fields such
as climate modelling (Krasnopolsky et al. 2005) and biogeochemistry (Conti and O’Hagan 2010) where simulation
models are often too costly for real-time implementation. Recent efforts have shown the benefits of emulators for
complex (Rasouli and Timmermans 2013; Krasnopolsky et al. 2005), dynamic (Conti et al. 2009; Conti and O’Hagan
2010) and stochastic (Moutoussamy et al. 2015; Baker et al. 2019) simulation models. Despite this enthusiasm, there
have been a limited number of attempts at emulating ABMs (Rasouli and Timmermans 2013; Bijak et al. 2013;
Heard 2014; Hilton 2017; Oyebamiji et al. 2017), let alone real-time ABMs. This section reviews emulators and
emulators for ABMs in more detail.

2.1 Analytical emulators

Analytical emulators aim to find a tractable, parametric smoothing function depicting the relationship between input
and output variables. Rasouli and Timmermans (2013) aims to emulate the daily distance travelled per person in a
microsimulation model and an ABM of traffic flow. A regression model with main effects plus first-order interaction
effects was developed. The authors also explored the impact of the number of simulation runs on the performance of
the emulator, with the results suggesting that the accuracy of the emulator increases with the number of simulation
runs. However, this paper only aims to develop a direct statistical mapping between inputs and outputs, without
capturing the dynamic changes in the system. Lafuerza et al. (2016a) developed an analytically tractable emulator
of an ABM of social interaction, which allows mathematical analysis to be performed. Emulators such as these are
analytically tractable with an elegant parametric formulation that can help to elucidate the relationship between
input and output variables. However, they are often limited to the instantaneous dynamics of the system where the
analytical formulations are developed, and will need to be revised as the system under study changes over time.
Revising the analytical formulations of these emulators is a complex and time-consuming task, that would limit the
usefulness of analytical emulators for real-time applications.

2.2 Meta-modelling approaches

Meta-modelling emulators use statistical or machine learning techniques to learn the mapping between the input and
output variables of a simulator. These are more flexible than analytical emulators because the same technique can be
implemented to ‘retrain’ the emulator if updates are needed, instead of revising the emulator itself. Meta-modelling
emulators can learn complex behaviours, making them more widely applicable than analytical approaches.

Gaussian Process (GP) emulators (also referred to as Kriging) are among the most popular emulator techniques
(Bastos and O’Hagan 2009). GP emulators have been developed for univariate (Oakley and O’Hagan 2002) and

multivariate (Higdon et al. 2008) problems, as well as dynamic (Conti et al. 2009; Conti and O’Hagan 2010) and
stochastic (Moutoussamy et al. 2015; Baker et al. 2019) simulators. However, the complexity of parameter inference
for a GP is usually O(n3), which means that it is actually very expensive to train and adapt a GP emulator of a
high-dimension simulator such as an ABM. Other machine learning techniques for emulators, such as Neural and
Bayesian Networks (Shrestha et al. 2009; Farah et al. 2014), have also been explored. Machine learning methods
are generally even more flexible than Gaussian Processes, take less time to train and, most importantly, they excel
at providing a non-linear mapping between the input and output variables of the simulator. These features make
them strong candidates for emulating a real-time simulator.

2.3 Emulators of ABMs

The main difference between emulators of ABMs and emulators of other simulation models is that ABMs are fun-
damentally driven by the micro-interactions of discrete entities (‘agents’). This allows models with even relatively
simple behavioural rules to produce complex outcomes. Many emulators of ABMs attempt to re-produce similar
dynamics by simplifying the ABM itself, e.g. by reducing the number of agents or simplifying their behaviour (Deis-
senberg et al. 2008; Lafuerza et al. 2016b; Rhodes et al. 2016; Tregubov and Blythe 2020; Niemann et al. 2021;
Barnes et al. 2021). Rhodes et al. (2016) showed that ABMs can be simplified by several orders of magnitude and
still produce a very similar system-level behaviour while reducing runtime and data output. In a similar approach,
Lafuerza et al. (2016b) aimed to understand a complex intricate ABM of voting using a series of simplified models
and showed that a certain range of modelling capabilities can be maintained in simplified models over a particular
range of parameter values (Lafuerza et al. 2016b). In Tregubov and Blythe (2020), several model simplification
methods such as sub-sampling agents and simplifying agent behaviour were evaluated, showing improvements in
computation time with little reduction in model predictive accuracy. While simplification may help reduce the
computation burden of ABMs, such an approach cannot be guaranteed to generalise and, as there are still in-
teractions that need to be computed, even the simplest ABM required to simulate a particular system might be
computationally expensive.

Meta-modelling and analytical emulators have the potential to resolve the computation issue by transforming
the emulation problem to that of simply finding a mapping function between the inputs and outputs of ABMs. The
well-trained emulator might be able to learn all combinations of inputs/outputs such that in real-time the emulator
can be used in place of the ABMs for computational efficiency. There are studies such as Niemann et al. (2021)
which used ordinary and stochastic differential equations (SDEs) to approximate stochastic ABMs of medium to
large agent populations, but to date, many of the emulators of ABMs that have been developed are GPs (Dosi
et al. 2018; Bijak et al. 2013; Heard 2014; Hilton 2017). GPs provide a confidence interval for each estimate, so
fewer model runs are required to explore the parameter space and statistical characteristics of the ABM. Bijak et al.
(2013) presented a Semi-Artificial Model of Population, which is a fusion of demographic micro-simulation and an
ABM, to address the problem of modelling population dynamics, specifically the impacts of certain parameters on
population size and share of married agents. Dosi et al. (2018) analysed policy impacts using ABMs, where GPs
were used as part of their sensitivity analysis on key variables and parameters. The benefits of GPs in the model
calibration and statistical inference problem of ABMs have also been explored in Heard (2014), where observed data
and ABM simulation outputs were used to fit and calibrate GP approximations. In Hilton (2017), a GP emulator
was used to quantify the uncertainty in the outputs of ABMs and also to calibrate an ABM against empirical
observations. Recently, Oyebamiji et al. (2017, 2019) developed GP regression models to emulate dynamic and
stochastic individual-based models of microbial communities.

The majority of meta-modelling emulators have been designed to support calibration and sensitivity analysis
rather than for use in making real-time predictions. When attempting to predict in real-time, the computation
complexity is not the only challenge, but also the lack of individual-level data for a 1-to-1 simulation. This paper
aims to develop an emulator framework that can work with aggregated data, that are widely available, to represent
an ABM and make predictions in real-time.

3 Methodology

We propose a framework for real-time prediction using emulators of ABMs. We have developed this framework to
use the emulator to make real-time predictions of the near future, whilst having the flexibility to adapt to incoming
data. Broadly, our proposed approach is to develop an ABM to represent the target system, train an emulator using
aggregated data outputs from the ABM, and then use the emulator, rather than the ABM itself, to make real-time
predictions. The use of the emulator in this setting is advantageous because: (i) the ABM is too computationally

expensive to return results in an adequate time; and (ii) the emulator makes predictions using aggregate data, whose
availability is more likely than the individual-level data. This section outlines the methodology in detail.

Let Zt ∈ R
r denotes the set of outputs from an ABM at discrete time t ∈ Z and since the ABM is stochastic,

variables in Zt are random. The choice of discrete time is motivated by our assumption that aggregated data will
be made at discrete points in time and projecting these onto the integers is purely for convenient notation. We
assume that the ABM is parameterised by a vector of parameters θ, that might be completely unseen in real-time.
Zt consists of [Xt, yt]. Observation data Xt are assumed available in real-time, and yt is the additional output from
an ABM which is often unobservable in real-time, or completely unobservable. Note that in practice we would have
to calibrate the values of parameters θ such that the ABM can adequately represent the underlying system, and
replicate Xt to be sufficiently similar to the real aggregated data. In this paper, we assume that our ABM has
already been calibrated and the provided Xt are similar to the real data. We are then interested in an emulator
function f that can map the available aggregated data Xt with Zt, i.e. Zt = f(Xt), and also can make predictions,
e.g. Zt+k = f(Xt) with k > 0.

We propose a ‘bi-phase’ framework, illustrated in Figure 1. The first phase of the framework, the Training phase,
aims to train the emulator so that it can predict the behaviour of the real system. We assume that the emulator
cannot learn this behaviour from the underlying system directly for two reasons. Firstly, there may be important
information required by the emulator that can only be extracted from the ABM. For example, in the case study
used in this paper we are interested in the delay caused to individual pedestrians in a crowd. This can be calculated
by examining the individual agents in the model but not inferred from aggregate (real world) data. Secondly, even
if a system is studied over a long period, likely, some more extreme system states will not occur. Therefore the
emulator will be trained on ‘business as usual’ system behaviour and will not be able to work well in more extreme
scenarios. Using an ABM, not only can a large volume of training data be created, but a wide variety of system
states can also be simulated. Therefore we develop an ABM to represent the target system (pedestrians moving
through a corridor in this case) and use the ABM to create simulated input and output data for emulator training.
This training phase is done before real-time implementation of the emulator as it requires multiple runs of the ABM
to generate the training data, which will be a computationally-expensive step. Since the training data do not need
to be produced quickly, as would be the case if the ABM were making real-time predictions, the computation time
at this stage in the framework is not problematic. Also, the emulator will not need to be retrained unless there is a
significant change to the underlying system, in which case the ABM will also need to be recalibrated and re-run to
produce new data that reflect the new dynamics of the system. As Section 4.2 will discuss, the emulator is trained
and tested using well-established machine learning methods.

In the second phase of the framework, the Real-time phase, information about the system is collected in real-
time and these data are used as inputs to the trained emulator. In this manner, the emulator can predict the
short-term future behaviour of the system without the need for running an ABM. It is important to note that, in
this preliminary application, the real-time phase does not actually use real-world data. Instead we follow a ‘pseudo-
truth’ or ‘digital-twin’ experiment approach, similar to Wang and Hu (2015) and Kieu et al. (2020) to evaluate this
framework. Rather than using real observations, the data will be generated from the ABM. This is advantageous
because it means that the true system state can be known, so errors can be calculated accurately. In addition, we can
evaluate the framework on a wide range of synthetic data to ‘stress test’ it under various scenarios. Future work will
move towards using real crowd data, such as those made available by Zhou et al. (2012). As Section 4 will discuss,
we assume that ten pedestrian sensors are deployed in the environment, and count the number of pedestrians who
pass through them. Hence the task of the emulator is to estimate what the subsequent counts at these sensed points
will be. In addition, the emulator is also tasked with estimating the overall delay to the pedestrians; in congested
scenarios it will take longer for pedestrians to be able to traverse the environment.

The need for fast emulators means that GP emulators are not ideal due to their high computational complexity,
so we do not consider them here. Instead, we test two different types of well-known machine learning emulators.
We adopt a static emulator, Random Forest (RF) regression, because it is widely used and has been shown to be
effective in modelling non-linear relationships. As RF regression does not directly treat the data as a time-series,
we also experiment with a Long Short-term Memory (LSTM) neural network, which uses multiple time steps in the
near past to forecast the near future. The following sub-sections provide brief descriptions of each these techniques.

3.1 Regression Emulator: Random Forest

RF regression models are typically trained to predict univariate output, so multiple models have to be trained to
predict each of the q required outputs in Yt (in this case the counts of pedestrians at different sensor locations). In
effect, we consider this emulator as an ‘ensemble regression emulator’, as illustrated in Figure 2.

Emulator

Exported from Pencil - Thu Oct 28 2021 07:29:24 GMT+1300 (New Zealand Daylight Time) - Page 1 of 1

ABM:

StationSim

100

pedestrians

200

pedestrians

500

pedestrians

Historical

aggregated

pedestrian counts

and delay

Emulator

c1(t-1)
...
c10(t-1)
...
c1(t-L)

Real-time

aggregated

pedestrian

counts data

Time t Time t+1

1. Training phase

2. Real-time phase

...

Quasi real-time
pedestrian counts
L >0

c1(t+k)
c2(t+k)
...
c10(t+k)
d(t+k)

Forecasts of
pedestrian counts and delay
for a future k timesteps (k>0)

Real-time

pedestrian

counts data

Quasi real-time
pedestrian counts
L>0

Training
inputs:
counts at
each sensors

Training
outputs:
counts and
delay

c1(t)
...
c10(t)
...
c1(t-L+1)

Possible number
of pedestrians

Emulator

Fig. 1: Study framework

The RF is an ensemble method that makes predictions by combining the decisions from multiple individual
models, i.e.

f(x) =
1

B

B∑

i=1

Ti(x), (1)

where each individual model Ti is a simple Decision Tree (Breiman 2001), built upon a statistical technique called
bagging. Interested readers may refer to Breiman (2001) for a more detailed and formal description. The effectiveness
of RFs comes from two key concepts:

– Each tree is built and learnt from a random sampling of training observations. This is to reduce the overall
variance in the entire RF model but not at the cost of increasing bias;

– Splitting nodes in each tree using random subsets. This reduces the potential for over-fitting because each tree
only sees a subset of all training features when deciding to split a node.

We train 11 RF models for each value of look-ahead time step k, where the first 10 models predict the counts at
each of the 10 pedestrian sensors at time step t + k and the eleventh model predicts the delay to the pedestrians.
These models are trained using the same input: the pedestrian counts at the previous time step t− 1 (as showed in
Figure 2). The training input for the regression emulator is 2D array of size D × 10, where D is the sample size of
the input data.

3.2 Time-series emulator: Long Short-term Memory

One major disadvantage of regression techniques in learning time-series patterns, even for powerful techniques such
as RFs, is that there is no consideration of longer-term temporal dependency in the data, e.g. the ability to learn
from multiple historical observations to predict the next state. In regression models, time can be used as a variable to
predict, but there is no dependency between successive time steps. We define the framework for the ABM time-series
emulator as in Figure 3.

While it is possible to include historical observation data in the input vector Xt, we might expect that recent
observations will have a significant temporal correlation. To account for this, the time-series emulator takes inputs

RF

Exported from Pencil - Thu Jul 02 2020 21:04:40 GMT+1200 (New Zealand Standard Time) - Page 1 of 1

ABM

Training
inputs:
counts at
each sensors

Training
outputs:
counts and
delay

c1(t-1)
c2(t-1)
...
c10(t-1)

c1(t+k)

c2(t+k)

c10(t+k)

d(t+k)

. . .

Random
Forest

Regressor

Size: [D x 10]

Size: [D x 1] x 11

11 models for each k

Ensemble Regression
Emulator

Fig. 2: A regression emulator of Agent-Based Models using Random Forest Regression

LSTM

Exported from Pencil - Thu Jul 02 2020 21:04:51 GMT+1200 (New Zealand Standard Time) - Page 1 of 1

ABM

Training
inputs:
counts at
each sensors

Training
outputs:
counts and
delay

[c1(t+k)]
[c2(t+k)]
[...]
[c10(t+k)]
[d(t+k)]

Long
Short-Term
Memory

[c1(t-1) c1(t-2) ... c1(t-L)]
[c2(t-1) c2(t-2) ... c2(t-L)]
[... ]
[c10(t-1) c10(t-2) ... c10(t-L)]

Size: [D x 10 x L]

Size: [Dx11] 1 model for each k

Time-series Emulator

Fig. 3: A time-series emulator of Agent-Based Models using Long Short-term Memory

from Xt−L to Xt−1, where L > 0 defines a ‘look-back window’. Defining the value of L is a trade-off problem that
has to be solved through experimentation. Choosing L too large leads to unnecessarily long computation time and
numerical instability, but too small L will not fully capture the temporal dependency between time steps. After
experimenting with different values we take L = 5 based on the resulting Mean Absolute Error. Thus, the training
input for the time-series emulator is 3D array of size D × 10× L.

For our time-series emulator, we adopt the Long Short-term Memory (LSTM) recurrent neural network. Inter-
ested readers may refer to the Appendix for a brief description of the LSTM, or to Hochreiter and Schmidhuber
(1997) for a detailed explanation of the method. There are several parameters to be determined when constructing
an LSTM network. These parameters were selected by both heuristic methods (to limit parameter value ranges)
and grid search for a limited set of parameters. The detailed architecture and optimal parameters for our LSTM
network is described below:

– LSTM layer with 32 nodes to learn temporal dependency of the time series.

– A dense layer with 32 nodes to enhance the generalisation level of the model.

– A final dense layer with 11 nodes (equal to the number of outputs) to predict next values of 10 sensors and
overall delays.

– The model is then compiled with an Adaptive moment estimation optimisation mechanism (ADAM).

– The loss function during training is the mean absolute error (MAE) and the metrics function for model evaluation
is the relative mean error.

4 Case Study: Pedestrian Crowding

4.1 StationSim

We use a simple ABM of pedestrian dynamics (Malleson et al. 2020) named StationSim as a case study. The model
has been designed to very loosely represent the behaviour of a crowd of people moving from an entrance on one
side of a rectangular corridor to an exit on the other side. This is analogous to people disembarking from a train
and moving across the concourse of a train station. The model environment is illustrated in Figure 4, with the
trajectories of two interacting agents for illustration.

ABM (2)

Exported from Pencil - Sat Mar 28 2020 11:29:41 GMT+1300 (New Zealand Daylight Time) - Page 1 of 1

200 m0 50 m

100 m

D
oo

r i
n

D
oo

r o
ut

Pedestrian counters

Fig. 4: The StationSim model; adapted from Malleson et al. (2020)

The model does not attempt to match the behavioural realism offered by more developed crowd models, such
as those that adopt the Social Force model (Helbing et al. 2000). The reason for this simplicity is so that: (1) the
model can execute relatively quickly; (2) the probabilistic elements in the model are limited (we know precisely
from where probabilistic behaviour arises); and (3) the model can be described fully using a relatively simple state
vector. Importantly, the model can capture the emergence of crowding. This occurs because each agent has a different
maximum speed that they can travel at, so fast agents will try to overtake slower ones, but also because there is a
limited space in which agents can walk and there is a limited rate at which agents can leave the environment.

Given a rectangular 200m x 100m corridor (Figure 4), N agents are generated as the model initialises. We assume
that within the simulation time interval [0, T], there are W roughly periodic waves of arrivals of pedestrians, with
some random deviations δw. We choose W = 3 and these waves start at times δ1,

1
3T + δ2 and 2

3T + δ3. This is
analogous to multiple trains arriving at near regular times during the simulation time interval. Within each wave,
the agents enter the environment (leave their train) at a uniform rate through one of the three entrances. They
move across the ‘concourse’ and then leave by one of the two exits. The entrances and exits have a set size, such
that only a limited number of agents can pass through them in any given iteration. This configuration represents a
typical problem that ABMs excel at because it involves the simulation of individuals with heterogeneous behaviour
and with patterns (i.e. congestion) that emerge from the interactions between individuals.

We also assume a set of 10 pedestrian counters are equally spaced along the corridor, which provide the number
of pedestrians who walk past the sensor (see Figure 4). This is a fair assumption in practice because pedestrian
counters are widely available in many public places. Figure 5 shows the counts at sensors 1, 5 and 10 at each time
step from 0 to 1200s. Because of differences in walking speed between agents and the emergence of crowding, the
counts at each sensor are very different. At the first sensor near the entrance (sensor 1), the three waves (i.e. three
train arrivals) are easily identified, with the pedestrians uniformly leaving the train. These waves are still visible in
sensor 5, in the middle of the environment, but model stochasticity causes them to be much less clearly defined. By
the time the agents reach sensor 10, at the end of the corridor, the waves can no longer be easily distinguished.

Despite being simple, this model has three of the most important characteristics of an ABM:

– individual heterogeneity : agents have different maximum travel speeds;
– agent interactions: agents are not allowed to occupy the same space and try to move around slower agents who

are blocking their path;

0 200 400 600 800 1000 1200
0

10

20 Sensor 1

0 200 400 600 800 1000 1200
0

10

20
Co

un
ts

Sensor 5

0 200 400 600 800 1000 1200
Time (s)

0

10

20 Sensor 10

Fig. 5: Counts of pedestrians at Sensor 1, 5 and 10 at each time step.

– emergence: crowding is an emergent property of the system that arises as a result of the choice of exit that each
agent is heading to and their maximum speed.

4.2 Training the ABM emulators

The Training phase starts with the generation of training data. To expose the emulator to a wide range of possible
system behaviours, we randomly generate multiple sets of agents with random maximum speeds, starting entrances
and desired exits. Experiments are conducted with populations of N = 100 (few collisions and hence largely linear
deterministic agent behaviour) up to N = 500 agents (many collisions, considerable crowding, large stochasticity).
Each set of parameters is fed into the ABM to generate synthetic ‘historical’ aggregated pedestrian counts c and
mean delay d̄. The mean delay d̄ is the average of the difference between the time each agent spent to get into its
current position versus the time that it would have spent if it could walk with its desired speed, i.e.

d̄ =
1

N

N∑

i=1

τi −
xi

vi
,

where τi is the time taken by agent i to cross from where they entered to their current position, xi is the corresponding
straight line distance and vi is agent i’s desired speed.

This is a useful statistic as it works as a proxy for the level of crowding, hence the emulator can be used to
predict the emergence of crowding in the near future.

The simulation is executed 30 times for each population size, N , by generating new sets of random agents and
re-running the ABM to create a rich synthetic training dataset. We then split the synthetic data into training input
and training outputs. The training inputs are the aggregated counts of pedestrians from each sensor. The training
outputs, which the emulator is tasked with estimating, are the aggregated counts and mean delay d̄ at future time
steps.

In the Real-time phase we assume that we only have access to the quasi-real-time aggregated counts of pedestrians
at the 10 sensors along the corridor on Figure 4. Hence we need an emulator to use these counts to predict future
aggregated counts and delay. The data are quasi-real-time because we assume that at the current time step t, only
aggregated counts at previous time steps t−L to t− 1 are available. The trained emulators process these inputs to
predict the aggregated counts and delay at the current time step t and near-future time steps, the forecast period,
t + k, for k > 0. At the next time step t + 1, we assume that the data recorded by the sensors at time t are now
available and can be used to predict the next time steps in the near future.

5 Numerical experiments

This section describes the experimental setup and results. Following the framework described in Section 3, recall
that the emulators are trained using a synthetic ‘historical’ dataset of 30 replications from StationSim, with varying
agent population sizes. The emulators’ predictive ability will now be evaluated using another synthetic ‘real-time’
dataset that is completely unseen to them and created by running StationSim once. This provides ‘pseudo-truth’
aggregated pedestrian counts and delays. We evaluate the two classes of emulator for ABM with two experiments:

1. The total pedestrian population is known: the emulators are trained and evaluated using datasets with the
same population size. For instance, the performance of a regression emulator that has been trained using the
population data of N = 500 agents will be evaluated against a pseudo-truth ‘real time’ dataset with 500 agents.

2. The total pedestrian population is unknown: the emulators are trained once with all the training data available
(with populations sizes N ∈ {100, 200, 300, 400, 500}) and evaluated separately on ‘real-time’ data with different
population sizes. For instance, a regression emulator that has been trained using all available population data
will be evaluated 5 times, using ‘real time’ data for population sizes N ∈ {100, 200, 300, 400, 500}. An emulator
that generalises well will be able to estimate the counts at each gate and the mean delay without knowing
the size of the population. This experiment is more practical because in reality the total pedestrian is often
unknown in real-time.

5.1 Experiment 1: known pedestrian population size

In the first experiment, we assume that the total number of pedestrians that will walk through the corridor is known.
We evaluate the accuracy of each class of emulator when the pedestrian population is N ∈ {100, 200, 300, 400, 500}
pedestrians. Figure 6 shows the prediction of the aggregated pedestrian counts at each sensor during the study
period using the regression emulator and the time-series emulator for the case where the forecast period is k = 5
and k = 15 time steps into the future. The red lines show the predicted counts at each sensor and each time step,
whereas the black lines show the pseudo-truth real-time counts.

Tim
e (s)

0
200
400
600
800
1000

Sensor0 1 2 3 4 5 6 7 8 9

Co
un

ts

0
5
10
15
20
25
30

Regression emulator predicts counts - Experiment 1: Population=500, Step ahead = 5

Tim
e (s)

0
200
400
600
800
1000

Sensor0 1 2 3 4 5 6 7 8 9

Co
un

ts

0
5
10
15
20
25
30

Regression emulator predicts counts - Experiment 1: Population=500, Step ahead = 15

Fig. 6: Prediction of pedestrian counts at each sensor using the the regression emulator. Red line: Predicted counts,
Black line: Synthetic real-time counts

Similarly, Figure 7 shows the prediction results from the time-series emulator. The two figures illustrate the

Tim
e (s)

0
200
400
600
800
1000

Sensor0 1 2 3 4 5 6 7 8 9

Co
un

ts

0
5
10
15
20
25
30

Time-series predicts counts - Experiment 1: Population=500, Step ahead = 5

Tim
e (s)

0
200
400
600
800
1000

Sensor0 1 2 3 4 5 6 7 8 9

Co
un

ts

0
5
10
15
20
25
30

Time-series predicts counts - Experiment 1: Population=500, Step ahead = 15

Fig. 7: Prediction of pedestrian counts at each sensor using the time-series emulator. Red line: Predicted counts,
Black line: Synthetic real-time counts

predicted counts (in red) and the synthetic real-time counts (in black) from each sensor and across time. In Figure 6
and Figure 7, the evaluated pedestrian population is 500.

Overall, both of the emulators perform very well in the prediction of aggregated counts. The overall fluctuations
of the aggregated pedestrian counts are captured closely with a few exceptions where the synthetic real-time counts
(black line) reach a peak. In both classes of emulators, the further prediction (k = 15) has slightly lower accuracy.
Figures 6 and 7 clearly show that the emulators have enabled us to work with aggregated data to produce outputs
that are similar to those produced by the ABM.

Figures 8 and 9 show the prediction of mean pedestrian delays (a proxy for crowding) in the study corridor
for the regression and time-series emulators respectively. The figures show the predicted delays (in red) versus the
synthetic real-time delays (in black) when the agent population is N ∈ {100, 200, 300, 400, 500} and the simulation
time is T = 1200. The figures clearly show that the delays increase significantly as the agent population increases.
The delay is clearly correlated with the three waves of pedestrian arrivals, with a sudden drop in delay after each
wave. Predicting these waves of delay is challenging because of this sudden drop and because the location, the peak
and the steepness of each curve is stochastic.

Both emulators capture the general trend in the mean delay reasonably well. The performances are lower than
the prediction for aggregated pedestrian counts because the emulators cannot capture some of the peaks and troughs
in the values of mean delay. This can be explained by the lack of the historical values of delay in the input, as
mentioned in Section 4. The regression emulator (Figure 8) shows noticeably more fluctuations in its prediction
than the time-series emulator (Figure 9), with several cases of large prediction errors. It shows that the regression
emulator is less reliable in its prediction compared to the time-series prediction. We further illustrate this point in
Figure 10, which shows the difference between the predicted mean delay with the synthetic real-time mean delay
for the case where the forecast period is k = 5, and the agent population is 100 and 200. The closer the lines are
to zero, the better the prediction. The residuals from the regression emulator are more volatile, indicating that the
regression emulator is a less stable prediction compared to the time-series emulator.

Table 1 shows the comparison of prediction accuracy between the regression emulator (RF) and the time-series
emulator (LSTM). The comparison values are of the Mean Squared Error (MSE),

MSE =
1

T

T∑

t=1

(d̄t − d̂t)
2, (2)

Time (s)

0
200

400
600

800
1000

Population100 200 300 400 500

De
la

y
(s

)

0
25
50
75
100
125
150
175
200

Regression emulator predicts delays - Experiment 1: Population=100 to 500, Step ahead = 5

Time (s)

0
200

400
600

800
1000

Population100 200 300 400 500

De
la

y
(s

)

0
25
50
75
100
125
150
175
200

Regression emulator predicts delays - Experiment 1: Population=100 to 500, Step ahead = 15

Fig. 8: Prediction of delays using the the regression emulator. Red line: Predicted delay, Black line: Synthetic real-
time delay

where d̄t is the synthetic real-time mean delay at time t, and d̂t is the predicted mean delay at time t. The predictions
in Table 1 are made for forecast periods k ∈ {5, 10, 15}. The numbers on the time-series emulator are showed in bold
if the MSE is lower than its regression counterpart, and vice-versa. The time-series emulator has a better accuracy
compared to the regression emulator, by 13.16% on average.

Regression emulator Time-series emulator
Population 5s 10s 15s 5s 10s 15s

100 18.21 20.82 21.02 15.12 17.37 22.25
200 22.09 20.72 21.53 17.14 15.38 18.72

300 23.05 23.59 23.83 23.26 23.78 21.93

400 21.37 23.03 25.36 18.75 16.78 20.11

500 24.06 26.32 29.51 23.16 20.36 24.86

Table 1: Comparison of prediction accuracy (MSE) for Experiment 1. The bold number shows the lower error when
comparing the regression to the time-series emulator.

5.2 Experiment 2: Unknown pedestrian population

The next experiment assumes that in real-time the total number of pedestrians who will enter the system is unknown,
so only the aggregated counts at each sensor are available to the emulators. This is much closer to the situation
that would arise in reality. The framework is exactly the same as the previous experiment, apart from the fact that
now the training input data of all agent population sizes N ∈ {100, 200, 300, 400, 500} are fed into the emulators
for training. The trained emulators are then evaluated against five different sets of ‘real time’ data, one created for
each of the five different population sizes, to see how well they can predict different crowd sizes.

Using the regression and time-series emulators, we found that predictions of pedestrian counts are very similar
to previous experiments (e.g. when compared to the results in Figure 6 and Figure 7). To better differentiate the
results, Figure 11 shows a heat map of the Mean Absolute Error of the predictions of aggregated pedestrian counts
using the regression emulator (on the top row) and the time-series emulator (on the bottom row) when the emulators

Time (s)

0
200

400
600

800
1000

Population100 200 300 400 500

De
la

y
(s

)

0
25
50
75
100
125
150
175
200

Time-series predicts delays - Experiment 1: Population=100 to 500, Step ahead = 5

Time (s)

0
200

400
600

800
1000

Population100 200 300 400 500

De
la

y
(s

)

0
25
50
75
100
125
150
175
200

Time-series predicts delays - Experiment 1: Population=100 to 500, Step ahead = 15

Fig. 9: Prediction of delays using the time-series emulator. Red line: Predicted delay, Black line: Synthetic real-time
delay

0 200 400 600 800 1000 1200

200

100

0

100

200

Re
sid

ua
l (

s)

Population=100

0 200 400 600 800 1000 1200

200

100

0

100

200

Re
sid

ua
l (

s)

Population=200

0 200 400 600 800 1000 1200

200

100

0

100

200

Re
sid

ua
l (

s)

Population=300

0 200 400 600 800 1000 1200
Time (s)

200

100

0

100

200

Re
sid

ua
l (

s)

Population=400

0 200 400 600 800 1000 1200
Time (s)

200

100

0

100

200

Re
sid

ua
l (

s)

Population=500

Regression Emulator
Time-series Emulator

Fig. 10: Comparison between the prediction errors from regression versus time-series emulators

know the pedestrian population (on the left) and with an unknown population (all the data are used, on the right).
All the tests are done for the forecast period k = 15. The lighter colour illustrates better prediction accuracy. Three
distinct patterns are visible:

– First, the prediction accuracy is better with smaller agent populations. This is expected because with fewer
agents there are fewer collisions, so the behaviour of the agents is nearly deterministic.

– Second, the time-series emulator shows better prediction accuracy (lighter colours on Figure 11) especially at
higher agent populations (400 and 500 agents). The regression emulator performs worse at the first sensor
(Sensor 0), because it does not take into consideration the historical counts. When the train has not yet arrived
and there are no pedestrians in the corridor, the emulators still make a prediction based on historical patterns

that some pedestrians should be in the corridor. The time-series emulator partly solves this problem by including
more data from the near past time steps, as illustrated in Figure 11.

– Third, there are no significant differences in terms of prediction accuracy between the known and the unknown
pedestrian population scenario (the colours are very similar from the left to the right of Figure 11) apart from
a few occasions when the emulators perform slightly better when the pedestrian population is known. This
pattern can be seen near Sensor 0, where differences in pedestrian demand are really important.

0 1 2 3 4 5 6 7 8 9
Sensor

10
0

20
0

30
0

40
0

50
0

Po
pu

la
tio

n

Regression emulator (unknown pop)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9
Sensor

10
0

20
0

30
0

40
0

50
0

Po
pu

la
tio

n

Regression emulator (known pop)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9
Sensor

10
0

20
0

30
0

40
0

50
0

Po
pu

la
tio

n

Time-series emulator (known pop)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9
Sensor

10
0

20
0

30
0

40
0

50
0

Po
pu

la
tio

n

Time-series emulator (unknown pop)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 11: Comparison of the prediction results for aggregated pedestrian counts at each sensor

We will now look at the prediction of mean pedestrian delay in Figures 12 and 13. Both emulators capture the
trends in mean delay, with comparable results to those of the Experiment 1 (see Figures 8 and 9).

Table 2 compares the emulators in more detail. Again, we see that the prediction accuracy from the time-series
emulator is significantly better than the regression emulator in all tests, by 22.1% on average. The time-series
emulator is noticeably better in Experiment 2—when the emulator has to generalise to make prediction—as the
number of pedestrian is not observed. The LSTM takes advantage of the historical pedestrian counts from the last
5 time steps to predict much more accurately than the regression emulator.

Regression emulator Time-series emulator
Population 5s 10s 15s 5s 10s 15s

100 23.58 23.50 25.14 16.09 16.44 16.97

200 29.13 29.59 30.43 16.43 17.14 18.95

300 26.68 26.00 26.70 21.12 21.65 22.98

400 21.25 23.61 24.95 21.14 18.51 20.14

500 32.30 35.38 33.85 30.77 30.34 33.17

Table 2: Comparison of prediction accuracy: Experiment 2

Figure 14 shows a heat map of the Mean Absolute Error of the predictions of delay using the regression emulator
(left two columns) and the time-series emulator (right two columns) when the emulators know the pedestrian
population and with unknown population. All the tests are done when the forecast period is k = 15. The lighter
colour illustrates better prediction accuracy. Two patterns are visible:

– Similar to the prediction of counts, the prediction accuracy is better with smaller agent populations. The
time-series emulators outperform the regression emulator counterparts.

Time (s)

0
200

400
600

800
1000

Population100 200 300 400 500

De
la

y
(s

)

0
25
50
75
100
125
150
175
200

Regression emulator predicts delays - Experiment 2: Population=100 to 500, Step ahead = 5

Time (s)

0
200

400
600

800
1000

Population100 200 300 400 500

De
la

y
(s

)

0
25
50
75
100
125
150
175
200

Regression emulator predicts delays - Experiment 2: Population=100 to 500, Step ahead = 15

Fig. 12: Experiment 2: Prediction of delays using the the regression emulator. Red line: Predicted delay, Black line:
Synthetic real-time delay

Time (s)

0
200

400
600

800
1000

Population100 200 300 400 500
De

la
y

(s
)

0
25
50
75
100
125
150
175
200

Time-series predicts delays - Experiment 2: Population=100 to 500, Step ahead = 5

Time (s)

0
200

400
600

800
1000

Population100 200 300 400 500

De
la

y
(s

)

0
25
50
75
100
125
150
175
200

Time-series predicts delays - Experiment 2: Population=100 to 500, Step ahead = 15

Fig. 13: Experiment 2: Prediction of delays using the time-series emulator. Red line: Predicted delay, Black line:
Synthetic real-time delay

– There is now a distinct difference between the prediction accuracy of delay when the population is known, versus
when the population is known. Models with known populations perform much better.

R-unknown R-known TS-unknown TS-known
Models

10
0

20
0

30
0

40
0

50
0

Po
pu

la
tio

n

10

15

20

25

30

35

40

45

50

Fig. 14: Comparison of the prediction results for delay. R-unknown: Regression emulator predicts unknown popula-
tion, R-known: Regression emulator predict known population, TS-unknown: Time-series emulator predicts unknown
population, TS-known: Time-series emulator predicts known population

6 Discussion and Conclusion

Summary

This paper proposes a new framework that enables ABM researchers and practitioners to benefit from emulators
to make predictions based on ABMs in real-time. The framework, as outlined in Figure 1, allows emulators to learn
from the outputs of an ABM to achieve two major points. First, the emulators enable a real-time prediction using
a fraction of the computation time required when compared to using the ABM to make predictions. We test two
classes of emulators: a random forest regression and a time-series model. While they both need to be trained using
the data generated from the ABM, which is an expensive process, they can provide predictions of pedestrian counts
and mean delay. Second, the emulators enable us to predict directly from aggregated data (i.e. counts from each
sensor), instead of relying on individual-level data. This is especially important if individual data are not available
in real-time due to technical or privacy challenges, which is extremely common in practice.

Both emulators perform well at predicting aggregated pedestrian counts and mean delay for both Experiment
1 and 2. Between the two emulators, the time-series model performs slightly better in Experiment 1 (when the
number of pedestrians is observed) and significantly better in Experiment 2 (when the number of pedestrians is
unknown). Experiment 2 is more practical, showing the greater generalisability of the time-series emulator, as in
practice the number of pedestrians entering the environment (i.e. travellers on a train) may be unknown. The
time-series emulator generally takes more time to train, but takes less time to make a prediction. This is because
the regression emulator needs 11 individual Random Forests to predict the q = 11 values of the output variable at
each time step, while we need only one time-series model to make predictions for the same output. Therefore, the
time-series emulator is more feasible to use in practice.

Caveats

This paper has focused on developing the framework and evaluating it using synthetic data. Although we have
shown that the framework enables us to use emulators to predict the output of ABMs in real-time, a limitation of
this paper is the lack of real data in the evaluation. The identical twin experimental framework has advantages in
that it allows us to accurately calculate error because the ‘truth’ is known, but it is limited in that the pseudo-truth
data might not be as rich as data derived from a real system. In addition, we assume that the ABM that is used
to train the emulator is able to adequately capture the dynamics of the target system. If the ABM is not able to
model the target adequately – e.g. due to a lack of accurate observational data or unknown behavioural parameters

– then the emulator will not be able to reliably make predictions about the real system. Future research directions
include the use of real data for a pedestrian system, which would allow the same framework to be used with the
only difference being that the ABM should be first calibrated to the real-world observations.

One of the advantages of the proposed framework is that the most computationally-intensive part – running the
ABM a large number of times to generate training data for the emulators – can be conducted offline in advance.
However, it is important to note that for larger, more complex agent-based models, the time taken for them to
execute, and the amount of data they generate, might become problematic. One solution to this problem would be
to adapt the framework so that the creation of synthetic data and the training of the emulators could take place
simultaneously, rather than creating all of the synthetic data in one step, and then training the emulators in the
next. Whilst this does not solve the problems associated with computationally-expensive ABMs, it significantly
reduces the amount of data storage required – once a model result has been incorporated into the emulator it can
be discarded – and reduces the extra time that would be required to train the emulator after the ABM has finished
running.

Conclusion

This paper proposes a new framework to enable real-time agent-based modelling through the use of emulators.
Experiments with a regression emulator and a time-series emulator suggest that the time-series emulator proves
to generalise better to cases where the number of agents in the system is not known a priori. The results have
implications for the real-time modelling of human crowds, suggesting that emulation is a feasible approach to
modelling crowds in real-time, where computational complexity prohibits the use of an ABM directly.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 757455).

Bibliography

Baker, E., Challenor, P., and Eames, M. (2019). Diagnostics for Stochastic Emulators. arXiv:1902.01289 [stat].
arXiv: 1902.01289.

Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., and Nagel, K. (2009). Matsim-t: Architecture and
simulation times. In Multi-agent systems for traffic and transportation engineering, pages 57–78. IGI Global.

Barnes, C. M., Ghouri, A., and Lewis, P. R. (2021). Explaining evolutionary agent-based models via principled
simplification. Artificial Life, pages 1–21.

Bastos, L. S. and O’Hagan, A. (2009). Diagnostics for Gaussian Process Emulators. Technometrics, 51(4):425–438.
Bijak, J., Hilton, J., Silverman, E., and Cao, V. D. (2013). From agent-based models to statistical emulators. In
Joint Eurostat/UNECE Work Session on Demographic Projections, page 12.

Bonabeau, E. (2002). Agent based modeling: Methods and techniques for simulating human systems. Proceedings
of the National Academy of Sciences, 99(90003):7280–7287.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
Clay, R., Kieu, L.-M., Ward, J. A., Heppenstall, A., and Malleson, N. (2020). Towards real-time crowd simulation

under uncertainty using an agent-based model and an unscented kalman filter. In Demazeau, Y., Holvoet, T.,
Corchado, J. M., and Costantini, S., editors, Advances in Practical Applications of Agents, Multi-Agent Systems,
and Trustworthiness. The PAAMS Collection, volume 12092, pages 68–79. Springer, Cham.

Conti, S., Gosling, J. P., Oakley, J. E., and O’Hagan, A. (2009). Gaussian process emulation of dynamic computer
codes. Biometrika, 96(3):663–676.

Conti, S. and O’Hagan, A. (2010). Bayesian emulation of complex multi-output and dynamic computer models.
Journal of Statistical Planning and Inference, 140(3):640–651.

Deissenberg, C., Van Der Hoog, S., and Dawid, H. (2008). Eurace: A massively parallel agent-based model of the
european economy. Applied Mathematics and Computation, 204(2):541–552.

Dosi, G., Pereira, M. C., Roventini, A., and Virgillito, M. E. (2018). The effects of labour market reforms upon
unemployment and income inequalities: an agent-based model. Socio-Economic Review, 16(4):687–720.

Farah, M., Birrell, P., Conti, S., and Angelis, D. D. (2014). Bayesian Emulation and Calibration of a Dynamic
Epidemic Model for A/H1n1 Influenza. Journal of the American Statistical Association, 109(508):1398–1411.

Heard, D. (2014). Statistical Inference Utilizing Agent Based Models. PhD thesis, Duke University.
Helbing, D., Farkas, I., and Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407:487 EP–.
Henein, C. M. and White, T. (2005). Agent-based modelling of forces in crowds. In Davidsson, P., Logan, B.,

and Takadama, K., editors, Multi-Agent and Multi-Agent-Based Simulation, pages 173–184, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer model calibration using high-dimensional
output. Journal of the American Statistical Association, 103(482):570–583.

Hilton, J. (2017). Managing Uncertainty in Agent-Based Demographic Models. PhD thesis, University of Southam-
ton.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780.
Kieu, L.-M., Malleson, N., and Heppenstall, A. (2020). Dealing with uncertainty in agent-based models for short-

term predictions. Royal Society Open Science, 7(1):191074.
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Chalikov, D. V. (2005). New Approach to Calculation of Atmo-

spheric Model Physics: Accurate and Fast Neural Network Emulation of Longwave Radiation in a Climate Model.
Monthly Weather Review, 133(5):1370–1383.

Lafuerza, L. F., Dyson, L., Edmonds, B., and McKane, A. J. (2016a). Simplification and analysis of a model of
social interaction in voting. The European Physical Journal B, 89(7):159.

Lafuerza, L. F., Dyson, L., Edmonds, B., and McKane, A. J. (2016b). Staged models for interdisciplinary research.
PloS one, 11(6):e0157261.

Malleson, N., Minors, K., Kieu, L.-M., Ward, J. A., West, A., and Heppenstall, A. (2020). Simulating crowds in
real time with agent-based modelling and a particle filter. Journal of Artificial Societies and Social Simulation,
23(3):3.

Moutoussamy, V., Nanty, S., and Pauwels, B. (2015). Emulators for stochastic simulation codes. ESAIM: Proceedings
and Surveys, 48:116–155.

Niemann, J.-H., Winkelmann, S., Wolf, S., and Schütte, C. (2021). Agent-based modeling: Population limits and
large timescales. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(3):033140.

Oakley, J. and O’Hagan, A. (2002). Bayesian inference for the uncertainty distribution of computer model outputs.
Biometrika, 89(4):769–784.

Oyebamiji, O. K., Wilkinson, D. J., Jayathilake, P. G., Curtis, T. P., Rushton, S. P., Li, B., and Gupta, P. (2017).
Gaussian process emulation of an individual-based model simulation of microbial communities. Journal of Com-
putational Science, 22:69–84.

Oyebamiji, O. K., Wilkinson, D. J., Li, B., Jayathilake, P. G., Zuliani, P., and Curtis, T. P. (2019). Bayesian
emulation and calibration of an individual-based model of microbial communities. Journal of Computational
Science, 30:194–208.

Rasouli, S. and Timmermans, H. (2013). Using emulators to approximate predicted performance indicators of
complex microsimulation and multiagent models of travel demand. Transportation Letters, 5(2):96–103.

Rhodes, D. M., Holcombe, M., and Qwarnstrom, E. E. (2016). Reducing complexity in an agent based reaction
model—benefits and limitations of simplifications in relation to run time and system level output. Biosystems,
147:21–27.

Schoenharl, T. and Madey, G. (2011). Design and Implementation of An Agent-Based Simulation for Emergency
Response and Crisis Management. Journal of Algorithms & Computational Technology, 5(4):601–622.

Shrestha, D. L., Kayastha, N., and Solomatine, D. P. (2009). A novel approach to parameter uncertainty analysis
of hydrological models using neural networks. Hydrology and Earth System Sciences, 13(7):1235–1248.

Swarup, S. and Mortveit, H. S. (2020). Live simulations. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS ’20, pages 1721–1725, Richland, SC. International
Foundation for Autonomous Agents and Multiagent Systems.

Tregubov, A. and Blythe, J. (2020). Optimization of large-scale agent-based simulations through automated ab-
straction and simplification. In International Workshop on Multi-Agent Systems and Agent-Based Simulation,
pages 81–93. Springer.

Wang, M. and Hu, X. (2015). Data assimilation in agent based simulation of smart environments using particle
filters. Simulation Modelling Practice and Theory, 56:36–54.

Zhou, B., Wang, X., and Tang, X. (2012). Understanding collective crowd behaviors: Learning a Mixture model
of Dynamic pedestrian-Agents. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages
2871–2878, Providence, RI. IEEE.

	Towards Real-Time Predictions using Emulators of Agent-Based Models

