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Noiseless linear amplification in quantum target detection using Gaussian states

Athena Karsa, Masoud Ghalaii, and Stefano Pirandola
Department of Computer Science, University of York, York YO10 5GH, UK

(Dated: January 10, 2022)

Quantum target detection aims to utilise quantum technologies to achieve performances in target
detection not possible through purely classical means. Quantum illumination is an example of this,
based on signal-idler entanglement, promising a potential 6 dB advantage in error exponent over
its optimal classical counterpart. So far, receiver designs achieving this optimal reception remain
elusive with many proposals based on Gaussian processes appearing unable to utilise quantum
information contained within Gaussian state sources. This paper considers the employment of a
noiseless linear amplifier at the detection stage of a quantum illumination-based quantum target
detection protocol. Such a non-Gaussian amplifier offers a means of probabilistically amplifying
an incoming signal without the addition of noise. Considering symmetric hypothesis testing, the
quantum Chernoff bound is derived and limits on detection error probability is analysed for both
the two-mode squeezed vacuum state and the coherent state classical benchmark. Our findings show
that in such a scheme the potential quantum advantage is amplified even in regimes where quantum
illumination alone offers no advantage, thereby extending its potential use. For coherent states, the
performance in such a scheme is bounded by one without amplification except for a few specific
regimes which are defined.

I. INTRODUCTION

Quantum mechanics, and the non-classical phenomena
arising from it, have revolutionised many modern tech-
nologies including computation [1–3], communication [4–
6] and sensing [7]. Quantum target detection forms a par-
ticular subset of quantum sensing protocols in which ones
aim is to determine whether or not a target is present in
some region of interest. Quantifying one’s capability of
doing so, and also confirming the benefits of using a quan-
tum strategy, is carried out on the analysis of bounds on
the probability of an error, in particular, comparing the
upper bound to the lower bound of the corresponding,
optimal classical method. Typically this classical bench-
mark will take the form of a coherent state, a quantum
state with minimum uncertainty, with homodyne detec-
tion at the receiver.

Quantum illumination (QI) [8–10] is one of the first
proposed protocols for quantum target detection. The
protocol begins by generating an entangled source com-
prising two modes where one is designated the role of
‘signal’, and sent to probe the target region, while the
other takes the role of the ‘idler’ and is retained for later
joint-measurement at the receiver. Remarkably, QI of-
fers a quantum advantage in target detection despite the
fact that decoherence of entanglement is encoded into
the protocol itself. This quantum advantage is maxi-
mal under constraints of low signal-brightness, low tar-
get reflectivity and high background noise. Within such a
regime the effective signal-to-noise ratio (SNR) of such an
entangled-source transmitter offers a factor of 4 advan-
tage over that of the corresponding classical benchmark
of coherent states with homodyne detection, equivalent
to a 6 dB improvement in error exponent.

Attainment of this well-known 6 dB quantum advan-
tage through QI relies on the use of an optimal joint-
measurement, however, the details of such a measure-

ment remains unknown. Various receiver designs have
been proposed for QI: the phase-conjugating (PC) and
optical parametric amplification (OPA) [11] achieve, at
most, a 3 dB performance enhancement over coherent
states while a receiver based on sum-frequency generation
with feed forward (FF-SFG) [12] is capable of saturating
the quantum Chernoff bound (QCB) for QI, though this
receiver remains technologically out of reach. Experi-
mentally, receivers are generally based on homodyne-type
measurements carried out on the modes to determine the
state’s quadrature values. Owing to the uncertainty prin-
ciple, such measurements necessarily introduce noise to
the system. Further, since homodyne statistics are de-
scribed by marginals of the Wigner function of a state
which is a classical probability distribution. As such, any
homodyne-type measurement on a Gaussian state, whose
Wigner function is positive, results in a description of
quadratures which is realistic, i.e., not purely quantum-
mechanical, and thus unable to demonstrate any viola-
tion of Bell inequalities. Nonetheless, Gaussianity offers
straightforward means of experimental implementation,
with tools associated with Gaussian state generation,
transformation and detection readily available in optics
labs. As such, one could consider as an alternative either
using non-Gaussian measurements on Gaussian states or
Gaussian measurements on non-Gaussian states.

One of the proposed solutions to fight loss in com-
munication links is to use amplifiers. While standard,
Gaussian amplifiers can effectively recover losses in a
classical signal, they necessarily add noise to the sys-
tem rendering the resultant effective SNR bounded by
the original such that no overall gains in performance
can be achieved. Noiseless linear amplifiers (NLAs) offer
a non-Gaussian means of non-deterministically amplify-
ing a quantum state without the addition of noise, at the
expense that when the procedure fails the signal is pro-
jected onto the vacuum state and completely lost [13–16]
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(interested readers are referred to Ref. [17] for a review).
Experimentally, different NLA modules have been real-
ized successfully [18–20]. Previously, NLAs have been
shown to demonstrate an increased robustness against
loss and noise in continuous-variable quantum key distri-
bution [21–24] and quantum repeater [25–27] protocols
allowing for an increase in maximum transmission dis-
tance. They have also been shown to improve the per-
formance of quantum distillation protocols [28, 29] and
quantum enhancement of signal-to-noise ratio [30].
In this paper we consider the use of an NLA at the

detection stage of the QI protocol, effectively creating a
non-Gaussian receiver, which naturally post-selects sig-
nals, for QI with a Gaussian probe. Then, by mapping
the protocol of QI with a two-mode squeezed vacuum
(TMSV) state with an NLA to one without an NLA but
transformed Gaussian state input and quantum channel
parameters, we compute the QCB. Considering the same
procedure for the classical benchmark of coherent states,
we show that under appropriate parameter constraints,
an enhanced quantum advantage may be achieved. In
particular, the resultant performance of a post-quantum
channel NLA on a coherent state is almost always upper-
bounded by the performance of a coherent state without
the NLA. There exists certain regimes, specified in terms
of background level and target reflectivity, within which
there are particular values of NLA gain for which an ad-
vantage over non-NLA coherent state protocols can be
found. On the other hand, the NLA acting on the re-
ceived TMSV quantum channel output always yields an
enhancement in detection capabilities.

II. NOISELESS LINEAR AMPLIFICATION FOR
QI

A. The QI protocol

Consider the production of M independent signal-idler

mode pairs, {â(k)S , â
(k)
I }; 1 ≤ k ≤ M , with mean number

of photons per mode NS for each of the signal and idler
modes, respectively. The signal (S) mode is sent out to
some target region while the idler (I) mode is retained
at the source for later joint measurement. Their joint
state, ρ̂S,I , is modelled as a two-mode, zero-mean Gaus-
sian state [31] with covariance matrix (CM) given by

VS,I =

(

ν1 cqZ
cqZ ν1

)

,

{

1 := diag(1, 1),
Z := diag(1,−1),

(1)

where ν := 2NS + 1 and cq = 2
√

NS(NS + 1) quantifies
the quadrature correlations between the two modes. The
off-diagonal terms can in fact take any value such that
0 ≤ c ≤ 2

√

NS(NS + 1). In the case where the signal-
idler mode pairs are maximally entangled we have c =
cq := 2

√

NS(NS + 1) (the TMSV state [31]) while the
case c = cd := 2NS renders the state just-separable [32,
33].

â
(k)
S

â
(k)
R

target

κ

ρth(NB)

âB

(1− κ)
NLA

â
(k)
I

FIG. 1: Protocol for QI with the use of NLA at the detector.
M independent signal-idler source mode pairs are generated

with annihilation operators â
(k)
S

and â
(k)
I

, respectively, with
1 ≤ k ≤ M . The signal mode is sent to probe the target
region in which target of reflectivity κ is equally-likely to be
present or absent while the idler mode is sent straight to the
receiver. At the receiver, the returning signal, mixed with
the ambient background âB, first encounters an NLA which
probabilistically noiselessly amplifies it before recombination
with the idler in the decision-making process.

Under hypothesis H0, the target is absent so that
the returning mode âR = âB, where âB is in a ther-
mal state with mean number of photons per mode NB.
Under hypothesis H1, the target is present such that
âR =

√
κâS+

√
1− κâB. Here, κ is the target reflectivity,

incorporating all propagation losses associated with the
channel, and âB is in a thermal state with mean num-
ber of photons per mode NB/(1 − κ), so that the mean
noise photon number is equal under both hypotheses (no
passive signature). The conditional joint state, ρ̂iR,I for

i = 0, 1, of the returning (R) mode and the retained idler
(I) is given by, under hypothesesH0 andH1, respectively,

V0
R,I =

(

ω1 0
0 ν1

)

, (2)

V1
R,I =

(

γ1
√
κcqZ√

κcqZ ν1

)

, (3)

where we set ω := 2NB + 1 and γ := 2κNS + ω.

B. NLA action and effective parameters for QI

Consider the entanglement-based QI protocol where
the source is a TMSV state comprising signal and idler
modes given by

|λ〉S,I =
√

1− λ2

∞
∑

n=0

λn |n〉S |n〉I , (4)

with λ2 = NS

NS+1 < 1, where NS is the average number of
photons per mode. Its initial CM is equivalent to that in
Eq. (1).
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Consider the action of a generic Gaussian channel with
transmissivity τ , and excess noise ǫ on a single mode A
of an arbitrary input TMSV state with CM γA,B. The
output CM is given by

γ′
A,B =

(

τ(V +B + ǫ)1
√

τ(V 2 − 1)Z
√

τ(V 2 − 1)Z V 1

)

, (5)

where V = (1+λ2)/(1−λ2) is the variance of the thermal
state TrA |λ〉〈λ| and B = (1−τ)/τ is the input equivalent
noise due to losses.
Now consider the implementation of a NLA to mode

A prior to measurement. It can be shown that [21] the
CM γ′

A,B(λ, τ, ǫ, g) of the amplified state, post NLA ac-

tion, is equivalent to the CM γ′
A,B(λ

g , τg, ǫg, g = 1) of
an equivalent system with TMSV parameter λg, under
action of a Gaussian channel with transmissivity τg and
excess noise ǫg, without the use of an NLA. These effec-
tive parameters are given by

λg =λ

√

(g2 − 1)(ǫ − 2)τ − 2

(g2 − 1)ǫτ − 2
,

τg =
g2τ

(g2 − 1)τ
(

1
4 (g

2 − 1)(ǫ− 2)ǫτ − ǫ+ 1
)

+ 1
,

ǫg =ǫ− 1

2
(g2 − 1)(ǫ− 2)ǫτ. (6)

For the above system of effective parameters to represent
an actual physical system, the following constraints must
be satisfied: 0 ≤ λg < 1, 0 ≤ τg ≤ 1 and ǫg ≥ 0. The
first is always satisfied when

0 ≤ λg < 1 ⇒ 0 < λ <

(
√

(g2 − 1)(ǫ− 2)τ − 2

(g2 − 1)ǫτ − 2

)−1

.

(7)
The second and third conditions are satisfied provided
the excess noise ǫ < 2 and the gain is smaller than a
maximum value given by

gmax =
√

ǫ(τ(ǫ−4)+2)+4

√

τ(ǫ−2)+2
ǫ

−2
√

ǫ(τ(ǫ−2)+2)+4τ−4

τ(ǫ−2)2 .

(8)

Equivalences can be made between Eq. (5) and Eq. (3):
For QI we consider a TMSV state with NS mean pho-
tons per mode such that the variance V = 2NS + 1
and

√
V 2 − 1 = 2

√

NS(NS + 1) while Gaussian channel
transmissivity τ ≡ κ, the target reflectivity. Of course,
for real-world target detection this parameter would also
incorporate other losses and gains given by the radar
equation. In QI, a portion κ of the signal is mixed with
the thermal background, which comprises NB/(1 − κ)
mean photons per mode. Taking into account this rescal-
ing, when the target is present the returning signal mode

takes the form

κ(2NS + 1) + (1 − κ)

(

2NB

1− κ
+ 1

)

≡ τV +Bτ

(

2NB

1− τ
+ 1

)

= τ

(

V +B +
2NB

τ

)

≡ τ(V +B + ǫ),

(9)

where excess noise has a simple relation withNB given by
ǫ = 2NB

τ
≡ 2NB

κ
. Thus by considering an equivalent sys-

tem of effective parameters in place of the two conditional
CMs for QI given in Eqs. (2) and (3), one can consider
the additional action of an NLA on the returning signal
modes at the receiver, before joint measurement with the
retained idler.
Note that the constraint on excess noise to maintain

the effective system’s physicality means that ǫ = 2NB

κ
<

2, i.e., NB < κ. Since 0 ≤ κ ≤ 1, we have the global
constraint NB < 1 on the mean number of thermal pho-
tons associated with the background. Typically, for QI,
the parameter constraints involve very high background,
NB ≫ 1, which is naturally satisfied in the microwave
domain at room temperature, and κ ≪ 1. However these
are not strictly necessary for a quantum advantage exists;
provided NS ≪ 1 quadrature correlations cq are max-
imised and it is from here where the quantum advantage
arises. The new constraint on NB introduced here means
that, comfortably, at room temperature (T = 300K) ap-
plications the protocol described here is valid for fre-
quencies & 4THz, beginning at the higher end of the
microwave. Lower frequencies can meet this requirement
as long as the temperature of application is small enough,
e.g., for operations at ∼ 1GHz we require T . 0.07K.
Further, for a given environment (NB) and target pa-

rameters (κ), Eq. (7) implies that the maximum value of
signal energy, NS , which may be employed is given by

Nmax
S (g) =

1−NB(g
2 − 1)

κ(g2 − 1)
, (10)

which is maximised when g = 1, i.e., no amplification
occurs and the protocol is equivalent to that of standard
QI.
The action of the NLA is a non-deterministic one.

That is, it provides a tool for heralded noiseless quantum
amplification, i.e., ideally, the transformation |α〉 → |gα〉,
where g > 1 is the NLA gain, with some probability
of success, P (g) [14–16]. In other words, under NLA
action the number of probings used for the detection
process transforms as M → MP (g) with the remaining
M(1 − P (g)) channel uses discarded. Thus, with NLA
action we are considering post-selected QI and the prob-
lem of hypothesis testing becomes one of two stages and
four potential outcomes:

H00 : Target is absent, and the NLA is unsuccessful;

H01 : Target is absent, and the NLA is successful;
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H10 : Target is present, and the NLA is unsuccessful;

H11 : Target is present, and the NLA is successful.

Post-selection essentially discards all events correspond-
ing to hypotheses H00 and H10 and the problem is re-
duced to standard QI involving the discrimination of only
two hypotheses H01 and H11, subject to M → MP (g).

C. Classical benchmarking with coherent states

In the absence of an idler the best strategy is to use
coherent states. The signal is prepared in the coherent
state |

√
2NS〉 which is then sent out to some target re-

gion. Under H0, the received returning mode is in a ther-
mal state with mean photon number NB and CM equal
to ω1, i.e., âR = âB. Under H1, the signal is mixed with
the background such that âR =

√
κâS +

√
1− κâB with

κ ∈ (0, 1), corresponding to a displaced thermal state
with mean vector (

√
2κNS, 0) and CM ω1.

Consider the thermal state ρ̂th(λth) with Fock basis
representation

ρ̂th(λth) = (1 − λ2
th)

∞
∑

n=0

λ2n
th |n〉〈n| , (11)

displaced by complex β yielding the state ρ̂ =
D̂(β)ρ̂th(λth)D̂(−β). Such a state can be written as an
ensemble of coherent states,

ρ̂ =

∫

P (α) |α〉〈α| dα, (12)

where P (α) = e|α|2

π2

∫

e|u|
2〈−u|ρ̂|u〉eu⋆α−uα⋆

du, is the P -
function [21].
After successful amplification, realised by the operator

Ĉ = gn̂ where n̂ is the Fock basis number operator, the
coherent state |α〉 transforms as

Ĉ |α〉 = e
|α|2

2 (g2−1)|gα〉 (13)

such that the initial state after NLA action becomes

ρ̂′ = Ĉρ̂Ĉ =

∫

P (α)e|α|
2(g2−1) |gα〉〈gα|dα. (14)

After change of variables it can be found that the result-
ing state after NLA action obeys the following relation
of proportionality:

ρ̂′ ∝ D̂(ḡβ)ρ̂th(gλth)D̂(−ḡβ), (15)

where ḡ = g(1− λ2
th)/(1− g2λ2

th). That is, as in the case
for a TMSV source, the result of a displaced thermal
state acted on by an NLA is equivalent to a displaced
thermal state with modified effective parameters without
amplification, subject to the constraint that gλth < 1 to
ensure physicality.

For QI applications, the initial coherent state
∣

∣

√
2NS

〉

is sent through a quantum channel with reflectiv-
ity/transmittance κ such that the displacement can be
taken as β =

√
2κNS . Meanwhile, the variance of the

thermal state is given by

1 + λ2
th

1− λ2
th

= 2NB + 1 = ω ⇒ λ2
th =

NB

1 +NB

. (16)

Thus, action of the NLA on the displaced thermal state
with these parameters yields the following transforma-
tions: for the mean,

√

2κNS → g
1− λ2

th

1− g2λ2
th

√

2κNS

=
g

1 +NB(1− g2)

√

2κNS = β′.

(17)

Then,

λ2
th =

NB

1 +NB

→ g2
NB

1 +NB

= λ′2
th, (18)

such that the effective variance becomes

1 + λ′2
th

1− λ′2
th

=
1 +NB(1 + g2)

1 +NB(1− g2)
= ω′. (19)

D. Performance bounds for QI with NLA

1. TMSV state with NLA

Using the tools of App. A the QCB of the maximally-
entangled TMSV source for QI may be computed. This
is done using mathematical computational software, the
full form too long to be exhibited here, but its behaviour
is plotted in Figs. 2 and 3 and discussed in Sec. II E.

2. Coherent state with NLA

As with the TMSV source, the tools of App. A may be
used to compute the QCB of a coherent state with am-
plification by considering an equivalent protocol, with-
out amplification, using modified effective parameters
for mean and variance given by Eqs. (17) and (19), re-
spectively. For equally-likely hypotheses, the single-use
(M = 1) QCB for a coherent state with NLA amplifica-
tion takes the exact form

PQCB,M=1
CS+NLA ≤ 1

2
exp

(

−g2κNS

(√
NB + 1− g

√
NB

)2

(1 +NB − g2NB)3

)

,

(20)
assuming successful amplification for that single use.
Taking into account the number of successful probings

used to achieve this bound, each occurring with proba-
bility of success P (g), we have for a total of M -uses, with
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CS + NLA
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(i)  NS = 0.9

(ii)  NS = 0.1

FIG. 2: Error probability exponents for QI using a maximally-
entangled TMSV source with NLA (red) at the receiver, com-
pared to a coherent state source with the same NLA (blue) as
a function of NLA gain, g. In both panels, parameters are set
such that NB = 0.1, κ = 0.2 such that the maximum source
energy applicable across the range, Nmax

S (gmax) ≃ 0.96. Thus,
values are plotted for (i) NS = 0.9 and (ii) NS = 0.1. The
total number of probes M = 100.

M > 1,

PQCB
CS+NLA ≤

1

2
exp

(

−MP (g)g2κNS

(√
NB + 1− g

√
NB

)2

(1 +NB − g2NB)3

)

,
(21)

with similar consideration employed in the computation
of the TMSV + NLA QCB in Sec. IID 1.

The QCB of such a coherent state transmitter, without
amplification, may be readily computed and takes the
exact form [9]

PQCB
CS ≤ 1

2
exp

(

−MκNS

(

√

NB + 1−
√

NB

)2
)

.

(22)
Regimes for which the use of an NLA yields a perfor-
mance enhancement in coherent state protocols is studied
and discussed in detail in Sec. II F.

TMSV + NLA

CS + NLA
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(i)  M = 10
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FIG. 3: Error probability exponents for QI using a maximally-
entangled TMSV source with NLA (red) at the receiver, com-
pared to a coherent state source with the same NLA (blue)
as a function of NLA gain, g. In both panels, parameters are
set such that NB = 0.1, κ = 0.2, while for each value of g, the
signal energy is set very close (99%) to its local maximum,
i.e., NS = Nmax

S (g). Total number of probes is set to for (i)
M = 10 and (ii) M = 100.

E. Benchmarking QI with NLA

1. Comparison of NLA protocols

Since the coherent state forms the ideal, minimum-
uncertainty state and serves as the theoretically optimal
classical benchmark, Eq. (21) allows for the benchmark-
ing of the TMSV with the use of an NLA for target de-
tection.

Taking into account constraints on effective parameters
given by Eq. (6), Figs. 2 and 3 plot the performance of
the TMSV state with NLA relative to that of a coherent
state with NLA. Note that the full, exact forms of the
QCB have been employed in the computation, that is,
without any assumptions as to the relative magnitude of
parameter values. Further, the plots have been generated
assuming a maximum theoretical probability of success,
given by P (g) = 1/g2 to model the absolute limits of
NLA performance.

In Fig. 2, the error probability exponent is plotted as
function of the NLA gain, g, up to and including gmax, for
fixed environmental parameters NB = 0.1 and κ = 0.2
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(ii)  NS = 0.1
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FIG. 4: Error probability exponents for QI using a maximally-
entangled TMSV source with NLA (red, solid) at the receiver,
compared to a coherent state source with the same NLA (blue,
solid) as a function of the number of probes, M . Also included
are performance bounds without the use of the NLA (dashed).
In both panels, parameters are set such that NB = 0.1, κ =
0.2 such that the maximum source energy applicable across
the range, Nmax

S (gmax) ≃ 0.96, with g = gmax ≃ 2.1. Thus,
values are plotted for (i) NS = 0.9 and (ii) NS = 0.1.

with the total number of probings M = 100. Based on
these parameters it can be found that the maximum en-
ergy valid across all values of g, maintaining physicality,
is given by Nmax

S (gmax) ≃ 0.96 thus results are plotted
for two values of NS: 0.9 and 0.1. It can clearly be seen
that an increase in the gain, g, has a much larger and
more valuable effect on the the TMSV state, compared
to the same amplification of the returning coherent state.
Note that where g = 1 the performance coincides with
that of the standard QI protocol without any amplifica-
tion. As expected, smaller values of source energy NS

are favoured by the QI with a TMSV source compared
to the coherent state since it is for small NS where cross-
correlations, cq = 2

√

NS(NS + 1), are maximised.

Fig. 3 plots the same function as Fig. 2 with much
of the same parameters, however in this scenario rather
than considering the global maximum of NS , applica-
ble across all values of g, up to and including gmax, we
consider a source whose energy is given by (99% of) the
local maximum. That is, for each value of g ∈ [0, gmax],
NS is set such that NS = Nmax

S (g). Of course, Nmax
S

TMSV + NLA

CS + NLA

TMSV

CS NS = 0.07
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)

FIG. 5: Error probability exponents for QI using a maximally-
entangled TMSV source with NLA (red, solid) at the receiver,
compared to a coherent state source with the same NLA (blue,
solid) as a function of the number of probes, M . Also included
are performance bounds without the use of the NLA (dashed).
In both panels, parameters are set such that NB = 0.005,
κ = 0.1 such that the maximum source energy applicable
across the range, Nmax

S (gmax) ≃ 0.075, with g = gmax ≃ 11.
Values are plotted for NS = 0.07.

is a decreasing function of g so the behaviour observed
for g → 1, where NS is typically very large, the coherent
state outperforms the TMSV. However small increases in
g show a large quantum advantage can be achieved, even
at the maximal NS value. This quantum advantage may
be amplified in cases where the source energy must be
kept low, as in stealth surveillance or biomedical sensing
where samples may be sensitive to high energies, due to
the freedom available in decreasing NS below the value
used in this comparison. Making use of such freedom
will, of course, amplify entanglement benefits.

2. Comparison with non-NLA protocols

While Sec. II E 1 shows that the use of NLAs yields
improvement in performance for TMSV protocols over
coherent state protocols, there is, of course, a question
as to whether or not their use is beneficial when one can
simply forgo the NLA and keep all M channel uses in
the detection. After all, successful amplification comes at
the expense of a proportion, QCBs for target detection,
both for QI with a TMSV source and coherent states (see
Ref. [10] for full details), may be recovered by simply
setting g = 1.
Figs. 4 and 5 plot the error probability exponents for

QI using a maximally entangled TMSV source with an
NLA at the receiver alongside that of a coherent state
source using the same NLA. For comparison and to show
that the NLA is of actual value, we plot the QCBs for the
same protocols without the use of the NLA. In these pro-
tocols all M probings are used at the receiver in decision-
making. Results show that there exists a clear advantage
in employing NLAs at the receiver compared to without.
Note that Figs. 2 and 3 are given to qualitatively show
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Fig. 4(i) Fig. 4(ii) Fig. 5

PQCB
QI+NLA . 0.00044ǫ1 0.0033ǫ1 0.000092ǫ2

PQCB
CS+NLA . 0.44ǫ1 0.91ǫ1 0.30ǫ2

PQCB
QI . 0.37ǫ1 0.87ǫ1 0.17ǫ2

PQCB
CS . 0.43ǫ1 0.91ǫ1 0.19ǫ2

TABLE I: QCBs for both QI and coherent state illumination
whenM = 106 for the parameter regimes considered in Figs. 4
and 5. The QCB is given in the form xǫ, where for Fig. 4,
ǫ = ǫ1 ≃ 113214, and for Fig. 5, ǫ = ǫ2 ≃ 4000.

the behaviour of NLA performance for each of the two
considered Gaussian sources, as a function of NLA gain,
when considering variations in system parameters. Of
course, the use of the QCB for evaluation of error prob-
abilities in problems like target detection is only truly
valid in the limit of a large number of uses, i.e., M ≫ 1.
Numerical limitations render the inclusion of such large

values in the plots not possible however, by considering
error probabilities at M = 106, it can be seen that the
observed behaviours persist. The associated QCBs in
this limit are given in Table I.

F. Quantum-inspired coherent state target
detection with an NLA

Comparing the error-exponents of Eqs. (22) and (21)
allows for the conditions under which an advantage in
using an NLA for coherent state illumination to be de-
termined in the limit of M ≫ 1.
Broadly speaking, for arbitrary P (g), there are two

physical regimes where this occurs: the first coincides
with the operation in the optical domain where an ad-
vantage is possible for all P (g) > 0 when NB = 0 and

gain, g ≥
√

1/P (g). Note that this recovers the theo-
retical upper bound on the probability of success for the
NLA [14–16], that is, P (g) ≤ 1/g2. The second regime,
valid for non-zero background, NB > 0, as studied here,
provides a global upper bound on possible values of NLA
gain yielding an advantage given by g <

√

(1 +NB)/NB.
Further, there exists a lower bound given by the root of
a polynomial dependent also on NB and P (g).
For simplicity, let us assume that our NLA operates

with maximal probability of success such that P (g) =
1/g2. Then, in the limit of large M , the conditions for
an NLA advantage using coherent states reduces to























NB = 0, ∀g ∈ R;
0 < NB < 1

3 , Root2 [ξ] ≤ g <
√

1+NB

NB
;

NB = 1
3 , 1 ≤ g < 2;

NB > 1
3 , 1 ≤ g <

√

1+NB

NB
,

(23)

where Root2[ξ] denotes the second root of the polynomial

gLB

gUB

gmax
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FIG. 6: Conditions for which an advantage may be found
in coherent state target detection using an NLA with gain g
compared to without, as a function of mean number of back-
ground photons per mode, NB . Each panel shows results
for differing values of target reflectivity: κ = 0.2, κ = 0.5
and κ = 0.9. Upper- and lower- bounds of Eq. (23), given

by
√

(1 +NB)/NB (blue, solid) and Root2[ξ] (blue, dashed),
respectively, are shown including only values of physical in-
terest where g ≥ 1. Shaded is the region of valid NLA gain
g for which an advantage may be found which is ultimately
bounded by gmax = gmax(NB , κ) (red). The border point of
Eq. (23) where NB = 1/3 is also shown (black, vertical).
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equation ξ = 0, with

ξ = ξ(g,NB) = −4− 4NB +N3
B

+ (8NB + 8N2
B + 2N3

B)g + (8NB + 4N2
B −N3

B)g
2

+ (−8N2
B − 4N3

B)g
3 + (−4N2

B −N3
B)g

4

+ 2N3
Bg

5 +N3
Bg

6.

(24)

Given in Eq. (23) are only conditions whose parameter
values are physically possible. Note, also, the conditions
imposed by the methodology used here, demanding that
NB < κ ⇒ NB < 1. As a result, the last condition, valid
for any 1/3 < NB < 1 becomes

√
2 < g ≤ 2. Mean-

while, for small background values, 0 < NB < 1/3, g
initially appears to potentially be arbitrarily large. On
the other hand, and, again, as a result of the methodol-
ogy used here, Eq. (8) stipulates that for a given regime,
characterised in terms of NB and κ, there exists a max-
imum gain, gmax, which physically cannot coincide with
the upper bounds given in Eq. (23). Further, since gmax

is a decreasing function of κ any potential regime for an
advantage with the NLA quickly diminishes when κ is in-
creased. Fig. 6 shows qualitatively these behaviours for
increasing values of κ and shades regions of NLA gain,
subject to constraints and bounds of Eq. (23) for which
an advantage may be found. Thus, while the NLA can
provide an advantage for coherent states, the regions in
which this is possible constrained to limited values of
NLA gain g, a constraint which does not exist for the
TMSV state. This has been shown in previous sections
and results for parameter regimes wherein the use of an
NLA for a coherent state protocol is not advantageous.
Nonetheless, the NLA gain is a parameter which may
be completely controlled experimentally and, as such,
could provide a means of enhancement in a quantum-
inspired target detection protocol using a semi-classical
coherent state source alongside a quantum mechanical
receiver comprising an NLA.
In a similar manner to Sec. II E, it is possible to

now study regimes in which a quantum-inspired coher-
ent state protocol using an NLA yields an enhancement
in target detection. This will be done considering the
three non-optical, i.e., for NB > 0, regimes outlined in
the conditions of Eq. 23.
Fig. 7 plots the error probability exponents, found via

the QCB, for quantum target detection in regimes where
the use of an NLA at the receiver yields an advantage for
the coherent state source. The results show that while
the regimes in which such an advantage is possible are
limited, the potential gain in the limit of a large num-
ber of uses is significant, by many orders of magnitude.
Further, as can be seen in Fig. 7(b), the NLA allows the
coherent state to even surpass the TMSV state in perfor-
mance. Though all cases show that a TMSV state source
with the same NLA remains advantageous and outper-
forms the corresponding semi-classical protocol.
Note that, as before, numerical limitations mean that

large values of M , where the QCB is considered valid,
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FIG. 7: Error probability exponents for quantum target de-
tection in regions where there is an advantage for coherent
states with an NLA (blue, solid) compared to its correspond-
ing non-NLA (blue, dashed) protocol. Also included are per-
formance bounds for the TMSV state both with an NLA
(red, solid) and without (red, dashed). For all panels, sig-
nal energy is set very close (99%) to the regime’s maximum,
i.e., NS = Nmax

S (gmax), setting g = gmax, for parameters:
(a) NB = 0.25, κ = 0.3; (b) NB = 1/3, κ = 0.5; and (c)
NB = 0.6, κ = 0.7.

cannot be included in the plots of Fig. 7. But, considera-
tion of the error probabilities at M = 106 show that the
behaviours and gaps in performance observed persist for
M ≫ 1.
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III. CONCLUSION

This paper has implemented the action of an NLA at
the detection stage of the QI protocol for the purposes
od quantum target detection. By mapping the resultant
protocol to an equivalent one without the use of an NLA
but modified effective parameters, the QCB for symmet-
ric quantum hypothesis testing has been computed. This
has been done for both the maximally-entangled TMSV
state and the theoretically optimal classical benchmark,
the coherent state, with comparisons made between the
two assuming a theoretically maximal probability of suc-
cess for the NLA.
Results show that the employment of non-Gaussian re-

ceivers for Gaussian sources in quantum target detection
can be beneficial. In particular, an improvement in ef-
fective signal-to-noise ratio, resulting in a diminished er-
ror probability in target detection, occurs when the NLA
is used with a TMSV source. This improvement, how-
ever, does not occur when the Gaussian source is the
semi-classical coherent state; in this case, the perfor-
mance is almost always bounded by the coherent state
performance when no NLA is used which, in for applica-
tions in the optical domain, may be achieved through
homodyne detection. Despite this, particular regimes
and conditions for NLA gain are provided for which an

enhancement in target detection may be achieved with
such a semi-classical source; these results suggest a po-
tential quantum-inspired target detection protocol based
on experimentally accessible coherent state sources with
an NLA. Such a protocol allows for improvements in tar-
get detection that are, in some regimes, surpassing the
performance of the TMSV state without an NLA.

The mapping used to compute the bounds results in a
system of effective parameters for which a quantum ad-
vantage is not typically possible in a non-NLA protocol.
At least, within such a regime the maximal advantage in
error exponent certainly falls short of the potential value
of 6 dB. Remarkably, the use of an NLA, even when lim-
ited to such a regime, still amplifies the performance of
the TMSV state thereby extending the scope of of appli-
cability of QI-based quantum target detection.
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Appendix A: The quantum Chernoff bound (QCB)

The binary decision between target absence and pres-
ence is reduced to the discrimination of the two quantum
states ρ̂iR,I with i = 0, 1 [34–36].
For Gaussian states, closed formulae exist for the com-

putation of bounds on the minimum error probability
in quantum state discrimination, such as the quantum
Chernoff bound (QCB) [37]

Pmin ≤ PQCB :=
1

2

(

inf
0≤s≤1

Cs

)

,

Cs := Tr
[

(ρ̂0R,I)
s(ρ̂1R,I)

1−s
]

, (A1)

where the minimisation of the s-overlap Cs occurs over
all 0 ≤ s ≤ 1. For the problem under study, the minimum
is achieved for s = 1/2 that corresponds to the simpler
quantum Bhattacharyya bound [31]

PQBB :=
1

2
Tr
[√

ρ̂0R,I

√

ρ̂1R,I

]

. (A2)

Consider two arbitrary N -mode Gaussian states,
ρ̂0(x0,V0) and ρ̂1(x1,V1), with mean xi and CM Vi

with quadratures x̂ = (q̂1, p̂1, . . . , q̂N , p̂N)T and associ-
ated symplectic form

Ω =
N
⊕

k=1

(

0 1
−1 0

)

. (A3)

We can write the s-overlap as [39]

Cs = 2N
√

detΠs

detΣs

exp

(

−dTΣ−1
s d

2

)

, (A4)

where d = x0 − x1. Here Πs and Σs are defined as

Πs := Gs(V
⊕
0 )G1−s(V

⊕
1 ), (A5)

Σs := S0

[

Λs

(

V⊕
0

)]

ST
0 + S1

[

Λ1−s

(

V⊕
1

)]

ST
1 , (A6)

introducing the two real functions

Gs(x) =
2s

(x+ 1)s − (x− 1)s

Λs(x) =
(x+ 1)s + (x− 1)s

(x+ 1)s − (x− 1)s
, (A7)

calculated over the Williamson forms V⊕
i :=

⊕N

k=1ν
k
i 12,

where V⊕
i = SiV

⊕
i S

T
i for symplectic Si and νki ≥ 1 are

the symplectic spectra [40, 41].


