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Abstract

Despite recent stereo matching networks achieving im-

pressive performance given sufficient training data, they

suffer from domain shifts and generalize poorly to unseen

domains. We argue that maintaining feature consistency

between matching pixels is a vital factor for promoting

the generalization capability of stereo matching networks,

which has not been adequately considered. Here we ad-

dress this issue by proposing a simple pixel-wise contrastive

learning across the viewpoints. The stereo contrastive fea-

ture loss function explicitly constrains the consistency be-

tween learned features of matching pixel pairs which are

observations of the same 3D points. A stereo selective

whitening loss is further introduced to better preserve the

stereo feature consistency across domains, which decorre-

lates stereo features from stereo viewpoint-specific style in-

formation. Counter-intuitively, the generalization of fea-

ture consistency between two viewpoints in the same scene

translates to the generalization of stereo matching perfor-

mance to unseen domains. Our method is generic in nature

as it can be easily embedded into existing stereo networks

and does not require access to the samples in the target do-

main. When trained on synthetic data and generalized to

four real-world testing sets, our method achieves superior

performance over several state-of-the-art networks. The

code is available online1.

1. Introduction

Estimating depth from images is a fundamental problem

in many computer vision applications such as autonomous

driving [42] and robot navigation [1]. Stereo matching is a

solution to this task, which finds the matching correspon-

*Corresponding author: Xiao Bai (baixiao@buaa.edu.cn).
1https://github.com/jiaw-z/FCStereo

Left Image PSMNet Ours

(a)

(b)

(c)

Figure 1. Domain generalization performance of PSMNet with

and without our method on samples from (a) KITTI, (b) Middle-

bury, and (c) ETH3D training sets. All models are trained on the

synthetic SceneFlow dataset.

dences between stereo image pairs and recovers the depth

through triangulation.

Stereo matching is traditionally solved by a matching

cost computation process, which usually consists of four

steps [38]: matching cost computation, cost aggregation,

disparity regression, and disparity refinement. Recently,

end-to-end stereo matching networks [4,15,21,30,57] have

been developed based on the cost computation process of

traditional methods and achieved state-of-the-art accuracy.

However, the poor generalization performance on unseen

domains has been a major challenge for their real-world ap-

plications (see Figure 1 for an example).

A common approach to achieve generalization capability

is to learn domain-invariant representations [23, 24, 26, 32].

Some stereo matching networks [3, 40, 58] have made at-

tempts to tackle this issue by conducting feature-level align-

ment to obtain domain-invariant features. These works

project the inputs into a domain-invariant feature space, re-

ducing the reliance on domain-specific appearance proper-

ties and showing more robustness to domain shifts.

Here, we present a weaker constraint, stereo feature con-
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sistency, for domain generalized stereo networks. For each

point in the left image, stereo matching looks for its match-

ing one in the right view, which naturally requires robust-

ness to viewpoint changes. A domain generalized stereo

network is expected to generalize this matching ability to

unseen domains, which means, in a nutshell, the general-

ization of ”robustness to viewpoint changes”. From this

perspective, we believe what a stereo network needs to gen-

eralize is the matching relationship, behaving as the fea-

ture consistency of paired points. For example, traditional

methods, which are largely domain-agnostic [36, 43], com-

pute the matching cost directly on RGB images [17]. Al-

though image contents differ considerably across different

domains, the matching pixels have consistent expressions

between the stereo viewpoints in most cases, guarantee-

ing stable matching cost computation to produce reliable

disparity maps. We further verified this intuition to a toy

pipeline that combines a cost volume constructed directly

from RGB images with the common PSMNet cost aggre-

gation module (cf. Appendix A). Such a simple pipeline

with consistent stereo representations also shows a signif-

icant improvement in domain generalization performance.

Generally, the appearance inconsistency within a stereo

pair is limited to a certain range, thus the matching points

being very similar. For example, the corresponding points

should share the identical incident light as well as albedo

and differ in the shading that appeared in left and right

cameras. However, when the learned features are used to

construct the cost volume, the feature consistency is not

preserved, as shown in Figure 2a. And surprisingly, the

features are inconsistent even in the training set, which is

contrary to the common intuition that the weight-sharing

Siamese feature extractor has dealt with stereo viewpoint

changes and extracted consistent features.

In this paper, we address the domain generalization for

stereo matching methods by developing the Feature Con-

sistency Stereo networks (FCStereo). Here comes two chal-

lenges: (a) obtaining a high feature consistency on the train-

ing set and (b) generalizing this consistency across differ-

ent domains. We argue that the difficulty of (a) is due to

the lack of explicit consistent constraints on features which

causes overfitting. We propose the stereo contrastive feature

(SCF) loss to encourage the matching points to be close in

the representation space. To solve the consistency general-

ization problem (b), we utilize a proper normalization oper-

ation and constrain the feature statistics. A stereo selective

whitening (SSW) loss is further introduced to suppress in-

formation that is sensitive to stereo viewpoint changes. Fig-

ure 2b illustrates the feature differences in a channel-wise

manner and shows the role of the two proposed loss terms.

SCF loss encourages features to be consistent on the train-

ing set. However, we see a degradation of consistency on

unseen domains. SSW loss yields a relatively lower con-
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Figure 2. Analysis about feature consistency of matching points.

(a) Evaluation of popular stereo matching backbones on four un-

seen domains. (b) Visualization of per-channel feature inconsis-

tency. Left-right: PSMNet baseline, with our contrastive loss (C),

with our whitening loss (W), and with both. More details about

learned feature are shown in Appendix C.

sistency compared to the contrastive loss, while the consis-

tency is more robust to domain changes. Jointly using both

loss terms enables high feature consistency in various do-

mains. We apply the proposed method to different stereo

matching backbones in the experiment and show a signifi-

cant improvement in generalization performance. It demon-

strates that the generalization of feature consistency be-

tween two viewpoints in the same scene translates to the

generalization of stereo matching performance to un-

seen domains though appears counter-intuitive. A quali-

tative illustration is shown in Figure 1. The main contribu-

tions of this paper are as follows:

• We observe that most recent stereo methods learn in-

consistent representations for the pairs of matching

points, and demonstrate that the generalization perfor-

mance of stereo networks can be boosted by maintain-

ing a high stereo feature consistency.

• We propose two loss functions, namely the stereo con-

trastive feature loss and the stereo selective whitening

loss, to encourage the stereo feature consistency across

domains. These two losses could be easily embedded

in the existing stereo networks.

• Our method is applied to several stereo network archi-

tectures and shows a significant improvement in their

domain generalization performance.
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2. Related Work

Deep learning based stereo matching. Since MC-CNN

[56] introduced a convolution neural network (CNN) to

matching cost calculation, many deep learning based meth-

ods have been proposed for stereo matching. Early works

simply replace RGB inputs with expressive learned features

for higher accuracy, leaving the following traditional steps

for cost computation unchanged. For these methods, a cru-

cial attribute of learned features is the consistency between

matching pixels [9, 59].

More recently, many methods solve the task in an end-

to-end way [4, 22, 30, 46, 60]. Two types of solutions are

normally followed by these methods: correlation cost vol-

ume based deep neural networks with 2D cost aggregation

and concatenation cost volume based stereo networks with

3D cost aggregation. The correlation methods are usually

more efficient but cause information loss. DispNetC [30]

is the first method that introduces end-to-end regression for

stereo matching and builds the cost volume in a correlation

way. The correlation based matching strategy is adopted by

many works [28,44,52,55] and has achieved impressive and

efficient performance. The second category concatenates

the stereo features to make full use of information. For ex-

ample, GCNet [21] stacks two view features to build a 4D

cost volume and first utilizes 3D convolution for matching

cost aggregation. Methods in this category [4, 48, 57, 60]

leverage more complete information of features and have

produced higher accuracy on various stereo benchmarks.

Our method can be seamlessly integrated into the existing

end-to-end stereo networks and improve their generaliza-

tion performance.

Domain generalized stereo matching. It is important to

develop stereo matching networks that are robust to unseen

domains. DSMNet [58] uses a domain normalization layer

to reduce the shifts of image-level styles and local contrast

variations, followed by a trainable non-local graph-based

filter to smooth the local sensitive local details. CFNet [40]

produces a fused cost volume representation for captur-

ing global and structural information to construct a stereo

matching network that is robust to domain changes. Cai

et al. [3] point out that the poor generalization of stereo net-

works is caused by the strong dependence of the network on

the image appearance, and propose to use a combination of

matching functions for feature extraction.

Instance discrimination and contrastive learning.

Instance-level discrimination, regarding each instance as a

distinct class of its own, plays an important role in repre-

sentation learning. This paradigm is formulated as a metric

learning problem, where features of positive sample pairs

are encouraged to be close and those of negative sample

pairs are forced to be apart [50]. The following work [41]

adopts this idea to specific downstream tasks and shows

that the quality of learned representations is heavily affected

by the strategy of negative pair selection [41]. Recently,

following the idea of instance discrimination, contrastive

learning has made remarkable success in self-supervised

feature representation learning. MoCo and its variant [5,16]

treat contrastive learning as a dictionary look-up process

and maintain a momentum updated queue encoder. Some

attempts extend this momentum-based contrastive learning

framework to pixel-level feature learning [35, 47, 51]. Dif-

ferent from these dense contrastive learning methods, we

define positive samples using correspondences given by the

ground truth disparity, which is directly tailored to the main

task.

Feature covariance. Previous studies have demon-

strated that the correlations between feature channels cap-

ture the style information of images [11, 12]. This theory is

further explored in style transfer [12, 25], image-to-image

translation [6], and others [29, 33]. More recently, [7] pro-

pose a selective whitening method to remove the style in-

formation that is sensitive to domain shifts for robust seg-

mentation, where the style information selection depends

on the manually designed photometric transformation. Our

approach is inspired by the selective whitening [7], how-

ever, we select the information sensitive to stereo viewpoint

changes, without relying on photometric transformation.

3. Approach

In this section, we present the details of our method, in-

cluding a stereo selective whitening loss on the intermediate

features and a stereo contrastive feature loss on the final fea-

tures. Figure 3 depicts the whole framework of our method,

where the stereo contrastive feature loss and stereo selective

whitening loss are applied to a stereo matching network for

encouraging the stereo feature consistency across domains.

3.1. Stereo Contrastive Feature Loss

Stereo features from the last feature extraction layer are

used to construct the cost volume, which is the most im-

portant internal representation in a deep stereo network.

At this stage, we impose a consistency constraint on the

features of stereo views. Inspired by the recent success

of contrastive learning on unsupervised feature learning

via optimizing the pairwise (dis)similarity, we introduce a

contrastive learning mechanism on stereo features, namely

the Stereo Contrastive Feature (SCF) loss. The proposed

contrastive learning mechanism includes a pixel-level con-

trastive loss applied on stereo features, and a dictionary

queue with a momentum updated key encoder, which in-

troduces a rich set of negative samples from different pairs

and further improves the feature consistency.

Positive pairs. We consider the pixel vectors in stereo

views as a positive pair if their pixel coordinates are the pro-

jected locations of the same 3D point. These positive pairs

can be collected using the ground truth disparity d of the left
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Figure 3. Structure of method. The top part shows the forward pass that the network extracts features from input pairs and regresses the

disparity on the feature based cost volume. At the bottom are the proposed two losses for maintaining the feature consistency. As part of

the feature contrastive loss, the key encoder for the right image is implemented as a moving average of the query encoder to alleviate the

effects of negative sample selections. In the inference process, we use the query encoder to extract features for both left and right images,

which is strictly identical to the standard pipeline.

view, i.e., the query feature in the left view φl
u,v are paired

with the key feature in the right view φr
u−d,v . Therefore,

maintaining stereo feature consistency simply becomes pro-

moting the feature consistency of positive pairs.

Negative pairs. While each of the pixels in φl has

HW − 1 potential negative pairs in φr, involving all po-

tential negative pairs in the contrastive loss would lead to

a huge computational cost. To overcome this issue, we

use a naive method that randomly samples N non-matching

points from the right feature φr in a local window with a

size of 50× 50 to form N negative pairs.

Momentum encoder. The selection strategy of negative

samples is particularly important as it heavily affects the

property of learned representations [41, 51]. In our experi-

ment, the feature consistency is not high enough when the

negative samples are limited to the same stereo pair. Using

pixels from other images as negative samples can be more

natural [35] and it fits well with a dictionary queue for neg-

ative samples.

We follow [16] to maintain a dynamic dictionary queue

that stores preceding negative samples and change the archi-

tectural design of weight-sharing feature extractors into an

asymmetric pair of query and key encoders (with weights θ

and η). The capacity of the queue is fixed as K and the old-

est samples are progressively replaced after each iteration.

The key encoder is modeled as a momentum-based moving

average of the query encoder:

ηt = mηt−1 + (1−m)θt, (1)

where t is the number of iterations and m ∈ [0, 1] is a mo-

mentum value. Such a design can provide content from

different images for negative samples, which reduces the

opportunity for features to focus too much on the contents

of the current image. As the momentum value m, plays a

core role in making use of a queue [16], we evaluate the

feature consistency in the experiment. It indicates that a

relatively large momentum value (e.g.,m = 0.9999, our

default) plays a core role in extracting stereo consistent rep-

resentations.

Pixel-wise contrastive loss. We measure the similarity

of feature pairs with dot product, and adopt a pixel-level

InfoNCE [34] to our problem:

Lf (u, v) = − log
exp (φl

u,v · φ
r
u−d,v/τ)

∑

φn∈F(u,v) exp (φ
l
u,v · φ

n/τ)
, (2)

where F(u, v) denotes the negative sample set of sample

φl
u,v , consisting N samples from the right feature φr and K

samples from the dictionary queue, and τ is a temperature

hyper-parameter [50]. We set N = 60, K = 6000, and

τ = 0.07.

Non-matching region removal. We leverage ground

truth disparity to collect pixel feature pairs as positive pairs

in the contrastive framework. However, some pairs col-

lected in this way don’t originate from the same point in
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the 3D world, due to factors like occlusions. Hence these

non-matching pairs should be detected and eliminated from

the positive sample set. A widely used matching confi-

dence criterion, left-right geometric consistency check, can

be leveraged to detect and remove those non-matching sam-

ple pairs. The reprojection error R is computed as the dif-

ference of ground truth disparity values at paired pixel lo-

cations in stereo images and could be served as a criterion

for matching validity check. Then the mask M denoting the

remaining matching regions is defined as:

Mu,v =

{

1, Ru,v < δ
0, otherwise

(3)

where δ is set to 3 as a threshold. And our SCF loss is

defined as the weighted average of Lf over the pixel coor-

dinate space C:

Lscf =
1

∑

(u,v)∈C
Mu,v

∑

(u,v)∈C

Lf (u, v)⊙ Mu,v. (4)

3.2. Stereo Selective Whitening Loss

With the contrastive loss, stereo network extracts consis-

tent representation on the training set. However, the degra-

dation of feature consistency across different domains has

become the main obstacle to the further improvement of

generalization performance. We build the stereo selective

whitening (SSW) loss based on [7] to address this problem.

Generally, stereo networks use batch normalization (BN)

[20] as their default feature normalization operation. Dur-

ing training, BN regularizes the feature with the mini-batch

statistics and uses population statistics of the training set

during inference [19], which makes the statistics of net-

works data-dependent [58] and is sensitive to the change

of domains. To generalize the feature consistency to dif-

ferent domains, we change some default BN layers into

instance normalization (IN) [45] layers, which regularizes

each sample separately, therefore, is independent of training

set statistics. For each sample X ∈ R
C×HW , IN transforms

it into X̂ ∈ R
C×HW :

X̂i =
1

σi

(Xi − µi), (5)

where µi and σi are mean and the standard deviation of X̂

along the channel index i.
We further consider the information stored in the feature

covariance, which is not dealt with by IN. The proposed

SSW seeks for learning viewpoint-invariant representation

by suppressing the feature covariance components that are

sensitive to stereo view changes. In particular, we firstly

compute the variance matrix Σ(X̂) ∈ R
C×C of the IN reg-

ularized representation X̂:

Σ(X̂) =
1

HW
(X̂)(X̂)T. (6)

We then compute the covariance matrices V ∈ R
C×C be-

tween each left view feature covariance Σ(X̂l) and its cor-

responding right feature Σ(X̂r), where n indexes the sam-

ples:

µΣn
=

1

2
(Σn(X̂

l) +Σn(X̂
r))

V =
1

2N

N
∑

n=1

((Σn(X̂
l)− µΣn

)2 + (Σn(X̂
r)− µΣn

)2),

(7)

The element Vi,j from the variance matrix measures how

sensitive the correspondence between the i-th and the j-

th channels to stereo viewpoint changes. Covariance ele-

ments with high variances between left and right features,

which are considered as sensitive components to stereo

view changes, should be considered in the whitening loss.

In practice, all covariance elements are grouped into 3 clus-

ters by the magnitudes of variance [7], and we choose the

one with the highest variance value, termed Gp. Then a se-

lective mask M̃ ∈ R
C×C is computed:

M̃i,j =

{

1, Vi,j ∈ Gp

0, otherwise
(8)

The SSW loss is imposed on the left regularized features:

Lssw =
1

Γ

Γ
∑

γ=1

||Σγ(X̂
l)⊙ M̃⊙ M̂||1, (9)

where M̂ is a strict upper triangular matrix as the covariance

matrix is symmetric, Γ is the number of layers to which the

SSW loss is applied, and γ indexes the corresponding layer

(i.e. conv1, conv2 x in PSMNet). With the SSW loss, the

stereo network learns to rely less on stereo irrelevant infor-

mation to form its feature representation. The differences

within a stereo image pair are mostly limited to specific

physical characteristics, such as diffuse reflection of light,

which gives the stereo model the possibility to learn some

general knowledge from limited training data.

3.3. Training Objectives

Our final training loss is a weighted sum of the disparity

loss and above-mentioned losses:

L = Ldisp + λscfLscf + λsswLssw, (10)

where Ldisp is a commonly used per-pixel smooth-L1 loss

for disparity regression. λscf and λssw are the balancing

weights. During back-propagation, all other modules are

updated by classical gradient descent methods, except that

the right feature extractor is implemented as a moving aver-

age of the left extractor.
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Backbone
Contrastive Momentum Stereo KITTI Middlebury

ETH3D
Loss Encoder Whitening 2012 2015 half quarter

PSMNet [4]

✗ ✗ ✗ 26.5 27.9 26.9 20.0 23.8

✓ ✗ ✗ 18.4 19.0 24.1 15.4 17.6

✓ ✓ ✗ 10.5 12.7 22.2 15.0 17.1

✗ ✗ ✓ 13.2 15.5 20.5 13.8 14.1

✓ ✓ ✓ 7.0 7.5 18.3 12.1 12.8

GWCNet [15]

✗ ✗ ✗ 20.2 22.7 34.2 18.1 30.1

✓ ✗ ✗ 12.3 16.5 25.8 15.5 13.3

✓ ✓ ✗ 11.2 12.1 24.8 15.2 12.8

✗ ✗ ✓ 12.0 13.5 24.6 14.9 12.5

✓ ✓ ✓ 7.4 8.0 21.0 11.8 11.7

GANet [57]

✗ ✗ ✗ 10.1 11.7 20.3 11.2 14.1

✓ ✗ ✗ 9.1 9.5 18.1 10.5 12.1

✓ ✓ ✗ 7.2 7.5 16.3 10.1 11.3

✗ ✗ ✓ 8.4 9.0 16.8 10.2 10.5

✓ ✓ ✓ 5.7 6.4 16.0 9.8 9.2

Table 1. Ablation study of each key component with various backbones on the KITTI, Middlebury, and ETH3D training sets. Threshold

error rates (%) are adopted for evaluation.

4. Experiments

In this section, we make a detailed analysis of some

commonly used stereo methods to illustrate that the exist-

ing framework lacks explicit constraints on features. We

also perform ablation studies on different datasets, includ-

ing KITTI [13, 31], Middlebury [37], ETH3D [39], Driv-

ingStereo [54], to verify the role of different components.

We compare our method with existing domain generalized

stereo networks to show the effectiveness of our method.

4.1. Datasets

SceneFlow [30] is a large synthetic dataset containing three

subsets: Driving, Monkaa, and FlyingThings3D. The train-

ing set includes 35k pairs of synthetic stereo images and

dense ground-truth disparities with a resolution of 960 ×
540, which is used to train networks from scratch in our

experiments.

KITTI2012 [13] and KITTI2015 [31] both collect outdoor

driving scenes with a full resolution of 1242 × 375. They

provide 394 stereo pairs with sparse ground-truth disparities

for training and 395 pairs for testing. We use the training

sets to evaluate the generalization performance of networks.

Middlebury 2014 [37] is an indoor dataset, providing 28

training (including 13 additional stereo pairs) and 15 test-

ing stereo pairs with full, half, and quarter resolutions. We

use half and quarter resolution training sets to evaluate the

generalization ability of networks.

ETH3D [39] consists of 27 grayscale image pairs for train-

ing and 20 for testing. It includes both indoor and outdoor

scenes. We use the training set for generalization perfor-

mance evaluation.

DrivingStereo [54] is a large-scale real dataset. A subset

of it contains 2,000 stereo pairs collected under different

weathers (sunny, cloudy, foggy, and rainy). We evaluate the

generalization performance on these challenging scenes.

4.2. Implementation Details

We implement our method in PyTorch and train it with

Adam optimizer (β1 = 0.9, β2 = 0.999). The batch size

is set to 12 on GPUs. We train the models from scratch

with the learning rate of 0.001 for 15 epochs and 0.0001

for further 5 epochs. We randomly crop the raw images to

512 × 256 as input. For all datasets, color normalization

is used with the mean ([0.485, 0.456, 0.406]) and variation

([0.229, 0.224, 0.225]) of the ImageNet [8] for data pre-

processing. We set the maximum disparity as D = 192,

and all ground-truth disparities larger than D are excluded

from the loss calculation. During training, we use asymmet-

ric query and key encoders to extract features from left and

right images, respectively. In the test phase, the query en-

coder is used as the feature extractor for both left and right

images, which is the symmetric design strictly identical to

the standard stereo pipeline.

4.3. Ablation Study

In this section, We present detailed ablation studies to

evaluate and analyze the effectiveness of our method.

Key components: We evaluate the effectiveness of each

key component of our pipeline. Here, three networks are se-

lected as baseline models. PSMNet [4] is a widely-adopted

backbone. It constructs a concatenation based cost vol-

ume and hopes that the cost aggregation network can learn

a similarity measurement function from scratch. GWC-
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m - 0.9 0.99 0.999 0.9999 0.99999

SceneFlow 0.86 0.88 0.92 0.96 0.97 0.98

KITTI 0.78 0.82 0.85 0.91 0.92 0.92

Table 2. Feature consistency with different momentum values in

both seen (SceneFlow) and unseen (KITTI) domains. Cosine sim-

ilarity is adopted as the vector-wise similarity metric for evalua-

tion. ’-’ denotes the contrastive learning setting without queue and

momentum encoder. We select PSMNet as the baseline model.

Methods KITTI Middlebury

PSMNet Baseline 12.7 22.2

+ Instance Norm [45] 8.5 19.1

+ Domain Norm [58] 8.1 18.8

+ Instance Whitening [7] 8.0 18.6

+ Our Stereo Selective Whitening 7.5 18.3

Table 3. Comparisons with existing normalization layers on the

KITTI 2015 and the half resolution Middlebury training sets.

Threshold error rates (%) are adopted. We select PSMNet as the

baseline model.

Net [15] is selected as it constructs the cost volume with

a group-wise correlation, which provides better similarity

measures than learning from scratch. GANet [57] is one

of the top-performing networks, guiding the cost aggrega-

tion with low-level features. As shown in Table 1, applying

the contrastive loss on the final features during training sig-

nificantly improves the domain generalization performance.

Benefiting from the negative samples from different stereo

pairs and the momentum encoder, it generalizes better to

various domains, e.g. 15.2% on KITTI, 4.7% on Middle-

bury, and 6.7% on ETH3D for PSMNet. In addition, the

error rates on unseen domains are reduced by the whiten-

ing loss. It shows that maintaining the feature consistency

across different domains can effectively improve the gen-

eralization performance. Furthermore, with the combina-

tion of these key components, the models significantly out-

perform their corresponding baseline models in unseen do-

mains.

Momentum value: Table 2 shows the consistency of

learned stereo features with different momentum values (m
in Equation (1)). Compared to the standard Siamese en-

coder without the dictionary queue, our momentum encoder

is shown beneficial for the feature consistency of positive

pairs, and this behavior holds for both seen and unseen do-

mains. We also adopt different momentum values m and

show that a relatively large m is vital to achieve higher

stereo feature consistency.

Normalization layer: We evaluate the effectiveness of our

proposed stereo whitening with batch normalization [20],

instance normalization [45], domain normalization [58] and

instance whitening [7]. All other settings except for the

normalization method are kept the same in the experiment.

Compared with the general methods, our whitening loss

is specifically designed for stereo matching and helps the

model to generalize better to unseen domains, as shown in

Methods
KITTI Middlebury

cosine >3px cosine >2px

AANet [52] 0.76 12.3 0.77 28.1

Cas-PSMNet [14] 0.58 16.5 0.63 27.8

AcfNet [60] 0.58 27.4 0.61 27.1

CDN-PSMNet [10] 0.57 40.0 0.61 35.0

PSMNet [4] 0.65 27.9 0.71 26.9

GWCNet [15] 0.60 22.7 0.67 34.2

GANet [57] 0.73 11.7 0.76 20.3

DSMNet [58] 0.83 6.5 0.85 13.8

FC-PSMNet (ours) 0.98 7.5 0.95 18.3

FC-GWCNet (ours) 0.97 8.0 0.95 21.0

FC-GANet (ours) 0.98 6.4 0.97 16.0

FC-DSMNet (ours) 0.99 6.2 0.98 12.0

Table 4. Evaluation of feature consistency and generalization per-

formance on the KITTI 2015 and the half resolution Middlebury

training sets. Cosine similarity and threshold error rates (%) are

adopted.

Table 3.

Feature consistency of various architectures: We present

the feature consistency and the generalization performance

of various networks. We use the cosine similarity as

a vector-wise metric to evaluate the consistency between

matching features. The aforementioned baseline methods,

PSMNet [4], GWCNet [15], GANet [57], are included in

this experiment. AANet [52] is selected as the representa-

tion for full correlation cost volume based methods [30,52].

We also evaluate the CasPSMNet [14] as the representa-

tion for coarse-to-fine methods. DSMNet [58] is designed

for domain generalization and extracts the non-local fea-

tures. In addition to the common disparity regression loss,

AcfNet [60] imposes additional constraints on the prob-

ability distribution derived from the filtered cost volume.

CDN [10] replaces the commonly used softargmin-based

regression loss with a Wasserstein distance based loss. As

shown in Table 4, these popular methods all lack explicit

constraints on features and extract inconsistent representa-

tions.

4.4. Cross­domain Evaluation

We compare our methods with several other stereo

matching methods, including traditional methods, well-

researched end-to-end methods, and domain generalized

methods by training on synthetic SceneFlow training set

and evaluating on four real-world datasets. The asymmet-

ric augmentation [49, 53] is used to prevent the model from

overfitting. Table 5 summarizes the comparisons. Our

method achieves superior generalization performance than

others.

4.5. Evaluation on Challenging Weathers

In this section, we evaluate the generalization perfor-

mance of our method on some challenging domains. We

train the baseline models and our models under the asym-
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Methods
KITTI Middlebury

ETH3D
2012 2015 half quarter

CostFilter [18] 21.7 18.9 40.5 17.6 31.1

PatchMatch [2] 20.1 17.2 38.6 16.1 24.1

SGM [17] 7.1 7.6 25.2 10.7 12.9

Training set SceneFlow

PSMNet [4] 26.5 27.9 26.9 20.0 23.8

GWCNet [15] 20.2 22.7 34.2 18.1 30.1

GANet [57] 10.1 11.7 20.3 11.2 14.1

MS-PSMNet [3] 13.9 7.8 19.9 10.8 16.8

MS-GCNet [3] 5.5 6.2 18.5 10.3 8.8

DSMNet [58] 6.2 6.5 13.8 8.1 6.2

FC-PSMNet (ours) 7.0 7.5 18.3 12.1 12.8

FC-GWCNet (ours) 7.4 8.0 21.0 11.8 11.7

FC-GANet (ours) 5.7 6.4 16.0 9.8 9.2

FC-DSMNet (ours) 5.5 6.2 12.0 7.8 6.0

Training data SceneFlow + Asymmetric Augmentation

PSMNet [4] 6.0 6.3 15.8 9.8 10.2

GANet [57] 5.5 6.0 13.5 8.5 6.5

STTR [27] 8.7 6.7 15.5 9.7 17.2

CFNet [40] 4.7 5.8 15.3 9.8 5.8

FC-PSMNet (ours) 5.3 5.8 15.1 9.3 9.5

FC-GANet (ours) 4.6 5.3 10.2 7.8 5.8

Table 5. Cross-domain generalization evaluation on the KITTI,

Middlebury, ETH3D training sets. Threshold error rates (%) are

adopted.

Methods KITTI Cloudy Foggy Rainy Sunny

PSMNet [4] 6.3 7.9 10.8 12.2 7.4

FC-PSMNet (ours) 5.8 4.3 6.2 7.2 4.9

GANet [57] 6.0 5.7 8.2 10.0 5.4

FC-GANet (ours) 5.3 3.3 4.0 7.0 3.3

Table 6. Generalization evaluation on the KITTI and the half res-

olution DrivingStereo data sets of different weather conditions.

Threshold error rates (%) are adopted.

metric augmentation. The trained models are tested on

stereo pairs collected in four challenging weather condi-

tions provided by DrivingStereo. The KITTI 2015 train-

ing set is also evaluated as it collects similar outdoor driv-

ing scenes under ideal weather conditions. The results are

summarized in Table 6. Compared with baseline models,

our models generalize better to images under ideal weather

conditions, and the improvement is more obvious in chal-

lenging weather conditions. Figure 4 shows the qualitative

results.

4.6. Fine­tuning on KITTI

We evaluate the fine-tuned accuracy on the KITTI bench-

mark. The models are first trained on SceneFlow data and

fine-tuned on the KITTI 2015 training set for a further 1000

epochs. During fine-tuning, we use the query encoder to ex-

tract two view features, which is the symmetrical feature ex-

traction identical to the standard pipeline. We set the learn-

ing rate at 0.001 for the first 600 epochs and decrease it to

0.0001 for the rest 400 epochs. Table 7 shows results on the

benchmark. We see that our models can obtain comparable

performance to their counterparts. In addition, we explore

the performance of our method with the more limited fine-

Baseline OursLeft Image
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Figure 4. Qualitative results on different weather conditions of

DrivingStereo. PSMNet is selected as our baseline model.

Methods
All-D1(%) Noc-D1(%)

bg fg all bg fg all

Fine-tuning set KITTI (full)

PSMNet [4] 1.86 4.62 2.32 1.71 4.31 2.14

FC-PSMNet (ours) 1.86 4.61 2.32 1.73 4.19 2.13

Fine-tuning set KITTI (40)

PSMNet [4] 4.15 7.03 4.63 3.92 6.36 4.32

FC-PSMNet (ours) 3.10 6.94 3.74 2.88 6.27 3.44

Fine-tuning set KITTI (1)

PSMNet [4] 4.83 14.26 6.40 4.57 13.38 6.02

FC-PSMNet (ours) 3.34 12.56 4.87 3.05 11.56 4.45

Table 7. After fine-tuning evaluation on the KITTI 2015 bench-

mark. Different subsets are used for fine-tuning.

tuning set, which is meant for practical applications because

the data available for many real-world scenes is very lim-

ited. The KITTI (40) is a popular validation set [4], which

collects 40 images of representative scenes from the KITTI

2015 training set. And KITTI (1) only consists of the first

training image. As shown in Table 7, our models perform

better than their counterparts with limited fine-tuning data.

5. Conclusion

We have introduced a feature consistency idea to im-

prove the domain generalization performance of end-to-end

stereo networks. We propose to explicitly impose a con-

trastive loss on learned features during training to maintain

the consistency between stereo views. Then we restrict the

intermediate feature representations with a selective whiten-

ing loss, which helps to maintain the feature consistency

on unseen domains. Experimental results show that our

approach significantly improves the generalization perfor-

mance of end-to-end stereo matching networks.

Acknowledgment

This work was supported by the National Natural

Science Foundation of China (Grant No.61772057 and

62106012), Beijing Natural Science Foundation (4202039).

13008



References

[1] Joydeep Biswas and Manuela Veloso. Depth camera based

localization and navigation for indoor mobile robots. In

RGB-D Workshop at RSS, volume 2011, 2011. 1

[2] Michael Bleyer, Christoph Rhemann, and Carsten Rother.

Patchmatch stereo-stereo matching with slanted support win-

dows. In Bmvc, volume 11, pages 1–11, 2011. 8

[3] Changjiang Cai, Matteo Poggi, Stefano Mattoccia, and

Philippos Mordohai. Matching-space stereo networks for

cross-domain generalization. In 2020 International Confer-

ence on 3D Vision (3DV), pages 364–373. IEEE, 2020. 1, 3,

8

[4] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5410–

5418, 2018. 1, 3, 6, 7, 8, 12, 13

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv preprint arXiv:2003.04297, 2020. 3

[6] Wonwoong Cho, Sungha Choi, David Keetae Park, Inkyu

Shin, and Jaegul Choo. Image-to-image translation via

group-wise deep whitening-and-coloring transformation. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 10639–10647, 2019. 3

[7] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim,

Seungryong Kim, and Jaegul Choo. Robustnet: Improving

domain generalization in urban-scene segmentation via in-

stance selective whitening. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 11580–11590, 2021. 3, 5, 7

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 6

[9] Mohammed E Fathy, Quoc-Huy Tran, M Zeeshan Zia, Paul

Vernaza, and Manmohan Chandraker. Hierarchical metric

learning and matching for 2d and 3d geometric correspon-

dences. In Proceedings of the european conference on com-

puter vision (ECCV), pages 803–819, 2018. 3

[10] Divyansh Garg, Yan Wang, Bharath Hariharan, Mark Camp-

bell, Kilian Q Weinberger, and Wei-Lun Chao. Wasser-

stein distances for stereo disparity estimation. arXiv preprint

arXiv:2007.03085, 2020. 7

[11] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Tex-

ture synthesis using convolutional neural networks. Ad-

vances in neural information processing systems, 28:262–

270, 2015. 3

[12] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2414–2423, 2016. 3

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE conference on computer vision and pat-

tern recognition, pages 3354–3361. IEEE, 2012. 6

[14] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong

Tan, and Ping Tan. Cascade cost volume for high-resolution

multi-view stereo and stereo matching. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2495–2504, 2020. 7

[15] Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and

Hongsheng Li. Group-wise correlation stereo network. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 3273–3282, 2019. 1, 6,

7, 8

[16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020. 3, 4

[17] Heiko Hirschmuller. Stereo processing by semiglobal match-

ing and mutual information. IEEE Transactions on pattern

analysis and machine intelligence, 30(2):328–341, 2007. 2,

8

[18] Asmaa Hosni, Christoph Rhemann, Michael Bleyer, Carsten

Rother, and Margrit Gelautz. Fast cost-volume filtering for

visual correspondence and beyond. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 35(2):504–511,

2012. 8

[19] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-

ings of the IEEE international conference on computer vi-

sion, pages 1501–1510, 2017. 5

[20] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International conference on machine learn-

ing, pages 448–456. PMLR, 2015. 5, 7

[21] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 66–75, 2017. 1, 3

[22] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh

Kowdle, Julien Valentin, and Shahram Izadi. Stereonet:

Guided hierarchical refinement for real-time edge-aware

depth prediction. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 573–590, 2018. 3

[23] Attila Lengyel, Sourav Garg, Michael Milford, and Jan C van

Gemert. Zero-shot domain adaptation with a physics prior.

arXiv preprint arXiv:2108.05137, 2021. 1

[24] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot.

Domain generalization with adversarial feature learning. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5400–5409, 2018. 1

[25] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature

transforms. arXiv preprint arXiv:1705.08086, 2017. 3

[26] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang

Liu, Kun Zhang, and Dacheng Tao. Deep domain gener-

alization via conditional invariant adversarial networks. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 624–639, 2018. 1

[27] Zhaoshuo Li, Xingtong Liu, Nathan Drenkow, Andy Ding,

Francis X Creighton, Russell H Taylor, and Mathias Un-

13009



berath. Revisiting stereo depth estimation from a sequence-

to-sequence perspective with transformers. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 6197–6206, 2021. 8

[28] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei

Chen, Linbo Qiao, Li Zhou, and Jianfeng Zhang. Learning

for disparity estimation through feature constancy. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2811–2820, 2018. 3

[29] Ping Luo. Learning deep architectures via generalized

whitened neural networks. In International Conference on

Machine Learning, pages 2238–2246. PMLR, 2017. 3

[30] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 4040–4048, 2016. 1, 3, 6, 7

[31] Moritz Menze and Andreas Geiger. Object scene flow for au-

tonomous vehicles. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3061–

3070, 2015. 6

[32] Krikamol Muandet, David Balduzzi, and Bernhard

Schölkopf. Domain generalization via invariant fea-

ture representation. In International Conference on Machine

Learning, pages 10–18. PMLR, 2013. 1

[33] Xingang Pan, Xiaohang Zhan, Jianping Shi, Xiaoou Tang,

and Ping Luo. Switchable whitening for deep representa-

tion learning. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 1863–1871, 2019. 3

[34] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Dar-

rell, and Bharath Hariharan. Learning features by watch-

ing objects move. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2701–

2710, 2017. 4

[35] Pedro O Pinheiro, Amjad Almahairi, Ryan Y Benmalek,

Florian Golemo, and Aaron Courville. Unsupervised

learning of dense visual representations. arXiv preprint

arXiv:2011.05499, 2020. 3, 4

[36] Matteo Poggi, Alessio Tonioni, Fabio Tosi, Stefano Mattoc-

cia, and Luigi Di Stefano. Continual adaptation for deep

stereo. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2021. 2

[37] Daniel Scharstein, Heiko Hirschmüller, York Kitajima,
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