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We consider indifference pricing of contingent claims consisting of payment flows in a
discrete time model with proportional transaction costs and under exponential disutility.
This setting covers utility maximisation of terminal wealth as a special case. A dual
representation is obtained for the associated disutility minimisation problem, together
with a dynamic procedure for solving it. This leads to efficient and convergent numerical
procedures for indifference pricing, optimal trading strategies and shadow prices that

apply to a wide range of payoffs, a large range of time steps and all magnitudes of
transaction costs.

Keywords: transaction costs, option pricing, utility maximisation, entropy, indifference
pricing, generalised convex hull, dynamic programming

1. Introduction

The price of a contingent claim in a complete market is uniquely determined as

the cost of replicating its payoff, equally, the discounted expected payoff under the

unique martingale measure. However, the presence of transaction costs can lead

to the curious contradiction that superreplicating a claim may involve less trading

(and lower transaction costs) than exact replication, and therefore be less expensive,

so that the replication price can in fact lead to arbitrage. Furthermore, financial

markets with proportional transaction costs and liquid cash generally admit many

different martingale measures, leading to intervals of no-arbitrage claim prices. This

means that subjective factors, such as an investor’s risk appetite, come into play

when determining the price of a claim. The indifference principle offers a compelling

alternative to replication and arbitrage pricing: it states that the seller of a claim

∗Most of the research presented in this paper was conducted while this author was a PhD student
in the Department of Mathematics, University of York.
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will charge (at least) a price that will allow him to sell the claim without increasing

the risk of his existing financial position. This is called the indifference price.

Indifference pricing based on utility maximisation has been well studied in the

literature on proportional transaction costs. Work in continuous time has mostly

focused on adapting stochastic optimal control and other techniques from friction-

free models (such as the Black-Scholes model), and in recent years have led to

numerical approximation and asymptotics for small transaction costs; see the works

by Bichuch (2014), Davis (1997), Davis et al. (1993), Hodges and Neuberger (1989),

Kallsen and Muhle-Karbe (2015), Monoyios (2003, 2004), Whalley and Wilmott

(1997), for example. Results obtained in continuous time models typically assume

continuous trading, which limits their applicability in realistic settings (Dorfleitner

and Gerer 2016), hence motivating the need for continued theoretical and numerical

work in the discrete time setting.

The present paper is motivated by a recent strand of work by Pennanen

(2014a,b), Pennanen and Perkkiö (2018) and others, which studies optimal invest-

ment and indifference pricing in a very general discrete time setting, including pro-

portional transaction costs. In view of the fact that financial liabilities in banking

and insurance often consist of sequences of payment streams, such as swaps, coupon

paying bonds, insurance premia, etc, the classical utility maximisation framework,

which focuses on the expected disutility of hedging shortfall at the expiration date

of the liability faced by an investor (and insists on self-financing trading at other

times), can be extended to a more flexible framework in which which hedging is

allowed to fall short at intermediate steps, the expected total disutility of hedging

shortfall at all steps is taken into account, and theoretical results can be derived

for contingent claims consisting of cash and physical payment streams and a very

general class of disutility functions.

Allowing hedging to fall short at intermediate time steps means that there is

also a connection between the current work and another important strand in the

transaction cost literature, namely maximising utility from consumption. An im-

portant notion in the study of these problems is the shadow price, which is a price

process taking values in the bid-ask spread of the model with proportional trans-

action costs, with the property that maximising expected utility from consumption

in the friction-free model with this price process, leads to the same maximal utility

as in the original market with transaction costs. Kallsen and Muhle-Karbe (2011)

and Rogala and Stettner (2015) showed that shadow prices exist in discrete time

in a similar (though incompatible) technical setting to the current paper. Working

in general discrete time models, Czichowsky et al. (2014) demonstrated that there

is a link between the solution to the dual problem, and the existence of a shadow

price. The existence of shadow processes in more general models is by no means

guaranteed. Additionally, shadow prices may not be tractable, leading to the use

of asymptotic expansions and/or restrictions in the magnitude of transaction costs.

In the context of continuous-time models, see the earlier paper of Cvitanić and
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Karatzas (1996), as well as more recent contributions by Kallsen and Muhle-Karbe

(2010), Gerhold et al. (2013), Gerhold et al. (2014), Herczegh and Prokaj (2015),

Czichowsky et al. (2017), Czichowsky and Schachermayer (2016, 2017), Lin and

Yang (2016) and Gu et al. (2017).

The present paper specialises the model of Pennanen (2014a,b) and Pennanen

and Perkkiö (2018) to exponential utility and proportional transaction costs (allow-

ing the use of powerful dual methods) and finite state space (motivated by the need

for numerical results). Our results apply to contingent claims with physical delivery

(in other words, streams of portfolios rather than just cash). We propose a backward

recursive procedure that can be used to solve the utility maximisation problem and

compute indifference prices, together with an efficient and convergent numerical ap-

proximation method (with error bounds). This procedure has polynomial running

time in recombinant models and for path-independent claims, and does not require

the construction of a shadow price process, which is in general path-dependent (a

known difficulty in models with proportional transaction costs). Nevertheless, the

outputs from this procedure can be used to construct a shadow price process and

accompanying martingale measure, together with an optimal hedging strategy. This

latter construction is performed by (forward) induction, which makes it practical

for studying individual scenarios, despite the path-dependence of the objects that

are being studied. Our results apply to all magnitudes of transaction costs, and

our numerical methods work for a large range of time steps; Xu (2018) reported a

number of more demanding numerical results that have not been included in this

paper for lack of space.

The results reveal interesting features of disutility minimisation problems and

indifference prices. In particular, because asset holdings in the model can be carried

over between different time periods and there are no portfolio constraints, the value

of the disutility minimisation problem of an investor faced with delivering a port-

folio stream depends only on the total payment involved in the stream (suitably

discounted), which implies that indifference prices also depend only on the total

payment due. Nevertheless, the additional flexibility offered by allowing hedging to

fall short at time periods other than the final time leads to smaller spreads in indif-

ference prices, when compared to utility indifference pricing spreads. Our numerical

results further suggest that there is a complex relationship between disutility indif-

ference prices and the real-world measure.

The numerical methods and examples work reported in this paper extend and

complement the limited work in the literature for discrete time models with propor-

tional transaction costs. The results on disutility minimisation generalise the results

of Castañeda-Leyva and Hernández-Hernández (2011) in a one-step binomial model

with proportional transaction costs. To put the power of the numerical methods into

context, previously reported numerical results are limited to European put options

in a 3-step Cox-Ross-Rubinstein binomial model with convex transaction costs and

exponential utility (Çetin and Rogers 2007), utility indifference prices of a Euro-
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pean call option under exponential utility in a binomial tree model with 6 steps

and proportional transaction costs (Quek 2012), and numerical solution of utility

maximisation problems under power utility with multiple assets and proportional

transaction costs (Cai et al. 2013).

Whilst we restrict our attention to indifference prices (payable at time 0 in cash)

rather than indifference swap rates (used by Pennanen 2014b) for brevity, we believe

that the extension is straightforward (preliminary work reported by Xu 2018). We

believe that our work can be generalised to include measuring hedging shortfall in

terms of portfolios rather than just cash; this is the subject of ongoing research, as

is application of these methods to other classes of utility functions and multi-asset

models.

The paper is arranged as follows. Background information on arbitrage and

superhedging in discrete time models with proportional transaction costs is col-

lected in Section 2. The disutility minimisation problem that forms the basis of

the indifference pricing framework is introduced in Section 3; this includes utility

maximisation of terminal wealth as a special case. A dynamic procedure for solving

the disutility minimisation problem and computing indifference prices is presented

in Section 4, together with a procedure for constructing the shadow price. A pro-

cedure for constructing optimal hedging and injection strategies is presented in

Section 5. Indifference prices are introduced in Section 6, together with arbitrage

pricing bounds. Section 7 proposes a numerical approximation and considers issues

such as computational costs, efficiency and convergence rates. Section 8 contains a

number of illustrative numerical examples. Appendix A is a self-contained account

of a generalisation of the convex hull of convex functions that appears in the dy-

namic procedure of Section 4 and the numerical approximation of Section 7. Proofs

of all results in the main part of the paper appear in Appendix B.

2. Preliminaries

2.1. Discrete-time model with proportional transaction costs

In this paper we consider a discrete-time financial market model with a finite time

horizon T ∈ N and trading dates t = 0, . . . , T on a finite probability space (Ω,F ,P)

equipped with a filtration (Ft)
T
t=0. We assume without loss of generality that F0 =

{Ω, ∅}, FT = F = 2Ω and P(ω) > 0 for all ω ∈ Ω. For each t, the collection of atoms

of Ft is denoted by Ωt. The elements of Ωt are called the nodes of the model at

time t, and they form a partition of Ω. For each ω and t, denote by ωt the unique

node ν ∈ Ωt such that ω ∈ ν. A node ν ∈ Ωt+1 is said to be a successor of a node

µ ∈ Ωt if ν ⊆ µ. Denote the collection of successors of any given node µ ∈ Ωt by

µ+, and define the transition probability from µ to any successor node ν ∈ µ+ by

pνt+1 := P(ν)
P(µ) .

For every t and d = 1, 2, let Ld
t be the space of Rd-valued Ft-measurable random

variables. Every random variable x ∈ Ld
t satisfies x(ω) = x(ω′) for all ω, ω′ ∈ ν on

every node ν ∈ Ωt, and this common value is denoted xν . A similar convention
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applies to Ft-measurable random functions f : Ω × Rd → R. Let N d be the space

of adapted Rd-valued processes. We write Lt = L1
t and N = N 1 for convenience.

For d = 2 we will adopt the convention that the first and second components of any

random variable c ∈ L2
t or process c ∈ N 2 are denoted cb and cs, respectively.

The financial market model consists of a risky and risk-free asset. The price of

the risk-free asset, cash, is constant and equal to 1 at all times. This is equivalent to

assuming that interest rates are zero, or that asset prices are discounted. Trading

in the risky asset, the stock, is subject to proportional transaction costs. At any

time step t, a share of the stock can be bought for the ask price Sa
t and sold for

the bid price Sb
t , where Sa

t ≥ Sb
t > 0. We assume that Sa = (Sa

t )
T
t=0 ∈ N and

Sb = (Sb
t )

T
t=0 ∈ N .

The cost of creating a portfolio x = (xb, xs) ∈ L2
t at any time t is

ϕt(x) := xb + xs
+S

a
t − xs

−S
b
t , (2.1)

where z+ := max{z, 0} and z− := −min{z, 0} for all z ∈ R. The liquidation value

of the portfolio x is xb + xs
+S

b
t − xs

−S
a
t = −ϕt(−x). Define the solvency cone Kt at

any time t as the collection of portfolios that can be liquidated into a nonnegative

cash amount, in other words,

Kt :=
{

x ∈ L2
t : −ϕt(−x) ≥ 0

}

=
{

(xb, xs) ∈ L2
t : xb + xsSb

t ≥ 0, xb + xsSa
t ≥ 0

}

.

A trading strategy y = (yt)
T
t=−1 is an adapted sequence of portfolios, where

y−1 ∈ L2
0 denotes the initial endowment at time 0, the portfolio yt ∈ L2

t is held

between time steps t and t + 1 for every t = 0, . . . , T − 1, and yT ∈ L2
T is the

terminal portfolio created at time T . Denote the collection of trading strategies

by N 2′, and define

∆yt := yt − yt−1 for all t ≥ 0.

A trading strategy y ∈ N 2′ is called self-financing if −∆yt ∈ Kt for all t. The

collection of self-financing trading strategies is defined as

Φ :=
{

y ∈ N 2′ : −∆yt ∈ Kt ∀t
}

.

We will also frequently consider the class of trading strategies that start and end

with zero holdings (and are not necessarily self-financing). This class of trading

strategies is denoted by

Ψ :=
{

y ∈ N 2′ : y−1 = 0, yT = 0
}

.

2.2. Arbitrage and duality

There is a connection between the absence of arbitrage and the existence of classes

of objects that appear in the study of disutility minimisation problems. To this end,

define

P̄ :=
{

(Q, S) : Q ≪ P, S a Q-martingale, Sb
t ≤ St ≤ Sa

t ∀t
}

, (2.2)

P :=
{

(Q, S) : Q ∼ P, S a Q-martingale, Sb
t ≤ St ≤ Sa

t ∀t
}

.
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We shall refer to the elements of P̄ (P) as (equivalent) martingale pairs. Observe

that P ⊆ P̄.

The following result characterises the existence of equivalent martingale pairs.

Proposition 2.1 (Kabanov and Stricker (2001 Theorem 1)). The no-

arbitrage condition

{yT : y ∈ Φ, y−1 = 0} ∩
{

z ∈ L2
T : z ≥ 0

}

= {0} (2.3)

holds if and only if P ≠ ∅.

The definition (2.3) of the no-arbitrage condition is consistent with that of

Schachermayer (2004 Def. 1.6) and equivalent, though formally different, to the no-

tion of weak no-arbitrage introduced by Kabanov and Stricker (2001). We will often

require a stronger condition in this paper, namely robust no-arbitrage (Schacher-

mayer 2004 Def. 1.9), in order to ensure the existence of a solution to the disutility

minimisation problem. It is characterised as follows.

Proposition 2.2 (Schachermayer (2004 Theorem 1.7)). The robust no-

arbitrage condition holds if and only if there exists an equivalent martingale

pair (Q, S) ∈ P such that, for all t,

St ∈ ri[Sb
t , S

a
t ] =

{

{

Sb
t

}

on {Sb
t = Sa

t },
(

Sb
t , S

a
t

)

on {Sb
t < Sa

t }.

The following notation will be useful when working with martingale pairs. For

every Q ≪ P, we write

ΛQ
t := E

[

dQ
dP

∣

∣Ft

]

for all t = 0, . . . , T, (2.4)

where dQ
dP is the Radon-Nikodym density of Q with respect to P. As Ω is finite it

follows that

ΛQν
t = Q(ν)

P(ν) for all t and ν ∈ Ωt. (2.5)

Define also for all t

ΩQ
t := {ν ∈ Ωt : Q(ν) > 0}

as the collection of nodes in Ωt with positive probability under Q. Moreover, for

every t < T and µ ∈ ΩQ
t , denote the transition probability from µ to any successor

node ν ∈ µ+ by qνt+1 := Q(ν)
Q(µ) . Simple rearrangement of (2.5) then gives

ΛQν
t+1 =

Q(µ)qνt+1

P(µ)pν
t+1

= ΛQµ
t

qνt+1

pν
t+1

for all t < T, µ ∈ Ωt and ν ∈ µ+. (2.6)
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2.3. Superhedging

If the seller of a claim is completely risk-averse, then he would charge (at least) the

superhedging price, which is the lowest amount that the seller of a claim can charge

that will allow him to sell the claim without taking any risk. Such prices are usually

lower than the cost of replication (see, for example Bensaid et al. 1992), and have

been well studied for European options offering a payoff at a single expiration date;

for a selection of contributions at a similar technical level to the current paper, see

work by Delbaen, Kabanov and Valkeila (2002), Dempster et al. (2006), Edirisinghe

et al. (1993), Jouini and Kallal (1995), Kabanov and Stricker (2001), Löhne and

Rudloff (2014), Perrakis and Lefoll (1997), Roux et al. (2008), Roux and Zastawniak

(2016).

In this subsection we generalise the theory slightly to the case of payment

streams of the form c ∈ N 2, consisting of sequences of (portfolio) payments

ct = (cbt , c
s
t ) to be made at all trading dates t. A trading strategy y ∈ N 2′ is

said to superhedge such a payment stream c if it allows a trader to deliver c without

risk, in other words, yT = 0 and −∆yt − ct ∈ Kt for all t.

The seller’s superhedging price of the payment stream c is defined as the smallest

cash endowment that is sufficient to superhedge c, in other words,

πa(c) := inf
{

x ∈ R : ∃y ∈ N 2′ superhedging c with y0 = (x, 0)
}

.

The buyer’s superhedging price of c is defined as

πb(c) := sup
{

x ∈ R : ∃y ∈ N 2′ superhedging −c with y0 = (−x, 0)
}

= −πa(−c). (2.7)

It is the largest cash amount that can be raised without risk by using the payoff

of c as collateral. The superhedging prices admit the following dual representation,

the proof of which can be found in Appendix B.

Proposition 2.3. Assume no-arbitrage. For every c ∈ N 2,

πa(c) = sup
(Q,S)∈P

T
∑

t=0
EQ

[

cbt + cstST

]

= max
(Q,S)∈P̄

T
∑

t=0
EQ

[

cbt + cstST

]

, (2.8)

πb(c) = inf
(Q,S)∈P

T
∑

t=0
EQ

[

cbt + cstST

]

= min
(Q,S)∈P̄

T
∑

t=0
EQ

[

cbt + cstST

]

. (2.9)

The collection of payment streams that can be superhedged from zero will play

an important role in the next section. Proposition 2.3 gives that

Z :=
{

c ∈ N 2 : ∃y ∈ Ψ superhedging c
}

(2.10)

=
{

c ∈ N 2 : πa(c) ≤ 0
}

=
{

c ∈ N 2 :
∑

T
t=0EQ

[

cbt + cstST

]

≤ 0 ∀(Q, S) ∈ P̄
}

, (2.11)

provided that the no-arbitrage condition (2.3) holds. It is self-evident from the

representation (2.11) that Z is a convex cone.



May 23, 2022 8:41 WSPC/INSTRUCTION FILE 2022-05-20-regret-
paper-final-ITJAF

8 Alet Roux, Zhikang Xu

3. Disutility minimisation problem

The ability to manage investments in such a way that their proceeds cover an

investor’s liabilities as well as possible, is of fundamental importance in financial

economics, and has therefore been well studied in the literature; see, for exam-

ple, the work of Davis (1997), Delbaen, Grandits, Rheinländer, Samperi, Schweizer

and Stricker (2002), Guasoni (2002), Hugonnier et al. (2005), Rásonyi and Stettner

(2005), Pennanen (2014a,b), Pennanen and Perkkiö (2018). The purpose of this sec-

tion is to formulate an optimal investment problem in the model with proportional

transaction costs, which will form the basis of the indifference prices that will be

studied in Section 6.

Consider an investor who faces the liability of a (given) payment stream u ∈ N 2.

The investor can create a trading strategy y ∈ Ψ in cash and stock, and is ad-

ditionally allowed to inject (invest) cash on every trading date in a given set

I ⊆ {0, . . . , T}. At each trading date t ∈ I, in order to manage his position,

the investor needs to inject ϕt(∆yt + ut) in cash in order to manage his position.

At trading dates t /∈ I, the investor is required to manage his position in a self-

financing manner, in other words, ϕt(∆yt+ut) ≤ 0. Denote the number of elements

of I by |I| and assume that |I| > 0, in other words, injection is allowed at least

once. It is not assumed that T ∈ I.
The objective of the investor is to choose y in such a way as to minimise the sum

of expected disutility of the cash injections over all the trading dates in I, using for

each time step t ∈ I the risk-averse exponential disutility (regret) function

vt(x) := eαtx − 1 for all x ∈ R

with deterministic risk aversion parameter αt ∈ (0,∞). Define for every t /∈ I

vt(x) :=

{

0 if x ≤ 0,

∞ if x > 0.

The investor’s objective can then be written as the unconstrained optimisation

problem

minimise
T
∑

t=0
E[vt(ϕt(∆yt + ut))] over y ∈ Ψ. (3.1)

The value function V of (3.1) is defined as

V (u) := inf
y∈Ψ

T
∑

t=0
E[vt(ϕt(∆yt + ut))]. (3.2)

We have −∞ < V (u) ≤ 0 because vt(0) = 0 and vt is bounded from below for all t.

Remark 3.1. In the special case where I = {T} and ut = 0 for all t < T , the

problem (3.1) becomes

maximise E
[

1− e−αT (−φT (−yT−1+uT ))
]

over y ∈ Ψ,−∆yt ∈ Kt ∀t < T. (3.3)
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Noting that −ϕT (−yT−1 + uT ) is the liquidation value of the portfolio yT−1 − uT ,

this is the classical utility maximisation problem of an investor facing a liability of

uT at time T .

It is possible to rewrite (3.1) directly in terms of the cash injections. The result-

ing optimal cash injections will be used in Section 5 to construct optimal trading

strategies for (3.1). Combining the fact that vt is nondecreasing for all t with (2.10),

we obtain

V (u) = inf
{
∑

T
t=0E[vt(xt)] : (x, y) ∈ N ×Ψ, xt ≥ ϕt(∆yt + ut) ∀t

}

= inf
{
∑

T
t=0E[vt(xt)] : (x, y) ∈ N ×Ψ,−∆yt − ut + (xt, 0) ∈ Kt ∀t

}

= inf
{
∑

T
t=0E[vt(xt)] : (x, y) ∈ N ×Ψ, y superhedges u− (x, 0)

}

= inf
{
∑

T
t=0E[vt(xt)] : x ∈ N , u− (x, 0) ∈ Z

}

= inf
x∈Au

T
∑

t=0
E[vt(xt)], (3.4)

where

Au := {x ∈ N : u− (x, 0) ∈ Z}. (3.5)

In conclusion, the problem (3.1) has the same value function as the optimisation

problem

minimise
T
∑

t=0
E[vt(xt)] over x ∈ Au. (3.6)

Theorem 3.1 below confirms that the optimisation problems (3.1) and (3.6)

can be solved for any u ∈ N 2. It will be shown as part of the construction (in

Theorem 5.1) that the optimal cash injection strategy in (3.6) is unique under

robust no-arbitrage. The optimal trading strategy in (3.1) is not necessarily unique.

Theorem 3.1 also establishes a dual representation for V (u) that will be key to

the construction procedure proposed in Section 4. In order to formulate the result

and prepare for the construction, we fix the notation

at :=
∑

k∈I,k≥t

1
αk

for all t (3.7)

for brevity, and define for any X ∈ L2
T the functions

H((Q, S), X) :=
∑

t∈I

1
αt
EQ

[

ln ΛQ
t

]

− EQ

[

Xb +XsST

]

for all (Q, S) ∈ P̄, (3.8)

K(X) := inf
(Q,S)∈P̄

H((Q, S), X). (3.9)

Notice that K(X) is finite because the values of the mapping x 7→ x lnx are finite

and bounded from below on [0,∞). In this paper we adopt the convention 0 ln 0 = 0.
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Theorem 3.1. Under robust no-arbitrage, the infima in (3.2) and (3.4) are at-

tained for every u ∈ N 2 and

V (u) = sup
λ>0

sup
(Q,S)∈P̄

λ

(

T
∑

t=0
EQ[u

b
t + us

tSt]−
∑

t∈I

1
αt

(

EQ

[

ln ΛQ
t

]

+ ln λ
αt

)

+ a0

)

− |I|

(3.10)

= a0λ̂u − |I|, (3.11)

where

λ̂u := exp
{

1
a0

(

∑

t∈I
lnαt

αt
−K

(
∑

T
t=0ut

)

)}

> 0. (3.12)

The proof of this result relies on theoretical results obtained by Pennanen and

Perkkiö (2018) in a general setting. It appears in Appendix B.

Note that Theorem 3.1 implies that λ̂u, and hence V (u), depend on the liability

u only through the total liability
∑

T
t=0ut. This is perhaps surprising in view of (3.2),

but it is due to the nature of the dual objects in models with proportional trans-

action costs without trading and portfolio constraints: for example, it can be seen

in (2.11) that whether a payment stream can be superhedged from zero depends

only on its total payoff.

4. Minimal disutility

It was shown in Section 3 that, under robust no-arbitrage, solving the disutility min-

imisation problem (3.1) amounts to computing the value of K(X), defined in (3.9),

for a suitably chosen random variable X. It will also be shown in Section 6 (see

Theorem 6.1) that the same holds true for determining the buyer’s and seller’s

indifference prices.

In this section, we propose a dynamic procedure for determining K(X) for any

X ∈ L2
T under the more relaxed no-arbitrage condition. We also present a dynamic

procedure for constructing a pair (Q̂, Ŝ) ∈ P such that

K(X) = H((Q̂, Ŝ), X) =
∑

t∈I

1
αt
E
Q̂

[

ln ΛQ̂
t

]

− E
Q̂

[

Xb +XsŜT

]

. (4.1)

Remark 4.1. The dynamic procedure can also be used to find the minimal entropy

martingale measure (Frittelli 2000a,b). This is the measure Q̂ satisfying

K(0) = E
Q̂

[

ln ΛQ̂
T

]

= E

[

dQ̂
dP ln dQ̂

dP

]

,

in the special case when I = {T} and there are no transaction costs (in other words,

Ŝ = Sb = Sa).

The following representation for H in terms of transition probabilities is key to

constructing a solution to (4.1) by dynamic programming.
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Proposition 4.1. For all X ∈ L2
T and (Q, S) ∈ P̄, we have

H((Q, S), X) =
T−1
∑

t=0
at+1

∑

µ∈ΩQ
t

Q(µ)
∑

ν∈µ+

qνt+1 ln
qνt+1

pν
t+1

− ∑

µ∈ΩQ

T−1

Q(µ)
∑

ν∈µ+

qνT
(

Xbν +XsνSν
T

)

. (4.2)

The proof of Proposition 4.1 appears in Appendix B. The representation (4.2)

suggests that it is possible to construct a sequence (q̂t)
T
t=1 of transition probabilities,

from which then to assemble the probability measure Q̂. The following construction

provides a sequence of auxiliary functions to achieve this aim.

Construction 4.1. For givenX ∈ L2
T , construct two adapted sequences of random

functions (ft)
T−1
t=0 and (Jt)

T
t=0 by backward induction. Define JT : Ω×R → R∪{∞}

as

Jν
T (x) :=

{

−Xbν − xXsν if x ∈
[

Sbν
T , Saν

T

]

,

∞ otherwise.
(4.3)

for all ν ∈ ΩT . For every t < T , assume that Jt+1 has already been constructed,

and define

fµ
t (x) := inf

{

∑

ν∈µ+q
ν
(

Jν
t+1(x

ν) + at+1 ln
qν

pν
t+1

)

: qν ∈ [0, 1],

xν ∈ dom Jν
t+1 ∀ν ∈ µ+,

∑

ν∈µ+q
ν = 1,

∑

ν∈µ+q
νxν = x

}

, (4.4)

Jµ
t (x) :=

{

fµ
t (x) if x ∈

[

Sbν
t , Saν

t

]

,

∞ otherwise.
(4.5)

for all µ ∈ Ωt and x ∈ R.

The definition (4.4) of fµ
t is reminiscent of that of the convex hull of the col-

lection {Jν
t+1}ν∈µ+ of convex functions, if the term involving the logarithm is dis-

regarded (cf. Rockafellar 1996 Theorem 5.6). The following result summarises the

main properties of (Jt)
T
t=0, with some of the technical arguments involving the gen-

eralised convex hull deferred to Appendix A. Recall that the σ-field F0 is trivial,

and therefore J0 is a deterministic function.

Proposition 4.2. Assume no-arbitrage. For any X ∈ L2
T , let (Jt)

T
t=0 be the se-

quence of functions from Construction 4.1. Then for each t and ν ∈ Ωt, the func-

tion Jν
t is convex, bounded from below, continuous on its closed effective domain

dom Jν
t ⊆ [Sbν

t , Saν
t ] and the infimum in (4.4) is attained whenever it is finite.

Moreover,

J0(S0) = inf
(Q̄,S̄)∈P̄,S̄0=S0

H((Q̄, S̄), X) for all (Q, S) ∈ P̄. (4.6)

The proof appears in Appendix B. The following one-step toy model demon-

strates the application of Construction 4.1 in a simple setting.



May 23, 2022 8:41 WSPC/INSTRUCTION FILE 2022-05-20-regret-
paper-final-ITJAF

12 Alet Roux, Zhikang Xu

Example 4.1. Let T = 1 and Ω = {u, d}, and take any probability measure P

with p := P(u) ∈ (0, 1). Suppose furthermore that the bid and ask prices in this

model satisfy

Sbd
1 ≤ Sad

1 < Sb
0 = S̄0 = Sa

0 < Sbu
1 ≤ Sau

1 . (4.7)

Every probability measure Q in this model can be characterised uniquely by the

value of Q(u). It follows from (4.7) that

Q :=
{

Q(u) : (Q, S) ∈ P̄
}

=
[

S̄0−Sad
1

Sau
1 −Sad

1
,

S̄0−Sbd
1

Sbu
1 −Sbd

1

]

=: [qmin, qmax].

The mid-price process S̄ = (S̄0, S̄1) ∈ N with S̄1 := 1
2 (S

a
1 + Sb

1) together with the

unique probability measure Q̄ with Q̄(u) =
S̄0−S̄d

1

S̄u
1−S̄d

1
satisfies the robust no-arbitrage

condition of Proposition 2.2.

Let I := {0, 1} and take as given a random variable X = (Xb, Xs) ∈ L2
1 with

Xs = 0. We have

Ju
1 (x) =

{

−Xbu if x ∈
[

Sbu
1 , Sau

1

]

,

∞ otherwise,
Jd
1 (x) =

{

−Xbd if x ∈
[

Sbd
1 , Sad

1

]

,

∞ otherwise,

and then J0(S̄0) = inf [qmin,qmax] gX(q), where

gX(q) := 1
α

(

q ln q
p + (1− q) ln 1−q

1−p

)

− qXbu − (1− q)Xbd for all q ∈ [0, 1].

The function gX is continuous and convex on [0, 1], and reaches its minimum at

q̂X := peαX
bu
/(

peαX
bu

+ (1− p)eαX
bd
)

∈ (0, 1).

Taking q̄X := min{max{q̂X , qmin}, qmax}, it follows from Proposition 4.2 that

K(X) = J0(S̄0) = gX(q̄X).

The following construction uses the sequence (Jt)
T
t=0 of Construction 4.1 to

produce a pair (Q̂, Ŝ) satisfying (4.1). It will be shown in Theorem 4.1 below that

this does indeed produce a solution to (3.9).

Construction 4.2. Assume no-arbitrage. For given X ∈ L2
T and associated se-

quence (Jt)
T
t=0 from Construction 4.1, construct a process Ŝ ∈ N and a predictable

process (q̂t)
T
t=1 by induction, as follows. First, choose any Ŝ0 satisfying

J0(Ŝ0) = min
x∈[Sb

0,S
a
0 ]
J0(x). (4.8)

For each t < T and µ ∈ Ωt, assume that Ŝµ
t ∈ [Sbµ

t , Saµ
t ] has already been defined,

and choose q̂νt+1 ∈ [0, 1], Ŝν
t+1 ∈

[

Sbν
t+1, S

aν
t+1

]

for all ν ∈ µ+ such that

Jµ
t (Ŝ

µ
t ) =

∑

ν∈µ+

q̂νt+1

(

Jν
t+1(Ŝ

ν
t+1) + at+1 ln

q̂νt+1

pν
t+1

)

, (4.9)

Ŝµ
t =

∑

ν∈µ+

q̂νt+1Ŝ
ν
t+1, (4.10)

1 =
∑

ν∈µ+

q̂νt+1. (4.11)
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Finally, define Q̂ : F → R as Q̂(A) :=
∑

ω∈A

∏

T
t=1q̂

ωt

t for all A ∈ F , where the value

of the sum over an empty set is taken to be 0.

Construction 4.2 produces a well-defined pair (Q̂, Ŝ) as long as the model is free

of arbitrage. This is because the existence of Ŝ0 is assured by the continuity of J0,

and the infimum in (4.4) is attained whenever finite. It also produces a solution to

the optimization problem (3.9), as claimed at the start of the section.

Theorem 4.1. Assume no-arbitrage. For X ∈ L2
T given, let (Jt)

T
t=0 and (Q̂, Ŝ) =

(Q̂, Ŝ) be given by Constructions 4.1 and 4.2. Then (Q̂, Ŝ) ∈ P is a minimiser in

(3.9) and

K(X) = J0(Ŝ0) = min
x∈[Sb

0,S
a
0 ]
J0(x)

= H((Q̂, Ŝ), X) = min
(Q,S)∈P̄

H((Q, S), X)

= min
(Q,S)∈P̄

(

∑

t∈I
1
αt
EQ

[

ln ΛQ
t

]

− EQ

[

Xb +XsST

]

)

.

Moreover, the probability measure Q̂ is unique on nodes at times in I, in the sense

that if (Q, S) ∈ P is any other pair produced by Construction 4.2, then

Q̂(ν) = Q(ν) for all t ∈ I and ν ∈ Ωt. (4.12)

The proof of this result appears in Appendix B. The property (4.12) ensures that

Q̂ is unique as long as the σ-field generated by {ν ∈ Ωt : t ∈ I} is 2Ω. However, the

pair (Q̂, Ŝ) is not unique in general, because the solutions to (4.8) and (4.9)–(4.11)

might not be unique. Nevertheless, the property (4.12) is sufficient to ensure the

uniqueness of the optimal injection strategy, which will be considered in the next

section.

5. Optimal injection and investment

In this section we turn to the problem of constructing optimal hedging strategies and

optimal cash injection strategies for (3.1) and (3.6), using the objects constructed

in the previous section. The optimal cash injection is constructed first, and then

used in the construction of the optimal trading strategy.

The primal-dual optimality conditions associated with (3.2) and (3.10) provide

a good starting point. When combined with Theorem 4.1, the conditions in the

following result can be used to derive some of the properties of the optimal trading

and injection strategies. This result, and the others in this section, hold under robust

no-arbitrage.

Proposition 5.1. Assume robust no-arbitrage. For any u ∈ N 2, let λ̂u be given

by (3.12). A trading strategy ŷ ∈ Ψ attains the infimum in (3.2) and a martingale

pair (Q̂, Ŝ) ∈ P̄ satisfies

K
(
∑

T
t=0ut

)

= H
(

(Q̂, Ŝ),
∑

T
t=0ut

)

(5.1)
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if and only if the following conditions hold true:

(1) For all t ∈ I we have λ̂uΛ
Q̂
t = αte

αtφt(∆ŷt+ut).

(2) For all t /∈ I we have ϕt(∆ŷt+ut) ≤ 0 and {ϕt(∆ŷt+ut) < 0} ⊆
{

ΛQ̂
t = 0

}

.

(3) For all t,
{

∆ŷst + us
t > 0

}

⊆
{

Ŝt = Sa
t

}

and
{

∆ŷst + us
t < 0

}

⊆
{

Ŝt = Sb
t

}

,

equivalently,

(∆ŷst + us
t )+S

a
t − (∆ŷst + us

t )−S
b
t = (∆ŷst + us

t )Ŝt. (5.2)

Just like Theorem 3.1 the proof of this result relies on theoretical results obtained

by Pennanen and Perkkiö (2018) in a general setting. It appears in Appendix B.

Proposition 5.1 provides a link with shadow prices, a concept that has been

considered in utility optimisation under transaction costs (Kallsen and Muhle-Karbe

2011, Czichowsky et al. 2014 and others). An adapted price process Ŝ ∈ N is called

a shadow price process for a given liability u ∈ N 2 if Sb
t ≤ Ŝt ≤ Sa

t for all t, and the

optimal disutility in the model with bid-ask spread [Sb, Sa] and in the friction-free

model with price process Ŝ coincide. By Proposition 5.1, any martingale pair (Q̂, Ŝ)

given by Theorem 4.1 for X =
∑

T
t=0ut satisfies (5.2), and hence

V (u) = inf
y∈Ψ

T
∑

t=0
E
[

vt
(

∆ybt + ub
t + (∆yst + us

t )Ŝt

)]

, (5.3)

in other words, Ŝ is a shadow price process for u.

The following result gives an explicit formula for the optimal injection strategy.

Its proof appears in Appendix B. It is consistent with Corollary 3.4 of Kallsen and

Muhle-Karbe (2011) (obtained in a slightly different setting).

Theorem 5.1. Assume robust no-arbitrage. For any u ∈ N 2, let (Q̂, Ŝ) be as in

Theorem 4.1 for X =
∑

T
t=0ut. Then the process x̂ ∈ N defined by

x̂t =







1
αt

ln
λ̂uΛ

Q̂
t

αt
if t ∈ I,

0 if t /∈ I,
(5.4)

where λ̂u is given by (3.12), is the unique minimiser in (3.6).

This result leads to the following important observation about optimal injection

and trading strategies.

Remark 5.1. Substituting (5.4) into (3.6) and (5.1) into (3.11), the optimal P&L

(cash gain, negative injection) is

−∑

t∈I
x̂t =

∑

t∈I

1
αt

(

E
Q̂

[

ln ΛQ̂
t

]

− ln ΛQ̂
t

)

−
T
∑

t=0
E
Q̂
[ub

t + us
t ŜT ]. (5.5)

The second term on the right hand side arises naturally in the no-arbitrage pricing of

the liability u; see Section 2.3. The first term in this expression is effectively a profit
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that can be achieved from following this particular injection strategy (rather than

any other). Taking the expected value of this term under the real-world probability P

gives that

∑

t∈I

1
αt

(

E
Q̂

[

ln ΛQ̂
t

]

− E
[

ln ΛQ̂
t

]

)

=
∑

t∈I

1
αt

∑

ω∈Ω

(

Q̂ (ω)− P (ω)
)

ln Q̂(ω)
P(ω) ≥ 0.

When Q̂ = P, then this term is zero, but whenever Q̂ is distinct from P, there is

some room for profit. The numerical results in Example 8.4 support this finding.

Remark 5.2. The optimal injection strategy can be constructed inductively by

decomposing (5.4) into transition probabilities and using Theorem 4.1. For given

u ∈ N 2, take the sequence (Jt)
T
t=0 from Construction 4.1 with X =

∑

T
t=0ut and

pair (Q̂, Ŝ) from Construction 4.2. Then

λ̂u = exp
{

1
a0

(

∑

t∈I
lnαs

αs
− J0(Ŝ0)

)}

and

x̂t =















1
αt

ln λ̂u

αt
if t ∈ I ∩ {0},

1
αt

ln λ̂u

αt
+ 1

αt

∑t−1
s=0 ln

q̂s+1

ps+1
if t ∈ I \ {0},

0 if t /∈ I.

We now turn our attention to the construction of the set of optimal trading

strategies, the key idea being that it is sufficient to construct trading strategies

that satisfy the conditions in Proposition 5.1. To the point, the uniqueness of the

optimal injection strategy and (5.2) means that it is sufficient to construct trading

strategies in a friction-model with stock price process Ŝ for any martingale pair

(Q̂, Ŝ) satisfying the conditions of Theorem 4.1 for X =
∑

T
t=0ut. The set of optimal

trading strategies is constructed as follows.

Construction 5.1. Assume robust no-arbitrage and take u ∈ N 2 as given. For the

sequence (Jt)
T
t=0 from Construction 4.1 with X =

∑

T
t=0ut and a pair (Q̂, Ŝ) from

Construction 4.2, construct a sequence of auxiliary sets (Wt)
T
t=−1 by induction,

where

Wt ⊂ N 2′
t :=

{

(wk)
t
k=−1 : w ∈ N 2′

}

for all t,

and a set Y ⊂ N 2′.

Define W−1 := {0}. For each t = 0, . . . , T − 1, let Wt be the collection of all

processes (wk)
t
k=−1 ∈ N 2′

t such that (wk)
t−1
k=−1 ∈ Wt−1 and the random variable

wt ∈ L2
t solves on each node µ ∈ Ωt the system of equations

∆wsµ
t Ŝµ

t = (∆ws
t )+S

aµ
t − (∆ws

t )−S
bµ
t , (5.6)

wbµ
t + wsµ

t Ŝν
t+1 = −Jν

t+1(Ŝ
ν
t+1)− at+1 ln

q̂νt+1

pν
t+1

for all ν ∈ µ+, (5.7)
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where at+1 is given by (3.7). Finally, let WT be the collection of all processes

w = (wt)
T
t=−1 ∈ N 2′

T = N 2′ such that (wt)
T−1
t=−1 ∈ WT−1 and the random variable

wT ∈ L2
T satisfies

wT =
T
∑

t=0
ut, ∆ws

T ŜT = (∆ws
T )+S

a
T − (∆ws

T )−S
b
T . (5.8)

Define Y to be the collection of all trading strategies ŷ ∈ N 2′ constructed by

induction from some w ∈ WT as ŷ−1 := 0 and

ŷbt :=

{

∆wb
0 + x̂0 − ub

0 + J0(Ŝ0) if t = 0,

ŷbt−1 +∆wb
t + x̂t − ub

t − at ln
q̂t
pt

if t > 0,
(5.9)

ŷst := ŷst−1 +∆ws
t − us

t for all t ≥ 0. (5.10)

Here x̂ ∈ N is calculated as in Remark 5.2.

Construction 5.1 requires the system of equations (5.6)–(5.7) to be solved at

every non-terminal node, and (5.8) at each terminal node, in each case for two

variables. Despite being the stock price process of an arbitrage-free model, the

shadow price process Ŝ can be degenerate (for example, under large proportional

transaction costs it could be constant), which can lead to these systems of equations

being underdetermined, and hence having many solutions. This is the reason why

the construction produces a collection of processes, rather than a single strategy. In

most practical applications (involving models with two or more successors at each

non-terminal node and small to moderate transaction costs), the systems involve two

or more equations, and hence the collections produced by this construction are very

small. That they are not empty (and hence that the systems are well-determined)

comes from the following result. Its proof appears in Appendix B.

Theorem 5.2. Assume robust no-arbitrage. For given u ∈ N 2, let Y be the collec-

tion of trading strategies from Construction 5.1. Then Y ̸= ∅ and every ŷ ∈ Y is a

minimiser in (3.1).

In practice, the computational cost of constructing an optimal trading strategy ŷ

grows exponentially in the number of time steps, even in recombinant binary trees.

The reason for this is that neither x̂ nor Ŝ are generally recombinant processes,

even when
∑

T
t=0ut is path-independent and the bid-ask spread [Sb, Sa] is a recom-

binant process. However, it is very efficient for determining the trading strategy in

particular scenarios of interest.

6. Indifference pricing

In this section we consider an investor trading in cash and shares and who is entitled

to receive a given portfolio wt ∈ L2
t at each time step t. We refer to the payment

stream w ∈ N 2 as the endowment of the investor (though it may in fact repre-

sent a liability if negative). The minimal disutility of the investor in this situation

is V (−w).
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Indifference pricing provides a way for such an investor to determine the value

of derivatives, or payment streams. We will introduce disutility indifference prices

for the seller and buyer of a payment stream c ∈ N 2. Consider the situation where

the investor is selling the payment stream c. He receives a single payment of δ ∈ R

in cash at time 0, and then delivers the portfolio ct at each time step t. After selling

c, the investor’s minimum disutility becomes V (c − δ✶ − w), where the process

✶ = (✶t)
T
t=0 is defined as

✶t :=

{

(1, 0) if t = 0,

(0, 0) if t > 0.

The seller’s disutility indifference price πai(c;w) of c is defined as the lowest price

for which he could sell c without increasing his minimal disutility, in other words,

πai(c;w) := inf{δ ∈ R : V (c− δ✶− w) ≤ V (−w)}. (6.1)

The buyer’s disutility indifference price πbi(c;w) is similarly defined as the high-

est price at which the investor could buy the payment stream (and receive ct at each

time step t) without increasing his minimal disutility, in other words,

πbi(c;w) := sup{δ ∈ R : V (−c+ δ✶− w) ≤ V (−w)}
= − inf{δ ∈ R : V (−c− δ✶− w) ≤ V (−w)} = −πai(−c;w). (6.2)

The following theorem gives formulae for computing the buyer’s and seller’s

indifference prices. These pricing formulae resemble existing formulae for utility

indifference prices in friction-free models under exponential utility, in particular

those obtained by Delbaen, Grandits, Rheinländer, Samperi, Schweizer and Stricker

(2002) and Rouge and El Karoui (2000) in general continuous-time market models

without transaction costs, and Musiela and Zariphopoulou (2004) in a discrete time

friction-free model with a non-traded asset.

Theorem 6.1. Assume robust no-arbitrage. We have for any c, w ∈ N 2 that

πai(c;w) = K
(

−∑

T
t=0wt

)

−K
(
∑

T
t=0(ct − wt)

)

, (6.3)

πbi(c;w) = K
(

−∑

T
t=0(ct + wt)

)

−K
(

−∑

T
t=0wt

)

. (6.4)

Notice that, in order to determine the buyer’s and seller’s indifference prices of

a payment stream, it is sufficient to be able to determine the value of K for three

different random variables. The proof of this result appears in Appendix B.

Remark 6.1. Similar results can be obtained for a related method of valuation,

namely reservation pricing, which is often encountered in financial reporting and

supervision of financial institutions; see work by Davis et al. (1993), Jaschke and

Küchler (2001), Pennanen (2014b), and many others. The reservation value of a

liability c ∈ N 2 is defined as

πr(c) := inf{δ ∈ R : V (c− δ✶) ≤ 0}.
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Similar arguments as in the proof of Theorem 6.1 give that

πr(c) = a0 ln
a0

|I| +
∑

t∈I

lnαt

αt
−K(c)

under robust no-arbitrage.

We conclude this section by verifying that indifference prices do indeed produce

smaller bid-ask intervals than superhedging prices.

Theorem 6.2. Assume robust no-arbitrage. We have for any c, w ∈ N 2 that

πb(c) ≤ πbi(c;w) ≤ πai(c;w) ≤ πa(c).

Moreover, the mapping u 7→ πai(u;w) is convex, and u 7→ πbi(u;w) is concave.

The proof can be found in Appendix B.

7. Numerical approximation

The adapted process of functions (Jt)
T
t=0 of Construction 4.1 is the key to deter-

mining minimal disutility, indifference prices as well as the construction of optimal

trading strategies. It is possible to derive these functions analytically in simple cases

(see Example 4.1), but numerical approximation is required, in general.

In this section we propose a numerical method for approximating these functions.

For simplicity of exposition and availability of error bounds we assume throughout

that the model satisfies the relatively mild condition

min
ν∈µ+

Sbν
t+1 < Sbµ

t ≤ Saµ
t < max

ν∈µ+
Saν
t+1 for all t < T, µ ∈ Ωt, (7.1)

which implies robust no-arbitrage and dom Jt = [Sb
t , S

a
t ] for all t. Similarly, the

assumption that bid-ask intervals are subdivided into the same number n ∈ N

intervals of equal length is made for simplicity, and can be relaxed.

The following construction of the upper approximation is based on the discussion

in Appendix A.2. It is applied backwards in time from JT at time T , and produces

adapted sequences of piecewise linear functions by dividing the bid-ask interval at

each node into a finite number of subintervals.

Construction 7.1. Assume (7.1) and take X ∈ L2
T and n ∈ N as given. Construct

an adapted sequence of piecewise linear random functions (Ĵt)
T
t=0 by backward

induction as follows. Define ĴT : Ω× R → R ∪ {∞} as

Ĵν
T (x) :=

{

−Xbν − xXsν if x ∈
[

Sbν
T , Saν

T

]

,

∞ otherwise.
(7.2)

for all ν ∈ ΩT . For every t < T , assume that Ĵt+1 has already been constructed,
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and define for all µ ∈ Ωt and l = 0, . . . , n

x̂µ
l := n−l

n Sbµ
t + l

nS
aµ
t for all l = 0, . . . , n,

ĝµl := min
{

∑

ν∈µ+q
ν
(

Ĵν
t+1(x

ν) + at+1 ln
qν

pν
t+1

)

: qν ∈ [0, 1],

xν ∈ [Sbν
t+1, S

aν
t+1] ∀ν ∈ µ+,

∑

ν∈µ+q
ν = 1,

∑

ν∈µ+q
νxν = x̂µ

l

}

, (7.3)

and finally for all x ∈ R

Ĵµ
t (x) :=















ĝµl if x = x̂µ
l for some l,

x̂µ
l
−x

x̂µ
l
−x̂µ

l−1
ĝµl−1 +

x−x̂µ
l−1

x̂µ
l
−x̂µ

l−1
ĝµl if x ∈ (x̂µ

l−1, x̂
µ
l ) for any l,

∞ if x ∈ R \ [Sbµ
t , Saµ

t ].

It follows from the discussion in Appendix A.2 that the upper approximation is

indeed true to its name in that Ĵt ≥ Jt for all t. Moreover, repeated application of

Proposition A.5 gives the following error bound for the upper approximation.

Theorem 7.1. Assume (7.1) and take X ∈ L2
T and n ∈ N as given. Let (Jt)

T
t=0

be the process given by Construction 4.1, let (Ĵt)
T
t=0 be the upper approximation of

Construction 7.1, and define

∆n := 1
n max

{

Saµ
t − Sbµ

t : t = 0, . . . , T, µ ∈ Ωt

}

.

Then there exists a constant c > 0 such that
∣

∣J0(x)− Ĵ0(x)
∣

∣ ≤ c∆n for all x ∈ [Sb
0, S

a
0 ].

The constant c in this result depends on the (unknown) Lipschitz coefficients of

the functions (Jt)
T
t=0. In practice, one could instead use the lower approximation

described in Appendix A.2, which produces a sequence of piecewise linear functions

(J̌t)
T
t=0 with J̌T = JT and which satisfies J̌t ≤ Jt for all t. Whilst the lower ap-

proximation has proved to be less efficient in numerical experiments, and no error

bound is known, it provides a lower bound that can be used to assess the accuracy

of the upper approximation. This is demonstrated in Example 8.1.

The upper approximation requires determination of the value of the generalised

convex hull of piecewise linear functions (in (7.3)) at each of the n+1 endpoints of

the subintervals. Exact solutions exist for this (Xu 2018 Section 4.3), and involves

inspecting O(n|µ+|) different combinations of the pieces of the piecewise linear func-

tions at each of the successors of a node µ. One could alternatively use a non-linear

optimiser, with fixed computational cost for each endpoint; however this risks in-

troducing numerical errors and might break the convexity of the approximating

piecewise linear functions. As there are n+ 1 endpoints, the computational cost of

determining the approximation for J at each node µ is O(n|µ+|+1). The overall com-

putational complexity depends on the number of nodes (which in turn depends on

the structure and size of the model tree). The computational costs and the required

memory are both proportional to the number of nodes in the tree.
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Consider the example of a binary tree model satisfying (7.1). In order to achieve

an accuracy of O(ϵ) when approximating J0, the computational cost is O(ϵ−3).

However the number of nodes play an important role; if the model is recombinant

and the payoff X is path-independent, then one need only consider the 1
2T (T + 1)

“identifiable” nodes; in general one may need to consider up to 2T+1 − 1 nodes.

Once the upper approximation (Ĵt)
T
t=0 has been constructed, then it is natural

to approximate K via Theorem 4.1, and πai and πbi via Theorem 6.1. The process

(Ĵt)
T
t=0 can also be used to construct optimal injection and trading strategies along

any given path by means of Constructions 4.2 and 5.1. As these constructions require

repeated calculations along a stock price path, and generally lead to path-dependent

objects, the computational cost is proportional to the number of scenarios in the

model.

8. Numerical examples

Consider a friction-free binomial tree model with T = 52 steps representing one

year in real time with weekly rehedging, where the stock price S = (St)
52
t=0 satisfies

S0 = 100 and

St+1 =

{

eσ
√

1/52St with probability p,

e−σ
√

1/52St with probability 1− p

for all t < 52. Here σ = 0.2 is the annual volatility of the return on stock, and the

model is assumed to have an annual effective interest rate of re = 0.02. Define the

bid and ask prices of the stock as

Sa
t := (1 + k)St, Sb

t := (1− k)St

for all t > 0, where k is the proportional transaction cost parameter. We assume

that there are no transaction costs at time 0, in other words Sa
0 := Sb

0 := S0 = 100.

The investor’s endowment is w = 0, and that the risk aversion coefficient is

constant, in other words, αt = α for all t ∈ I. Consider a call option with expiry one

year, strike 100 and physical delivery (based on the underlying). This corresponds

to the payment stream C = (Ct)
52
t=0 where Ct = 0 for all t < 52 and

C52 = (−100, 1)✶{S52>100}.

The numerical results in this section were obtained by applying the upper and

lower approximation methods introduced described in Section 7. Superhedging bid

and ask prices are also provided for the purposes of comparison, calculated using

methods previously reported by Roux et al. (2008).

Example 8.1. Table 1 contains approximate indifference prices for the seller and

buyer of the call option in the case where p = 0.5, k = 0.005, I = {0, . . . , 52} and

α = 0.1, as computed by both the upper and lower approximation methods. In each

case, the approximation is obtained by dividing each (discounted) bid-ask interval

into n subintervals of equal length.
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Table 1. Indifference prices by approximation method (Example 8.1)

n 20 50 100 150 200 300

Upper approximation method

πbi(C; 0) 8.5759 8.5673 8.5658 8.5655 8.5654 8.5654

πai(C; 0) 9.1596 9.1672 9.1684 9.1687 9.1687 9.1688

Lower approximation method

πbi(C; 0) 8.4974 8.5533 8.5633 8.5647 8.5652 8.5653

πai(C; 0) 9.2357 9.1797 9.171 9.1692 9.1690 9.1690

The results from the two approximation methods are consistent in that they

converge to the same limit, but the upper approximation converges much faster than

the lower approximation. The results suggest that taking n = 150 results in accuracy

up to 3 decimal places, which is perfectly adequate for graphical representation.

The indifference pricing spread (between the seller’s and buyer’s indifference

prices) is considerably smaller than the (superhedging) bid-ask spread; note that

the ask and bid prices in this case are πa(C) = 10.4788 and πb(C) = 6.9694.

Different possibilities for the set I of dates on which injection is allowed will

be considered below. The case I = {52}, in particular, corresponds to the classical

utility indifference pricing framework, where the cash injection at time 52 reflects

the hedging shortfall at the expiration date of the option under exponential utility.

Example 8.2. Figure 1 illustrates seller’s and buyer’s indifference prices for a range

of values of the risk aversion coefficient α and transaction cost parameter k in the

case where p = 0.5. Observe that the indifference pricing spread (between the seller’s

and buyer’s indifference prices) is smaller for I = {0, . . . , 52} than I = {52}. This
is because being able to inject cash at different time steps introduces considerable

flexibility, which in turn results in decreased hedging costs.

As seen in part (a), indifference pricing spreads increase as α increases. The

indifference pricing spread remains well within the superhedging bid-ask spread for

a large range of values of α.

Indifference pricing spreads increase with k, the intuitive reason being that in-

creased transaction costs results in increased trading costs. This is illustrated in

part (b). Observe finally that the indifference pricing spreads remain well within

the superhedging bid-ask spread for all values of k, and also expand slower as k

increases.

Example 8.3. Buyer’s and seller’s indifference prices for a range of values of the

market probability parameter p in the case where k = 0.005 and α = 0.1, are

illustrated in Figure 2. It can be seen in part (a) that indifference pricing spreads

tend to be at their largest when p is close to the value of the friction-free risk-neutral
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(b) Indifference prices, α = 0.1

Fig. 1. Indifference prices, transaction costs and risk aversion (Example 8.2)

probability in this model, which is

q =
(

(1 + re)
1/52 − e−σ

√
1/52

)/(

eσ
√

1/52 − e−σ
√

1/52
)

≈ 0.4999.

The effect is more pronounced when injection is allowed at more trading dates. It

can be explained by examining the behaviour of K(0), K(−C52) and K(C52) for

different values of p, illustrated in part (b). Whilst the dependence of these values on

p appear to be convex, they vary in steepness, both within groups associated with

the same choice and I, and between groups associated with different choices of I.
This then has consequences for the vertical differences πbi(C; 0) = K(−C52)−K(0)

and πai(C; 0) = K(0)−K(C52).

Example 8.4. Figure 3 illustrates a number of numerical results related to op-

timal injection and hedging strategies for I = {52} and I = {0, 13, . . . , 52} and

for different values of the probability p. The risk-aversion parameter is α = 0.2

throughout.

Parts (a) and (b) contain histograms of the optimal P&L −∑

t∈I x̂t for 100000

randomly generated scenarios in the case where k = 0.005. It is clear that the P&L

tends to be larger if the real-world probability is further away from the risk-neutral

probability (calculated in Example 8.3), thus confirming the analysis in Remark 5.1.

The distribution of P&L depends on I, too, with distributions being much wider

in the case where I = {0, 13, . . . , 52}. Making injections quarterly, instead of at the

terminal time step, allows an investor to reduce their regret by taking advantage of
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I = {0, 1, . . . , 52}: πai(C; 0) πbi(C; 0) K(−C52) K(0) K(C52)

(b) Values of K

Fig. 2. Indifference prices and market probability (Example 8.3)

the convexity of the disutility function.

Due to the smallness of the transaction costs, Construction 5.1 produces a unique

optimal trading strategy ŷ = (ŷt)
52
t=−1 in this model. Parts (c)–(f) illustrate the opti-

mal stock positions (ŷst )
52
t=0 associated with this strategy in two scenarios. The stock

positions should be compared to the stock positions associated with the replicating

strategy in the binary model without transaction costs (pictured).

Parts (c) and (e) focus on the stock positions when I = {52} in the case of no

transaction costs (k = 0) and k = 0.005. The presence of transaction costs lead to

smoother stock positions due to a reduction in trading. Stock positions tend to be

higher for higher values of p; this indicates that the investor is taking advantage of

market information.

The corresponding results for the case I = {0, 13, . . . , 52} are provided in (d)

and (f). In this case the tendency is for stock holdings to be larger (in absolute

value) initially, but with larger adjustments each quarter, and tending to similar

values in the final quarter as in the case I = {52}.
Xu (2018 Section 5.5) reported a large number of numerical examples illustrating

the methods of this paper, for a selection of options with cash and physical delivery,

and for a range of values of re and T .

Appendix A. Generalised convex hull

The constructions in Section 4 involve a generalisation of the convex hull of convex

functions. This section outlines the main properties used in this paper. For k =
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Fig. 3. Optimal injection and trading strategies
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1, . . . ,m, let fk, gk : R → R ∪ {∞} be proper convex functions that are continuous

on their effective domains dom fk = [bk, ak] for some bk, ak ∈ R and dom gk = [0, 1],

and

gk(0) = 0. (A.1)

Define the generalised convex hull f : R → R ∪ {∞} of f1, . . . , fm and g1, . . . gm as

f(x) := inf {∑m
k=1(qkfk(xk) + gk(qk)) : qk ∈ [0, 1], xk ∈ [bk, ak] for all k,

∑

m
k=1qk = 1,

∑

m
k=1qkxk = x} . (A.2)

A.1. General properties

The main aim of this section is to establish the key properties needed in Section 4.

Further detail on the arguments below, in a slightly more general setting, were

presented by Xu (2018 Chapter 4).

The first result establishes the convexity and boundedness of f , as well as the

compactness of its effective domain.

Proposition A.1. The function f in (A.2) is proper, convex, and

dom f = conv
m
⋃

k=1

[bk, ak] =
[

min
k

bk,max
k

ak

]

. (A.3)

Proof. The effective domain dom f is compact (Rockafellar 1996 Corollary 9.8.2).

The properness of f follows from the fact that continuous proper convex functions

with compact domains are bounded from below. The convexity of f comes from the

convexity of the fk’s and gk’s.

The remainder of this section is devoted to establishing the closedness of the

epigraph of f . This then allows us to establish the desired properties; see Proposi-

tion A.4 at the end of the appendix. Define

Ag
k := {(q, qx, qy + gk(q)) : q ∈ [0, 1], (x, y) ∈ epi fk} for all k. (A.4)

If q = 0, then (q, a, b) ∈ Ag
k if and only if a = b = 0. This also implies that Ag

k ̸= ∅.
Moreover, if (q, a, b) ∈ Ag

k satisfies q > 0, then (q, a, b) + U ⊂ Ag
k, where

U := {(0, 0, b) ∈ R3 : b ≥ 0}.
The properties of Ag

k in the next result will be used in Proposition A.3. The

recession cone of a set C ⊆ Rn is defined as 0+C := {y ∈ Rn : C + y ⊆ C}
(Rockafellar 1996 Th. 8.1).

Proposition A.2. The following holds true for the set Ag
k in (A.4) for any k:

(1) The set Ag
k is convex.

(2) The closure of Ag
k is clAg

k = U ∪Ag
k.

(3) The recession cone of clAg
k is 0+(clAg

k) = U .
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Proof. Item (1): Fix any λ ∈ (0, 1), q1, q2 ∈ [0, 1] and (x1, y1), (x2, y2) ∈ epi fk and

define q := λq1 + (1− λ)q2 and

z := λ(q1, q1x1, q1y1 + gk(q1)) + (1− λ)(q2, q2x2, q2y2 + gk(q2)).

If q = 0, then q1 = q2 = 0, after which x1 = y1 = x2 = y2 = 0 by the observation

above, so that z = 0 ∈ Ag
k. If q > 0, then define ε := λgk(q1)+ (1−λ)gk(q2)− gk(q)

and (x, y) := 1
q (λq1(x1, y1) + (1 − λ)q2(x2, y2) + (0, ε)). Then ε ≥ 0 because gk is

convex and (x, y) ∈ epi fk because epi fk is convex and unbounded from above.

Thus z = (q, qx, qy + gk(q)) ∈ Ag
k, so that Ag

k is convex.

Item (2): Define Ak := cone({1} × epi fk) = {λ(1, z) : λ ≥ 0, z ∈ epi fk}; then
clAk = U ∪Ak due to the compactness of dom fk (Rockafellar 1996 Theorem 8.2).

For every (0, 0, b) ∈ U ⊂ clAk there exist (qn)n≥1 in [0, 1] and (xn, yn)n≥1 in epi fk
such that

(0, 0, b) = lim
n→∞

qn(1, xn, yn) = lim
n→∞

qn(1, xn, yn + gk(qn)),

with the last equality due to (A.1) and the continuity of gn. Thus (0, 0, b) ∈ clAg
k.

Combining this with Ag
k ⊆ clAg

k gives that U ∪Ag
k ⊆ clAg

k.

To establish the opposite inclusion, suppose that (q, a, b) ∈ clAg
k. Then there

exist (qn)n≥1 in [0, 1] and (xn, yn)n≥1 in epi fk such that

(q, a, b) = lim
n→∞

(qn, qnxn, qnyn + gk(qn)).

Observe that limn→∞ gk(qn) = gk(q) by the continuity of gk, so that

b− gk(q) = lim
n→∞

qnyn.

Moreover, since qn(1, xn, yn) ∈ Ak for all n ∈ N it follows that

(q, a, b− gk(q)) = lim
n→∞

qn(1, xn, yn) ∈ clAk = U ∪Ak.

There are now two possibilities. If (q, a, b − gk(q)) ∈ U , then q = 0 and therefore

(q, a, b) ∈ U by (A.1). If (q, a, b − gk(q)) ∈ Ak then there exist (x, y) ∈ epi fk such

that (q, a, b− gk(q)) = q(1, x, y), in other words, (q, a, b) = (q, qx, qy + gk(q)) ∈ Ag
k.

Item (3): The comments just before this proposition together with item (2) gives

that U ⊆ 0+(clAg
k). For the opposite inclusion, take any (q, a, b) ∈ 0+(clAg

k). Since

0 ∈ clAg
k, this implies that

λ(q, a, b) = 0 + λ(q, a, b) ∈ clAg
k = U ∪Ag

k for all λ > 0.

It then follows from (A.4) and the comments following it that q = a = 0, whence

(q, a, b) ∈ U .

Proposition A.3. The set

Ef := {(a, b) : (1, a, b) ∈ ∑

m
k=1A

g
k} (A.5)

= {∑m
k=1(qkxk, qkyk + gk(qk)) : qk ∈ [0, 1], (xk, yk) ∈ epi fk ∀k,∑m

k=1qk = 1}
(A.6)
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is closed.

Proof. We first show that

{1} × Ef = M ∩∑

m
k=1 clA

g
k, (A.7)

where M := {1} × R2. Equation (A.5) gives {1} × Ef ⊆ M ∩ ∑

m
k=1 clA

g
k. To

establish the opposite inclusion, fix any (q, a, b) ∈ M ∩∑

m
k=1 clA

g
k; then q = 1 and

by Proposition A.2(2) there exist (qk, ak, bk) ∈ U ∪Ag
k for every k such that

(1, a, b) =
∑

m
k=1(qk, ak, bk).

Define B := {k : (qk, ak, bk) ∈ U} and C := {k : (qk, ak, bk) ∈ Ag
k \ U}. For each

k ∈ B, we have qk = ak = 0 and bk ≥ 0; select any (xk, yk) ∈ epi fk and observe

that (qk, qkxk, qkyk + gk(qk)) = 0 = (qk, ak, bk − bk). Noting that C ̸= ∅ (because

qk > 0 for at least one k), define c := 1
|C|

∑

k∈Bbk ≥ 0. For each k ∈ C there

exists some (xk, y
′
k) ∈ epi fk such that (qk, ak, bk) = (qk, qkxk, qky

′
k+gk(qk)). Define

yk := y′k + c
qk

≥ y′k; then (xk, yk) ∈ epi fk and

(qk, qkxk, qkyk + gk(qk)) = (qk, ak, bk + c).

Finally, rearrangement gives that

(1, a, b) =
∑

k∈C(qk, ak, bk + c) =
∑

m
k=1(qk, qkxk, qkyk + gk(qk)) ∈ M ∩∑

m
k=1 clA

g
k,

which establishes (A.7).

Note that
∑

m
k=1A

g
k is convex (Rockafellar 1996 Theorem 3.1). Furthermore, if

zk ∈ 0+(clAg
k) = U for all k satisfies

∑

m
k=1zk = 0, then z1 = · · · = zm = 0 ∈

U ∩ (−U); this means that

cl
∑

m
k=1A

g
k =

∑

m
k=1 clA

g
k (A.8)

(Rockafellar 1996 Corollary 9.1.1). It remains to show that

M ∩ ri
∑

m
k=1A

g
k ̸= ∅, (A.9)

because then the closedness Ef follows from (A.8), (A.7) and

M ∩ cl
∑

m
k=1A

g
k = cl (M ∩∑

m
k=1A

g
k)

(Rockafellar 1996 Corollary 6.5.1).

To establish (A.9), observe that ri
∑

m
k=1A

g
k ̸= ∅ because

∑

m
k=1A

g
k ̸= ∅. Thus

there exist qk ∈ [0, 1] and (xk, yk) ∈ epi fk for all k such that

(q, a, b) :=
∑

m
k=1(qk, qkxk, qkyk + gk(qk)) ∈ ri

∑

m
k=1A

g
k.

This can now be used to construct a point z ∈ M ∩ ri
∑

m
k=1A

g
k. There are two

possibilities, depending on the value of q. If q ≥ 1, define z := 1
q (q, a, b). Then

clearly z ∈ M and moreover z can be written as the convex combination

z = 1
q (q, a, b) +

(

1− 1
q

)

(0, 0, 0) ∈ ri
∑

m
k=1A

g
k
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(Rockafellar 1996 Theorem 6.1). If q ∈ [0, 1], define q′k := 1
m (2− q) > 0 for all k and

z′ :=
∑

m
k=1(q

′
k, q

′
kxk, q

′
kyk + gk(q

′
k)) ∈

∑

m
k=1A

g
k.

Then z := 1
2 (q, a, b) +

1
2z

′ ∈ ri
∑

m
k=1A

g
k (Rockafellar 1996 Theorem 6.1) and z ∈ M

because 1
2q +

1
2

∑

m
k=1q

′
k = 1.

The following result concludes this section.

Proposition A.4. The function f in (A.2) is continuous on dom f , and the infi-

mum in (A.2) is attained for all x ∈ dom f .

Proof. It is sufficient to show that epi f = Ef , for then f is lower semicontinuous

by Proposition A.3, hence continuous on dom f because it is a closed bounded

interval (Rockafellar 1996 Theorems 10.2, 20.5). The fact that the infimum in (A.2)

is attained for all x ∈ dom f follows from the properties of Ef .

Suppose that (x, y) ∈ Ef . Thus there exist qk ∈ [0, 1] and (xk, yk) ∈ epi fk for

all k such that
∑

m
k=1qk = 1,

∑

m
k=1qkxk = x and

∑

m
k=1(qkyk + gk(qk)) = y. Then

y =
∑

m
k=1(qkyk + gk(qk)) ≥

∑

m
k=1(qkfk(xk) + gk(qk)) ≥ f(x),

and so (x, y) ∈ epi f .

Conversely, suppose that (x, y) ∈ epi f . Then f(x) < ∞ and so by (A.2) there

exists a sequence (q1n, . . . , xmn, x1n, . . . , xmn)n≥1 such that

f(x) = lim
n→∞

∑

m
k=1(qknfk(xkn) + gk(qkn))

and for all n ∈ N we have qkn ∈ [0, 1] and xkn ∈ [bk, ak] for all k, and
∑

m
k=1qkn = 1

and
∑

m
k=1qknxkn = 1. For each n ∈ N and k = 1, . . . ,m define

ykn := fk(xkn) + y − f(x) ≥ fk(xkn);

then (xkn, ykn) ∈ epi fk. Define moreover for all n ∈ N

yn :=
∑

m
k=1(qknykn + gk(qkn)) =

∑

m
k=1(qknfk(xkn) + gk(qkn)) + y − f(x);

then (x, yn) ∈ Ef and limn→∞ yn = y. This implies that (x, y) ∈ clEf = Ef by

Proposition A.3, which concludes the proof that epi f = Ef .

A.2. Numerical approximation

Computer implementation of the generalised convex hull necessitates a numerical

approximation in all but a few special cases. In this section we propose such a

numerical approximation, together with error bounds, that will be suitable for use

in the dynamic procedure proposed in Section 4. It is based on approximation of

f1, . . . , fm and f by piecewise linear functions. We will refer to this as the upper

approximation as it approximates the generalised convex hull f from above.
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For every k, divide dom fk = [bk, ak] into nk subintervals. If bk = ak, then define

x̂k0 := x̂k1 := · · · := x̂knk
:= ak, and if bk < ak, choose any (x̂kl)

nk

l=0 such that

bk =: x̂k0 < · · · < x̂knk
:= ak. Define f̂k : R → {∞} as

f̂k(x) :=















f(x̂kl) if x = x̂kl for some l,
x̂kl−x

x̂kl−x̂k[l−1]
f̂k(x̂k[l−1]) +

x−x̂k[l−1]

x̂kl−x̂k[l−1]
f̂k(x̂kl) if x ∈ (x̂k[l−1], x̂kl) for any l,

∞ if x ∈ R \ dom fk.

(A.10)

Observe that f̂k ≥ fk by virtue of the convexity of fk.

Let ĝ be the generalised convex hull of f̂1, . . . , f̂m and g1, . . . gm, in other words,

ĝ(x) := inf
{

∑

m
k=1(qkf̂k(xk) + gk(qk)) : qk ∈ [0, 1], xk ∈ [bk, ak] ∀k,

∑

m
k=1qk = 1,

∑

m
k=1qkxk = x

}

. (A.11)

Then ĝ ≥ f by definition, and it follows from the arguments in the previous sub-

section that ĝ is convex and continuous on its effective domain dom ĝ = dom f , and

that the infimum in (A.11) is attained for all x ∈ dom ĝ = dom f .

In practical applications, one often needs to approximate f on some subinterval

[b, a] ⊂ dom f . Divide this interval into n subintervals, as follows: if b = a, then

define x̂0 := x̂1 := · · · := x̂n := ak, and if b < a, choose (x̂l)
n
l=0 such that b =: x̂0 <

· · · < x̂n := a. Finally, define

f̂(x) :=















ĝ(x̂l) if x = x̂l for some l,
x̂l−x

x̂l−x̂l−1
ĝ(x̂l−1) +

x−x̂l−1

x̂l−x̂l−1
ĝ(x̂l) if x ∈ (x̂l−1, x̂l) for any l,

∞ if x ∈ R \ [b, a].
(A.12)

Then f̂ is piecewise linear on its effective domain, and moreover f̂ ≥ ĝ ≥ f .

Define the mesh size of the approximation as

∆ := max
{

max
k,l

(x̂kl − x̂k[l−1]),max
l

(x̂l − x̂l−1)
}

.

We now have the following result.

Proposition A.5. Let f be defined by (A.2), the function f̂k by (A.10) for all

k, and f̂ by (A.12). If [b, a] ⊆ ri dom f and there exists ck ≥ 0 for each k such

that
∣

∣f̂k(x) − fk(x)
∣

∣ ≤ ck∆ for all x ∈ dom fk, then there exists c ≥ 0 such that
∣

∣f̂(x)− f(x)
∣

∣ ≤ c∆ for all x ∈ [a, b].

Proof. For any l = 0, . . . , n we have

0 ≤ f̂(x̂l)− f(x̂l) ≤ sup
{

∑

m
k=1qk

(

f̂k(xk)− fk(xk)
)

: qk ∈ [0, 1], xk ∈ [bk, ak] ∀k,
∑

m
k=1qk = 1,

∑

m
k=1qkxk = x̂l

}

≤ ∆sup {∑m
k=1qkck : qk ∈ [0, 1] ∀k,∑m

k=1qk = 1}
= ∆max

k
ck. (A.13)
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The function f is Lipschitz on [b, a] (Rockafellar 1996 Theorem 10.4), and so

there exists some d ≥ 0 such that

|f(x)− f(y)| ≤ d|x− y| for all x, y ∈ [a, b]. (A.14)

For any x ∈ [b, a] such that x̂l−1 < x < x̂l for some l > 0, choose l∗ ∈ {l− 1, l} such

that f̂(x̂l∗) = max
{

f̂(x̂l−1), f̂(x̂l)
}

. Then

|f̂(x)− f(x)| ≤ |f̂(x̂l∗)− f(x)| ≤ |f̂(x̂l∗)− f(x̂l∗)|+ |f(x̂l∗)− f(x)|

by (A.12) and the triangle inequality. Combining this with (A.13) and (A.14) then

gives the desired result after taking c := d+maxk ck.

The upper approximation f̂ depends on ĝ only via the values ĝ(x̂0), . . . , ĝ(x̂n).

It is possible to calculate these values explicitly in the case where gk(q) = q ln q
pk

by using standard techniques from calculus (Xu 2018 Section 4.3).

The theoretical error bound in Proposition A.5 ensures that the upper approx-

imation f̂ will converge uniformly to f on [b, a] if the mesh size converges to zero.

However, it relies on the Lipschitz coefficient of f , which is typically unknown in

situations that require approximation (and could well be large). We now present a

lower approximation, which, while slightly less computationally efficient than the

upper approximation, can be used in practical applications to estimate the error of

the upper approximation.

For each k, let f̌k be any convex piecewise linear function with dom f̌k = [bk, ak]

and such that f̌k ≤ fk. Then let ǧ be the generalised convex hull of f̌1, . . . , f̌m and

g1, . . . gm, in other words,

ǧ(x) := inf
{
∑

m
k=1(qkf̌k(xk) + gk(qk)) : qk ∈ [0, 1], xk ∈ [bk, ak] ∀k,

∑

m
k=1qk = 1,

∑

m
k=1qkxk = x

}

. (A.15)

Then ǧ is clearly convex and continuous on dom ǧ = dom f , and the infimum in

(A.15) is attained for all x ∈ dom ǧ. Furthermore, ǧ ≤ f ≤ ĝ.

If b = a, then define

f̌(x) :=

{

ǧ(x) if x = a,

∞ otherwise;

then clearly f̌(a) ≤ f(a) ≤ f̂(a). Assume for the remainder that b < a; this implies

that [b, a] ⊂ int dom f . Similar to the upper approximation, divide [b, a] into n− 1

subintervals by choosing (x̆l)
n
l=1 such that b =: x̆1 < · · · < x̆n := a. Also choose any

x̆0 ∈ (min dom f, b) and x̆n+1 ∈ (max dom f, a), and consider the function f̆ defined

by

f̆(x) :=















ǧ(x̆l) if x = x̆l for some l,
x̆l−x

x̆l−x̆l−1
ǧ(x̆l−1) +

x−x̆l−1

x̆l−x̆l−1
ǧ(x̆l) if x ∈ (x̆l−1, x̆l) for any l > 0,

∞ if x ∈ R \ [x̆0, x̆n+1].

(A.16)
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It is convex, piecewise linear and ǧ(x) ≤ f̆(x) for all x ∈ [x̆0, x̆n+1]. The graph of f̆

consists of n+1 line pieces; the lth line piece (where l = 0, . . . , n) connects the points

(x̆l, ǧ(x̆l)) and (x̆l+1, ǧ(x̆l+1)), and has slope ml :=
ǧ(x̆l+1)−ǧ(x̆l)

x̆l+1−x̆l
. These line pieces

are now used to determine the lower approximation f̌ on [a, b]. For l = 1, . . . , n− 1,

determine the point (x̌l, y̌l) by extending the (l − 1)th and (l + 1)th line pieces and

finding their intersection, in other words,

x̌l :=

{

ml+1x̆l+1−ml−1x̆l+ǧ(x̆l)−ǧ(x̆l+1)
ml+1−ml−1

if ml−1 < ml+1,
1
2 (x̆l + x̆l+1) if ml−1 = ml+1,

y̌l := ml−1(x̌l − x̆l) + ǧ(x̆l).

Finally define x̌0 := x̆1 = b, y̌0 := ǧ(b), x̌n := x̆n = a and y̌n := ǧ(a), after which

the lower approximation is defined as

f̌(x) :=















y̌l if x = x̌l for some l,
x̌l−x

x̌l−x̌l−1
y̌l−1 +

x−x̌l−1

x̌l−x̌l−1
y̌l if x ∈ (x̌l−1, x̌l) for any l > 0,

∞ if x ∈ R \ [b, a].
(A.17)

The lower approximation f̌ is piecewise linear. It is also convex due to the convexity

of f̆ . The fact that f̌ ≤ ǧ (whence f̌ ≤ f) follows from a simple geometric observa-

tion: on every interval [x̆l, x̆l+1], the graph of f̌ falls below the extensions of both

the (l − 1)th and (l + 1)th line pieces of f̆ , and these extended line pieces in turn

fall below the graph of ǧ, due to the convexity of ǧ. Xu (2018 Section 5.4) provides

full details.

B. Proofs

Proof of Proposition 2.3. A trading strategy y ∈ N 2′ superhedges c if and

only if yT = 0 and the trading strategy w ∈ N 2′ defined as w−1 := y−1 and

wt := yt+
∑

t
s=0cs for all t ≥ 0 satisfies −∆wt ∈ Kt for all t. The result then follows

from Theorem 4.4 of Roux and Zastawniak (2016) and (2.7).

Proof of Theorem 3.1. The results of Pennanen and Perkkiö (2018) applies to

non-adapted claims; however, in view of their Theorem 9.4 the results are applied

directly to adapted claims without further comment. Furthermore, as the cash-

settled claim in the paper of Pennanen and Perkkiö (2018) is redundant in the

setting of this paper (where cash is perfectly liquid), and so the dimensionality of

the dual space is reduced in the exposition below, again without comment.

We first obtain the conjugate of V with respect to the bilinear form (u, y) 7→
∑

T
t=0E[ut · yt]. Define for all t the positive polar of the solvency cone Kt as

K+
t :=

{

y ∈ L2
t : y · x ≥ 0 for all x ∈ Kt

}

.
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Define furthermore the collection of consistent pricing processes as

C̄ :=
{

z ∈ N 2 : z a martingale, zt ∈ K+
t ∀t

}

=
{(

λ(1, St)Λ
Q
t

)T

t=0
: λ ≥ 0, (Q, S) ∈ P̄

}

. (B.1)

Then

V ∗(z) =
T
∑

t=0
E
[

v∗t (z
b
t )
]

=
∑

t∈I

1
αt
E
[

zbt
(

ln zbt − lnαt − 1
)]

+ |I|

if z = (zb, zs) ∈ C̄, otherwise V ∗(z) = ∞ (Pennanen and Perkkiö 2018 Th. 9.1).

Robust no-arbitrage and the fact that vt has a lower bound for all t gives that

the infima in (3.2) and (3.4) are attained for all u ∈ N 2 (Pennanen and Perkkiö

2018 Th. 9.2). Hence

V (u) = sup
z∈N 2

(

T
∑

t=0
E[ut · zt]− V ∗(z)

)

= sup
z∈C̄

(

T
∑

t=0
E[ut · zt]−

∑

t∈I

1
αt
E
[

zbt
(

ln zbt − lnαt − 1
)]

)

− |I| (B.2)

= sup
λ>0

sup
(Q,S)∈P̄

λ

(

T
∑

t=0
EQ[u

b
t + us

tSt]−
∑

t∈I

1
αt
EQ

[

ln ΛQ
t + ln λ

αt
− 1

]

)

− |I|,

which is (3.10). Note that there is a typo (a missing minus sign) in the dual problem

on p. 759 of the paper of Pennanen and Perkkiö (2018); the result above should be

compared with Example 6.2 in the same paper. Introducing the notation (3.8)–(3.9)

leads to

V (u) = − inf
λ>0

λ

(

K
(
∑

T
t=0ut

)

+
∑

t∈I

1
αt

ln λ
αt

− a0

)

− |I|. (B.3)

The unique minimum is attained at the value λ̂u given in (3.12). Substituting (3.12)

into (B.3) leads to the formula (3.11).

Proof of Proposition 4.1. Observe from (2.6) that
∑

ν∈µ+q
ν
t ln Λ

Qν
t = lnΛQµ

t−1 +
∑

ν∈µ+q
ν
t ln

qνt
pν
t
for all t > 0, µ ∈ ΩQ

t−1, ν ∈ µ+.

Using the nodes in Ωt−1 to partition Ω, and noting that Q and ΛQ
t are nonzero only

on the nodes in ΩQ
t−1, leads to

EQ

[

ln ΛQ
t

]

=
∑

µ∈ΩQ
t−1

Q(µ)
∑

ν∈µ+q
ν
t ln Λ

Qν
t

=
∑

µ∈ΩQ
t−1

Q(µ) lnΛQµ
t−1 +

∑

µ∈ΩQ
t−1

Q(µ)
∑

ν∈µ+q
ν
t ln

qνt
pν
t

= EQ

[

ln ΛQ
t−1

]

+
∑

µ∈ΩQ
t−1

Q(µ)
∑

ν∈µ+q
ν
t ln

qνt
pν
t
.

Observing that EQ

[

ln ΛQ
0

]

= 0, and introducing a telescoping sum, leads to

EQ

[

ln ΛQ
t

]

=
∑

t
k=1

∑

µ∈ΩQ

k−1

Q(µ)
∑

ν∈µ+q
ν
k ln

qνk
pν
k

.
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Then, after collecting like terms, it follows that
∑

t∈I
1
αt
EQ

[

ln ΛQ
t

]

=
∑

t∈I\{0}
1
αt
EQ

[

ln ΛQ
t

]

=
∑T−1

t=0 at+1

∑

µ∈ΩQ
t

Q(µ)
∑

ν∈µ+q
ν
t+1 ln

qνt+1

pν
t+1

.

The result follows from (3.8) after using the nodes in ΩT−1 to partition Ω and

observing that

EQ

[

Xb +XsST

]

=
∑

µ∈ΩQ

T−1

Q(µ)
∑

ν∈µ+q
ν
T

(

Xbν +XsνSν
T

)

.

Proof of Proposition 4.2. The properties of the Jt’s are proved by backward in-

duction. The convexity, continuity and boundedness properties of Jν
T is self-evident

from (4.3). For every t < T , suppose that Jν
t is convex, bounded from below and

continuous on its effective domain dom Jν
t ⊆ [Sbν

t , Saν
t ] for all ν ∈ Ωt+1. Define

gν(q) :=

{

at+1q ln
q

pν
t+1

if q ∈ [0, 1],

∞ otherwise

for all ν ∈ Ωt+1; then gν is convex, bounded from below and continuous on its effec-

tive domain dom gν = [0, 1]. Propositions A.1 and A.4 then give that fµ
t is convex,

bounded from below and continuous on its effective domain for every µ ∈ Ωt, and

that the infimum in (4.4) is attained for all x ∈ dom fµ
t . It is then clear from (4.5)

that Jµ
t has the properties claimed. This concludes the inductive step.

To establish (4.6), fix any (Q, S) ∈ P̄. We show first by backward induction that

inf
(Q̄,S̄)∈P̄t+1(Q,S)

H((Q̄, S̄), X) =
∑

t
k=0ak+1

∑

µ∈ΩQ

k

Q(µ)
∑

ν∈µ+q
ν
k+1 ln

qνk+1

pν
k+1

+
∑

µ∈ΩQ
t

Q(µ)
∑

ν∈µ+q
ν
t+1J

ν
t+1(S

ν
t+1) (B.4)

for all t < T , where

P̄t(Q, S) := {(Q̄, S̄) ∈ P̄ : Q̄ = Q on Ft, S̄k = Sk ∀k ≤ t} (B.5)

is the collection of martingale pairs that coincide with (Q, S) up to time t. When

t = T − 1, we have P̄T (Q, S) = {(Q, S)}, so that (B.4) follows from (4.2) and (4.3).

Assume now that (B.4) holds for some t = 1, . . . , T − 1. Rearrangement gives

inf
(Q̄,S̄)∈P̄t+1(Q,S)

H((Q̄, S̄), X) =
∑t−1

k=0ak+1

∑

µ∈ΩQ

k

Q(µ)
∑

ν∈µ+q
ν
k+1 ln

qνk+1

pν
k+1

+
∑

µ∈ΩQ
t

Q(µ)
∑

ν∈µ+q
ν
t+1

(

at+1 ln
qνt+1

pν
t+1

+ Jν
t+1(S

ν
t+1)

)

,

after which we obtain from (2.2), (B.5) and (4.5) that

inf
(Q̄,S̄)∈P̄t(Q,S)

H((Q̄, S̄), X)

=
∑t−1

k=0ak+1

∑

µ∈ΩQ

k

Q(µ)
∑

ν∈µ+q
ν
k+1 ln

qνk+1

pν
k+1

+
∑

µ∈ΩQ
t

Q(µ)Jµ
t (S

µ
t )

=
∑t−1

k=0ak+1

∑

µ∈ΩQ

k

Q(µ)
∑

ν∈µ+q
ν
k+1 ln

qνk+1

pν
k+1

+
∑

µ∈ΩQ
t−1

Q(µ)
∑

ν∈µ+q
ν
t J

µ
t (S

µ
t ).
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This concludes the inductive step.

Finally, when t = 0, the equation (B.4) reduces to

inf
(Q̄,S̄)∈P̄1(Q,S)

H((Q̄, S̄), X) = a1
∑

ν∈Ω1
qν1 ln

qν1
pν
1
+
∑

ν∈Ω1
qν1J

ν
1 (S

ν
1 ),

and again combining (2.2), (B.5) and (4.5) yields

inf
(Q̄,S̄)∈P̄,S̄0=S0

H((Q̄, S̄), X) = inf
(Q̄,S̄)∈P̄0(Q,S)

H((Q̄, S̄), X) = J0(S0).

This completes the proof.

Proof of Theorem 4.1. Standard arguments (Cutland and Roux 2012 Theorem

5.25) can be used to show that Q̂ is a probability measure. The process Ŝ is a

martingale under Q̂ by (4.10), whence (Q̂, Ŝ) ∈ P̄. Furthermore, recursive expansion

of (4.9) gives

J0(Ŝ0) =
∑T−1

t=0 at+1

∑

µ∈ΩQ̂
t

Q̂(µ)
∑

ν∈µ+ q̂
ν
t+1 ln

q̂νt+1

pν
t+1

+
∑

µ∈ΩQ̂

T−1

Q̂(µ)
∑

ν∈µ+ q̂
ν
TJ

ν
T (Ŝ

ν
T ) = H((Q̂, Ŝ), X)

from (3.8) and (4.3). Then (4.8), Proposition 4.2 and (3.9) combine to give

J0(Ŝ0) = min
(Q,S)∈P̄

H((Q, S), X) = K(X).

We now show that (Q̂, Ŝ) ∈ P. Suppose by contradiction that (Q̂, Ŝ) ∈ P̄\P, in

other words, ΛQ̂
t (ω) = 0 for some t = 0, . . . , T and ω ∈ Ω. Fix any (Q, S) ∈ P, and

define

ϵ := 1
2 exp

{

(

H((Q̂, Ŝ), X)−H((Q, S), X)
)

/

∑

t∈I
1
αt
Q
(

ΛQ̂
t = 0

)

}

.

Observe that ϵ ∈ [0, 1) because H((Q̂, Ŝ), X) = J0(Ŝ0) ≤ J0(S0) ≤ H((Q, S), X).

Define a new probability measure Q̄ : F → [0, 1] and stochastic process S̄ ∈ N as

Q̄ := ϵQ+ (1− ϵ)Q̂, (B.6)

S̄t := ϵStE

[

dQ
dQ̄

∣

∣

∣
Ft

]

+ (1− ϵ)ŜtE

[

dQ̂
dQ̄

∣

∣

∣
Ft

]

for all t. (B.7)

Then (Q̄, S̄) ∈ P (Roux et al. 2008 Lemma 7.2), after which (3.8) gives

H((Q̄, S̄), X)−H((Q̂, Ŝ), X) =
∑

t∈I
1
αt
E
[

ΛQ̄
t ln ΛQ̄

t − ΛQ̂
t ln ΛQ̂

t

]

+ ϵ
(

E
Q̂

[

Xb +XsŜT

]

− EQ

[

Xb +XsST

])

. (B.8)

The mapping x 7→ x lnx is convex on [0,∞), and so

ΛQ̄
t ln ΛQ̄

t − ΛQ̂
t ln ΛQ̂

t ≤ ϵ
(

ΛQ
t ln ΛQ

t − ΛQ̂
t ln ΛQ̂

t

)

for all t. (B.9)

Furthermore, on the set
{

ΛQ̂
t = 0

}

, and recalling the convention 0 ln 0 = 0, we have

ΛQ̄
t ln ΛQ̄

t − ΛQ̂
t ln ΛQ̂

t = ϵΛQ
t ln ϵΛQ

t = ϵ
(

ΛQ
t ln ΛQ

t − ΛQ̂
t ln ΛQ̂

t

)

+ ϵΛQ
t ln ϵ.
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Substituting this into (B.8) gives

H((Q̄, S̄), X)−H((Q̂, Ŝ), X)

≤ ϵ
(

H((Q, S), X)−H((Q̂, Ŝ), X) + ln ϵ
∑

t∈I
1
αt
Q
(

ΛQ̂
t = 0

)

)

.

The choice of ϵ implies that H((Q̄, S̄), X) < H((Q̂, Ŝ), X), which is a contradiction.

Hence Q̂(ω) > 0 for all ω ∈ Ω, so that (Q̂, Ŝ) ∈ P.

The proof is complete upon establishing the uniqueness of Q̂ on the nodes in I.
To this end, suppose by contradiction that there exists another pair (Q, S) ∈ P such

that H((Q̂, Ŝ), X) = H((Q, S), X) and Q̂(ν′) ̸= Q(ν′) for some t′ ∈ I and ν′ ∈ Ωt′ .

The argument now proceeds along similar lines as above: take any ϵ ∈ (0, 1), and

use (B.6)–(B.7) to define a new pair (Q̄, S̄) ∈ P. This immediately leads to (B.8)

and (B.9), noting in (B.9) that ΛQ̂
t (ν

′) ̸= ΛQ
t (ν

′) gives

ΛQ̄
t′ ln Λ

Q̄
t′ − ΛQ̂

t′ ln Λ
Q̂
t′ < ϵ

(

ΛQ
t′ ln Λ

Q
t′ − ΛQ̂

t′ ln Λ
Q̂
t′

)

on ν′.

Substituting into (3.8), it follows that

H((Q̄, S̄), X)−H((Q̂, Ŝ), X)

< ϵ
∑

t∈I
1
αt
E
[

ΛQ
t ln ΛQ

t − ΛQ̂
t ln ΛQ̂

t

]

+ ϵ
(

EQ

[

Xb +XsST

]

− E
Q̂

[

Xb +XsŜT

]

)

= ϵ(H((Q, S), X)−H((Q̂, Ŝ), X)) = 0,

in other words, H((Q̄, S̄), X) < H((Q̂, Ŝ), X). This contradicts the assumption that

(Q̂, Ŝ) is a solution to the optimization problem (3.9).

Proof of Proposition 5.1. We continue with the notation and conventions of

the proof of Theorem 3.1. By Theorem 9.3 of Pennanen and Perkkiö (2018), a pair

ŷ ∈ Ψ and ẑ ∈ C̄ attains the infimum and supremum in (3.2) and (B.2), respectively,

if and only if

(ẑb0, . . . , ẑ
b
T ) ∈ ∂v(ϕ0(∆ŷ0 + u0), . . . , ϕT (∆ŷ0 + uT )), (B.10)

ẑt ∈ ẑbt∂ϕt(∆ŷt + ut) for all t, (B.11)

where

v(x0, . . . , xT ) =
T
∑

t=0
vt(xt) for all (x0, . . . , xT ) ∈ RT+1

and the subdifferential ∂f of any function f : Rd → R ∪ {∞} is defined as

∂f(x) =
{

y ∈ Rd : f(z) ≥ f(x) + y · (z − x)∀z ∈ Rd
}

for all x ∈ Rd.

Standard results from convex analysis (Rockafellar 1996 Ths. 23.8, 25.1, 25.6) give

that (B.10)–(B.11) is equivalent to the following:

(1) For all t ∈ I we have ẑbt = v′t(ϕt(∆ŷt + ut)) = αte
αtφt(∆ŷt+ut).

(2) For all t /∈ I we need ϕt(∆ŷt + ut) ≤ 0 in order to have ∂ϕt(∆ŷt + ut) ̸= ∅,
and moreover, {ϕt(∆ŷt + ut) < 0} ⊆

{

ẑbt = 0
}

.
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(3) For all t,

{

∆ŷst + us
t > 0

}

⊆
{

ẑst = ẑbtS
a
t

}

and
{

∆ŷst + us
t < 0

}

⊆
{

ẑst = ẑbtS
b
t

}

.

The proof is complete upon observing that (Q̂, Ŝ) ∈ P̄ satisfies (5.1) if and only if

ẑ = (λ̂u(1, Ŝt)Λ
Q̂
t

)T

t=0
∈ C̄ attains the supremum in (B.2).

Proof of Theorem 5.1. Theorem 4.1 gives that Q̂ ∼ P and that (Q̂, Ŝ) satisfies

(5.1), and therefore by Theorem 3.1 and Proposition 5.1 there is a trading strategy

ŷ ∈ Ψ attaining the infimum in (3.2) and such that

ϕt(∆ŷt + ut) = x̂t for all t.

Thus x̂ attains the infimum in (3.6).

Finally, notice that the partial uniqueness property of Q̂ in Theorem 4.1 ensures

that the process x̂ in (5.4) is well defined, in that it does not depend on the choice

of the minimiser (Q̂, Ŝ). For this reason it is also unique.

Proof of Theorem 5.2. Let (Jt)
T
t=0 be the sequence of functions from Construc-

tion 4.1 with X =
∑

T
t=0ut, and let (Q̂, Ŝ) be the pair from Construction 4.2.

Recursive expansion of (4.9) gives

Jt(Ŝt) = E
Q̂

[

−∑

T
s=0(u

b
s + us

sŜT ) +
∑T−1

s=t as+1 ln
q̂s+1

ps+1

∣

∣

∣
Ft

]

for all t < T. (B.12)

It then follows from (5.5) that

∑

T
t=0x̂t =

∑T−1
t=0 at+1 ln

q̂t+1

pt+1
+
∑

t∈I
1
αt

ln λ̂u

αt
=

∑T−1
t=0 at+1 ln

q̂t+1

pt+1
− J0(Ŝ0). (B.13)

The first step in the proof is to show that the collection WT in Construction 5.1

is non-empty. Theorem 3.1 guarantees the existence of a minimiser ŷ ∈ Ψ for (3.1),

and by Proposition 5.1 and Theorem 5.1 it follows that ŷ satisfies (5.2) and

y−1 = yT = 0, ∆ybt + ub
t + (∆yst + us

t )Ŝt = x̂t for all t ≥ 0. (B.14)

The trading strategy w ∈ N 2′ defined by

w−1 = 0, wt := yt +
∑

t
s=0(u

b
s − x̂s, u

s
s) for all t = 0, . . . , T (B.15)

satisfies

(∆ws
t )+S

a
t − (∆ws

t )−S
b
t = ∆ws

t Ŝt for all t, ws
T =

∑

T
t=0u

s
t (B.16)

by definition and by (B.13)

wb
T =

∑

T
t=0u

b
t −

∑T−1
t=0 at+1 ln

q̂t+1

pt+1
+ J0(Ŝ0). (B.17)

Moreover (B.14) gives the self-financing condition

∆wb
t +∆ws

t Ŝt = 0 for all t ≥ 0. (B.18)
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Combining (B.18) with the fact that Ŝ is a martingale under Q̂, it follows from

standard arguments (cf. Cutland and Roux 2012 Th. 5.40) that

wb
t + ws

t Ŝt+1 = E
Q̂

[

wb
T + ws

T ŜT

∣

∣Ft+1

]

for all t < T. (B.19)

For every t < T , substituting (B.16), (B.17) and (B.12) leads to

wb
t + ws

t Ŝt+1 = E
Q̂

[

∑

T
s=0(u

b
s + us

sŜT )−
∑T−1

s=0 as+1 ln
q̂t+1

ps+1
+ J0(Ŝ0)

∣

∣

∣
Ft+1

]

= −Jt+1(Ŝt+1)−
∑

t
s=0as+1 ln

q̂s+1

ps+1
+ J0(Ŝ0).

After defining the stochastic process (xb
t)

T
t=−1 as

zbt :=















0 if t = −1,

wb
0 − J0(Ŝ0) if t = 0,

wb
t +

∑t−1
s=0as+1 ln

q̂s+1

ps+1
− J0(Ŝ0), if t > 0,

this can be rewritten as

zbt + ws
t Ŝt+1 = −Jt+1(Ŝt+1)− at+1 ln

q̂t+1

pt+1
.

When combined with (B.16)–(B.17), this means that (zbt , w
s
t )

T
t=−1 ∈ WT and hence

WT ̸= ∅.
Now let WT and Y be the collections of processes from Construction 5.1. By

Proposition 5.1 and Theorem 5.1 it suffices to show that every ŷ ∈ Y satisfies

(5.2) and (B.14). As ŷ ∈ Y, there exists some w ∈ WT satisfying (5.9)–(5.10).

Taking the sum over all t in (5.9)–(5.10) and substituting (B.13) gives that ŷT = 0.

Turning to the properties of w, it satisfies (B.16) by construction, which immediately

gives (5.2). Moreover,

wb
t + ws

t Ŝt = −Jt(Ŝt) for all t. (B.20)

For t = T this comes from (4.3) and (5.8). For t < T it is obtained by taking

conditional expectation in (5.7) with respect to Q̂ and Ft, and substituting (4.9).

Combining (B.20) with (5.7) furthermore gives

∆wb
t +∆ws

t Ŝt = at ln
q̂t
pt

for all t > 0. (B.21)

The equalities (B.20) for t = 0 (recall w−1 = 0) and (B.21) for t > 0 now combine

with (5.9)–(5.10) to give (B.14), as required.

Proof of Theorem 6.1. Observe first that (6.4) follows directly from (6.2)

and (6.3). For any δ ∈ R we have

K
(
∑

T
t=0(ct − wt)− (δ, 0)

)

= δ +K
(
∑

T
t=0(ct − wt)

)

,

whence λ̂c−δ✶−w = e−δ/a0 λ̂c−w by (3.12), so that δ 7→ V (c − δ✶ − w) is strictly

decreasing and continuous. Therefore πai(c;w) is the unique solution πai(c;w) of

the equation V (c− πai(c;w)✶− w) = V (w), which by (3.11) is (6.3).
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Proof of Theorem 6.2. Note from (2.8) and (2.11) that c−πa(c)✶ ∈ Z. Further-

more, for any x ∈ A−w, we have −w− (xt, 0)
T
t=0 ∈ Z, and since Z is a convex cone,

it follows that c− πa(c)✶− w − (xt, 0)
T
t=0 ∈ Z, and finally x ∈ Ac−πa(c)✶−w. Thus

A−w ⊆ Ac−πa(c)✶−w, so V (c−πa(c)✶−w) ≤ V (−w) by (3.4). With (6.1) this gives

πai(c;w) ≤ πa(c). In combination with (6.2) and (2.7), this immediately leads to

πbi(c;w) = −πai(−c;w) ≥ −πa(−c) = πb(c).

The rest of the proof is devoted to showing the convexity of u 7→ πai(u;w). Once

established, it immediately gives that u 7→ πbi(u;w) is concave by (6.2). Moreover,

combining the convexity with (6.3) gives for all c, w ∈ N 2 that

0 = πai(0;w) ≤ 1
2π

ai(c;w) + 1
2π

ai(−c;w),

whence πbi(c;w) = −πai(−c;w) ≤ πai(c;w).

To establish the convexity, note that C := {x ∈ N 2 : V (x − w) ≤ V (−w)} is

convex because, for all x, y ∈ C and λ ∈ [0, 1] we have

V (λx+ (1− λ)y − w) ≤ λV (x− w) + (1− λ)V (y − w) ≤ V (−w)

as V is convex (due to the convexity of the vt’s). For any c, d ∈ N 2 and λ ∈ [0, 1]

we have

λπai(c;w) + (1− λ)πai(d;w) = λ inf{γ : c− γ✶ ∈ C}+ (1− λ) inf{δ : d− δ✶ ∈ C}
= inf{λγ + (1− λ)δ : c− γ✶ ∈ C, d− δ✶ ∈ C}.

By the convexity of C, the conditions c− γ✶ ∈ C, d− δ✶ ∈ C imply that

λc+ (1− λ)d− (λγ + (1− λ)δ)✶ = λ(c− γ✶) + (1− λ)(d− δ✶) ∈ C,

whence

λπai(c;w) + (1− λ)πai(d;w) ≥ inf{ε : λc+ (1− λ)d− ε✶ ∈ C}
= πai(λc+ (1− λ)d;w).

Thus u 7→ πai(u;w) is convex and the proof is complete.
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