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A B S T R A C T   

Background and purpose: Magnetic Resonance Imaging (MRI) exhibits scanner dependent contrast, which limits 
generalisability of radiomics and machine-learning for radiation oncology. Current deep-learning harmonisation 
requires paired data, retraining for new scanners and often suffers from geometry-shift which alters anatomical 
information. The aim of this study was to investigate style-blind auto-encoders for MRI harmonisation to 
accommodate unpaired training data, avoid geometry-shift and harmonise data from previously unseen scanners. 
Materials and methods: A style-blind auto-encoder, using adversarial classification on the latent-space, was 
designed for MRI harmonisation. The public CC359 T1-w MRI brain dataset includes six scanners (three man
ufacturers, two field strengths), of which five were used for training. MRI from all six (including one unseen) 
scanner were harmonised to common contrast. Harmonisation extent was quantified via Kolmogorov-Smirnov 
testing of residual scanner dependence of 3D radiomic features, and compared to WhiteStripe normalisation. 
Anatomical content preservation was measured through change in structural similarity index on contrast-cycling 
(δSSIM). 
Results: The percentage of radiomics features showing statistically significant scanner-dependence was reduced 
from 41% (WhiteStripe) to 16% for white matter and from 39% to 27% for grey matter. δSSIM < 0.0025 on 
harmonisation and de-harmonisation indicated excellent anatomical content preservation. 
Conclusions: Our method harmonised MRI contrast effectively, preserved critical anatomical details at high fi
delity, trained on unpaired data and allowed zero-shot harmonisation. Robust and clinically translatable har
monisation of MRI will enable generalisable radiomic and deep-learning models for a range of applications, 
including radiation oncology treatment stratification, planning and response monitoring.   

1. Introduction 

Quantitative analysis of magnetic resonance imaging (MRI) for di
agnostics, prognostics and treatment personalisation in oncology is 
attractive due to the inherent richness of MRI soft tissue contrast. 
Radiomics involves quantitative extraction of pre-defined features from 
medical images [1,2]. First-order features describe statistical properties 
of voxel intensities within a region-of-interest (ROI). Second-order fea
tures describe local spatial relationships (texture) within the ROI and 
quantify heterogeneity. Higher-order features are extracted from filtered 
or transformed images. Features can be combined via machine-learning 
models for diagnostic or prognostic decision support, or therapeutic 

design [1]. Radiomic models have been successful in single-centre 
research settings, but they often lack generalisability and clinical 
translation has been limited [3], due to non-biological variation in 
image intensity and scanner-dependent contrast variations [4–7]. 

Harmonisation aims to transform images from multiple sources to a 
statistically indistinguishable common contrast space. Carre et al. 
demonstrated poor radiomic feature consistency for low grade gliomas 
between scanners with different field strengths [6], but found statistical 
intensity normalisation (Z-score, Nyul [7] and WhiteStripe [8]) 
improved feature reproducibility and tumour grading. Z-score normal
ises using mean intensity and standard deviation of the ROI; WhiteStripe 
uses normal-appearing white matter to standardise voxel intensities [8]. 
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Nyul relies on histogram matching, which can distort normal anatomy 
[6,7] due to the dependence of the reference histogram on the 
anatomical distribution of the training data [9]. These methods are all 
sensitive to ROI segmentation quality and require skull stripping which 
can fail in clinical practice [10]. Intensity normalisation improves 
radiomic feature reproducibility but is generally insufficient to fully 
harmonise scanner-dependent contrast [14], which also exhibits spatial 
dependence. 

Removal of scanner effects following radiomic feature extraction has 
been demonstrated using ComBat [11,12]. Li et al. reported increased 
radiomic feature robustness in glioblastoma [13]. However, ComBat is 
performed cohort-wise and must be re-run on addition of new patient 
data, limiting it to research contexts [11]. 

Supervised, deep-learning based MRI harmonisation has been 
demonstrated [14] using U-net convolutional neural networks. The need 
for paired data (same patients scanned on multiple scanners) makes 
model training expensive and restricts applicability to the brain, where 
good MR signal homogeneity and rigid image registration are possible. 
Harmonisation has been addressed by conditional generative adversa
rial networks (cGANs), which can synthesise images with a given 
contrast. The conditioning (input) image defined ‘content’ which should 
be retained whilst modifying the contrast to that of a target scanner, 
using a discriminator which predicted whether an image was a ‘true’ 
target scanner image or a synthesised one. cGANs produced visually 
impressive ‘style-transfer’ results in non-medical tasks and the cycleGAN 
method used unpaired training data and unsupervised learning [15]. 
Baysham et al [16] demonstrated MRI harmonisation using cycleGANs, 
improving deep-learning predictions for brain age and schizophrenia 
classification. However, cGANs do not inherently distinguish content 
from contrast, leading to the possibility that anatomical details are 
altered to become more like the target scanner dataset, leading to 

geometry-shift. cycleGANs, which relied only on cycle-consistency to 
encourage content preservation were particularly susceptible. Failure to 
preserve anatomical information occurred if the network learnt a ‘circle- 
square-circle’ mapping, altering the content in the harmonised domain, 
but restoring it in cycled images. For robust quantitative analysis of MRI 
via radiomics or machine-learning, such changes in anatomical or 
physiological detail on harmonisation are not acceptable. 

Disentangled-representation learning attempts to explicitly separate 
style (contrast) and content of an image, enabling style to be altered, 
whilst preserving content. CALAMITI [17] used limited paired (intra- 
scanner) data to learn to disentangle contrast and content for multi- 
sequence MRI. They then used the resulting content representation for 
inter-scanner harmonisation, on the assumption that inter-sequence and 
inter-scanner content representations were interchangeable. Moyer 
et al. [18] proposed harmonisation of diffusion-weighted MRI through 
scanner-independent representations using variational auto-encoders 
for patch-wise harmonisation. The scanner-independent latent repre
sentation was constrained by minimizing mutual information with the 
input scanner-ID. However, an image-based discriminator was needed to 
improve harmonisation, potentially reintroducing the geometry-shift 
problems observed in cGANs. 

The aim of this study was to demonstrate a simple and generalisable 
harmonisation approach, HarMOnAE, based on style-blind auto-en
coders, with adversarial scanner classification on the latent-space, to 
encourage a scanner-independent content representation. We addressed 
limitations of previous methods, using unpaired data, allowing zero-shot 
harmonisation of data from scanners not included in model training and 
ensuring anatomical detail was preserved at high fidelity. 

Fig. 1. HarMOnAE architecture. An auto-encoder was trained to optimally reconstruct input images from a scanner-independent ‘content’ latent space (z) and an 
explicitly injected scanner ID (contrast code). Latent space scanner-independent was enforced by adversarially training against a classifier which attempted to 
establish scanner ID from z. Harmonisation was achieved by exchanging scanner ID. Content preservation on re-encoding harmonised images was encouraged with an 
L1 loss on z. 
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2. Materials and methods 

2.1. Style-blind autoencoders 

Auto-encoders learn to compress image information into a ‘latent 
representation’ using an encoder neural network and decompress it to 
reconstruct the original image using a decoder. Our encoder was 
designed to preserve only content information in the latent representa
tion, discarding scanner-dependent contrast information. Scanner-ID 
information was explicitly injected into the decoder to enable auto- 
encoding to the source-scanner contrast space. For harmonisation, the 
content-only latent representation was combined with the new target 
scanner-ID at the decoder input, leading to the desired contrast change. 

To make the latent representation scanner-contrast independent, we 
trained a classifier network to predict the scanner-ID from the latent 
representation and penalise the encoder if it succeeded. This adversarial 
loss ensured that by learning to accurately reconstruct the images, while 
removing contrast information to minimise the performance of this 
classifier, the auto-encoder converged to a ‘content-only’ latent repre
sentation. This representation could become maximally scanner- 
independent at no cost to auto-encoding performance, because 
scanner-ID was explicitly provided to the decoder. 

Due to the lack of an image discriminator, we did not define a 
particular target contrast for training. We relied on contrast diversity 
between the training scanners to learn a scanner-independent repre
sentation of clinical content. Hence, harmonisation from any training 
contrast space to any other was possible, as well as zero-shot harmo
nisation from scanners not included in training. The absence of an 
image-based discriminator was critical for content fidelity, as HarMO
nAE didn’t attempt to make images ‘similar’ to real examples from a 
target domain. This avoided the problem of learning anatomical features 
from the target data and the consequent geometry-shift. 

2.2. Architecture and loss 

HarMOnAE (Fig. 1) consisted of an auto-encoder based on the 
multimodal unsupervised image-to-image translation (MUNIT) archi
tecture [19] for style transfer. 

The encoder consisted of two strided 2D convolutional (down
sampling) layers, followed by four residual blocks, each containing two 
unstrided 2D convolutional layers, with instance normalisation and 
reLU activation throughout. The decoder architecture mirrored the 
encoder, except for the use of adaptive instance normalisation (adaIN) at 
each residual block, enabling injection of contrast information via 
reweighting of feature values, and layer-normalisation to preserve the 
injected contrast at the transposed convolutional (upsampling) layers. A 
multi-layer perceptron (MLP) was used to learn parameters for AdaIN 
from the injected scanner contrast code, enabling the decoder to inter
pret this information and harmonise the images. Whereas in MUNIT, this 
‘style-code’ was learned from the input images by a style-encoder, we 
directly used the ground-truth scanner-ID. 

The scanner classifier took the latent representation as input and 
consisted of five strided convolutional layers with layer normalisation 
and reLU activation. A fully-connected layer with softmax activation 
predicted source scanner-ID. 

The initial convolutional filter depth of 16 was doubled with each 
downsampling layer in encoder, decoder and classifier. 

The HarMOnAE auto-encoder loss had two key components; 1) L1 
loss on the reconstructed image and its first derivatives (to improve 
sharpness). 2) An adversarial loss against the latent-space scanner-ID 
classifier, which was computed as: 

Ladv= 〈abs(− log(1/n) − CCE
(
Sinput, Sz

)〉

where n was the number of scanner classes, Sinput was the scanner label 
and Sz was the predicted label derived from the content latent space. 

This loss on the auto-encoder increased as the classifier performance 
increased, encouraging the auto-encoder to remove scanner-dependent 
information from the latent space. For this multiclass problem, com
plete classifier perplexity occurred at (pclass|z) = 1/n for the source class, 
not zero (which would imply the latent space included style information 
from another domain). The − log(1/n) term caused the generator loss 
function to become negative at (pclass|z) = 1/n, which represented 
maximal perplexity. The absolute loss (Fig. 2) exhibited a minimum at 
(pclass|z) = 1/n, ensuring the content encoder converged to a scanner- 
independent representation. 

The scanner classifier had a categorical cross entropy loss between 
scanner-ID and predicted ID, leading to an adversarial mini-max con
dition when trained with the auto-encoder. 

2.3. Training 

HarMonAE was implemented in Tensorflow 2.5.0 on Python 3.8 and 
trained on 53995 2D slices from 250 patients, imaged on five scanners 
(50 per scanner) from the CC359 public dataset [20] of normal T1- 
weighted brain MRI, for 80 epochs. Auto-encoder and adversarial clas
sifier were trained alternately. Training data were augmented with unit 
probability, using random translations and rotations drawn from zero- 
centred normal distributions scaled to have standard deviation of 5 cm 
and 5 degrees respectively. A total of 25 randomly-selected cases (5 per 
scanner) were reserved for testing and a further 25 for validation. 60 
cases from a 6th scanner, not included in the training, were used for 
zero-shot validation. 

Structural similarity (SSIM, scikit-image 0.19.0) was used to assess 
the similarity of the input, auto-encoded, harmonised and contrast- 
cycled images. Due to lack of paired data, we computed delta-SSIM 
(dSSIM), which was referenced to the auto-encoded image, enabling 
measurement of the change in similarity on harmonisation (dSSIM-h) 
and on returning (cycling) the harmonised image to its native contrast 
space (dSSIM-c). dSSIM-c for perfect harmonisation and content pres
ervation was zero by definition. dSSIM-h was bounded above by the 
inherent dissimilarity of input and target contrast and was expected to 
converge on this bound as model performance improved. Hyper
parameters, including filter depths and loss weights were tuned via 
manual search, based on convergence of dSSIM-h. 

We implemented an additional image-based discriminator, as used in 
MUNIT [19], commonly used in cGAN methods and adopted by Moyer 

Fig. 2. Behaviour of the adversarial loss term. Complete perplexity occured at p 
(class|z) = 1/n. Whereas 1-CCE loss (dashed) would encourage the encoder to 
introduce domain information from other scanners, our loss (solid) exhibited a 
sharp minimum at perplexity, encouraging true scanner-independence. 

K. Fatania et al.                                                                                                                                                                                                                                 



Physics and Imaging in Radiation Oncology 22 (2022) 115–122

118

et al. [18]. This discriminator was optionally used during training, to 
study its impact on geometry-shift and harmonisation. 

2.4. Radiomic analysis 

Following HarMOnAE training and harmonisation of validation data, 
radiomic analysis was performed on unharmonised and harmonised 
images. All images were processed in R-Studio for OS X (v 1.4.1106). N4 
bias-field correction [21] was applied using ‘ANTsR’ [22]. FSL tools [23] 
(FMRIB library) were implemented using ‘neuroconductor’ [24] and 
‘FSLR’ [25]. Skull stripping (FSL-BET) used option “B” to remove neck 
voxels [26,27]. White and grey matter masks were produced using FSL 
FAST [28]. WhiteStripe normalisation was optionally applied using the 
‘WhiteStripe’ package in R. 2D slices were stacked to create 3D volumes 
and mask alignment checked visually. Default parameters were used 
throughout. 

3D textural radiomic features were extracted from a) unharmonised; 
b) WhiteStripe normalised, and c) HarMOnAE harmonised images, with 
the open source ‘pyradiomics’ package in Python (v3.0.1) [29]. Feature 
extraction [30] was performed with 64 bins, with voxels resampled 

isotropically (2 mm) using ITK b-spline interpolation [31]. 75 textural 
features were extracted: grey-level co-occurrence matrix (GLCM, 24), 
grey-level run length matrix (GLRLM, 16), neighbouring grey-tone dif
ference matrix (NGTDM, 5), grey-level dependence matrix (GLDM, 14) 
and grey-level size zone matrix (GLSZM, 16). 

Due to the absence of paired data, we performed unpaired statistical 
testing to determine similarity between radiomic feature distributions. 
Parametric testing involved Welch’s two-tailed unpaired t-test for un
equal variances, to determine the similarity of radiomic feature distri
butions deriving from given source scanner and the remaining scanners. 
Non-parametric 2-sided Kolmogorov-Smirnov (KS) tests were also used 
to determine similarity of cumulative distribution functions from a given 
source scanner and the remaining scanners. For successful harmo
nisation, no difference was expected between these distributions. p <
0.05 was considered significant, representing a difference in radiomic 
distributions and harmonisation failure for that particular radiomic 
feature and scanner. Performance was assessed for ‘zero-shot’ harmo
nisation of data from a previously unseen scanner. All statistical testing 
was performed in R. 

Fig. 3. Harmonisation from all scanners (input data – far left) to all five trained output contrasts. Note Philips 1.5 T was excluded from training, to demonstrate zero- 
shot harmonisation. Degree of harmonisation, dSSIM-h given by blue bar size, degree of content-loss, d-SSIM-c given by red bar size. Images on the diagonal are auto- 
encoded (no harmonisation, dSSIM-h = 0). 

K. Fatania et al.                                                                                                                                                                                                                                 



Physics and Imaging in Radiation Oncology 22 (2022) 115–122

119

3. Results 

Examples of MRI harmonisation from each scanner contrast, 
including zero-shot harmonisation from a previously unseen scanner 
(Philips 1.5 T), to all other scanner contrasts included in training are 
shown in Fig. 3. The extent of contrast change on harmonisation, 
measured by dSSIM-h varied between contrast spaces [mean 0.0156, s.d. 
0.0154]. SSIM change on contrast cycling (re-harmonisation back to the 
original contrast space), dSSIM-c was found to be small and independent 

of input and target scanner-ID [mean 0.0021, s.d. 0.0004]. No 
anatomical changes (geometry-shift) were observed visually with the 
HarMOnAE model, which was consistent with these dSSIM-c values. 

Using the optional image discriminator during training, dSSIM-c 
increased by a factor of 3, to 0.0062, indicating geometry-shift (Fig. 4) 
on contrast cycling and lack of content preservation. 

The number of statistically indistinguishable radiomic features was 
increased by HarMOnAE, compared to unharmonised and WhiteStripe 
normalised images. For white matter, 65% of features were significantly 
different on 2-sided KS testing in unharmonised images and 41% in 
WhiteStripe normalised images, whereas HarMOnAE ranged between 
16 and 26% depending on target contrast (Table 1 and Supplementary 
tables 1–6). For grey matter radiomics, 63%, 39% and 24–33% of fea
tures were significantly different in unharmonised, WhiteStripe nor
malised and HarMOnAE images, respectively. The differences between 
the distributions of p-values for the 2-sided KS test and 2-tailed Welch 
test are illustrated in Fig. 5a and 5b. The distribution of radiomic feature 
values per scanner in white and grey matter for raw and harmonised 
images (Fig. 5c) following standardisation of radiomic feature values, 
showed improved consistency of 3D radiomic feature values post- 
harmonistation, across all six scanners. HarMOnAE outperformed 
WhiteStripe normalisation, for white and grey matter, on both para
metric (Welch’s t) and non-parametric (Kolmogorov-Smirnov) tests. 
Performance varied somewhat between target scanners but was 
consistently improved over WhiteStripe and zero-shot harmonisation 

Fig. 4. Example of geometry-shift when using an image-based discriminator. Top: Input and auto-encoded images were indistinguishable. Middle: HarMOnAE 
altered contrast without perturbing anatomical features and contrast cycling resulted in minimal difference to the auto-encoded image. Bottom: Use of an additional 
image discriminator on the target domain induced severe geometry-shift, altering cerebellum anatomy and hallucinating a nose. Contrast cycling failed to remove the 
geometric perturbations. Color maps represent percentage change in greyscale value from reference image (top). 

Table 1 
Harmonisation of radiomic features, measured by 2-sided KS test. Comparison of 
Unharmonised, WhiteStripe normalised and HarMOnAE.  

Harmonisation type (target 
contrast) 

Mean no. (%) significantly different 
radiomic features* 

White matter Grey matter 

Unharmonised 49 (64.9) 48 (63.3) 
WhiteStripe 31 (40.9) 29 (39.1) 
HarMOnAE (Philips 3.0 T) 19 (24.7) 25 (33.3) 

(Siemens 1.5 T) 15 (20.2) 24 (31.6) 
(Siemens 3.0 T) 12 (16.4) 20 (26.9) 
(GE 1.5 T) 15 (19.6) 19 (24.7) 
(GE 3.0 T) 20 (26.2) 18 (24.0) 

*Mean features calculated by dividing total number of significantly different 
features (p < 0.05) by number of scanners (6). 
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performance was comparable to that for in-training scanners (Table 1). 

4. Discussion 

This study demonstrated the potential of style-blind autoencoders for 
unpaired, multi-scource MRI harmonisation. HarMOnAE successfully 
harmonised T1-w normal brain imaging from 5 scanners from three 
manufacturers with two field strengths, without distorting anatomical 
details and further, was able to harmonise images form a 6th source 
scanner, unseen during training, with comparable performance. 

In neuro-oncology, prognosis prediction [32], non-invasive identi
fication of genetic and molecular changes within tumours [33], and 
discrimination of treatment effects and tumour progression [34] have 
been reported using predictive radiomic models in single-centre studies. 
O6-methylguanine methyltransferase (MGMT) gene promoter methyl
ation determines sensitivity to alkylating chemotherapy agents 
including temozolomide in GBM, and can be predicted with high accu
racy from textural features extracted from T2-weighted MRI [35]. In 
patients treated with stereotactic radiosurgery (SRS) for metastases, 
accurate distinction between true disease progression and radio-necrosis 
was difficult radiologically, but possible with radiomics-based classifi
cation [36,37]. 

Generalisability and clinical translation were severely limited by 
inconsistent MRI scanner contrast. Unsupervised harmonisation, with 
zero-shot capability for unseen scanners would change this situation. 
Previous methods have failed to meet all these criteria and may be 
susceptible to geometry-shift, resulting in unacceptable alteration of 
anatomical or physiological information. HarMOnAE met these criteria, 
producing excellent radiomic feature harmonisation and anatomical 
content preservation. The network learned to identify and extract salient 
content information only. Hence, the trained network could perform 
zero-shot harmonisation as the unknown scanner-dependent contrast 
information was discarded, with relevance in real-world clinical sce
narios, where new scanners may come online, or patient images may be 
sent from locations with unknown scanners. By comparing statistical 
properties of images via unpaired equivalence testing of radiomic 
feature value distributions, we showed that HarMOnAE outperforms 
WhiteStripe, the reference normalisation method for brain imaging 
[6,8]. 

Relative change of SSIM on contrast-cycling (dSSIM-c) demonstrated 
that HarMOnAE did not degrade image content significantly more than 
auto-encoding itself. dSSIM-c of < 0.0025 indicated excellent recon
struction of both image content and source-scanner contrast. Absolute 
SSIM has been used previously to measure harmonisation quality, using 
paired (travelling-subject) images. However, imperfect pairing of im
ages renders this metric useful only for relative method comparison 
using the same dataset. CALAMITI[17] achieves mean absolute SSIM =
0.884 for travelling subject assessment, given un-harmonised SSIMs of 
0.803–0.871, implying change of SSIM on harmonisation (dSSIM-h) of 
0.01 to 0.08, dependent on scanner. Despite different datasets this was 
broadly comparable to our dSSIM-h values (0.005–0.054, Fig. 3). 

As HarMOnAE was an unsupervised method requiring only unpaired 
data, and could accommodate multiple scanner contrasts, it potentially 
also enables harmonisation of body MRI, where well-registered paired 
data are unavailable. The absence of an image-based discriminator in 
HarMOnAE circumvented geometry-shift, by removing the adversarial 
loss term which encouraged image similarity to a target distribution. The 
experimental addition of such a discriminator to HarMOnAE increased 
mean dSSIM-c with visibly reduced image content fidelity. By highly 
weighting the adversarial loss, dramatically visually degraded 
harmonised images were observed (Fig. 4), with ‘hallucinated’ false 
anatomical features, highlighting the problem of anatomical fidelity 
loss. 

The current work had certain limitations, particularly in that the 
zero-shot scanner data tested was not extremely dissimilar to the 
training scanner data. Further work will be needed to determine the 

Fig. 5. a) 2-sample Kolmogorov-Smirnov test p-value distribution for 75 2nd 
order 3D textural radiomic features. p > 0.05 (red line) represented statistical 
indistinguishability of features; b) 2-sample Welch test p-value distribution as 
in a); c) relative 3D radiomic feature values for white matter, pre- (open/ 
dashed) and post- (filled/solid) HarMOnAE. 
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performance of HarMOnAE as unseen images deviate further from the 
mean contrast space of the training cohort. Having studied normal T1-w 
brain MRI, the impact of pathology and mobile organs in other body 
sites, as well as extension to other modalities, remain open questions 
which we intend to address in future. One challenge with pathological 
imaging is that cohorts associated with particular scanners may have 
common findings (e.g. oncology specific scanners), biasing the content 
distribution of the training dataset. However, whereas image- 
discriminator based methods might suffer from geometry-shift in such 
a scenario, HarMOnAE is expected to be more robust to systematic 
anatomical variance between scanner cohorts, due to the absence of an 
image discriminator. 

In summary, HarMOnAE was found to be a simple and flexible deep- 
learning architecture for image harmonisation based on style-blind 
autoencoders, harmonising images from multiple sources including 
unseen scanners, without domain-adaptation or retraining. It relied on a 
learnt disentanglement of anatomical content and scanner-dependent 
contrast in the latent representation. It was shown to be immune to 
geometry-shift, which can plague cGAN-based approaches reliant on 
image-based discriminators. Our approach outperformed WhiteStripe 
normalisation, including for zero-shot harmonisation and showed 
similar relative image similarity change (dSSIM-h) to other state of the 
art methods. Practical, robust, and general harmonisation methods such 
as HarMOnAE will enable quantitative deep-learning and radiomic 
analysis for personalised radiotherapy and oncology. 
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