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Abstract

Social insect colonies use negative as well as positive feedback signals to regulate foraging

behaviour. In ants and bees individual foragers have been observed to use negative phero-

mones or mechano-auditory signals to indicate that forage sources are not ideal, for exam-

ple being unrewarded, crowded, or dangerous. Here we propose an additional function for

negative feedback signals during foraging, variance reduction. We show that while on aver-

age populations will converge to desired distributions over forage patches both with and

without negative feedback signals, in small populations negative feedback reduces variation

around the target distribution compared to the use of positive feedback alone. Our results

are independent of the nature of the target distribution, providing it can be achieved by forag-

ers collecting only local information. Since robustness is a key aim for biological systems,

and deviation from target foraging distributions may be costly, we argue that this could be a

further important and hitherto overlooked reason that negative feedback signals are used by

foraging social insects.

Author Summary
Social insect colonies regulate the number of insects foraging at different food sources

through a combination of positive and negative feedback signals. Through positive feed-

back signals—such as ants’ pheromone trails and bees’ waggle dances—insects recruit

each other to increase the number of foragers committed to a food source that has been

evaluated as profitable. Negative feedbacks are instead inhibitory signals that are delivered

to reduce commitment to a food source where an unfavourable change has been detected,

for example the arrival of a predator or a decrease in nutritional reward. Our mathemati-

cal analysis explains an additional function for negative feedback; inhibitory signals can

also be useful in static conditions to reduce the variance in the number of insects allocated

to each food source, thus better distributing insects among the available sources. Our

results can help explain field observations that are not fully understood yet, such as the

periodic delivery of a small number of inhibitory signals among honeybees visiting the

same forage patch even in static conditions.
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Introduction

Collectively-foraging social insects use feedback mechanisms in order to robustly and effi-

ciently satisfy the nutritional requirements of the colony. Positive feedback signal usage by

such foraging social insects is well known, such as mass-recruitment via pheromone in various

ant species [1], and recruitment of small numbers of individuals such as via the honeybees’

waggle-dance [2], or rock ants’ tandem-running [3]. The use of negative feedback signals in

these systems has, however received comparatively little attention. Negative feedback was pre-

dicted to be important for collectively foraging species [4, 5], and subsequently discovered in

diverse systems such as Pharaoh’s ants [6, 7] and honeybees [8, 9]. Several studies have inter-

preted negative feedback as a mechanism to reduce recruitment to a resource based on some

aspect of its quality, for example allowing unrewarded trails to be shut down [6, 7], allowing

recruitment to a crowded source of forage to be reduced [10], or transferring information that

a forage patch may have an increased predation risk [8, 11]. Subsequent studies have similarly

focussed on the role of negative feedback in dealing with time-varying forage patches [12, 13],

or with the amount of available comb storage space [14].

Here we propose an alternative function for negative feedback mechanisms in collective

foraging, suppression of costly variation in the colony’s foraging performance. In the follow-

ing, we present simple models of collective foraging with positive and negative feedback, and

with positive feedback only. We show how both models are able to approach a desired target

distribution over forage patches on average, when forager populations are assumed to be infi-

nite. However, when finite forager populations are modelled, the two foraging systems differ

in the robustness with which they achieve the target distribution; with positive feedback only,

stochastic fluctuations can lead to the forager population being far from its target distribution

at any point in time, however by adding negative feedback the forager distribution becomes

more robust. We argue that this will increase colony-level foraging success [15, 16], and thus

may represent a new functional explanation for the observation of negative feedback in forag-

ing by social insect colonies.

Foraging theory is an active and complex research area, and our results do not rely on

assumptions about the nature of the colony’s target distribution, other than it can be achieved

by agents with access only to local information at both the forage source, and the colony. Thus,

the target distribution may be akin to an Ideal Free Distribution, in which agents are distrib-

uted such that none can improve overall foraging efficiency by switching to a different forage

patch [16, 17]. Alternatively, the target distribution may be based on the requirement of the

colony for different micro- and macro-nutrients [18–21]. Or, the target distribution may be

based on some other objective entirely, or on combinations of objectives such as those just dis-

cussed. In ignoring the nature of the distribution, therefore, our focus is purely on the dynam-

ics of foraging, and how negative feedback can improve this.

For our analysis we adapt our model from a simple model of negative feedback for foraging in

honeybee colonies [12], in itself inspired by models of negative feedback in house-hunting honey-

bee swarms [22–24]; however since other social insect species such as Pharaoh’s Ants also make

use of negative feedback during foraging [6], we argue that the model is generally applicable.

Methods

We assume a target distribution of the individuals to the n patches in quantities proportional

to the relative patch quality arbitrarily defined:

x�i �
qiP
j2nqj

; i 2 f1; . . . ; ng ; ð1Þ
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where qi is the quality of patch i. In our models an individual’s state can be either uncommitted

(XU) or committed to patch i (Xi) with i 2 {1, . . ., n}. Therefore, based on the number of

patches n, the commitment of the population will be split among n + 1 subpopulations; we rep-

resent the subpopulation proportions as xU and xi, in the closed interval [0, 1]. Note that, in a

finite population of S individuals, it will be impossible for the colony to achieve exactly the

desired target distribution if xi S is not an integer number.

We analyse the population dynamics of the two systems parametrised to reach the same tar-

get distribution (with and without negative social feedback) using mean-field models of infi-

nite and finite populations, using ordinary differential equations (ODEs) and stochastic

simulation of the master equation respectively. Both types of analyses can be performed for

models derived from chemical reaction equations, which specify how individuals in the system

interact and change state (see Table 1).

The ODE model assumes an infinitely-large population size S and provides deterministic

system dynamics in the absence of any noise from finite population effects. On the other hand,

stochastic simulation of the master equation (Gillespie’s SSA [25]) gives a probabilistically cor-

rect simulation of dynamics of finite populations of size S.

While previous research has documented that collective foraging is regulated by the actions

and interactions that we included in our models, the relationship between their frequency

(transition rates) and the estimated nest-site quality are still debated. Table 1 reports the best

functions we obtained through numerical optimisation to approximate the target distribution.

Including negative feedback inevitably requires a change also in the recruitment function,

from constant to linearly proportional to the quality. The difference in the recruitment func-

tion between the two models has not been imposed by design but is the result of the numerical

optimisation analysis that we show in detail in S1 Text. Here, we assume that social recruit-

ment (positive feedback) is much more efficient than independent discovery, so ri� qi, as has

been documented in a large variety of social insect species [26–29]. For fair comparison, the

average recruitment strength r is equalised between the two models so that quality-sensitive

recruitment transitions—model with negative feedback—happens on average at the same rate

of quality-insensitive recruitment—model without negative feedback (see S2 Text). The model

with only positive feedback is easy to solve for the desired equilibrium distribution of foragers,

with a simple parameterisation of individuals’ rates (see S3 Text). The model with negative

feedback, however, requires a heuristic individual parameterisation based on site qualities,

which we perform numerically. However, this heuristic has a simple functional form (see Fig

A in S2 Text) so could easily be approximated by real foragers.

Table 1. The two analysed models can be described in terms of transitions between commitment states by individuals. The commitment states are ‘committed to for-
aging patch i’ (Xi) or ‘uncommitted’ (XU). Both models have the same positive and negative feedback for independent transitions: quality-dependent discovery and constant
abandonment (leak a). The difference lies in the social feedback; one model (blue) has quality-insensitive recruitment (ri = ρ) but no negative social feedback (z = 0). The
other model (red) has both quality-sensitive recruitment (ri = ρqi) and quality-insensitive self-inhibition (z> 0), as reported by field observations [30]. In these representa-
tive models, we set rates as constant and (linear) quality-sensitive functions of the quality according to the best function we obtain with numerical optimisation (see S1
Text).

WITHOUT NEGATIVE SOCIAL FEEDBACK WITH NEGATIVE SOCIAL FEEDBACK

Independent discovery XU!
qiXi

Quality-sensitive Quality-sensitive

Independent abandonment (leak) Xi!
a XU Constant Constant

Recruitment (positive social feedback) XU þ Xi!
ri
2Xi

Constant Quality-sensitive

Stop signalling (negative social feedback) Xi þ Xi!
z XU þ Xi Constant

https://doi.org/10.1371/journal.pcbi.1010090.t001
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Results

The two top panels of Fig 1 show the time dynamics of the two models for representative val-

ues and n = 3 patches. Both models asymptotically approximate the target distribution of Eq

(1).

Through numerical integration of the master equations, we investigate the effect of stochas-

tic fluctuations on the system dynamics [25]. The fluctuation size is inversely proportional to

the system size S, i.e. there are no fluctuations in very large groups (i.e. S!1) and large

Fig 1. Temporal evolution of the models without (left) and with (right) negative social feedback in an environment with n = 3 food patches with qualities q1 = 0.75,
q2 = 0.5, q3 = 0.25. The top panels show the dynamics of the ODEs for systems of infinite size S!1. The bottom panels show the trajectories of 30 representative runs
of the stochastic simulation algorithm (SSA, [25]) for a system comprised of S = 200 individuals. The boxplots on the right of each bottom panel show the statistical
aggregate at time 400 for 1000 runs of the SSA. (Other simulation parameters are: constant abandonment a = 10−3, average recruitment strength r = 100, and stop signal
strength z’ 3.1.) While the infinite size dynamics predict convergence to the target distribution of Eq (1) (dashed lines) for both models, the stochastic trajectories show
different results for the two models. The system without negative social feedback has smaller fluctuations over time but frequently stabilises at values far from the target
distribution (bottom-left panel). The system with negative social feedback fluctuates more but always remains relatively close to the target distribution (bottom-right
panel). The apparently quicker dynamics of the ODEmodel for the system without negative social feedback are due to the symmetric initial conditions. In the left inset,
we show that a small perturbation of the initial population (i.e. x1, x2 = 0 and x3 = 0.05) delays the convergence by more than 5 orders of magnitude. Such a susceptibility
to random fluctuations is made evident by the stochastic trajectories. The right inset shows a zoom of the larger plot.

https://doi.org/10.1371/journal.pcbi.1010090.g001
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fluctuation in small groups. The effect of the system-size noise can be appreciated in the two

bottom panels of Fig 1. They show 30 representative trajectories for a system of size S = 200.

The higher variance can also be appreciated in the boxplots on the right of each bottom panel

of Fig 1, in which the average of 1,000 simulations hits the target value in both models; how-

ever, the variance is reduced considerably with the introduction of negative social feedback.

These results are not specific to the representative example of Fig 1, but are consistent through-

out the wide parameter space (see analysis in S4 Text). Additionally, increasing abandonment,

which is a form of independent, asocial negative feedback, is not sufficient to reduce variance

(see S5 Text).

Large deviations from the target distribution could compromise the ability of the colony to

intake the necessary nutrients for survival and reproduction, thus decreasing colony fitness.

Fig 2 shows how the error in achieving the target distribution is significantly higher without

negative social feedback. Similarly, the speed of adaptation to environmental changes is an

important factor in the survival of the colony [31, 32]. The system without negative feedback

can be incapable of adapting to changes in a timely manner because its temporal dynamics

vary significantly depending on the initial commitment (see top-left inset of Fig 1). The system

with negative feedback, instead, displays a constant convergence time regardless of the initial

state of the system (see S6 Text). Fig 3 shows how the convergence speed and the deviation

from the target distribution are influenced by the strength of the negative feedback; the

strength of negative feedback can tune a speed-robustness trade-off, similarly to the tuning of

speed-value and speed-coherence trade-offs in consensus decisions [23, 24, 33]. In agreement

with field observations of honeybees, which increase stop signalling when a quick response is

necessary [10], our analysis also predicts a speed-up of the group dynamics for higher levels of

Fig 2. Sum of squared errors (SSE) computed as the sum for n = 2 food patches of the square of the difference
between the subpopulation size at time 1000 (convergence) and the target distribution to that patch (see S7 Text).
The boxplots show the distribution of the SSE for 103 numerical simulations for swarm size S = 200, average
recruitment strength r = 100, and qualities q1 = 0.75 and q2 = 0.5.

https://doi.org/10.1371/journal.pcbi.1010090.g002
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negative feedback. The dynamics of Fig 3 can also be discussed in light of the results of a recent

empirical study which has found that sensitivity to inhibitory signalling changes as a function

of colony size [34]. Our model, by linking the negative feedback rate with convergence speed

and the deviation from the target distribution, offers predictions that can be tested on colonies

of different sizes. For example, the time to adaptation to environmental changes is expected to

be longer in smaller colonies, where bees show a lower sensitivity to inhibitory signalling [34],

than in larger colonies.

Discussion

Negative feedback has been considered in collective decisions, particularly as a means of sym-

metry breaking [22–24, 35], and in foraging, as a means of adapting to dynamically changing

environments [7, 10, 12, 13]. Other than in entomology, negative feedback has been observed

as a tool for noise reduction in gene networks [36–38] and in electronic systems [39, 40]. Here

we have shown that negative feedback may play an important role in reducing variance in col-

ony foraging performance. For example, considering the honeybee system that inspired our

model, field observations have reported that levels of stop signalling increase in response to

changes such as dangerous, overcrowded, or depleted food patches [10, 11, 13, 41]; however, it

has not yet been fully understood why, even in static conditions, honeybees always deliver a

small number of stop signals to foragers visiting the same forage patch [10, 13, 34]. This pat-

tern is consistent with our model, and the analysis presented is an interpretation for such

observed behaviour.

Fig 3. The stop signalling strength can be the control parameter in a speed-robustness trade-off. Stronger stop
signalling speeds up the convergence of the system (magenta curve) but also increases the predicted error from the
target distribution (blue curve). These results are in agreement with field observations that documented an increase in
stop signalling when a quick response to environmental changes was necessary [10]. The inset shows that for
increasing recruitment strength ρ both convergence time and error decrease. Both error and convergence time are
computed from the infinite population model (ODE). The error is computed as the sum for every foraging population
of the squared distance R2 from the target at large time (convergence, computed analytically as the ODE’s stable fixed
point in the unit-simplex). The convergence time (magenta curve) is computed as the time necessary to reach the
(numerically computed) fixed point. As the system has an asymptotic convergence, the reported time corresponds to
the R2 error becoming smaller than 10−4.

https://doi.org/10.1371/journal.pcbi.1010090.g003
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Our results suggest a further progression in the evolution of collective foraging behaviour;

solitary foraging by members of social insect colonies evolved first, but was comparatively inef-

ficient due to the need for foragers to repeatedly and independently discover forage sites [42,

43] (see S8 Text). Subsequently, positive social feedback evolved to improve foraging efficiency

[44–46], but this came at the expense of robustness of the foraging outcome, through increased

variance in foraging performance (see S9 Text). Finally, negative feedback evolved not only to

respond better to changing environments, but also to reduce variance in foraging perfor-

mance. The re-use of negative feedback signals, such as in the case of honeybee stop-signals

which are used in both foraging [10, 34] and house-hunting [22] life history stages, would facil-

itate performance-enhancing innovations in signalling behaviours; however, it is not clear

whether stop-signalling first arose in foraging or in house-hunting contexts (intuitively, we

suggest the former, a more common life history event).

Some species have not evolved negative signalling mechanisms but rely on natural decay of

feedback, such as pheromone evaporation. For instance, Lasius niger ants rely on the downre-

gulation of positive feedback (i.e. pheromone deposition) in order to let pheromone decay

take over [47, 48]. It is worth noting that this is not technically negative feedback; given the

time taken from the first observations of the positive-feedback signals in colonies of honeybees

and ants [3, 49, 50] to that of the corresponding negative feedback signals [6, 51], it may be

worth further exploring social insects in which explicit negative feedback has not been

observed, to search for expected negative feedback mechanisms, or explain why their life his-

tory means they would not be beneficial. As a motivating example, decreases in the number of

waggle circuit repetitions in honeybee swarms were taken to be due to decay processes internal

to scout bees [52], but the negative stop-signal was subsequently discovered to be significant in

these swarms [22].

We conclude by noting that our study highlights the importance of using multiscale model-

ling to understand collective behaviour [53–55]. In fact, through mean-field analysis we could

not observe the dynamics that justify the use of the negative feedback. Instead, complementing

the analysis with probabilistic models, we have been able to identify the system dynamics that

favour the appearance of stop signalling as a mechanism for variance reduction. Multiscale

modelling is a valuable framework which combines the use of a set of modelling techniques to

analyse the system at various levels of complexity and noise. In this study, we only employed

noise-free mean-field analysis and master equations with system-size dependent noise. How-

ever, further analysis could include the impact of spatial noise, and time-correlated informa-

tion and/or interactions [53].
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29. l’Anson Price R, Grüter C, HughesWOH, Evison SEF. Symmetry breaking in mass-recruiting ants:
extent of foraging biases depends on resource quality. Behavioral Ecology and Sociobiology. 2016; 70
(11):1813–20. https://doi.org/10.1007/s00265-016-2187-y

30. Jack-McCollough RT, Nieh JC. Honeybees tune excitatory and inhibitory recruitment signalling to
resource value and predation risk. Animal Behaviour. 2015; 110:9–17. https://doi.org/10.1016/j.
anbehav.2015.09.003

PLOS COMPUTATIONAL BIOLOGY Negative feedback in collective foraging suppresses variation

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1010090 May 18, 2022 9 / 11

https://doi.org/10.1051/apido/2009052
https://doi.org/10.1371/journal.pbio.1002423
https://doi.org/10.1371/journal.pbio.1002423
http://www.ncbi.nlm.nih.gov/pubmed/27014876
https://doi.org/10.1098/rsos.191681
https://doi.org/10.1098/rsos.191681
http://www.ncbi.nlm.nih.gov/pubmed/31903216
https://doi.org/10.1016/j.anbehav.2020.07.023
https://doi.org/10.1007/s13592-020-00803-z
https://doi.org/10.1007/s13592-020-00803-z
https://doi.org/10.1016/j.tree.2020.03.009
http://www.ncbi.nlm.nih.gov/pubmed/32668214
https://doi.org/10.1016/0376-6357(93)90092-6
https://doi.org/10.1016/0376-6357(93)90092-6
http://www.ncbi.nlm.nih.gov/pubmed/24897604
https://doi.org/10.1137/S0036144500385263
https://doi.org/10.1016/j.tpb.2008.04.005
http://www.ncbi.nlm.nih.gov/pubmed/18550139
https://doi.org/10.1016/j.cub.2009.03.015
https://doi.org/10.1016/j.cub.2009.03.015
http://www.ncbi.nlm.nih.gov/pubmed/19345104
https://doi.org/10.1111/1365-2656.12096
http://www.ncbi.nlm.nih.gov/pubmed/23730810
https://doi.org/10.1126/science.1210361
http://www.ncbi.nlm.nih.gov/pubmed/22157081
https://doi.org/10.1371/journal.pone.0073216
http://www.ncbi.nlm.nih.gov/pubmed/24023835
https://doi.org/10.1103/PhysRevE.95.052411
http://www.ncbi.nlm.nih.gov/pubmed/28618584
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1006/jtbi.1998.0789
https://doi.org/10.1006/jtbi.1998.0789
http://www.ncbi.nlm.nih.gov/pubmed/9822561
https://doi.org/10.1126/science.1215991
https://doi.org/10.1126/science.1215991
http://www.ncbi.nlm.nih.gov/pubmed/1215991
https://doi.org/10.1093/beheco/arj036
https://doi.org/10.1093/beheco/arj036
https://doi.org/10.1007/s00265-016-2187-y
https://doi.org/10.1016/j.anbehav.2015.09.003
https://doi.org/10.1016/j.anbehav.2015.09.003
https://doi.org/10.1371/journal.pcbi.1010090
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