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The exploitation of the DNA damage response and DNA repair profi-

ciency of cancer cells is an important anticancer strategy. The replication

and repair of DNA are dependent upon the supply of deoxynucleoside

triphosphate (dNTP) building blocks, which are produced and maintained

by nucleotide metabolic pathways. Enzymes within these pathways can be

promising targets to selectively induce toxic DNA lesions in cancer cells.

These same pathways also activate antimetabolites, an important group of

chemotherapies that disrupt both nucleotide and DNA metabolism to

induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can

also be targeted to refine the use of these chemotherapeutics, many of

which remain standard of care in common cancers. In this review article,

we will discuss both these approaches exemplified by the enzymes MTH1,

MTHFD2 and SAMHD1. © 2022 The Authors. Molecular Oncology pub-

lished by John Wiley & Sons Ltd on behalf of Federation of European

Biochemical Societies.

1. Introduction

All dividing cells require nucleotide building blocks

(deoxynucleoside triphosphates, dNTPs) to copy their

DNA in the S phase of the cell cycle, to accurately

pass on an intact genome to the next generation.

Uncontrolled growth signals provided by oncogenes

contribute to cancer development by causing replica-

tion stress [1,2], which is when DNA synthesis slows

or stalls leading to exposed stretches of excess single-

stranded DNA. This can be caused through a number

of distinct mechanisms, including unscheduled DNA

synthesis and perturbation of dNTP metabolism [3],

which in turn can contribute to genome instability in

cancer [4]. Defects in DNA repair pathways can

further fuel cancer development through the acquisi-

tion of mutations and gene rearrangements [5].

Targeting DNA replication has been an early strat-

egy in the treatment of cancer [6], either through the

use of DNA-damaging agents, such as nitrogen mus-

tards and topoisomerase poisons, which disrupt DNA

replication [7], or alternatively through the use of

antimetabolites, which can disrupt both DNA and

nucleotide metabolism [8]. More recently, a refinement

of this approach has been to inhibit the DNA damage

response (DDR) as a strategy to overload the cancer

cell with cancer-specific cytotoxic DNA damage, either

alone or in combination with classical DNA-damaging

agents. This strategy can selectively target the cancer

using, for instance, the synthetic lethal approach
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exemplified by PARP inhibitors in BRCA-mutated

cancers [9,10]. One extension of this approach is to

target the DDR, together with DNA repair, through

inhibiting nucleotide metabolism in cancer to induce

cancer-specific DNA damage [11] or exploit cancer-

specific nucleotide metabolic pathways [12,13]. In addi-

tion, nucleotide metabolism can be targeted to modu-

late the efficacy of antimetabolite therapies [14,15], to

refine the use of these classical chemotherapies, which

is important considering these drugs remain standard

of care for many common cancers. In this review, we

will discuss both approaches, exemplified by our recent

work on the (nucleotide) metabolic enzymes MTH1

(human MutT homologue 1), MTHFD2 (methylenete-

trahydrofolate dehydrogenase/cyclohydrolase 2) and

SAMHD1 (sterile alpha motif and histidine-aspartic

acid domain-containing protein-1).

2. MTH1

Many cancers are characterised by high levels of

reactive oxygen species (ROS) [16] as a potential con-

sequence of lost redox balance. High levels of ROS

can cause oxidative damage to DNA and proteins,

leading to mutations or apoptosis, eventually becom-

ing lethal for the cell [17]. High ROS levels are a

potential explanation for antioxidant defences being

generally upregulated in cancer, and thus, targeting

these high ROS levels is emerging as an anticancer

strategy [18].

One of the proteins involved in response to oxida-

tive stress is MTH1 (human MutT homologue 1,

NUDT1). This enzyme hydrolyses oxidised nucleo-

tides, such as 8-oxo-dGTP and 2-OH-dATP, in the

dNTP pool to prevent the incorporation of the dam-

aged nucleobase into DNA, which can cause a muta-

tion [19,20]. Early on, it was demonstrated that lung

cancer development in Ogg1�/� mice, lacking the 8-

oxoguanine glycosylase OGG1, was dependent on a

functional MTH1 protein, as Ogg1�/� Mth1�/� dou-

ble knockout mice were spared from cancer [21]. This

showed validation of MTH1 as an anticancer target in

an animal model. The first mechanistic suggestion that

MTH1 could be a potential anticancer target was by

P. Rai in R. Weinberg’s laboratory, demonstrating

that MTH1 was required to prevent the onset of senes-

cence in cancer cells [22]. Following this, ours and

other laboratories developed MTH1 inhibitors demon-

strating potent anticancer activity [11,23], generating a

broad interest in this protein as an anticancer target,

which has resulted in several series of MTH1 inhibitors

with differing abilities to kill cancer cells (discussed

further in Section 2.3).

2.1. Biological roles of MTH1

As the name Human MutT homologue 1 (MTH1)

indicates, the protein was first identified in E. coli as

the product of a mutator gene, and then later cloned

and identified to be a dNTPase hydrolysing 8-oxo-

dGTP to prevent the incorporation of this modified

nucleotide into DNA and subsequent mutations

[24,25]. Like the bacterial MutT, the human MTH1

protein also hydrolyses oxidised nucleotides such as 8-

oxo-dGTP and 2-OH-dATP. As loss of MutT in

E. coli is one of the most mutagenic events in this

organism, increasing mutation rates 1000-fold, it was

surprising to observe no increasing mutation rates in

Mth1�/� mice [26]. This could potentially be

explained by putative backup proteins within the

NUDIX hydrolase family, for example MTH2

(NUDT15) [27], NUDT5 [28] and MTH3 (NUDT18)

[29], which may reduce the burden of oxidised dNTPs.

However, the role of NUDT15 [30], NUDT5 [31],

NUDT18 [30] and other NUDIX enzymes [32], in san-

itation of oxidised dNTP pools in cells has been chal-

lenged [20]. Instead, the reason for Mth1�/� mice not

having an increase in mutation rates is likely explained

by the overall low levels of oxidative stress in mam-

mals. Under conditions where external oxidative stress

is added, Mth1�/� mice are highly sensitive [33]. Out-

side of oxidised purines, MTH1 also removes methy-

lated purine triphosphates, such as O6-methyl-dGTP

and N6-methyl-dATP, from the nucleotide pool

[34,35].

The expression from the NUDT1 gene (encoding the

MTH1 protein) and cellular 8-oxo-dGTPase activity is

highly upregulated following induction of ROS by, for

instance, ionising radiation (IR) [36] or environmental

pollutants [37,38]. In human cells, the overall ROS

levels are described as low, surprisingly even in cancer

cells, and are only upregulated during prolonged per-

turbations such as arrest in mitosis [39,40]. In mitosis,

emerging data indicate the MTH1 protein is important

for microtubule polymerisation and binds tubulin

directly, together with other tubulin-controlling

GTPases [41]. It makes sense that MTH1 is upregu-

lated together with ROS in mitosis, but the function of

MTH1 under such stressed conditions remains unex-

plored. The biological role of MTH1 binding to mito-

tic proteins is also currently unclear.

While the loss of MTH1 function in mammalian

cells shows surprisingly little phenotype, the overex-

pression of MTH1 efficiently reduces mutations in mis-

match repair (MMR) defective cells [42], reduces risk

of Huntington’s disease-like impairment [43] and

increases life expectancy in mice [44].
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2.2. MTH1 in inflammation and cancer

Oxidative DNA damage and MTH1 are relevant in

numerous diseases and disorders, including neurologi-

cal diseases, which are reviewed elsewhere [45]. Early

on, it was reported that MTH1 protein levels are

potently upregulated in phytohaemagglutinin-activated

T lymphocytes [46]. This is unsurprising as activated T

cells are known to have increased ROS levels, which

are related to the glycolytic switch in activated T cells

[47], resembling the same glycolytic switch in cancer

[48]. Interestingly, a subset of activated T cells show

high level of MTH1 [49] and another subset of acti-

vated T cells do not show upregulation of MTH1 [50].

MTH1 inhibitor TH1579 efficiently introduced oxida-

tive DNA damage and kills off activated MTH1high T

cells at low nM concentrations but is not toxic to rest-

ing or activated MTH1low T cells [50]. A therapeutic

effect in a murine model of autoimmune hepatitis [49]

and experimental autoimmune encephalomyelitis [50]

is reported, but the detailed use of MTH1 inhibitors in

inflammatory diseases is yet to be established.

The MTH1 protein is reported to be highly overex-

pressed in many cancers [51-53], also correlating with

an increased 8-oxo-dGTPase activity in cancer [54,55].

It is unclear why MTH1 protein levels and activity are

increased, but it is likely related to dysregulated redox

balance that causes ROS and MTH1 transcriptional

upregulation. Also, as MTH1 activity prevents cancer

cells entering ROS-induced senescence [22,56,57], this

may be a way for cancer cells to survive.

2.3. Clinical MTH1 inhibitor – mechanism of

action

The MTH1 inhibitor TH1579 (karonudib, OXC-101)

[58] is currently in clinical trials for the treatment of

solid (NCT03036228) and haematological cancers

(NCT04077307). The model for the mechanism of

action of how TH588 (first generation MTH1 inhibi-

tor) and TH1579 (an optimised analogue) kill cancer

cells is now fairly well established (Fig. 1). These com-

pounds have dual activities that contribute to their

potent antitumour effects, targeting both the catalytic

activity of MTH1 and the polymerisation of micro-

tubules. Treatment of cultured cells with these com-

pounds stops them in mitosis and activates the spindle

assembly checkpoint (SAC), causing accumulation of

ROS. High ROS subsequently oxidises the dGTP pool

to generate excess 8-oxo-dGTP that can then be incor-

porated into DNA during mitotic replication, which

kills cancer cells [41,59], although the exact mechanism

remains unclear. Several lines of evidence support this

model; for example, inhibition of the SAC (either with

reversin or with MAD2 siRNA) generates resistance to

these MTH1 inhibitors, as this prevents mitotic arrest

and the build-up of excess ROS [41]. Also, replacement

of one of the main DNA replicases, DNA polymerase

d (Pol d), with an error-prone variant in cells, increases

TH588-induced genomic 8-oxo-dG together with mito-

tic delay and mitotic cell death, linking these pheno-

types to DNA synthesis [59]. The activity of TH588

and TH1579 directly on microtubule polymerisation

has been characterised in vitro [41,60,61], and a cocrys-

tal structure of TH588 together with the a/b-tubulin

heterodimer has been resolved, suggesting TH588

occupyies the colchicine site of the GTPase b-tubulin

[61]. Cells expressing a b-tubulin mutant within the

drug-binding pocket (the TUBB L240F mutant)

became more resistant [61], supporting that direct

activity of these compounds on b-tubulin is important

for anticancer effect. Alternatively, this mutation could

also potentially affect tubulin binding by MTH1.

These dual-function molecules exploit a specific vulner-

ability of cancer cells to mitotic arrest coupled with

loss of MTH1 activity. Separation of these activities,

using mitotic poisons to arrest cells in mitosis with

Fig. 1. Mechanism of action of clinical MTH1 inhibitors. Schematic

detailing the current model for the mechanism of action of MTH1

inhibitors under clinical investigation. TH1579 (karonudib, OXC-101)

and related compound TH588 are dual inhibitors of the catalytic

activity of MTH1 and microtubule polymerisation. These com-

pounds arrest cells in mitosis leading to the accumulation of reac-

tive oxygen species (ROS) that subsequently oxidise the purine

triphosphate pool. The dNTPase activity of MTH1 is important dur-

ing this arrest to prevent the use of these modified nucleotides in

mitotic DNA synthesis, which is cytotoxic to cancer cells by a yet

to be determined mechanism. Figure adapted from [41] and [59],

and created in BioRender.
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cotreatment with a molecule specifically targeting the

8-oxo-dGTPase activity of MTH1, synergistically kills

cancer cells [41], further supporting the proposed

model. These MTH1 inhibitors have a broad anti-

cancer activity in in vitro and in vivo models [62–68],

and it is interesting to note that while these MTH1

inhibitors are a highly effective anticancer treatment,

they are also highly tolerable.

The big discussion is, however, not about the mech-

anism of action of the TH series inhibitors but if tar-

geting MTH1 contributes to the cell killing observed

with these drugs. The reason for this discussion is lar-

gely that CRISPR-Cas9 knockout (KO) of MTH1 is

generally well tolerated in cancer cells, and at the same

time, these cells are often also sensitive to treatment

with TH588 or TH1579. That loss of MTH1 (by

siRNA) is tolerable in most cancer cell lines was

already reported in our original study in 2014 [11].

Hence, protein loss appears not to recapitulate the

effects of the inhibitors, which can be ascribed to

edge-specific genetic (edgetic)-like perturbation effects,

which are very common in the DDR field. Edgetic per-

turbations were originally described in the context of

genetic alterations, such as single amino acid substitu-

tions, which would result in partially functional gene

products with altered biochemical and biophysical

interaction(s), so-called as these perturb the edges of

interactome network models [69]. Along similar lines,

the inactivation of an enzymes catalytic activity with a

small molecule, akin to a point mutation ablating

activity, could also have other effects upon the bio-

chemical and biophysical properties of this enzyme in

cells. Notably, some MTH1 CRISPR-Cas9 KO cells

show a similar level of resistance to TH588 as the

TUBB L240F mutant [70], supporting that MTH1

mediates the toxic effects of TH588. Also, structurally

distinct MTH1 inhibitors that do not interfere with

tubulin polymerisation in vitro demonstrate a similar

mitotic arrest as TH1579 and TH588 [41], likely inter-

fering with the role of MTH1 in mitosis. Furthermore,

some potent MTH1 inhibitors fail to break the pro-

tein–protein interaction between MTH1 and a-tubulin,

while others do [41], demonstrating that inhibitors

have distinct effects from protein loss, and are not just

simple enzyme activity inhibitors. Clearly, edgetic-like

perturbation effects are caused by the MTH1 inhibi-

tors that go beyond simply inhibiting the enzyme and

that are of importance for the cytotoxicity of the com-

pounds. Also, we argue these MTH1 inhibitors are not

to be confused with microtubule poisons, as they: (a)

largely show distinct mitotic defects different from

microtubule poisons, (b) effectively target microtubule-

resistant cancers (unpublished), (c) are highly tolerable

and not toxic to nontransformed cells and (d) intro-

duce oxidative DNA damage. It will be interesting to

follow the clinical development of TH1579.

We call upon more research efforts to shed light on

the complex role of the MTH1 protein, particularly

interactions in mitosis, together with a more detailed

evaluation of TH588 and TH1579 that takes into

account edgetic-like perturbation effects. As the com-

pounds show potent anticancer activity without being

generally toxic, in-depth detail of the exact mecha-

nisms may give further insights to unravel new cancer

biology that can be targeted.

3. MTHFD2

The DDR needs not only to signal the damage and

attract DNA repair enzymes, but it also needs to sup-

ply dNTPs to complete the repair. Cancer cells rely on

a different set of metabolism enzymes from normal

cells owing to the Warburg effect. Previously, we vali-

dated the glycolytic PFKFB3 enzyme, preferentially

expressed in cancer, as an anticancer target and

described the small molecule KAN0438757 that effi-

ciently blocked repair synthesis by depletion of the

local dNTP pool at sites of DNA damage [12]. The

differential use of metabolism proteins has also gener-

ated a lot of interest in the serine and glycine path-

ways as major drivers of rapid cell proliferation, an

effect largely mediated by the folate/one-carbon meta-

bolism pathway [71–73]. A particular interest has been

generated in the MTHFD2 enzyme as it is oncofetal,

being expressed during early embryogenesis, silenced

in adult cells and then re-expressed in transformed

cancer cells, making it an attractive anticancer target.

3.1. Biological roles of MTHFD2

In the mitochondria, one-carbon units are usually

derived from serine and attached to a tetrahydrofolate

(THF) molecule as methylene-THF (CH2-THF),

further oxidised to formate and then shuttled to the

cytoplasm, where formate can be used for de novo pur-

ine synthesis, thymidylate or methionine synthesis

[74,75]. In the cytosol, CH2-THF oxidation is carried

out in its entirety by the trifunctional (dehydrogenase-

cyclohydrolase-synthetase) NADP-dependent MTHFD1,

while the bifunctional (dehydrogenase-cyclohydrolase)

NAD-dependent MTHFD2L together with the mono-

functional (synthetase) MTHFD1L is responsible for

catalysing these reactions in the mitochondria. During

early embryogenesis and in transformed cells, the

mitochondrial dehydrogenase and cyclohydrolase

activities are instead carried out by the MTHFD2
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enzyme, suggesting an isoform switch from

MTHFD2L to MTHFD2 during cancer transforma-

tion [76–78]. More recently, the MTHFD2 protein has

been reported to also have a nuclear role, being colo-

cated to the nucleus [79] and specifically at replication

forks [80]. Perhaps in line with this, MTHFD2 was

recently shown to have a noncatalytic role in promot-

ing homologous recombination (HR) repair, through

interaction between CDK1 and EXO1 [81]. Future

studies should further interrogate the nuclear role of

this enzyme.

3.2. MTHFD2 as a target for anticancer treatment

As MTHFD2 is one of the most upregulated meta-

bolic enzymes in cancer [82], it has generated a lot of

interest as a potential anticancer target. There are

numerous reports supporting that MTHFD2 is

required for survival in various cancers using RNAi

approaches [83–87] or small molecule inhibitors

[13,88–90]. It is clear from the literature that

MTHFD2 RNAi depletion is highly effective in killing

most cancers. This appears to be related to MTHFD2

as expression of RNAi-resistant MTHFD2 protein res-

cues the effect and mediates survival [13]. This is in

sharp contrast to what is observed by MTHFD2

CRISPR-Cas9 KO, where cancer cells survive by acti-

vating the serine hydroxymethyltransferase 1 (SHMT1)

pathway [91]. The DepMap database [92] of CRISPR-

Cas9 KO cells supports that MTHFD2 is not required

for cancer cell survival. There are mainly two inhibitor

series to MTHFD2, the DS18561882 series [90] and

the TH9619 series that we published [13]. In our

hands, these inhibitors also inhibit MTHFD1 and the

cell-killing effect of these compounds could be related

to targeting MTHFD1, rather than mitochondrial

MTHFD2. The supporting information that TH9619

works by targeting MTHFD2 is as follows: (a)

MTHFD2�/� cells are highly resistant to TH9619,

while the same toxicity is observed in MTHFD1�/�

cells, and (b) the toxic effects of TH9619 are reversed

by metabolic rescue with thymidine, which also rescues

cell killing by MTHFD2 siRNA, supporting the cur-

rent model for mechanism of action (Fig. 2). However,

since metabolic pathways are highly complex there

could also be alternative explanations for these

observed effects. Furthermore, the toxicity of

MTHFD2 inhibitors is highly influenced by folate and

other metabolite concentrations in the media [13]. One

potential explanation for the effective killing with

MTHFD2 RNAi but not with CRISPR-Cas9 could be

that cancer cells acutely rely on MTHFD2 to generate

thymidine, but easily switch to use the SHMT1 path-

way, allowing the clones to survive long term as in the

case of CRISPR-Cas9 KO cells. Interestingly, the

MTHFD2 inhibitors are highly effective in killing a

subset of cancer cells, but not all, indicating that nei-

ther the MTHFD2 RNAi nor CRISPR-Cas9 KO cells

predict the effects using the inhibitors. Edgetic-like

perturbation effects also appear relevant here and need

to be considered when targeting MTHFD2.

4. SAMHD1

Targeting nucleotide metabolism is also important

within the context of antimetabolite-based cancer

Fig. 2. Mechanism of action of MTHFD2 inhibitors. Schematic detailing the proposed mechanism for antitumour effect of MTHFD2

inhibition. MTHFD2 supports de novo thymidylate (dTMP) synthesis by providing methyl-tetrahydrofolate (CH2-THF), and thus, loss of

MTHFD2 activity depletes dTTP pools, leading to thymineless-induced replication stress. In parallel, loss of dTMP production results in the

accumulation of dUMP, the substrate of thymidylate synthase (TYMS), which is subsequently phosphorylated to its triphosphate form dUTP.

Excess dUTP is incorporated into DNA leading to elevated genomic uracil exacerbating replication stress, ultimately resulting in DNA strand

breaks and cell death. Figure created in BioRender.
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therapies, which typically target the DNA molecule via

perturbation of both DNA and nucleotide metabolism

[8]. This is exemplified with the enzyme SAMHD1,

first described over two decades ago under the alterna-

tive name DCIP (dendritic cell-derived IFN-c induced

protein), owing to its identification as an orthologue

of the mouse IFN-c induced gene Mg11 from a human

dendritic cell cDNA library [93]. DCIP was shown to

be widely expressed by most human tissues and sug-

gested to be a component of the innate immune

response. The present name of SAMHD1, owing to a

domain structure consisting of an N-terminal SAM

and central HD domain with conserved histidine (H)

and aspartic acid (D) residues, was first referenced in

2009. Here, mutations in the SAMHD1 gene were

found to be responsible for a rare hereditary disorder

called Aicardi–Gouti�eres syndrome (AGS) [94], which

is characterised by a defective innate immune response.

However, the biological role(s) of SAMHD1 remained

elusive. Subsequently, the dNTP triphosphohydrolase

activity of SAMHD1 was characterised [95,96], which

also coincided with the identification of SAMHD1 as

a human immunodeficiency virus type-1 (HIV-1)

restriction factor in myeloid cells [97,98]. Since then,

our understanding of this enzyme has grown substan-

tially, with additional biochemical activities and

diverse biological roles reported, all of which paint a

complex picture of the relationship of SAMHD1 with

human health and disease, including cancer.

4.1. The biological roles of SAMHD1

SAMHD1 belongs to the HD-domain superfamily, a

group of metal-dependent phosphohydrolases [99], and

catalyses the hydrolysis of the a-phosphate of dNTP

molecules producing their cognate deoxynucleoside

and inorganic triphosphate [95,96]. The triphosphate

moiety of a dNTP molecule is absolutely required by

DNA polymerases for the DNA synthetic reaction.

Thus, as the triphosphohydrolase activity of SAMHD1

removes the triphosphate moiety, this prevents the use

of this dNTP molecule in DNA synthesis. The cat-

alytic activity of SAMHD1 is regulated by nucleotide

abundance [100-103] (Box 1), and this elegant allos-

teric regulation mechanism is reminiscent of the key

nucleotide metabolic enzyme and long-standing anti-

cancer target ribonucleotide reductase (RNR), which

opposes SAMHD1 in the nucleotide metabolic scheme,

being responsible for the reduction in nucleoside

diphosphates (NDPs) to deoxynucleoside diphosphates

(dNDPs). Similar to the broad substrate specificity of

RNR, all canonical dNTPs (dGTP, dATP, dCTP,

dTTP, and dUTP) can be accommodated in the cat-

alytic site of SAMHD1 and subsequently hydrolysed

[95,96,104], which is consistent with the notion that

SAMHD1 is a major regulator of dNTP pools in

human cells [105].

In addition to the dNTP hydrolase activity of

SAMHD1, several other activities of this enzyme have

been documented. SAMHD1 was reported to have a

nuclease activity [106,107], in line with other HD-

domain superfamily members [99], which was tantalis-

ingly consistent with other genetic defects known to

cause AGS, as these were also nucleases (e.g. TREX1,

RnaseH2). However, prior and subsequent biochemical

studies indicated that SAMHD1 had no active site-

associated nuclease activity [96,108–111] and suggested

the reported activity was likely a contamination in the

preparation [109,110]. Whether this activity exists and

is biologically relevant remains in dispute [112,113].

Interestingly, rather than possessing nuclease activity

itself, SAMHD1 has since been shown to have a non-

catalytic role in recruiting DNA repair nucleases to

sites of DNA damage or stalled DNA synthesis

[114,115]. Also, it is this activity that substantially con-

tributes to the role of SAMHD1 in suppressing the

innate immune response [115], although studies impli-

cate a role for the dNTP hydrolase activity also [116].

By recruiting DNA repair nucleases, such as MRE11,

to stalled replication forks, SAMHD1 facilitates the

processing of excess single-stranded (ss)DNA that

builds up at stalled forks and leads to IFN-induction

via cGAS-STING when this ssDNA leaves the nucleus

and enters the cytosol. Consequently, a lack of

SAMHD1 has been reported to impede replication

fork progression (independently of dNTP hydrolase

activity) [115], and enhance the cytotoxicity of DNA

Box 1. Allosteric regulation mechanism of SAMHD1.

• The catalytic activity of SAMHD1 is regulated by

nucleotide abundance (reviewed in Ref. [100]);

• Catalytically active SAMHD1 is a homotetramer,

and formation of this tetramer is dependent upon

sequential nucleotide binding to distinct allosteric

sites on each SAMHD1 monomer;

• Allosteric site 1 (AS1) binds specifically to gua-

nine nucleotides, such as GTP or dGTP, which

promotes the formation of the SAMHD1 dimer;

• Allosteric site 2 (AS2) binds to any dNTPs and

then promotes dimerisation of these SAMHD1

dimers and thus formation of the catalytically

active homotetramer [101–103].
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damage-inducing agents, such as IR and topoiso-

merase poisons, in addition to PARP inhibitors [114].

SAMHD1 has also been reported to suppress the

innate immune response via direct interaction with

NF-jB [117]. Additionally, SAMHD1 possesses

nucleic acid binding activity [108,110], whose cellular

role remains somewhat unclear but was recently shown

to be important for antiretroviral activity [118].

4.2. Understanding the relationship between

SAMHD1 and cancer

There is a strong link between the composition of

dNTP pools and genome stability, and of course, this

relationship is extremely important in cancer biology

[119]. Similarly, the noncatalytic role of SAMHD1 in

DNA repair and replication fork restart, together with

its links to the innate immune response, also has

important implications for our understanding of can-

cer [120]. Thus, perhaps unsurprisingly, dysregulation

or mutation of SAMHD1 has been reported in several

malignancies (reviewed in refs. [121,122]). Chronic

lymphocytic leukaemia (CLL) [123,124], T-cell prolym-

phocytic leukaemia [125], colon cancer [126] and man-

tle cell lymphoma [127–129], amongst others, have all

had SAMHD1 mutations identified within. Of course,

without thorough characterisation of these mutants

assessing their impact upon the various biochemical/bi-

ological activities of SAMHD1 (i.e. dNTP hydrolase,

nuclease recruitment, innate immunity suppression,

nucleic acid binding), it is difficult to hypothesise the

outcome for cancer biology, given the impact of the

loss of SAMHD1 can be hypothesised to have differ-

ent outcomes depending upon the biological role in

question. This approach was applied in a recent study

characterising the colon cancer and leukaemia-

associated R366C/H mutant, and showed that while

this mutation retains noncatalytic roles of SAMHD1,

the dNTPase activity is abolished [130]. Accordingly,

this mutation could contribute to elevated dNTP

pools, which are commonly reported in cancer cells

[131].

Exemplifying the potentially contrasting effects of

loss of SAMHD1 and underscoring the need for sys-

tematic approaches to characterise SAMHD1 mutants,

we can consider the example of replication fork pro-

gression. Impairment of the noncatalytic replication

fork restart function of SAMHD1 could promote

replication stress in cancer cells, a hallmark of this dis-

ease and known to be a double-edged sword, capable

of promoting tumour progression but also being a

tumour suppressive mechanism. Conversely, loss of the

dNTP catabolic activity of SAMHD1 would lead to

expansion of dNTP pools, which could be anticipated

to alleviate replication stress, consistent with the abun-

dance of literature showing the rescue of replication

stress in cultured cancer cells by treatment with exoge-

nous nucleosides or their precursors [132–136]. How-

ever, replicating DNA with expanded dNTP pools,

especially in the context of MMR deficiency, can result

in elevated mutation rates [126], but several reports

also note that a consequence of dNTP pool expansion

can be cell cycle arrest at G1/S [105,137]. This is an

interesting observation that is consistent with findings

reported in budding yeast using a constitutively active

RNR mutant to expand dNTP pools [138]. Cell cycle

arrest was attributed to perturbed assembly of preiniti-

ation complexes at replication origins; whether this is

the case in human cells with expanded dNTP pools

remains to be investigated. Perhaps critically, these dif-

ferential impacts of SAMHD1 upon cancer biology

would be impacted by the cellular context, depending

upon which oncogene is driving cancer cell prolifera-

tion [139], the metabolic wiring of the cell, and compe-

tency of genome stability pathways, for instance.

Many open questions remain to be investigated here.

4.3. SAMHD1 is a drug resistance factor

It can perhaps be appreciated at this point that the

relationship between SAMHD1 and cancer is some-

what complicated, and further investigation is required

to delineate the different roles of this enzyme and their

relevance to this disease. One instance in which there

is a clear utility in targeting SAMHD1 in cancer is to

improve the efficacy of a commonly used group of

chemotherapies, antimetabolites, specifically nucle-

obase and nucleoside analogues [140]. As highlighted

in the Introduction, these therapies were the proof of

concept for the clinical utility of targeting nucleotide

metabolism in cancer [6] and, accordingly, have been

in clinical use for decades, being standard of care for

many common malignancies.

These therapies are prodrugs and, owing to their

similarity to endogenous nucleosides, are reliant upon

the intracellular nucleotide biosynthetic and salvage

machinery to generate their active phosphorylated

metabolites, which are responsible for their anticancer

effects. However, conversely, this renders these thera-

pies subject to various nucleotide catabolic pathways

that can also potentially inactivate them and reduce

their efficacy, of which numerous examples exist,

which we have discussed in detail previously [8].

Uniquely in human cells, SAMHD1 is a triphosphohy-

drolase and so can potentially convert active triphos-

phate metabolites of nucleoside analogues back to
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their respective inactive prodrug forms [140]. Studies

probing the catalytic promiscuity of SAMHD1 began

with the evaluation of nucleoside reverse transcriptase

inhibitors (NRTIs) [141] and several base-modified

nucleotides [142] as SAMHD1 substrates. The first

anticancer nucleoside analogue identified as a

SAMHD1 substrate was the active metabolite of the

antileukaemic drug clofarabine (Cl-F-ara-ATP), which

was also an AS2 activator [143]. Subsequent studies by

ourselves and others confirmed and extended this find-

ing to other anticancer nucleoside analogues, in partic-

ular, the deoxycytidine analogue cytarabine (ara-C),

which is standard-of-care therapy in acute myeloid leu-

kaemia (AML) [14,144,145]. Here, the triphosphate

metabolite (ara-CTP) was shown to exclusively be a

substrate of SAMHD1 [14,144,145], and accordingly,

SAMHD1 could dictate the efficacy of this drug in a

variety of preclinical AML models [14,121,144,146].

Furthermore, establishing the clinical relevance of

these findings, ara-C treated AML patients with low

SAMHD1 expression have a significantly better overall

survival compared to those with high expression

[14,144,147], clearly highlighting SAMHD1 as a thera-

peutic target in this context [140].

Subsequently, the active metabolites of many more

anticancer nucleoside analogues have been identified as

SAMHD1 substrates [148-150], and accordingly,

SAMHD1 modulates the efficacy of some of these in

disease models [14,121,144–146,148–153]. For the

deoxycytidine analogue and DNMT1 inhibitor decita-

bine, clinically used in myelodysplastic syndrome

(MDS) and AML, SAMHD1 expression also corre-

lates with clinical outcome of patients receiving this

therapy [148]. The deoxyguanosine analogue nelara-

bine, approved for use in refractory and relapsed T-

cell malignancies, is another interesting drug with

regard to SAMHD1. The ablation of SAMHD1

expression sensitises cells to nelarabine (and ara-G)

[146,151], and the lack of SAMHD1 expression in T-

cell acute lymphoblastic leukaemia (ALL) cell lines

compared with B-ALL cell lines explains the differen-

tial sensitivity observed [151]. Nelarabine is a ration-

ally designed chemotherapy, based upon the

observations that elevated dGTP is selectively toxic to

T cells, which can occur through loss of purine nucle-

oside phosphorylase (PNP) (reviewed in ref. [154]).

Notably, SAMHD1 has also been reported to protect

cells from build-up of cytotoxic dGTP, which could be

exploited to target SAMHD1-deficient cancer cells

with PNP inhibitors [155,156]. Thus, there is a striking

parallel in the role of SAMHD1 in protecting cells

from excess dGTP and the triphosphate metabolite of

nelarabine (ara-GTP). Given the apparent lack of

SAMHD1 expression in T-cell malignancy cell lines

[151,156], it is tempting to speculate that SAMHD1

(or rather lack of) is responsible for the original obser-

vations of dG and ara-G selective T-cell toxicity

together with subsequent experiments, which formed

the basis of nelarabine being developed as a T-cell-

specific drug. Another interesting point is that many of

the triphosphate metabolites of these nucleoside ana-

logues can also allosterically activate SAMHD1 at the

AS2 site [14,143–145,148,149], but the biological rele-

vance in cancer cells, if any, has been little explored/

observed, perhaps owing to basal dNTPs already being

sufficient for tetramerisation, which is known to be

long-lived [104].

4.4. Targeting SAMHD1 in cancer

Given the potential utility of inactivating SAMHD1 in

cancer to enhance the efficacy of antimetabolites, cou-

pled with potential applications in the immune

response and viral infections, various approaches have

been reported to target SAMHD1 (Fig. 3). We initially

proposed the use of viral protein-X (Vpx) as a biologic

inhibitor of SAMHD1 to enhance ara-C efficacy in

AML which we demonstrated in cell models and pri-

mary patient material [14]. Vpx is a simian immunode-

ficiency virus (SIV) accessory protein that has evolved

to target SAMHD1 for proteasomal degradation

through interaction with the ubiquitin ligase DCAF1

[97,98] essentially functioning as nature’s proteolysis-

Fig. 3. Strategies to target the drug resistance factor SAMHD1.

SAMHD1 is a dNTP hydrolase that removes the triphosphate

moiety from several anticancer nucleoside triphosphate analogues,

thus converting the active metabolites of these therapies back to

their inactive prodrug form. Current strategies to target SAMHD1

include proteasomal degradation, which can be achieved by

delivery of the viral protein-X (Vpx) into cancer cells. Direct catalytic

inhibitors of SAMHD1 (SAMHD1i), which although have been docu-

mented against recombinant SAMHD1 in vitro, are yet to be

shown to work in cell models. Indirect pharmacological approaches

such as inhibitors of ribonucleotide reductase (RNRi) can suppress

the drug resistance activity of SAMHD1 in cancer cells by per-

turbing nucleotide metabolism. Figure created in BioRender.
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targeting chimera (PROTAC). However, there are lim-

itations to a protein-based therapy, which we have dis-

cussed previously [146], and Vpx has additional

cellular targets [157].

A direct pharmacological strategy, that is a

SAMHD1 inhibitor, would be ideal and could also be

an important tool for the scientific community to

explore SAMHD1 biology and the consequences of

dNTP pool expansion. Given the oligomeric nature of

SAMHD1, together with distinct allosteric and cat-

alytic sites, one would anticipate this is a druggable

target. However, SAMHD1 inhibitors with demon-

strated activity in cell models are yet to be reported.

Several studies have documented high-throughput

amenable assays to screen chemical libraries [143,158–

160], and thus far, screening campaigns have focused

upon libraries of FDA-approved drugs [158,159].

These studies have identified several chemotypes with

micromolar inhibition against recombinant SAMHD1

protein in vitro, but little understanding of their inhibi-

tory mechanism was provided together with no evalua-

tion of their utility in cell models. In addition, one of

these studies [158] also identified deoxyguanosine and

its analogues, such as the antiviral acyclovir, as high

micromolar SAMHD1 inhibitors in vitro, which could

provide the future basis for fragment-based chemical

probe development efforts. Another approach to iden-

tify SAMHD1 inhibitors has stemmed from the use of

nonhydrolysable dNTP analogues [143,161–163].

Although these molecules have little use as chemical

probes owing to their triphosphate moieties preventing

cell permeability, plus the lack of selectivity offered by

dN(TP) analogues, they have yielded great insights

into the catalytic mechanism of SAMHD1 together

with potential mechanisms of inhibition [161–163],

which would inform future studies.

As a complementary approach to identify small

molecule modulators, we recently reported a pheno-

typic screening strategy [15], which by default would

yield cell-active molecules. Here, we exploited the dif-

ferential sensitivity of leukaemic cells to ara-C depend-

ing upon SAMHD1 status [14] and screened libraries

of molecules to identify those that can sensitise cells to

ara-C in a SAMHD1-dependent manner. Although

rather than a direct inhibitor of SAMHD1 dNTPase

activity, our initial report from this screen illustrated

the finding that the cellular ara-CTPase activity of

SAMHD1 can be suppressed indirectly with another

class of anticancer drugs, RNR inhibitors (RNRi),

which target the enzyme RNR responsible for the rate-

limiting step in de novo nucleotide biosynthesis.

Although synergistic cell killing between various RNRi

and ara-C has been reported many decades ago, we

found that in haematological cancer models and pri-

mary patient material, this synergy positively corre-

lated with SAMHD1 protein abundance, and models

lacking SAMHD1 displayed no synergy (which is the

exact phenotype one would hope from a direct

SAMHD1 inhibitor). Furthermore, RNRi could over-

come SAMHD1-mediated resistance to ara-C in sev-

eral mouse models of AML. Interestingly, the

SAMHD1-dependent sensitisation was observed only

with nonallosteric inhibitors of RNR such as hydrox-

yurea (HU), gemcitabine (dF-dC) and triapine (3-AP),

but not with allosteric RNRi exemplified by the purine

analogues clofarabine, fludarabine and cladribine.

Mechanistically, we proposed a model in which the

changes in dNTP pools caused by nonallosteric RNRi

treatment perturb the allosteric activation of

SAMHD1 at AS2, which alters substrate specificity,

specifically that dCTP-activated SAMHD1 lacks ara-

CTPase activity [15]. Additional studies should interro-

gate this further, and also the wider applicability of

this strategy, for instance to other nucleoside-based

drugs under SAMHD1 control in cancer cells.

This indirect pharmacological strategy, utilising

already-approved anticancer therapeutics, has several

advantages over the use of yet to be developed direct

SAMHD1 inhibitors. Critically, these findings can be

rapidly translated into the clinic, especially as at least

two nonallosteric RNRi (HU and dF-dC) are cur-

rently employed in cancer treatment. As HU is

already used in AML treatment, this has facilitated

the establishment of a clinical study in Sweden to

evaluate whether the addition of this drug can

improve ara-C standard-of-care therapy in newly

diagnosed AML patients (EUDRACT: 2018-004050-

16). Given we have shown that this combination did

not affect the efficacy of anthracyclines in AML cell

models [15], which is combined with ara-C in AML

standard of care, this strategy could also be further

combined with attempts to refine anthracycline ther-

apy [164]. Furthermore, RNRi has potent monother-

apy anticancer activity that would not be expected

from direct SAMHD1 inhibitors, which is an impor-

tant consideration when designing optimal combina-

tion therapies to tackle heterogeneity within both

patient and tumour populations [165]. This approach

would also be expected to retain the other cellular

roles of SAMHD1 relevant to human health (see Sec-

tion 4.1). However, this indirect approach has limited

utility in further understanding SAMHD1 biology

that direct small molecule inhibitors would allow, and

so further research efforts should establish these tools,

which would allow comparison of these complemen-

tary targeting strategies.
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5. Conclusions and future
perspectives

The exploitation of the DDR, together with the differ-

ential DNA repair proficiency of cancer cells, holds

much promise in the selective targeting of tumours,

and there is much more exciting work to be done in

this field. Here, we have discussed how this can be

achieved through targeting nucleotide metabolic

enzymes, which are involved in both the production

and maintenance of dNTP pools in cancer cells. These

same pathways also activate long-standing anticancer

drugs consistently used in cancer therapy. Thus,

nucleotide metabolic enzymes, many of which are

druggable, constitute encouraging anticancer targets,

either to induce cytotoxic DNA lesions in cancer cells

or to modulate the efficacy of existing cancer drugs.

There are also other therapeutic uses of targeting

nucleotide metabolism that have not been discussed

here, such as its importance for cell differentiation,

which can be exploited in AML treatment [166,167],

and the relevance for response to immune checkpoint

inhibitors [168].

Targeting nucleotide metabolic pathways/enzymes,

however, can be complicated. Noncatalytic roles of

metabolic enzymes are becoming more and more

apparent, exemplified by the role of SAMHD1 in repli-

cation fork restart or MTH1 binding of tubulin during

mitosis. Although we would anticipate that a catalytic

inhibitor would allow retention of nonenzymatic func-

tions, there is evidence suggesting this is not always

the case. Thus, a thorough characterisation of the vari-

ous roles and activities of these enzymes needs to be

carried out to fully understand the consequences of

targeting them with small molecules. Also, while the

use of CRISPR-Cas9 dropout screens to identify

genetic dependencies of cancer cell lines is a powerful

tool to identify therapeutic targets, the use of stable

CRISPR-Cas9 KO cells to validate small molecules or

targets also appears more complicated than initially

thought. Metabolic pathways can be notoriously com-

plex, and we would argue metabolic rewiring in

nucleotide metabolism KO cell lines prevents overly

simple interpretations of these experiments. Another

point of caution is the targeting of isozymes, as is the

case with MTHFD2. The development of selective

inhibitors can be challenging, perhaps reminiscent of

kinase inhibitor development, but various strategies

can be employed to overcome this. This highlights the

question of whether it is beneficial to inhibit all iso-

zymes within a pathway, which could potentially

reduce the risk of metabolic rewiring-mediated resis-

tance, or if selective inhibition of a single isozyme is

preferential, only further experiments will tell and this

will be context-specific.

Here, we have discussed just two targets, which can

be exploited to induce DNA damage in cancer cells,

MTH1 and MTHFD2; however, there are many more.

Nucleotide biosynthesis has been considered a

nononcogene addiction of cancer cells, as dNTPs are

required to fuel cancer cell proliferation, and accord-

ingly, many of the enzymes in these pathways have

been revisited time and time again in the context of

cancer therapy [169]. However, given dNTP biosynthe-

sis is unquestionably important for all dividing cells,

caution should be applied when targeting potential

pan-essential genes [170]. Although it should be noted

that the differential dependence of cancer versus non-

cancer cells upon de novo vs salvage nucleotide synthe-

sis is an ongoing area of research, which could offer

potential selective vulnerabilities of cancer cells. It is

these same metabolic differences that could be respon-

sible (at least in part) for the therapeutic windows

observed with antimetabolites, being one of the rea-

sons these therapies remain standard of care to this

day. Nucleotide pool sanitation enzymes also consti-

tute promising anticancer targets owing to the higher

susceptibility of free bases within the dNTP pool to

modification than their counterparts in DNA [171],

which we have discussed in detail before [20]. Modified

nucleotides can also originate from the DNA molecule,

as is the case with epigenetic nucleotides, and enzymes

involved in their subsequent metabolism can be

exploited for cancer cell killing [172,173].

In addition to the exploitation of new therapeutic

targets, nucleotide metabolic enzymes are also critical

in dictating the efficacy of antimetabolites. While in

preclinical cancer research there is a clear focus on the

development of new targeted therapies, traditional

chemotherapeutics such as antimetabolites are still

used daily and with high clinical impact, and this will

likely be the case for many years to come. Despite dec-

ades of clinical use, there is still much left to be uncov-

ered, as these therapies typically have complex and

polypharmacologic mechanisms of actions, which

could be another reason for their clinical success.

Research efforts should focus on gaining a better

understanding of how these drugs work, exploiting our

knowledge of nucleotide metabolic enzymes and their

links with the DDR and DNA repair, and develop

strategies to refine their use. There are numerous

examples of targeting dNTP metabolic enzymes to

modulate the efficacy of these therapies [8,20], and

approaches such as the use of RNRi to indirectly tar-

get SAMHD1 are particularly interesting given this

uses a cheap already existing cancer drug that can be
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redeployed to modulate chemotherapeutic efficacy,

which can be particularly important when considering

financial burdens associated with new therapies.
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