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A B S T R A C T   

In this study, we analyse the implications of clean energy, oil and emission prices for the energy sector stock in 
the GCC region. In so doing, we estimate one-day-ahead value at risk (VaR) and the expected shortfall (ES) for 
Saudi, Abu Dhabi and Kuwaiti energy stock prices over short and long trading positions using three different long 
memory Autoregressive conditional heteroskedasticity (ARCH)/ Generalized(G)- ARCH models: fractionally in-
tegrated asymmetric power ARCH (FIAPARCH), fractionally integrated generalized autoregressive conditional 
heteroscedastic (FIGARCH) and fractionally integrated hyperbolic generalized autoregressive conditional het-
eroskedasticity (HYGARCH). In the GARCH model, we employ the three global energy indexes: clean energy 
production, crude oil and CO2 emission prices as exogenous regressors to consider their impacts on the GCC 
energy volatilities. Our findings indicate the presence of asymmetry, fat-tails and long memory in the GCC energy 
price volatilities, and that the three exogenous regressors do not play a significant role in the GCC daily returns 
volatility. The FIAPARCH produces the most accurate VaR and the expected shortfall for Saudi and Kuwait 
energy sectors, while HYGARCH performs better for the Abu Dhabi energy index. Our study has profound im-
plications for the clean energy policy, emission pricing and investment strategies entailing energy stock.   

1. Introduction 

Since the mid-1990s when J.P. Morgan developed the first risk 
standardised approach to forecast future risks of financial markets, such 
an approach has become an ultimate framework for investors, financial 
managers, regulators as well as researchers and academics. Existing 
evidence and prevailing wisdom have been that the most effective risk 
quantifying techniques are value-at-risk (VaR) and the expected short-
fall (ES) (see e.g., Aloui and Hamida, 2014; Su, 2015; Mabrouk, 2017; 
Mensi et al., 2017; Liu et al., 2018; Nguyen and Huynh, 2019; Molino 
and Sala, 2020; Yang and Xu, 2021). Whilst the VaR computes the 
maximum loss of value for a firm, sector, portfolio, etc. given specific 
prevailing market conditions over a limited time forecast and given a 
confidence interval, ES acts as a complementary tool to the VaR in order 
to quantify the losses that are not covered by the VaR under its confi-
dence level (Gong and Weng, 2016; Mensi et al., 2017; Liu et al., 2018). 

Predicting the risks of highly volatile markets commonly involves 

using the historical time-series of the same markets (e.g., Chen and 
Chen, 2013; Aloui and Hamida, 2014; Su, 2015; Gong and Weng, 2016; 
Mabrouk, 2017; Mensi et al., 2017; Liu et al., 2018; Chen et al., 2020; 
Yang and Xu, 2021). Some authors have developed VaRs models while 
taking into account spillover effects between the markets (Aloui and 
Mabrouk, 2010; Degiannakis and Kiohos, 2014; Du and He, 2015; Zol-
faghari and Sahabi, 2017; Li and Wei, 2018; Wen et al., 2019; Tiwari 
et al., 2020; Yang et al., 2021). However, the literature remains more or 
less silent regarding the estimation of VaR and ES for conventional en-
ergy stock prices, especially for heavy oil-exporting countries like those 
in the GCC region. For instance, Hung et al. (2008), Marimoutou et al. 
(2009) and Marimoutou et al. (2009) only focused on oil or a few energy 
commodities and did not account for the long-memory frameworks2. 
Although, Youssef et al. (2015) did use a long-memory GARCH-EVT 
model but focused only on gasoline and crude oil. These are the caveats 
and research gaps in the existing body of knowledge that the subject 
study is intended to address. 
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In terms of focus on the GCC region, it is crucial to acknowledge that 
the GCC is a very important political and economic block3. The de-
velopments in the region have implications for the global economy and 
particularly for the global energy markets (See, Nasir et al., 2019 for a 
detailed discussion of GCC economies and energy shocks). Due to the 
extreme dependence of GCC economies on energy exports, the energy 
prices, as well as the emissions pricing can have potential effects on the 
GGC region and its financial markets. Clean energy is vital for economic 
growth (Wang and Lee, 2022). The global drive to clean energy also 
makes this region a direct stakeholder in tackling environmental chal-
lenges (Luomi, 2014). Nevertheless, the GCC economies are among the 
most vulnerable economies in the face of climate change where climate 
change can lead to a loss of about 1% of GDP per anum (Livermore, 
2021). In this context, it is vital to comprehend the importance of oil 
shocks as well as clean energy and instruments such as emission pricing 
for the GCC economies. 

There exists also a research gap in our knowledge to understand the 
crucial role of the statistical properties of highly volatile markets’ VaRs 
(e.g., excessive volatility, leverage effects, fat-tails, asymmetry and long 
memory) especially in the context of GCC countries. On this aspect, 
according to Cabedo and Moya (2003), returns for energy commodities 
prices mostly display a large skewness, kurtosis or follow a long memory 
process. A phenomenon the subject study is exploring and hence 
contributing to the existing body of knowledge. As it stands, climate 
change is one of the most crucial and existential issues faced by human 
civilisation. In this regard, the importance of clean energy and pricing 
emissions is profoundly important for economic and ecological stability 
and meeting the environmental challenges (e.g., Doğan et al., 2020; 
Shahbaz et al., 2020, 2020b; Nasir et al., 2021; Nguyen et al., 2021). 
Furthermore, the oil price fluctuations do have significant implications 
for the economies and financial markets (Nasir et al., 2018, 2019; Lee 
et al., 2021b). However, existing evidence and thus our understanding of 
how these factors affect the financial markets and particularly the en-
ergy sector stock in the oil-exporting economies like GCC is very limited 
and merits further exploration. Concomitantly, in this paper, we analyse 
the implications of clean energy, oil and emission prices for the energy 
sector stock in the GCC region. Specifically, we focus on quantifying one- 
step ahead VaR and the ES for the three energy stock prices indices of 
Saudi and the UAE and Kuwait using three long memory autoregressive 
conditional heteroskedastic (ARCH/GARCH) models, namely fraction-
ally integrated generalized autoregressive conditional heteroscedastic 
(FIGARCH), fractionally integrated asymmetric power ARCH (FIA-
PARCH) and fractionally integrated hyperbolic generalized autore-
gressive conditional heteroskedasticity (HYGARCH). To the best of our 
knowledge, this is the first contribution to the existing literature on this 
subject. We use these models to capture potential leverage effects, fat- 
tails, asymmetry and long memory effects of our variables.4 As the 
second contribution to the existing evidence, we also include the three 
global energy markets: clean energy production index, crude oil and CO2 
emission prices as regressors to explore their role in investigating sta-
tistical long memory effects on the GCC energy equities. Our key find-
ings confirm the presence of asymmetry, fat-tails and long memory in 
the GCC energy price volatilities, and that the three exogenous re-
gressors do not play a significant role in the GCC daily returns volatility. 
The FIAPARCH produces the most accurate VaR and the expected 
shortfall for Saudi and Kuwait energy sectors, while HYGARCH performs 
better for the Abu Dhabi energy index. These findings have profound 
implications for the clean energy policy, emission pricing and energy 
stock investment strategies. 

The remaining parts of this paper are divided into four parts. Section 

2 provides a survey of the relevant literature. Section 3 offers a 
description of the methods and data used in this study. The empirical 
results are provided in Section 4, whereas Section 5 concludes this study. 

2. Literature review 

Since the emergence of the basic VaR analysis by J.P. Morgan to 
estimate the potential financial market losses, two strands of literature 
have emerged and existed hitherto. The first strand has concentrated on 
the stock market volatility phenomenon to predict its possible risk (e.g., 
Chen and Chen, 2013; Aloui and Hamida, 2014; Su, 2015; Gong and 
Weng, 2016; Mabrouk, 2017; Mensi et al., 2017; Liu et al., 2018; Car-
valho and Sáfadi, 2022; Chen et al., 2020; Yang and Xu, 2021). The 
second strand of literature has intended to evaluate the potential risk of 
stock prices taking into account its spillover or dependency effects in 
international financial markets such as crude oil, gas and interest rate 
(Aloui and Mabrouk, 2010; Degiannakis and Kiohos, 2014; Du and He, 
2015; Zolfaghari and Sahabi, 2017; Li and Wei, 2018; Wen et al., 2019; 
Tiwari et al., 2020; Huynh et al., 2020; Yang et al., 2021). 

The first strand of the literature has mostly applied the ARCH/ 
GARCH class of models, in particular, long memory volatility GARCH 
(Chin et al., 2009; Aloui and Hamida, 2014; Balibey and Turkyilmaz, 
2014; Su, 2015; Günay, 2017; Mabrouk, 2017; BenSaïda et al., 2018; 
Yang and Xu, 2021). Results of these studies displayed significant values 
of VaR and expected shortfall at 95% confidence level and higher. 
Moreover, they argued that the most accurate risk forecasts can be 
produced from the GARCHs that are modelled under student-t distri-
bution due to fat-tail probability (Aloui and Mabrouk, 2010). Critical 
stock market losses have also been computed using more advanced 
techniques (Chen and Chen, 2013; Gong and Weng, 2016; Mensi et al., 
2017; Liu et al., 2018; Carvalho and Sáfadi, 2022; Chen et al., 2020). For 
example, Mensi et al. (2017) estimated their analysis of selected stock 
markets using a wavelet-based VaR estimation. Liu et al. (2018) 
employed a heterogeneous autoregressive quantity (HARQ) model to 
forecast the VaR of the Chinese stock market. They also compared the 
VaR estimation accuracy of in-sample with out-of-sample data. In the 
same vein, Chen et al. (2020) applied regime-switching and 
mean-reverting volatility frameworks to compute the VaR of the Taiwan 
stock market. They argued that using regime-switching techniques for 
the most volatile equities produces the best performance of VaR. 

Few studies have also considered estimating the VaR for interna-
tional commodity prices such as (Cabedo and Moya, 2003; So and Yu, 
2006; Tabak and Cajueiro, 2007; Bali and Theodossiou, 2007; Youssef 
et al., 2015; Yang and Hamori, 2020). Cabedo and Moya (2003) and 
Tabak and Cajueiro (2007) computed a VaR for crude oil markets using 
an ARMA and the Hurst exponent methods respectively. While So and 
Yu (2006), Bali and Theodossiou (2007) and Youssef et al. (2015) 
employed long-memory GARCH models for VaR estimation of various 
energy commodities. Recently, Yang and Hamori (2020) forecasted the 
VaR and expected shortfall in crude oil prices. They obtained contrasting 
results based on the GARCH and rolling-window approaches. 

Aloui and Mabrouk (2010) have considered international financial 
markets spillovers while evaluating a VaR and expected shortfall anal-
ysis. They computed the VaR of crude oil prices considering its spillover 
on gas prices. Similarly, Du and He (2015); Li and Wei (2018) and Wen 
et al. (2019) defined the role of spillover and dependence effects be-
tween oil and stock markets for the VaR investigation. Unlike Wen et al. 
(2019) who used a vector autoregressive (VAR) model to capture oil 
spillover impacts for VaR of the US stock market, Degiannakis and 
Kiohos (2014) exploited a multivariate modelling method to forecast 
VaR given a direct correlation between real estate and stock prices for 
seven developed countries. Du and He (2015) and Li and Wei (2018) 
estimated the dependence structure among crude oil and China stock 
market to obtain more accurate VaR. 

The above-mentioned studies thus clearly highlight the absence of 
the VaR and expected shortfall analysis for the conventional energy 

3 See Lee et al. (2021a) for geopolitical risks and energy markets.  
4 This comes in line with several works that indicated that financial time 

series are often not normally distributed (e.g., Bali and Theodossiou, 2007; 
Youssef et al., 2015; Yang and Hamori, 2020). 
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sectors, particularly for the largest oil exporters such as those in the GCC 
region. Furthermore, the analysis involving the spillover and depen-
dence effects between markets is also absent in the context of the GCC 
countries. It is cogent to expect that the clean energy, oil and emission 
pricing that are crucial areas of debate under current global initiatives of 
tackling climate change, the same crucial factors can resultantly have 
implications for the energy sector stock in the oil-exporting countries 
like GCC. 

3. Methodology and data 

3.1. Methodology 

We apply three long memory GARCH models: fractional integrated 
GARCH (FIGARCH), fractional integrated asymmetric power ARCH 
(FIAPARCH) and hyperbolic GARCH (HYGARCH) to compute one-day- 
ahead VaR and the expected shortfall of the three GCC energy sectors 
for both long and short trading positions. We include the global clean 
energy production, CO2 emission and crude oil prices were used as 
explanatory variables to examine the spillover and interdependence 
effects.5 

The three long memory time-varying volatility models have been 
used for two reasons: first, VaR alone is incapable to account for vola-
tility clustering in stock market fluctuations. This limitation could 
confound loss predicting, especially during crises, as a result of ignoring 
serial dependence over time (Danielsson, 2011; Nguyen et al., 2019). 
Second, long memory volatility allows capturing the slow decay of the 
autocorrelation function in conditional variance. In other words, long 
memory volatility modelling enables the classification of conditional 
variance into short and infinite long memory (Alexander, 2008). This 
feature cannot be achieved by using the standard GARCH models. 
Therefore, the choice of three long memory time-varying volatility 
models is appropriate and overcomes these limitations. 

3.1.1. The fractional integrated GARCH (FIGARCH) model 
Baillie et al. (1996) have expanded the standard GARCH to the 

fractionally integrated GARCH model. They provide the FIGARCH 
model to analyse short and long memory in the conditional variance. 
The process of the FIGARCH(p,d,q) model can be given as: 
[
φ
(

L
)
(1 − L)d

]
ε2

t = ω+Xt + [1 − β(L) ]
(
ε2

t − σ2
t

)
(1) 

Or 

σ2
t = ω+Xt + β(L)σ2

t + [1 − β(L) ]ε2
t − φ(L)(1 − L)dε2

t (2)  

= ω[1 − L]− 1
+Xt + λ(L)ε2

t  

where εt is the error term at time t and σt
2is the conditional variance, (L) 

denotes the lag-operator and Xt is the set of exogenous variables. (1 − L)d 

is the fractional differencing factor which ranges from zero to one; a 
short memory process can be captured when d = 0 and it shows a unit 
root process when d = 1. λ(L) is an infinite summation that should be 
truncated. 

3.1.2. The fractional integrated asymmetric power ARCH (FIAPARCH) 
model 

Since the FIGARCH (p,d,q) model does not capture asymmetry and 
long memory features in the conditional variance, Tse (1998) has 
developed the FIAPARCH (p, d, q) to include the function (|εt| − γεt)δ of 
the asymmetric power autoregressive conditional heteroscedasticity 
(APARCH) mode. The FIAPARCH (p, d, q) has been introduced as below: 

σδ
t = ω[1 − β(L) ]− 1

+Xt +
{

1 − [1 − β(L) ]− 1ρ(L)(1 − L)d
}
(|εt| − γεt )

δ

(3)  

where δ, γ and λ are the model parameters and d is the long memory 
term, Tse (1998) gives some underlying concepts under the FIAPARCH 
process; (i) when 0 < d < 1, it can be decided that the conditional 
variance includes long memory factor. It implies that impact of a shock, 
whether it is bad or good news, on the conditional variance decays at a 
hyperbolic rate; (ii) if the asymmetry term γ > 0, negative shocks affect 
volatility asset’s prices more than positive shocks and conversely; (iii) 
whereas γ = 0 and δ = 2, the process of the FIAPARCH reduces to the 
FIGARCH (p, d, q) mode. Accordingly, it can be noticed that the FIA-
PARCH process surpasses the FIGARCH as it captures both asymmetry 
and long memory in the conditional variance. 

3.1.3. The hyperbolic GARCH (HYGARCH) model 
Davidson (2004) has discovered the HYGARCH model as an exten-

sion of FIGARCH. He argues that HYGARCH gives more veritable long- 
memory property as it takes into account the hyperbolical decaying 
weights on the squared past shocks. Aloui and Mabrouk (2010) stated 
that this model is efficient in presence of volatility clustering, long 
memory feature and leptokurtosis, but it discounts asymmetry in the 
return distribution. The HYGARCH model can be defined as: 

σδ
t = ω[1 − β(L) ]− 1

+Xt +
{

1 −
[
1 − β(L)

]
− 1ρ(L)

[
1+ α

{
(1 − L)d

}]}
ε2

t

(4)  

where εt
2 is the squared error term at time t with mean 0 and variance 1, 

α ≥ 0 and denotes weight parameters in the process. 

3.1.4. Computing one step ahead VaR and expected shortfall 
To forecast the maximum potential losses of the three GCC energy 

markets over a certain horizon (h) and according to a confidence level 
(1- α), we compute VaR and expected shortfall using FIGARCH, FIA-
PARCH and HYGARCH under student t- innovation distribution.6 Given 
this framework, one can define the long and short trading positions as 
follows: 

VaRlong,t = μ̂t + skstα(v, k)σ̂ t (5)  

VaRshort,t = μ̂t + skst1− α(v, k)σ̂ t (6)  

where skstα(v,k) denotes the left quantile at the α% of the Student-t 
distribution, skst1− α(v,k) is the right quantile. The conditional mean and 
conditional variance symbolised by μ̂t and σ̂ t respectively. Artzner et al. 
(1999) developed an expected shortfall to forecast the losses that might 
exceed the value of the VaR computed based on its confidence level, 
defined as: 

ESα(X) = E{X|X ≥ VaRα(X) } (7)  

3.1.5. Back-testing VaR 
The VaR values accuracy has been statistically tested using the 

Kupiec (1995)’s test (also known as the unconditional coverage test). It 
relies on a likelihood ratio test (LRUC). Consider a sample size of T ob-
servations and a number of exceptions of N =

∑
t=1
T Ht. Thus, the aim of 

the test is to discover whether P̂ ≡ N/T is statistically equal to τ*: 

H0 : p = E(Ht) = τ* (5.8)

Following a binomial distribution, the null hypothesis of an accurate 

5 The heterogeneous effects of energy commodities prices on stock market are 
discussed in several contributions (e.g., Johnson and Soenen, 2009; Cevik et al., 
2020; Muritala et al., 2020). 

6 Many studies such as Aloui and Mabrouk (2010) and Mabrouk (2017) point 
out that data for equity returns mostly point out fat-tail probability and 
Student-t return’s innovation distribution is more appropriate to consider its 
statistical features. 

M.A. Alkathery et al.                                                                                                                                                                                                                           



Energy Economics 112 (2022) 106119

4

VaR can be rejected if the actual fraction of VaR exceptions is statisti-
cally different than τ*. 

3.2. Data and preliminary statistics 

We used daily log-differenced data from January 02, 2013, to March 
20, 2019. The time horizon of the study is based on the availability of the 
data at the time of analysis. The S&P Global Clean Energy Index (CE) is 
obtained from the S&P Dow Jones Indices. It is a weighted index that 
measures the performance of the biggest listed 30 clean energy com-
panies around the world.7 The CO2 emissions allowance price (EP) is 
obtained from the European Energy Exchange (EEX). It represents the 
spot price of the European Union CO2 emissions allowances. The prices 
of the EU CO2 emissions allowances have been converted from euros to 
U.S. dollars utilising the WM/Refinitiv FX rates of the U.S. dollar-euro 
exchange rate. The rest of the data is obtained from Invisting.com 
such as Brent crude oil price (OP) which is measured in US dollars per 
barrel. Saudi petrochemical index (SPI), Abu Dhabi energy index (AEI) 
in the UAE and Kuwait Oil & Gas index (KEI) are the stock price energy 
indices under consideration. Table 1 shows basic statistics and pre- 
estimation diagnostics of log returns of the six variables. 

We observe that CO2 emission price to be the most volatile which 
indicates the price instability of the carbon market and the challenges 
associated with carbon pricing. Clean energy production, CO2 emission 
price and Saudi petrochemical index are negatively skewed and oil 
price, Abu Dhabi energy index and Kuwait energy index are positively 
skewed. Further, fat tails are present in all six series, as evidenced by the 
statistically significant excess kurtosis values. To confirm the possibility 
that the presence of skewness and fat tails might point towards volatility 
in the market, we (i) use Engle’s (1982) ARCH-LM test to analyse po-
tential volatility clustering and (ii) employ the Ljung and Box, 1978 test 
on the squared standardised residuals to test for possible autocorrela-
tion. The LM ARCH test indicates that the null hypothesis of volatility 
clustering is rejected for all the series up to lag 10, showing conclusive 
evidence of volatility clustering across all the series. Similarly, the 
Ljung-Box test result confirms the presence of autocorrelation in all the 
series. Following Kang and Yoon (2013), we also test the long memory 
property of the unconditional returns and unconditional volatility as 
shown in Table 2 using Lo(1991)’s modified R/S statistic, and two 
semiparametric estimates of Hurst coefficient, i.e., Long periodogram 
(GPH) estimate of Gewke-Poter-Hudak(1983) and Gaussian semi-
parametric (GSP) estimate of Robinson and Henry(1999). 

From the results, we see that the presence of long memory in the 
unconditional return series is refuted for SPI, AEI and KEI for almost all 
the rests except for SPI (GSP estimate), where we find evidence of long 
memory. However, we find conclusive evidence of long memory for all 
three series in the absolute return series. We find that the long memory 
parameter is significant at 1% for all the series across all the three sta-
tistics estimated. Similarly, we find the conclusive presence of long 
memory in the squared returns as well. From these results, we can 
confirm the presence of long memory in unconditional volatility. 

3.2.1. Unit root test 
Table 3 shows the results of the augmented Dickey-Fuller GLS test 

(Elliott et al. (1996)) and Phillips-Perron unit root tests applied to the 
log of the six-time series. The unit-roots tests clearly show that all the 
six-time series are stationary at the first difference. 

3.2.2. Fat-tailed distribution 
Following Daniel and Wood (1980), we apply various diagnostic 

tests. In Fig. 1, we analyse the quantile-quantile (Q-Q) plots to examine 
the distributional property of the six series. It can be noticed that all the 

Q-Q plots diverge from the straight line at both ends implying that our 
time series follows a fat-tailed distribution. This comes in line with 
several works that indicated that financial time series are often not 
normally distributed (e.g., Bali and Theodossiou, 2007; Youssef et al., 
2015; Yang and Hamori, 2020). 

Fig. 2 shows the normal probability plots of all the daily returns. The 
actual distributions of the six series greatly differ from their hypoth-
esised normal distribution. In other words, we have clear evidence of 
positive Kurtosis and all the series are found to be Leptokurtic. This 
finding justifies our use of the three GARCH models under the 
assumption of Student-t innovation’s distributions. 

4. Results 

4.1. The three GARCH-type models results 

The results of the FIAPARCH, FIGARCH and HYGARCH models for 
the three GCC energy sectors are displayed in Tables 4, 5 and 6. As it 
shows, the long-range memory, ARCH, GARCH, asymmetry and asym-
metric response phenomena are statistically significant whereas the 
exogenous regressors (global clean energy production, crude oil and CO2 
emission prices) are statistically insignificant. Estimation results of the 
FIAPARCH model for the three GCC energy markets are presented in 
Table 4. The long memory parameter (d) of the Saudi petrochemical 
index rejects the GARCH null hypothesis at a 1% significance level, 
implying long memory in conditional volatility implying high volatility 
episodes would be followed by high volatility episodes and vice versa. 
The long memory parameter value of the Abu Dhabi energy index is 
>0.5, but significant, implying anti-persistence this shows a period of 
high volatility would be followed by a period of low volatility and vice 
versa. However, the long memory parameter of the Kuwait energy index 
is insignificant, implying the absence of long memory in conditional 
volatility. The ARCH (α) and GARCH (β) effects are found to be statis-
tically significant at a 1% level for all the indexes.8 The asymmetric 
response of volatility to news (γ) is positive and statistically significant 
at a 1% level for the Saudi and Abu Dhabi energy indexes. It signifies 
that unexpected bad news causes higher volatility in these two stocks 
compared to the good news, whereas the asymmetric parameter for the 
Kuwait model is found negative indicating the leverage effect. The 
power parameters (δ) are significant for the three models, implying that 
the functional form of the GARCH equations is not quadratic. The 
goodness of fit test of the Ljung-Box with 10 lags rejects the null hy-
pothesis and this indicates the absence of serial correlation in the esti-
mated residuals within the variables. Thus, it can be concluded that the 
estimated models can capture the volatility dynamics. 

Estimation results of the FIGARCH (1,1) models for the three GCC 
markets are shown in Table 5. The long memory parameters (d) are 
found to be more persistent compared to the FIAPARCH models. This 
implies the persistence of long memory in conditional volatilities of the 
three energy indexes. In simple words, it indicates that a high volatility 
period will be followed by a high volatility period and vice versa. Both 
ARCH (α) and GARCH (β) effects are statistically significant, but the 
ARCH effects are more persistent compared to the FIAPARCH models. 
The three models are able to capture the volatility dynamics as per the 
post estimation diagnostic test results. 

The results of the HYGARCH models for the three GCC energy sectors 
are presented in Table 6. Manifestation of long memory in volatility and 
anti-persistent behaviour in conditional volatility is explicit in the three 
markets as shown by the p-values of (d) parameters. ARCH (α) effects are 
insignificant for the Abu Dubai and Kuwait markets, but the GARCH (β) 
effects are found to be highly significant for all markets. The hyperbolic 
coefficients Log (α̂) HY are not statistically significant for all markets 

7 It comprises a diverse mix of companies that use environment-friendly 
processes to produce clean energy. 

8 Except the ARCH effects of Abu Dhabi energy markets analysis which was 
statistically found significant at a 1% level. 
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indicating that the GARCH elements are covariance stationary. The post 
estimation diagnostic test shows that the models capture the volatility 
dynamics. 

4.2. Performance assessment of the three GARCH-type models 

To choose the best models for the value at risk (VaR) analysis, we use 
three key forecast measures namely Root Mean Square Error (RMSE), 
mean absolute error (MAE) and mean absolute percentage error 
(MAPE). These measures are conducted over an in-sample window of 
length 5. The three criteria are defined as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σt=N
t=1 (X − XF)

2

N

√

;MAE =
Σt=N

t=1 |XF − X|
N

and MAPE

=
100
N

Σt=N
t=1 ∣

X − XF

X
∣  

where N is the total number of observations; X is the actual value and XF 

the forecasted value. The results are shown in Table 7. 
In the case of the Abu Dhabi Energy Index (AEI), the HYGARCH is the 

best-fitted model according to all three criteria. Similarly, for the Kuwait 
energy sector (KEI), the FIAPARCH outperforms the other two models. 
Conflicting evidence was obtained for the Saudi petrochemical sector 
(SPI): the FIGARCH outperforms other models based on RMSE criteria 
while FIAPARCH is the best as per the MAE and the MAPE criteria. 

4.2.1. Forecasting one-day-ahead VaR and the expected shortfalls 
Table 8 exhibits the VaRs and the expected shortfalls for the FIA-

PARCH models of the three GCC energy sectors. The null hypothesis of a 
correct specification is rejected when the p-values of the Kupiec’s (1995) 
back-testing VaR lie between 95% and 99% confidence levels. The 
Kupiec test is employed to see whether the number of observed viola-
tions is significantly different from the number of expected violations for 
the sample under study. The test statistic follows a χ2 distribution with 1 
degree of freedom. 

Table 9 shows that the estimated VaRs for the FIGARCH models are 
less robust relative to other models because the null is rejected in five 
positions across the different GCC stocks. For the short trading position, 
the null hypothesis of the correct specification at 99.5% and 99.8% 
failure rate is rejected for the Saudi and Kuwait models respectively. For 
the long trading position, the null hypothesis of the correct specification 
is rejected at two quantiles in the case of Saudi and one for Abu Dhabi 
energy indexes. The null of the correct specification is not rejected for 
any other quantiles. Therefore, it can be decided that the VaRs and the 
expected shortfalls are mostly computed and the FIGARCHs are valid in 
predicting the critical losses in the GCC energy indices. 

Empirical findings of the VaRs and expected shortfalls for the 
HYGARCH models are reported in Table 10. It can be noticed that the 
null hypothesis of correct specification in all quantiles of the three in-
dexes for both short and long positions is not rejected, excluding the 

Table 1 
Summary statistics.   

CE OP EP SPI AEI KEI 

Obs. 1614 1614 1614 1614 1614 1614 
Min − 0.02156 − 0.03847 − 0.1888 − 0.0411 − 0.04519 − 0.02796 
Mean 0.000118 − 0.00013 0.000332 − 8.09E-05 4.40E-05 6.02E-05 
Max 0.019796 0.045237 0.17567 0.04031 0.05848 0.038385 
Std. Dev 0.004612 0.008627 0.022646 0.006364 0.009682 0.005381 
Skewness − 0.197 (0.001) 0.128 (0.000) − 0.010 (0.876) − 0.3502 (0.000) 0.4736 (0.000) 0.1540 (0.011) 
Excess Kurtosis 1.861 (0.000) 3.047 (0.000) 11.110 (0.000) 7.246 (0.000) 4.276 (0.000) 3.985 (0.000) 
Jarque-Bera 243.79 (0.000) 629.21 (0.000) 8305.4 (0.000) 3567.1 (0.000) 1291.1 (0.000) 1075.2 (0.000) 
Q2(10) 176.524 (0.000) 910.673 (0.000) 264.985 (0.000) 414.778 (0.000) 253.611 (0.000) 146.664 (0.000) 
ARCH (1) 10.432 (0.000) 28.05 (0.000) 19.476 (0.000) 25.687 (0.000) 15.376 (0.000) 10.737 (0.000) 

Note: The formula of the Engle’s (1982) ARCH-LM test can be identified as Var(yt|Ht− 1) = Var(εt|Ht− 1) = E(εt
2|Ht− 1) = σt

2 where the Ljung-Box test is defined as Q =

n(n + 2)
∑h

k=1
ρ2

k
n − k

. Numbers in parenthesis denote the p-value associated with each of the reported statistics.  

Table 2 
Long memory in the unconditional returns and unconditional volatility.  

Returns Statistic SPI AEI KEI 

Lo’s R/S statistic 1.53507 1.27157 1.37049 

GPH 0.0270681 − 0.0195204 − 0.0263519 

GSP 0.0365713** − 0.00793387 − 0.0307581 

Absolute Returns Lo’s R/S statistic 4.74906*** 3.89316*** 2.87233*** 
GPH 0.267917*** 0.236043*** 0.201311*** 
GSP 0.279124*** 0.245078*** 0.2293*** 

Squared Returns Lo’s R/S statistic 3.42547*** 3.34533*** 2.85075*** 
GPH 0.10784 0.0999626** 0.148808 
GSP 0.270854*** 0.187*** 0.188777*** 

*** significance at 1% level, ** significance at 5% level. The critical values Lo’s R/S statistics test are 90%: [0.861, 1.747], 95%: [0.809, 1.862] and 99%: [0.721, 
2.098]. 

Table 3 
Unit root tests.  

Variables DF-GLS test PP test 

Level First dif. Level First dif. 

CE − 0.417910 − 2.858014*** − 2.640044* − 32.14744*** 
OP − 0.111376 − 10.08350*** − 1.645372 − 42.90586*** 
EP 0.403696 − 3.186813*** 0.646400 − 48.26537*** 
SPI − 0.998246 − 6.033719*** − 1.264757 − 36.05854*** 
AEI − 1.718527 − 41.29152*** − 1.706390 − 41.27211*** 
KEI − 1.108942 − 40.19248*** − 1.307199 − 41.45450*** 

Note: The null hypothesis for the DF-GLS and PP tests is the existence of a unit 
root. *, ** and *** denote the significant level at 1%, 5% and 10% levels, 
respectively. 
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99% and 99.5% short trading position quantiles of Saudi and Kuwait 
indexes respectively. Therefore, the HYGARCH models are able to esti-
mate the critical losses for the GCC energy indexes in different trading 
positions. 

The Kupiec test statistic shows that the number of observed viola-
tions are not significantly different from the expected violations for both 
the Abu Dhabi energy index and Kuwait index for both long and short 
positions for the FIAPARCH model. For the Saudi petrochemical index, 
the number of observed violations are significantly different from the 
expected violations for the short position at 99%. For the FIGARCH 
model, we find that the number of observed violations are significantly 
different from the expected violations for the Saudi petrochemical index 
for both short and long positions. For the Kuwait index, we find that the 
number of observed violations is significantly different from the ex-
pected violations for the shot positions at 99.5%. Similarly, for the long 
positions, we find a significant difference of 2.5% for the Saudi index 
and 0.5% for the Abu Dhabi energy index. For the HYGARCH model, the 

number of observed violations is significantly different from the ex-
pected violations for the short position at 99% for SPI and 99.5% for 
Kuwait Oil & Gas index. For the long positions, the HYGARCH model 
correctly predicts the expected number of violations. 

Overall, we can conclude that the HYGARCH model is the best VaR 
predictor across all quantiles for the Abu Dubai energy index, wherein 
the null hypothesis is not rejected at any quantile for both short and long 
positions. Whilst the VaR based on FIAPARCH is the best for Kuwait and 
Saudi energy sectors. This conclusion comes in compliance with the 
results of the RMSE and MAE criteria displayed in Table 7. 

Tables 11, 12 and 13 show the Dynamic Quantile Test of Engle and 
Manganelli (DQ). The DQ is employed to test the performance of the VaR 
models by estimating their failure rate, i.e. the number of times the re-
turn on a specific day exceeds the forecasted VaR. Here, we estimate the 
VaR for both the short positions (90%,95%,99%,99.5% and 99.75%) 
and for the long positions (5%,2.5%,1%, 0.5% and 0.25%). For the 
FIGARCH models, we see that the DQ test rejects the model for Abu 

Fig. 1. Normal Q-Q plots for the time series daily returns.  

Fig. 2. Normal probability plots.  
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Dhabi stock for the short positions at 97.5% and 99.5%, while fails to 
reject it for the long positions. For the FIAPARCH models, the DQ test 
rejects the model for the short position at 99% for the Saudi petro-
chemical index and rejects the model for the short position at 97.5%, 
99% and 99.5% for the Abu Dhabi index. For the long positions, the 
FIAPARCH model also is found to be adequate. For the HYGARCH 
models, we see that the model is not rejected except for the Saudi market 
at 99.5% for the short positions, and the model adequately explains the 
long positions for all three markets. 

From the results, we see that all the three models for the three 
markets are adequate in forecasting VaR for the long positions. How-
ever, for the short positions, both the FIGARCH and FIAPARCH are 
found to be inadequate for Saudi and Abu Dhabi indexes to predict value 
at risk for extreme fluctuations. In this regard, we find HYGARCH to be 
marginally better to provide better VaR forecasts. 

5. Conclusion 

One of the most important and pressing issues of the contemporary 
world is tackling climate change. The environmental challenges are 

Table 4 
FIAPARCH (1,1) results.   

Saudi petrochemical 
index 

Abu Dhabi energy 
index 

Kuwait Oil & Gas 
index 

Parameters Coeff. p- 
value 

Coeff. p- 
value 

Coeff. p- 
value 

Cst (M) 0.000131 0.206 − 0.00026 0.091 0.000005 0.961 
CE (M) 0.002126 0.921 0.039179 0.269 0.044471 0.057 
OP (M) 0.017685 0.228 − 0.0226 0.304 0.008813 0.439 
EP (M) − 0.00208 0.503 − 0.002 0.747 − 0.00171 0.698 
AR (1) 0.083778 0.002 − 0.10365 0.000 − 0.03357 0.205 
Cst (V) 6.932519 0.523 140.2714 0.467 26.70621 0.673 
d-fiaparch 0.417008 0.000 0.677077 0.000 0.13722 0.139 
ARCH (α) 0.393229 0.001 0.194737 0.032 0.042112 0.000 
GARCH (β) 0.627057 0.000 0.678309 0.000 0.899913 0.000 
APARCH 

(γ) 
0.375109 0.001 0.249576 0.002 − 0.13648 0.297 

APARCH 
(δ) 

1.666201 0.000 1.364884 0.000 1.409255 0.005 

Student 
(df) 

4.191607 0.000 4.529636 0.000 3.918731 0.000 

Q (10) 1.62068 0.995 8.11879 0.421 7.9013 0.443 

Note: Q (10) is the Box-Pierce Q- statistics with 10 lags. 

Table 5 
FIGARCH (1,1) results.   

Saudi petrochemical index Abu Dhabi energy index Kuwait Oil & Gas index 

Parameters Coeff. p-value Coeff. p-value Coeff. p-value 

Cst (M) 0.000203 0.048 − 0.00015 0.3245 − 1.6E-05 0.869 
CE (M) 0.004923 0.821 0.040013 0.2725 0.038699 0.091 
OP (M) 0.01841 0.209 − 0.02062 0.3588 0.008017 0.478 
EP (M) − 0.00229 0.492 − 0.00132 0.852 − 0.00096 0.821 
AR (1) 0.084015 0.002 − 0.10868 0.000 − 0.03548 0.171 
Cst (V) 12.74064 0.001 6.456213 0.0109 162.5567 0.000 
d-figarch 0.323217 0.000 0.547671 0.0168 0.433906 0.000 
ARCH (α) 0.426922 0.000 0.233132 0.0424 0.083866 0.000 
GARCH (β) 0.587193 0.000 0.558649 0.0026 0.807037 0.000 
Student (df) 4.514395 0.000 4.148904 0.000 3.286868 0.000 
Q (10) 0.772683 0.995 5.84207 0.664 8.94996 0.338 

Note: Q (10) is the Box-Pierce Q- statistics with 10 lags. 

Table 6 
HYGARCH (1,1) results.   

Saudi petrochemical Index Abu Dhabi energy index Kuwait Oil & Gas index 

Parameters Coefficient P-value Coefficient P-value Coefficient P-value 

Cst (M) 0.000202 0.044 − 0.00015 0.315 − 1.5E-05 0.884 
CE (M) 0.004889 0.819 0.039318 0.280 0.040063 0.077 
OP (M) 0.017991 0.213 − 0.02032 0.368 0.008316 0.469 
EP (M) − 0.00228 0.468 − 0.00149 0.832 − 0.00175 0.696 
AR (1) 0.082042 0.001 − 0.10856 0.000 − 0.03246 0.221 
Cst (V) 0.341424 0.638 7.876892 0.007 6.32502 0.051 
d-hygarch 0.421396 0.002 0.701595 0.001 0.469111 0.173 
ARCH (α) 0.390738 0.001 0.176118 0.149 0.329644 0.117 
GARCH (β) 0.622428 0.000 0.632138 0.000 0.487041 0.014 
Student (df) 3.78255 0.000 4.374508 0.000 3.901158 0.000 
Log (α̂)HY 0.081825 0.378 − 0.07031 0.194 − 0.26592 0.146 
Q (10) 1.10976 0.921 5.65773 0.660 8.47149 0.388 

Note: Q (10) is the Box-Pierce Q- statistics with 10 lags. 

Table 7 
Forecasting comparison of the estimated models.  

Variables (Energy Index) FIAPARCH  

RMSE MAE MAPE 

SPI 2.318e-005 2.056e-005 0.651 
AEI 5.305e-005 4.734e-005 1.644 
KEI 2.192e-005 2.185e-005 0.984   

FIGARCH  
RMSE MAE MAPE 

SPI 2.308e-005 2.067e-005 0.672 
AEI 4.643e-005 3.846e-005 1.431 
KEI 2.516e-005 2.49e-005 0.985   

HYGARCH  
RMSE MAE MAPE 

SPI 2.869e-005 2.652e-005 0.689 
AEI 4.327e-005 3.495e-005 1.337 
KEI 2.335e-005 2.321e-005 0.984  
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multifaced and complex, entailing trad-offs and the necessity to strike 
the right balance between economic, financial and environmental sus-
tainability. While clean energy usage and putting the price on emissions 
are some of the most crucial policy instruments on hand, there are 
various unintended consequences of these instruments and policies for 

economies across the world. The volatile oil prices also add to the un-
certainty with their implications for both oil-importing and exporting 
economies and their financial sectors. GCC countries with their fossil 
fuel-based economies, in particular, are the biggest stakeholders of the 
global move to clean energy usage, oil price dynamics and pricing of 

Table 8 
VaR results of FIAPARCH.   

Short trading position Long trading position  

Quantile Failure rate Kupiec LRT p-value ESF Quantile Failure rate Kupiec LRT p-value ESF 

Saudi petrochemical index 0.9500 0.9509 0.0296 0.8634 0.0126 0.0500 0.0571 1.6565 0.1981 − 0.0135 
0.9750 0.9795 1.4257 0.2325 0.0150 0.0250 0.0280 0.5541 0.4566 − 0.0171 
0.9900 0.9950 5.0510 0.0246 0.0193 0.0100 0.0124 0.8861 0.3465 − 0.0206 
0.9950 0.9963 0.5757 0.4480 0.0209 0.0050 0.0081 2.5765 0.1085 − 0.0234 
0.9975 0.9975 0.0002 0.9900 0.0234 0.0025 0.0031 0.2197 0.6393 − 0.0279 

Abu Dhabi energy index 0.9500 0.9398 3.3507 0.0672 0.0117 0.0500 0.0559 1.1386 0.2860 − 0.0115 
0.9750 0.9733 0.1886 0.6641 0.0138 0.0250 0.0242 0.0402 0.8410 − 0.0137 
0.9900 0.9907 0.0777 0.7805 0.0172 0.0100 0.0068 1.8360 0.1754 − 0.0192 
0.9950 0.9975 2.5152 0.1128 0.0225 0.0050 0.0031 1.3435 0.2464 − 0.0232 
0.9975 0.9988 1.2550 0.2626 0.0284 0.0025 0.0012 1.2550 0.2626 − 0.0234 

Kuwait Oil & Gas index 0.9500 0.9398 3.3507 0.0672 0.0117 0.0500 0.0559 1.1386 0.2860 − 0.0115 
0.9750 0.9733 0.1886 0.6641 0.0138 0.0250 0.0242 0.0402 0.8410 − 0.0137 
0.9900 0.9907 0.0777 0.7805 0.0172 0.0100 0.0068 1.8360 0.1754 − 0.0192 
0.9950 0.9975 2.5152 0.1128 0.0225 0.0050 0.0031 1.3435 0.2464 − 0.0232 
0.9975 0.9988 1.2550 0.2626 0.0284 0.0025 0.0012 1.2550 0.2626 − 0.0234 

Note: Kupiec LRT denotes the Kupiec’s (1995) Back-testing VaR and ESF are the expected shortfall values. 

Table 9 
VaR results of FIGARCH.   

Short trading position Long trading position  

Quantile Failure rate Kupiec LRT p-value ESF Quantile Failure rate Kupiec LRT p-value ESF 

Saudi petrochemical index 0.9500 0.9522 0.1624 0.6869 0.0125 0.0500 0.0602 3.3507 0.0672 − 0.0137 
0.9750 0.9776 0.4769 0.4898 0.0154 0.0250 0.0342 4.9836 0.0256 − 0.0166 
0.9900 0.9957 6.5911 0.0102 0.0195 0.0100 0.0149 3.4025 0.0651 − 0.0211 
0.9950 0.9969 1.3435 0.2464 0.0229 0.0050 0.0081 2.5765 0.1085 − 0.0240 
0.9975 0.9969 0.2197 0.6393 0.0229 0.0025 0.0068 8.1985 0.0042 − 0.0252 

Abu Dhabi energy index 0.9500 0.9503 0.0033 0.9544 0.0224 0.0500 0.0497 0.0033 0.9544 − 0.0198 
0.9750 0.9727 0.3480 0.5553 0.0268 0.0250 0.0230 0.2765 0.5990 − 0.0247 
0.9900 0.9913 0.2894 0.5906 0.0331 0.0100 0.0068 1.8360 0.1754 − 0.0304 
0.9950 0.9932 0.9744 0.3236 0.0362 0.0050 0.0019 4.1935 0.0406 − 0.0350 
0.9975 0.9981 0.2872 0.5920 0.0451 0.0025 0.0006 3.2706 0.0705 − 0.0281 

Kuwait Oil & Gas index 0.9500 0.9491 0.0293 0.8642 0.0118 0.0500 0.0559 1.1386 0.2860 − 0.0112 
0.9750 0.9776 0.4769 0.4898 0.0141 0.0250 0.0211 1.0499 0.3055 − 0.0143 
0.9900 0.9932 1.8360 0.1754 0.0173 0.0100 0.0068 1.8360 0.1754 − 0.0183 
0.9950 0.9988 6.5527 0.0105 0.0284 0.0050 0.0025 2.5152 0.1128 − 0.0221 
0.9975 0.9994 3.2706 0.0705 0.0384 0.0025 0.0006 3.2706 0.0705 − 0.0190 

Note: Kupiec LRT denotes the Kupiec’s (1995) Back-testing VaR and ESF are the expected shortfall values. 

Table 10 
VaR results of HYGARCH.   

Short trading position Long trading position  

Quantile Failure rate Kupiec LRT p-value ESF Quantile Failure rate Kupiec LRT p-value ESF 

Saudi petrochemical index 0.9500 0.9565 1.5052 0.2199 0.0128 0.0500 0.0540 0.5389 0.4629 − 0.0141 
0.9750 0.9814 2.9320 0.0868 0.0160 0.0250 0.0286 0.8060 0.3693 − 0.0171 
0.9900 0.9957 6.5911 0.0102 0.0195 0.0100 0.0118 0.4988 0.4800 − 0.0216 
0.9950 0.9969 1.3435 0.2464 0.0229 0.0050 0.0075 1.6914 0.1934 − 0.0244 
0.9975 0.9975 0.0002 0.9900 0.0234 0.0025 0.0031 0.2197 0.6393 − 0.0318 

Abu Dhabi energy index 0.9500 0.9497 0.0033 0.9545 0.0223 0.0500 0.0497 0.0033 0.9544 − 0.0198 
0.9750 0.9721 0.5541 0.4566 0.0267 0.0250 0.0248 0.0016 0.9681 − 0.0241 
0.9900 0.9901 0.0006 0.9800 0.0323 0.0100 0.0099 0.0006 0.9800 − 0.0290 
0.9950 0.9926 1.6914 0.1934 0.0354 0.0050 0.0043 0.1440 0.7043 − 0.0358 
0.9975 0.9969 0.2197 0.6393 0.0402 0.0025 0.0006 3.2706 0.0705 − 0.0281 

Kuwait Oil & Gas index 0.9500 0.9391 3.7562 0.0526 0.0116 0.0500 0.0584 2.2666 0.1322 − 0.0114 
0.9750 0.9739 0.0770 0.7815 0.0138 0.0250 0.0224 0.4769 0.4898 − 0.0141 
0.9900 0.9919 0.6454 0.4218 0.0177 0.0100 0.0062 2.6986 0.1004 − 0.0196 
0.9950 0.9981 4.1935 0.0406 0.0247 0.0050 0.0031 1.3435 0.2464 − 0.0232 
0.9975 0.9988 1.2550 0.2626 0.0284 0.0025 0.0006 3.2706 0.0705 − 0.0190 

Note: Kupiec LRT denotes the Kupiec’s (1995) Back-testing VaR and ESF are the expected shortfall values. 
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emissions. In this regard, we explored the implications of clean energy, 
oil and emissions prices for the energy sector of these economies. For 
this purpose, we estimated one-day-ahead VaR and the expected short-
fall for Saudi, Abu Dhabi and Kuwait energy stock prices over short and 
long trading positions using three different long memory ARCH/GARCH 
models: FIAPARCH, FIGARCH and HYGARCH. In the GARCH frame-
work, we employed the three global energy indexes: clean energy pro-
duction, crude oil and CO2 emission prices as exogenous regressors to 
consider their impacts on the GCC energy sector volatilities. 

Our key findings lead us to conclude on the presence of asymmetry, 

fat-tails and long memory in the GCC energy sector stock price volatil-
ities. Furthermore, we also conclude that the three underlying factors of 
interest i.e., clean energy, emissions pricing and oil prices do not play a 
significant role in the GCC energy sector’s daily returns volatility. This is 
a crucial finding as it would imply that clean energy or pricing of 
emissions are instruments that can be used for tackling climate chal-
lenges without causing turmoil in the energy sector returns in the GCC 
region. In terms of empirical choice, we also conclude that the FIA-
PARCH produces the most accurate VaR and the expected shortfall for 
Saudi and Kuwait energy sectors, while HYGARCH performs better for 

Table 12 
Dynamic Quantile Test of FIAPARCH models.  

Saudi petrochemical index Abu Dhabi energy index Kuwait Oil & Gas index 

Short positions 
SPI Short Positions AEI Short Positions KEI Short positions 
Quantile Stat. P-value Quantile Stat. P-value Quantile Stat. P-value 
0.95 6.7521 0.34439 0.95 8.2688 0.21906 0.95 7.1194 0.30994 
0.975 3.9864 0.67851 0.975 23.076 0.000771 0.975 2.4548 0.87349 
0.99 15.874 0.014446 0.99 49.182 6.86E-09 0.99 5.195 0.51906 
0.995 0.61044 0.99622 0.995 16.39 0.011809 0.995 3.1946 0.78406 
0.9975 0.050473 1 0.9975 56.438 2.37E-10 0.9975 1.0276 0.98454  

Long positions 
Quantile Stat. P-value Quantile Stat. P-value Quantile Stat. P-value 
0.05 2.1763 0.9028 0.05 1.7142 0.94402 0.05 4.2358 0.6448 
0.025 2.9116 0.81986 0.025 7.2598 0.29749 0.025 3.4178 0.75487 
0.01 5.0271 0.54035 0.01 0.76848 0.99289 0.01 7.16 0.3063 
0.005 2.6457 0.85182 0.005 4.5729 0.59963 0.005 1.2109 0.97634 
0.0025 0.33528 0.99931 0.0025 2.2799 0.89224 0.0025 1.0276 0.98454  

Table 13 
Dynamic Quantile Test of HYGARCH models.  

Saudi petrochemical index Abu Dhabi energy index Kuwait Oil & Gas index 

Short positions 
Quantile Stat. P-value Quantile Stat. P-value Quantile Stat. P-value 
0.95 2.8931 0.82214 0.95 4.3304 0.63206 0.95 7.4809 0.27865 
0.975 4.7482 0.57649 0.975 12.319 0.055227 0.975 1.7192 0.94363 
0.99 5.2643 0.51038 0.99 8.915 0.17841 0.99 7.3094 0.29318 
0.995 1.2109 0.97634 0.995 16.39 0.011809 0.995 3.1946 0.78406 
0.9975 0.050473 1 0.9975 65.173 3.98E-12 0.9975 1.0276 0.98454  

Long positions 
Quantile Stat. P-value Quantile Stat. P-value Quantile Stat. P-value 
0.05 4.5666 0.60047 0.05 4.3934 0.6236 0.05 8.1006 0.23083 
0.025 3.1765 0.78639 0.025 10.834 0.093643 0.025 3.684 0.71936 
0.01 5.0716 0.53467 0.01 0.84369 0.99085 0.01 11.391 0.077006 
0.005 2.6457 0.85182 0.005 0.27418 0.99961 0.005 1.2109 0.97634 
0.0025 0.33528 0.99931 0.0025 2.2799 0.89224 0.0025 2.2799 0.89224  

Table 11 
Dynamic Quantile Test of FIGARCH models.  

Saudi petrochemical index Abu Dhabi energy index Kuwait Oil & Gas index 

Short positions 
Quantile Stat. P-value Quantile Stat. P-value Quantile Stat. P-value 
0.95 2.5451 0.86339 0.95 4.1232 0.66 0.95 7.295 0.29442 
0.975 4.7482 0.57649 0.975 12.319 0.055227 0.975 2.3695 0.88278 
0.99 5.2643 0.51038 0.99 6.2634 0.39434 0.99 8.4641 0.20603 
0.995 1.2109 0.97634 0.995 17.161 0.008711 0.995 3.1946 0.78406 
0.9975 0.33528 0.99931 0.9975 0.050473 1 0.9975 2.2799 0.89224  

Long positions 
Quantile Stat. P-value Quantile Stat. P-value Quantile Stat. P-value 
0.05 3.5177 0.74161 0.05 4.3944 0.62347 0.05 8.1006 0.23083 
0.025 2.822 0.83083 0.025 8.3033 0.21671 0.025 3.4178 0.75487 
0.01 8.2774 0.21847 0.01 1.0511 0.9836 0.01 9.7012 0.13781 
0.005 2.6457 0.85182 0.005 2.0731 0.91285 0.005 1.2109 0.97634 
0.0025 2.4762 0.87112 0.0025 2.2799 0.89224 0.0025 2.2799 0.89224  
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the Abu Dhabi energy index. 
Our findings also carry three important policy implications and les-

sons for future research: first, it is recommended to forecast more than 
one-day-ahead or five-day-ahead VaR and the expected shortfall for the 
three GCC energy stocks. Second, since clean energy, oil prices and 
emission prices are poor predictors of the GCC energy daily fluctuations, 
it would be interesting to see how they impact other major traditional 
energy sectors in different regions.9 The statistical insignificance implies 
that clean energy and emission pricing do not have adverse conse-
quences for energy stock. Concomitantly, the move to clean energy and 
pricing of emissions do not pose huge costs to the energy sector stock on 
these markets. Finally, our work levy useful insights for risk managers, 
investors and financial institutions to manage the level of potential 
losses in their portfolios in the three markets that we have studied in this 
paper. 
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