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The projected rise in the global human population and the anticipated increase in demand for meat and
animal products, albeit with a greatly reduced environmental footprint, offers a difficult set of challenges
to the livestock sector. Primarily, how do we produce more, but in a way that is healthier for the animals,
public, and the environment? Implementing a smart agri-systems approach, utilising multiplatform pre-
cision technologies, internet of things, data analytics, machine learning, digital twinning and other
emerging technologies can support a more informed decision-making and forecasting position that will
allow us to move towards greater sustainability in future. If we look to precision agronomy, there are a
wide range of technologies available and examples of how digitalisation and integration of platform out-
puts can lead to advances in understanding the agricultural system and forecasting upcoming events and
performance that have hitherto been impossible to achieve. There is much for the livestock sector and
animal scientists to learn from the developments of precision technologies and smart agri-system
approaches in the arable and horticultural contexts. However, there are several barriers the livestock sec-
tor must overcome: (i) the development and implementation of precision livestock farming technologies
that can be easily integrated and analysed without the support of a dedicated data analyst in house; (ii)
the lack of extensive validation of many developed and available precision livestock farming technologies
means that reliability and accuracy are likely to be compromised when applied in commercial practice;
(iii) the best smart agri-systems approaches are reliant on large quantities of data from across a wide
variety of conditions, but at present the complications of data sharing, commercial sensitivities, data
ownership, and permissions make it challenging to obtain or knit together data from different parts of
the system into a comprehensive picture; and (iv) the high level of investment needed to develop and
scale these technologies is substantial and represents significant risk for companies when a technology
is emerging. Using a case study of the National Pig Centre (a flagship pig research facility in the UK)
we discuss how a smart agri-systems approach can be applied in practice to investigate alternative future
systems for production, and enable monitoring of these systems as a commercial demonstrator site for
future pork production.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

Whilst there is a growing body of literature on precision live-
stock farming and agriculture, there is considerably less on operat-
ing precision livestock farming technologies within a
multiplatform system, where several independent streams of data
are integrated, processed, and analysed using smart agri-system
technologies. The integration of such technologies allows a whole
system view on manipulations, permitting accurate forecasting
and digital twinning to assess the impacts of altering the farming
system. Drawing on learning from smart agri-system applications,
this paper presents the challenges and opportunities of advanced
technologies for pig production, to ensure sustainability and
improve animal, human, and environmental health.
Introduction

It is projected that the global human population will increase to
over 9 billion over the coming 30 years (Food and Agriculture
Organization (FAO), 2011). Much of this growth is expected to take
place in developing countries and it is projected that with
increased development, there is likely to be an increased demand
for animal products (United Nations (UN), 2019). Alongside the
growing population size and demand for animal products, there
is clear rising concern worldwide about human impacts on the
environment. Our current livestock production systems are already
unsustainable and are in urgent need of an overhaul to increase
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sustainability of the practices used, and, in doing so, lower the
impacts on the animals, and on public and environmental health
(Ochs et al., 2018). A sustainable livestock farming system is one
which has a net zero—or even beneficial—impact on the environ-
ment, allows coexistence with native species and supports the
recovery of higher levels of biodiversity, ensures high welfare of
the animals, ensures the welfare of the local community, and is
profitable. Current systems for livestock production typically take
a heavy toll on the environment, with forests felled for pasture
and the growth of feedcrops (Ramankutty and Foley, 1999; Foley
et al., 2011; FAO, 2022). In addition to contributing to the removal
of carbon sinks and requiring large quantities of water resources
(Mekonnen and Hoekstra, 2012), livestock production is a major
source of greenhouse gases and other pollutants and can exacer-
bate soil erosion (Godfray et al, 2018).

Livestock provides approximately one third of the protein con-
sumed in the human diet (Suryawanshi et al, 2017). The produc-
tion of livestock also provides significant employment
worldwide, and the trade of animals and their products are core
contributors to the economies of many countries (Organisation
for Economic Co-operation and Development (OECD), 2015).
Government and industry face multiple competing demands to:
increase efficiency and productivity; ensure food is safe and nutri-
tious; adapt to climate change; maintain high environmental and
animal welfare standards; and manage fluctuating prices and trad-
ing patterns. Meeting these challenges by running a sustainable
system requires complex decision-making, drawing on evidence
from the whole supply chain and beyond.

The urgent reform of the agri-food systems of the world is cen-
tral to the United Nation’s Millennium and Sustainable Develop-
ment Goals (UN General Assembly, 2015). Of particular focus
are the grand challenges of achieving global food security, as well
as mitigating the deleterious effects of climate change and other
forms of environmental deterioration. The drivers for change in
the way food is produced in low, middle, and high-income coun-
tries share the common goal of increasing outputs in a way that
minimises environmental harm, principally by reducing agricul-
tural inputs. There are also drivers for change in the type of foods
produced in terms of improving nutritional value, as well as mov-
ing away from large-scale monocultures, and providing a wider
variety of alternatives. The reform of agricultural practices is also
of special relevance to several other Sustainable Development
Goals, including the eradication of poverty, the empowerment of
women, and ensuring good health and well-being. Meeting
these challenges and others facing the agricultural and food and
non-food systems will require inter- and trans-
disciplinary approaches that can deal with complexity, allowing
for an integrated solution for the global supply system. Digitalisa-
tion of livestock production through smart agri-technologies offers
a route to meeting these challenges (Neethirajan and Kemp, 2021).

Technological innovations in agriculture have opened a range of
capabilities that help to increase production and efficiency in
everyday processes through machine observation and recording
of data. The use of precision farming technologies is projected to
rise by over 13% by 2025, achieving a global market of over 10 bil-
lion US dollars (Xinhuanet, 2018). This paper will discuss the
advantages and challenges of applying smart agri-systems in prac-
tice, using the pig industry and the recently developed National Pig
Centre (a flagship pig research facility in the UK) as an example.
What is a smart agri-system?

Smart agri-systems are the connection of technologies to
improve the quantity and quality of production, whilst optimising
labour requirements. Smart agri-technologies include sensors (e.g.
2

measuring temperature, light, water), location systems (e.g. Global
Positioning System; GPS), communication systems (e.g. mobile
software), supply chain tracking (e.g. software allowing the track-
ing of products from farm to consumer), robotics (i.e. technologies
that can assist farmers with operations, for example labour inten-
sive tasks such as fruit picking), and artificial intelligence (i.e. com-
puter systems capable of intelligent tasks, such as decision
making). Connecting these smart agri-technologies is termed the
Internet of Things. Internet of Things enables connection between
sensors and machines that can alter conditions on the farm in
response to the data received. Connecting smart agri-
technologies has the potential to enable greater oversight, control,
and potential efficiency savings through the generation of large-
scale databanks for big data analytics and forecasting and
intervention.
Precision livestock farming

Precision livestock farming (PLF) is the use of smart technolo-
gies to manage livestock. Precision livestock farming methods take
precise measurements of individual animals to automatically mon-
itor their states or conditions for the purpose of improving produc-
tion, health, and welfare. Traditionally, decision making in
livestock production is based principally on the experience of the
farmer (García et al., 2020). There is an increase in the use of tech-
nology in livestock systems to monitor production and perfor-
mance, with the aim of optimising, whilst simultaneously
reducing, workload for farmers. The aim of PLF is to provide farm-
ers with tools to enable continuous and remote monitoring of their
animals and the farm environment (Berckmans, 2006). The quanti-
tative data obtained from PLF technologies can help to inform deci-
sion making. Data can be obtained in real-time and analysed fully
or semi-automatically using machine learning, control systems,
and information and communication technology approaches
(Banhazi et al., 2012).

There are a wide range of PLF technologies available that have
been designed to optimise production processes in the pig sector
(Benjamin and Yik, 2019). These include camera systems for
assessing BW, behaviour and activity (White et al., 2004;
Nasirahmadi et al., 2015); thermal cameras for body temperature
(da Fonseca et al., 2020); load cells of varying types for measuring
feed intake, BW, and gait (Schinckel et al., 2005); flow meters for
water intake (Madsen and Kristensen, 2005); microphones for
monitoring coughing and vocalisations (da Silva et al., 2019);
accelerometers for activity (Cornou et al., 2011); photoelectric sen-
sors to detect lameness (Besteiro et al., 2018); Radio frequency
identification (RFID) for individual identification and tracking
(Porto et al., 2012); non-contact body temperature sensors
(Schmidt et al., 2014); and GPS for location. Regarding animal-
based welfare indicators in pigs, 83 commercially available PLF
technologies have been identified in the published literature
(Gómez et al., 2021). Despite the number of technologies available,
few have been fully validated. Gómez et al. (2021) report that only
5% of the 83 identified technologies had been both internally and
externally validated (i.e. determining the predictive accuracy of
the technology using both individuals from the same and different
populations as was used to develop the technology). To ensure the
accuracy of PLF technologies across different systems, the tech-
nologies must also be tested across different ages, breeds, and in
different housing environments, all of which can impact the accu-
racy of the sensors.

To date, the application of PLF technologies has primarily been
in intensive farming systems (i.e. systems with high levels of input
and/or output per unit area). Precision livestock farming technolo-
gies have been less frequently applied to extensive farming sys-
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tems (i.e. systems with low levels of input and/or output per unit
area). This is due to the challenges of collecting data in extensive
farming systems, namely that they typically cover large, heteroge-
neous and highly changeable environments (Wishart et al., 2015;
Morgan-Davies et al., 2017; di Virgilio et al., 2018). As 91% of global
livestock are extensively reared, applying PLF technologies to
extensive farming systems has clear benefits for global animal
health and welfare, as well as landscape conservation (Kokin
et al., 2007), and minimising the impact of livestock on the envi-
ronment (Misselbrook et al., 2016).

The vast majority of the PLF technologies have been developed
independently of other technologies (though see for example di
Virgilio et al., 2018). This gives a focused view on the parameter
being measured but does not allow a broader, systems view. Tack-
ling this issue is challenging, as will be discussed.

Advantages and challenges of adopting a smart agri-system
approach

Smart agri-systems offer an integrated approach to tackling
agriculture challenges across the whole supply chain (i.e. from
source to consumer). Using and applying the cutting edge of preci-
sion farming technologies and computer science, combined with
in-depth insights from data analytics, business, and policy allows
a cross-modal, multiperspective view on complex challenges.
Smart agri-systems provides solutions for farmers facing multiple
competing expectations. Multi-objective decision-making is only
possible with a full view of the outcomes in the different spheres
of importance for agriculture, such as ecological sustainability, eco-
nomic viability, supply chain efficiencies and the effects of poten-
tial threats to resilience. A smart agri-systems approach allows
agribusiness to tackle multi-objective decision-making for the
challenges of sustainable development with a strong evidence base
and quantifiable risk. There are several challenges to adopting
smart agri-systems approaches, including the challenges in data
accessibility, sharing across businesses, and ownership, as well as
ensuring technologies are valid and can be applied across different
farming systems. The advantages and challenges of adopting smart
agri-system approaches will be discussed in the context of within
and beyond the farmgate. We use examples from crop production,
and specifically regarding post farmgate, we discuss the benefits
and challenges of digital twinning for livestock production.

Within the farmgate

Smart agri-systems present opportunities within the farmgate
to improve farming operations, production, and outputs. In terms
of livestock production, PLF technologies have been integrated in
poultry farming to (i) collect real-time continuous data on flock
behaviour and environmental conditions through sensors and
cameras, (ii) analyse and learn from this data through artificial
intelligence and machine learning, and (iii) alert farmers of disease
outbreak or alter environmental conditions to optimise production,

health, and welfare (e.g. https://www.optifarm.co.uk). In dairy
farming, PLF technologies and Internet of Things can collect data
on food and water consumption, health (e.g. automatic milking
devices able to detect disease), behaviour, and activity levels (e.g.

wearable technology, such as https://www.icerobotics.com/). Inte-
grating this data can aid farmers to improve milk production and
reproduction, as well as the health and welfare of cows (Akbar
et al., 2020). Although there is an increasing range of precision live-
stock technologies available, to date the widespread use of multi-
platform sensors and digitalisation in livestock production has
not reached the level seen in precision agronomy (i.e. the auto-
matic monitoring of individual fields or crops). Looking briefly at
3

progress on this front is informative for near-future potential in
livestock production. In precision agronomy, forecasting and pre-
dictive analytics can use data to support decision making relating
to soil management, crop maturity, and the best times to sow
and harvest a crop. This can be seen in practice in the use of
machine learning on remotely sensed data to forecast crop produc-
tion and nitrogen levels (Chlingaryan et al., 2018).

Machine learning can also be used to predict crop growth in
smart greenhouses using data from a multisensor network inte-
grated by Internet of Things (Kocian et al., 2020). Similarly, wire-
less sensor networks can provide a disease monitoring service for
early warning of emerging health problems (Khattab et al., 2019).
Deep learning technology, using neural network models, has also
been applied to design automated fruit detection systems and
automated harvesting using multimodal imagery of mangoes
(Koirala et al., 2019), apples (Kang and Chen, 2019), and cotton
(Li et al., 2017). Smart drone systems have been developed to pro-
vide identification and monitoring services over larger areas,
allowing surveillance of crop disease, weeds, and irrigation issues
(Mogilli and Deepak, 2018). Decision support systems, data analy-
sis, and mining have become a critical method of managing preci-
sion agronomy (Zhai et al., 2020); these systems are used to enable
producers to meet multiple simultaneous requirements, such as
production performance, finances, and market dynamics (Narra
et al., 2020).

Precision agronomy faces many of the same challenges as PLF,
such as investment, integration ability of technologies, and data
quality, validity, and sharing, as we will discuss in relation to live-
stock farming below. Precision agronomy also has unique chal-
lenges due to the differences in the scales and environmental
conditions of crop production, as the technologies must be able
to communicate across large ranges, with adequate remote power
supplies, and function in harsh conditions (see Villa-Henriksen
et al., 2020 for review).
Beyond the farmgate

The benefit of extending the smart system beyond the farmgate
is that it allows progress and performance to be tracked all the way
through from preplanting to consumption, building up a rich pic-
ture over time of peak performance and the nature of performance
(e.g. the conditions that lead to optimal performance and the prob-
lems that reliably cause performance to falter and to what extent).
Post farmgate, sensor arrays, tracking, and auditing technologies
can be combined to allow aggregation of data across the supply
chain, encompassing information from logistics, consumer beha-
viour, health outcomes, trade, and business to provide oversight
of the broader system (Torky and Hassanein, 2020). There is poten-
tial to link multiple farms or supply chains, learning from experi-
ence encoded in the reams of data collected every day, leading to
a future where the data allows sites to communicate, to self-
correct, to improve health, welfare, and performance, and to ulti-
mately become more efficient, effective, and sustainable. Block-
chain technology, a decentralised, distributed ledger for storing
time-stamped transactions across a peer-to-peer network (Torky
and Hassanein, 2020), can assist in this linking, and is recognised
as bringing other benefits such as traceability (Casado-Vara et al.,
2018) and assurance of provenance (Mann et al., 2018).

For most supply chains, the aggregation of data across the sup-
ply chain (from source to consumer) will require data sharing
agreements between different businesses in the chain. This is typ-
ically a particularly difficult issue unless the information being
shared has minimal commercial value. Data accessibility, sharing,
and ownership is perhaps the largest issue at present (see
Spanaki et al., 2021 for overview). Even for a company with multi-
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ple sensor platforms and with data inputs to be utilised, accessing
and processing this data is not straightforward. Data is often
spread over multiple locations, often not linked between spread-
sheets and with some sensor outputs only accessible in raw format
by contacting the technology provider (who are the data owners)
and requesting access to the data. Beyond this accessibility issue
in-house, sharing data with a third party is challenging whenever
anything with commercial sensitivity is included. The issue of data
is pressing; a smart system is only as good as the information on
which it bases its learning. If data is incorrect, sparse, missing,
inaccurate, unlinked, based on a limited range of conditions not
representative of the wider industry, or lacking in sufficient detail,
then the forecasts and outputs are likely to be lacking in quality
too, and ultimately inaccurate.
Digital twinning

Smart agri-technology has the potential to allow the visualisa-
tion of farming systems to predict how changes might impact
the system (e.g. in terms of production, environmental impact, or
animal health and welfare). Most recently, digital twinning has
been explored for use in precision agronomy, to combine various
technologies such as artificial intelligence, Internet of Things, aug-
mented reality, communication and embedded technologies, data
analytics, security, and cloud computing (Qi et al., 2021). Digital
twinning is defined as a virtual model (i.e. digital replica) of a sys-
tem over the system’s lifecycle. A digital twin can replicate the pro-
cesses of a system, allowing it to be used for designing, monitoring,
and improving operations of its real-life counterpart, ultimately
providing a realistic experience for end-users (Barricelli et al.,
2019; Sreedevi and Santosh Kumar, 2020). Digital twinning of all
or part of a supply chain allows a range of manipulations to be
made in silico, to identify which changes lead to optimal outputs
across multiple domains (e.g. identifying optimal outputs for pro-
duction, environmental footprint, welfare, and nutritional quality).
This is particularly advantageous when a producer is considering
making a change to their standard practices but wants to under-
stand whether the change will result in improvements and
whether there may be some unintended negative consequences
of the change. Digital twinning and simulations allow these alter-
native scenarios to be modelled before any capital investment has
taken place, with economic, environmental, health or performance
as the key output. For example, digital twinning of pig production
systems could be used to forecast the potential benefits and dis-
benefits of making changes to parts of the production system, such
as the purchase of equipment to neutralise emissions from slurry
and hence reduce the environmental footprint of production, to
determine whether the system is likely to be viable. In a more
expansive context, and with particular relevance to outdoor or cir-
cular farming systems, digital twinning could be used to map soil
types, drainage and local climate to investigate the likely impacts
on soil health of outdoor production, or to quantify the potential
risks associated with leaching of waste into the environment. Dig-
ital twinning could also be used to forecast the potential disease
risk profile for a range of infectious and non-infectious diseases
under different short- and medium-term scenarios, such as varia-
tions of temperature gradients, stocking densities, breeds, and ani-
mal nutrition. The simulations could inform farmer decisions
regarding genetics, climatic conditions, and animal nutrition.

The application of digital twinning in agriculture is still very
much in its infancy (see Pylianidis et al., 2021 for review), perhaps
owing to remote farm locations and inadequate communications,
highly dynamic environmental conditions, lack of finance, and a
lack of willingness to share data. These all combine to make the
task certainly more challenging, but not insurmountable. It has
4

been demonstrated for hydroponics (Sreedevi and Santosh
Kumar, 2020) and in modelling the production processes in a malt
house (Dolci, 2017), with the aim of outlining the optimal settings
and timings to achieve the desirable result of high alcohol content
in the final stages of production, based on environment data as a
predictor of temperatures within the grain pile.
How can a smart agri-system approach be applied to the pig
industry and what are the current barriers to adoption?

To encourage adoption of smart agri-systems, we need to
address the question: to what extent can the precision technolo-
gies and smart agri-systems approaches being developed for preci-
sion agronomy and other industries be used to benefit the pig
industry? A significant problem for all pig producers is the inherent
performance variability within each herd which is associated with
substantial losses. Many pig producers are interested in optimising
their understanding of pig performance all the way through the
production process, from preconception through to consumer. To
do this, it is recognised that there is a need for robust statistical
data and scientific evidence, to illuminate the factors that lead to
variation in performance between pigs and between farms, with
a view to raising health and welfare standards on farm. Data collec-
tion on farm is still largely reliant on stockpersons taking measure-
ments and inputting these into a series of spreadsheets, which is
error-prone and time consuming. Automated data capture systems
both on farm and downstream in the supply chain address these
issues, but one challenge will be to gain buy-in from the affected
stakeholders at a sufficient level. This may be achieved by demon-
strating effectiveness relative to current processes.

Smart agri-systems will allow us to better understand the sup-
ply chain and wider food systemmore broadly, with knock-on ben-
efits for policymakers, retailers, and consumers. However, as is
often the case, the farmer ultimately puts in the labour, shoulders
the expenditure and receives little in return. Nevertheless, there
are also benefits of using a smart agri-system for farmers too. For
example, accurate forecasting tools means farmers are better able
to predict the date their stock will be ready to go to the abattoir,
offering reassurance to the customer and meaning there are fewer
inefficiencies in outgoings. In practice, smart agri-tools can easily
be used to reduce within-batch variation in performance, helping
to reduce wastage and increase efficiencies in the system. With
tight profit margins, such efficiency savings are critical to support-
ing a financially viable business. Efficiency savings also allow rein-
vestment opportunities into the business to support further
sustainability improvements.

To understand the extent that precision technologies and smart
agri-system approaches can benefit the pig industry, we must con-
sider some of the key issues that may be barriers to uptake at pre-
sent. Firstly, the usefulness of PLF technologies is limited when
that do not easily ‘talk’ to each other, or feed directly into standard
farm software, as the data cannot be integrated and analysed with-
out the support of a dedicated data analyst in house capable of
handling potentially massive datasets. Whilst some of the largest
companies may have this skillset in house, the vast majority will
not.

Secondly, the lack of thorough and extensive validation of many
developed and available PLF technologies for different stages of
production, different types of system, and different environments
means that reliability and accuracy is likely to be compromised
when in dynamic commercial practice. These technologies need
to be investigated across a much broader set of conditions to quan-
tify accuracy and false detection rates.

Thirdly, whilst there are certainly pockets of rich data in exis-
tence across the pig industry—with some producers keeping highly
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detailed batch-level data (and in some cases, sub-batch or individ-
ual level) throughout the production cycles—this is not the case
across the industry as a whole. Due to complications of data shar-
ing, commercial sensitivities, data ownership and permissions,
much of the data that does exist is difficult to knit together into
a bigger picture. This could be overcome with precompetitive
agreements to collaborate to find working solutions to real black
box, complex problems that are far larger than any one company
can solve alone, such as the move towards developing net zero
farming solutions.

Finally, one further potential barrier could be the high level of
investment needed to scale these technologies. Investment in
these technologies presents a significant risk, as most are still
emerging and have not yet proved their worth to the livestock
industry. To encourage commercial investment in the develop-
ment of technologies and demonstrated applications of technolo-
gies in this space, governments need to offer incentives and
support to carry some of that risk and encourage creative
innovation.
A case study using smart agri-systems for enhanced
sustainability - the National Pig Centre at the University of
Leeds, UK

The University of Leeds’ farm is a commercial and research farm
occupying approximately 317 hectares with a mix of livestock and
arable farming. Around three quarters of the land is used for arable
farming, including wheat, barley, and oil seed rape, with smaller
plots used for potatoes, peas, and agroforestry. In 2016, the farm
also included a small commercial unit with intensive indoor pig
production. Academic research at the pig unit was focussed on ani-
mal nutrition, gut health, and performance with some work on ani-
mal health and welfare. Professor Helen Miller secured significant
investment to build a new flagship pig research centre on the site
of the former unit through her involvement in the Centre for Inno-
vation Excellence in Livestock (a national agri-technology collabo-
ration between industry, government, and academia). This new
facility would become the National Pig Centre. The National Pig
Centre has been operational since October 2020 and hosts both
an indoor and outdoor production system (the outdoor system is
part of a crop rotation cycle within the arable farm) on a commer-
cial scale, with a capacity of 660 sows (220 outdoor and 440
indoor). The combination of an outdoor sow unit with an indoor
system is unique in Europe, enabling a direct comparison of the
different rearing systems.

The National Pig Centre’s goal is to be a demonstrator and
testbed site for integrated smart agri-systems solutions for the
pig industry – developing, testing, and applying technology solu-
tions to deliver commercially applicable, long term sustainable
practices for animal, environmental, and public health. By doing
this, it will demonstrate both the benefits and pitfalls of a smart
agri-system solutions for farmers and the wider supply chain,
and working closely with commercial and research partners, will
allow the de-risking of new and emerging solutions in a highly
instrumented, but commercial farm environment.

Through collaborations with the Leeds Institute for Data Analyt-
ics, the Priestley Centre for Climate Change, Sustainability Institute
and collaborators in engineering and computer science, the
National Pig Centre is developing a smart agri-system approach
to investigating sustainable approaches for future pig production,
including renewable energy, circular economy approaches and
regenerative agriculture practices. Our aim is to achieve net zero
production by 2030. To reach this target, our focus is on increasing
sustainability and increasing efficiency. We are using a smart agri-
system approach to quantify and mark our progress across the
5

whole system. For this, we are utilising multiplatform PLF tech-
nologies (camera systems, load cells, flow meters, RFID, and preci-
sion nutrition capabilities for distributing a range of individual-
specific diets), alongside environmental monitors in house (light
time and intensity, indoor and outdoor temperature, and ventila-
tion monitors that automatically adjusts depending on production
stage and stocking density), and on farm (automatic weather sta-
tions that records air, temperature and rainfall, soil moisture
probes, and eddy covariance flux towers to analyse CO2 fluxes).
These technologies continuously capture individual and pen-level
data, which will then be integrated and, ultimately, processed
and analysed using machine learning algorithms. This information
enables the identification of key factors contributing to perfor-
mance and welfare, as well as continuous monitoring of the envi-
ronmental footprint to allow investigation into alternative
approaches to drive down the sector’s greenhouse gas emissions.
As the farm is run as a commercial unit, financial and economic
information are also able to be collected, analysed, and integrated
with the other data streams. This has the potential to demonstrate
the economic advantages of smart agri-system approaches and
encourage the adoption and buy-in of smart agri-system technolo-
gies. The data will also be accessible for further analysis, deep
learning, and digital twinning. For example, in terms of pig produc-
tion, the National Pig Centre has the potential to use the camera
technology to monitor pig behaviour in real time. The data can
be processed and analysed using machine learning algorithms to
detect behaviours indicative of potential outbreaks of disease or
undesirable behaviours such as tail biting that may compromise
pig health and welfare, and production outputs. In the situation
where the algorithms detect indicators for a potential outbreak
of disease, then through the Internet of Things, the farmer could
be notified to treat or alter management methods. In a prospective
epidemiological approach (albeit in a single farm), batches can be
followed from gestation through to the abattoir, collecting vast
quantities of data on healthy pigs as well as data on disease occur-
rences in the herd. The data collected by the environmental mon-
itors in house can be analysed alongside the prospective herd
health and welfare data to determine associations between envi-
ronmental conditions, feed and water intake, diet, genetics, and
other factors with the outbreak of undesirable health and welfare
conditions. Given the size of the herd, the number of sensors and
the frequency and resolution of data capture, very large databases
are created in a very short period of time. This data can be used in
multiple ways – for epidemiological analysis, for performance met-
rics, and for forecasting and simulation development and digital
twinning. Digital twinning could be used to assess a huge variety
of alternative scenarios, as discussed previously, such as forecast-
ing the impact of directly or indirectly altering any of the variables
for which the databank is collected. As such, it can be used to
model the potential impact on tail biting of switching diets, or of
altering vent angle based on local weather conditions. Fig. 1 illus-
trates the linking of smart agri-system technologies both within
and beyond the farmgate at the National Pig Centre.

Additionally, in terms of environmental impact, the National Pig
Centre is currently a demonstration case-study as part of the Euro-

pean Union (EU) project ClieNFarm (https://cordis.europa.eu/pro-

ject/id/101036822), which aims to test and evaluate integrated
smart agri-systems solutions that can contribute to the reduction
of greenhouse gas emissions. To increase biosecurity by reducing
footfall from visitors on site, we are also collaborating with the
Centre for Immersive Technologies to develop an augmented real-
ity tour. The technologies at the National Pig Centre can be used
both to find efficiency savings and to test potential investment
opportunities for improvements to production, environmental
impact, and animal health and welfare.

https://cordis.europa.eu/project/id/101036822
https://cordis.europa.eu/project/id/101036822


Fig. 1. Illustration of a smart farm, modelled on the University of Leeds farm facility and including the National Pig Centre, that integrates smart agri-system technologies
within and beyond the farm gate. Different technologies are represented by a numerical code included on the figure as follows: 1 Precision application of agrochemicals; 2
Vegetation Productivity Imaging; 3 Agri-energy solutions; 4 Net Zero Agriculture; 5 Satellite remote sensing data products; 6 Novel waste amelioration and valorisation
systems; 7 Aerial imaging; 8 Atmosphere climate observations; 9 Greenhouse gases and land–atmosphere fluxes; 10 Meteorological observation; 11 Land imaging; 12
Livestock production sensing systems; 13 Soil moisture sensor network; 14 Lysimeter; 15 Drainage flow monitoring; 16 Groundwater monitoring, flow and transport
simulation; 17 Autonomous robot; 18 National Pig Centre; 19 Internet of Things; 20 Supply chain tracing; 21 Smart agri-system dashboard; 22 Adding business value.
Reprinted from the Smart Agri-Systems Brochure, 2021, available for public download here: https://www.leeds.ac.uk/global-food-environment-institute/doc/gfei-smart-agri-
systems With permission from the Global Food and Environment Institute, University of Leeds.
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Conclusions

Digitalisation of the pig industry offers huge opportunities for
maximizing efficiencies, reducing waste, trialling alternative, net
zero production systems before spending a penny on capital
investment, preventing animal disease, and maximizing animal
welfare. A smart agri-systems approach allows producers and
actors in the wider supply chain to tackle multi-objective
decision-making for the challenges of sustainable development
with a strong evidence base and quantifiable risk. It has the poten-
tial to provide significant insight and forecasting support for farm-
ers. Achieving such a system will require significant changes in the
current pig industry, both for the commercial producers and the
allied industries. To encourage adoption of smart agri-systems in
the pig industry we need to (i) improve data integration and pro-
cessing methods to make using digital systems simpler for those
without an analytical background, (ii) more extensively validate
available PLF technologies to thoroughly understand their accuracy
and false detection rate, (iii) improve data sharing, and (iv)
increase the opportunities for de-risking investment in innovation
to allow industry to co-develop technologies that will support their
longer term goals for sustainable production.
6

Ethics approval

Not applicable.
Data and model availability statement

Not applicable.
Author ORCIDs

LMC: https://orcid.org/0000–0002-8596–5498.

LMS: https://orcid.org/0000–0002-2966–3559.
Author contributions

LMC: Conceptualisation; Writing – Original draft, review & edit-
ing; Visualisation.

LMS: Writing – Original content, redrafting, reviewing and
editing.

https://orcid.org/0000%e2%80%930002-8596%e2%80%935498
https://orcid.org/0000%e2%80%930002-2966%e2%80%933559
https://www.leeds.ac.uk/global-food-environment-institute/doc/gfei-smart-agri-systems
https://www.leeds.ac.uk/global-food-environment-institute/doc/gfei-smart-agri-systems


L.M. Collins and L.M. Smith Animal 16 (2022) 100518
Declaration of interest

None.

Acknowledgements

We would like to thank the many pig producers who work with us
and share their thoughts on emerging technologies, barriers and
opportunities, and to Centre for Innovation Excellence in Livestock,
the University of Leeds for the investment in, and development of,
the National Pig Centre.

Financial support statement

This work was funded as part of the PigSustain project which is
funded through the Global Food Security’s ‘Resilience of the UK
Food System Programme’, with support from BBSRC, ESRC, NERC
and Scottish Government (grant number BB/N020790/1).

Transparency Declaration

This article is part of a supplement entitled Manipulating Pig
Production XVIII: Proceedings of the Eighteenth Biennial Conference
of the Australasian Pig Science Association (APSA) supported by the
Australasian Pig Science Association.
References

Akbar, M.O., Shahbaz Khan, M.S., Ali, M.J., Hussain, A., Qaiser, G., Pasha, M., Pasha, U.,
Miseen, M., Akhtar, N., 2020. IoT Development of Smart Dairy Farming. Journal
of Food Quality 2020, 4242805.

Banhazi, T.M., Lehr, H., Black, J.L., Crabtree, H., Schofield, P., Tscharke, M.,
Berckmans, D., 2012. Precision Livestock Farming: An international review of
scientific and commercial aspects. International Journal of Agricultural and
Biological Engineering 5, 1–9.

Barricelli, B.R., Casiraghi, E., Fogli, D., 2019. A Survey on Digital Twin: Definitions
Characteristics Applications and Design Implications. Institute of Electrical and
Electronics Engineers Access 7, 167653–167671.

Benjamin, M., Yik, S., 2019. Precision livestock farming in swine welfare: a review
for swine practitioners. Animals 9, 133.

Berckmans, D., 2006. Automatic on-line monitoring of animals by precision
livestock farming. Livestock Production Science 1, 287–294.

Besteiro, R., Arango, T., Rodríguez, M.R., Fernández, M.D., Velo, R., 2018. Estimation
of patterns in weaned piglets’ activity using spectral analysis. Biosystems
Engineering. 173, 85–92.

Casado-Vara, R., Prieto, J., De la Prieta, F., Corchado, J.M., 2018. How blockchain
improves the supply chain: case study alimentary supply chain. Procedia
Computer Science 134, 393–398.

Chlingaryan, A., Sukkarieh, S., Whelan, B., 2018. Machine learning approaches for
crop yield prediction and nitrogen status estimation in precision agriculture: a
review. Computers and Electronics in Agriculture 1, 61–69.

Cornou, C., Lundbye-Christensen, S., Kristensen, A.R., 2011. Modelling and
monitoring sows’ activity types in farrowing house using acceleration data.
Computers and Electronics in Agriculture. 76, 316–324.

da Fonseca, F.N., Abe, J.M., de Alencar Nääs, I., da Silva Cordeiro, A.F., do Amaral, F.V.,
Ungaro, H.C., 2020. Automatic prediction of stress in piglets (Sus scrofa)
using infrared skin temperature. Computers and Electronics in Agriculture
168.

da Silva, J.P., de Alencar Nääs, I., Abe, J.M., da Silva Cordeiro, A.F., 2019. Classification
of piglet (Sus scrofa) stress conditions using vocalization pattern and applying
paraconsistent logic Es. Computers and Electronics in Agriculture 166.

di Virgilio, A., Morales, J.M., Lambertucci, S.A., Shepard, E.L.C., Wilson, R.P., 2018.
Multi-dimensional Precision Livestock Farming: a potential toolbox for
sustainable rangeland management. PeerJ 6, e4867.

Dolci, R., 2017. IoT Solutions for Precision Farming and Food Manufacturing:
Artificial Intelligence Applications in Digital Food. Proceedings of the Institute
for Electrical and Electronics Engineering 41st Annual Computer Software and
Applications Conference, 4-8 July 2017, Torino, Italy, pp. 384-385.

FAO (Food and Agriculture Organization of the United Nations), World Livestock,
2011. Livestock in Food Security. Rome. Retrieved on 1st February 2022 from
http://reliefweb.int/sites/reliefweb.int/files/resources/Full%20Report_421.pdf.

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M.,
Mueller, D.N., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M.,
Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstöm, J., Sheehan, J., Sieber,
7

S., Tilman, D., Zaks, D.P.M., . Solutions for a cultivated planet. Nature 478, 337–
342.

FAO (Food and Agriculture Organization of the United Nations), Food and
Agricultural data. 2022. Retrieved on 1st February 2022 from http://
faostat.fao.org/site/567/default.aspx#ancor

García, R., Aguilar, J., Toro, M., Pinto, A., Rodríguez, P., 2020. A systematic literature
review on the use of machine learning in precision livestock farming.
Computers and Electronics in Agriculture 179, 105826.

Godfray, H.C.J., Aveyard, P., Garnett, T., Hall, J.W., Key, T.J., Lorimer, J.,
Pierrehumbert, R.T., Pierrehumbert, T., Springmann, M., Jebb, S.A., 2018. Meat
consumption, health, and the environment. Science 361, eaam5324.

Gómez, Y., Stygar, A.H., Boumans, I., Bokkers, E., Pedersen, L.J., Niemi, J.K., Pastell, M.,
Manteca, X., Llonch, P., 2021. A Systematic Review on Validated Precision
Livestock Farming Technologies for Pig Production and Its Potential to Assess
Animal Welfare. Frontiers in Veterinary Science 8, 660565.

Kang, H., Chen, C., 2019. Fruit detection and segmentation for apple harvesting
using visual sensor in orchards. Sensors 19, 4599.

Khattab, A., Habib, S.E., Ismail, H., Zayan, S., Fahmy, Y., Khairy, M.M., 2019. An IoT-
based cognitive monitoring system for early plant disease forecast. Computers
and Electronics in Agriculture 1, 105028.

Kocian, A., Massa, D., Cannazzaro, S., Incrocci, L., Di Lonardo, S., Milazzo, P., Chessa,
S., 2020. Dynamic Bayesian network for crop growth prediction in greenhouses.
Computers and Electronics in Agriculture 1, 105167.

Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C., 2019. Deep learning for real-time
fruit detection and orchard fruit load estimation: benchmarking of
‘MangoYOLO’. Precision Agriculture 20, 1107–1135.

Kokin, E., Veermäe, I., Poikalainen, V., Praks, J., Pastell, M., Ahokas, J., Hautala, M.,
2007. Environment, health and welfare monitoring in precision livestock
farming of dairy cattle. Precision Livestock Farming 7, 171–177.

Li, Y., Cao, Z., Xiao, Y., Cremers, A.B., 2017. DeepCotton: in-field cotton segmentation
using deep fully convolutional network. Journal of Electronic Imaging 26,
053028.

Madsen, T.N., Kristensen, A.R., 2005. A model for monitoring the condition of young
pigs by their drinking behaviour. Computers and Electronics in Agriculture. 48,
138–154.

Mann, S., Potdar, V., Gajavilli, R. S., Chandan, A. 2018. Blockchain technology for
supply chain traceability, transparency and data provenance. Proceedings of the
2018 International Conference on Blockchain Technology and Application,
Association for Computing Machinery, 10-12 December 2018, New York, NY,
USA, pp. 22-26.

Mekonnen, M.M., Hoekstra, A.Y., 2012. A global assessment of the water footprint of
farm animal products. Ecosystems 15, 401–415.

Misselbrook, T., Fleming, H., Camp, V., Umstatter, C., Duthie, C., Nicoll, L.,
Waterhouse, T., 2016. Agriculture, ecosystems and environment automated
monitoring of urination events from grazing cattle. Agriculture, Ecosystems and
Environment 230, 191–198.

Mogilli, U.R., Deepak, B.B., 2018. Review on application of drone systems in
precision agriculture. Procedia Computer Science 133, 502–509.

Morgan-Davies, C., Lambe, N., Wishart, H., Waterhouse, T., Kenyon, F., Mcbean, D.,
Mccracken, D., 2017. Impacts of using a precision livestock system targeted
approach in mountain sheep flocks. Livestock Science 208, 67–76.

Narra, N., Nevavuori, P., Linna, P., Lipping, T., 2020. A data driven approach to
decision support in farming. Information Modelling and Knowledge Bases XXXI
321, 175.

Nasirahmadi, A., Richter, U., Hensel, O., Edwards, S., Sturm, B., 2015. Using machine
vision for investigation of changes in pig group lying patterns. Computers and
Electronics in Agriculture 119, 184–190.

Neethirajan, S., Kemp, B., 2021. Digital Livestock Farming. Sensing and Bio-Sensing
Research 32, 100408.

Ochs, D.S., Wolf, C.A., Widmar, N.J., Bir, C., 2018. Consumer perceptions of egg-
laying hen housing systems. Poultry Science 97, 3390–3396.

Organisation for Economic Co-operation and Development (OECD), FAO, 2015.
Agricultural Outlook 2015. OECD Publishing. Paris, France.

Porto, M.C., Arcidiacono, C., Cascone, G., Anguzza, U., Barbari, M., Simonini, S., 2012.
Validation of an active RFID-based system to detect pigs housed in pens. Journal
of Food, Agriculture & Environment. 10, 468–472.

Pylianidis, C., Osinga, S., Athanasiadis, I.N., 2021. Introducing digital twins to
agriculture. Computers and Electronics in Agriculture 184, 105942.

Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L., Nee, A.Y.C., 2021. Enabling
technologies and tools for digital twin. Journal of Manufacturing Systems 58,
3–21.

Ramankutty, N., Foley, J.A., 1999. Estimating historical changes in global
land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles 13,
997–1027.

Schinckel, A.P., Einstein, M.E., Miller, D., 2005. Evaluation of a method to analyze pig
live weight data from animal sorting technologies. The Professional Animal
Scientist 21, 50–58.

Schmidt, M., Ammon, C., Schön, P.C., Manteuffel, C., Hoffmann, G., 2014. The
suitability of infrared temperature measurements for continuous temperature
monitoring in gilts. Archiv Tierzucht 21, 1–12.

Spanaki, K., Karafili, E., Despoudi, S., 2021. AI applications of data sharing in
agriculture 4.0: A framework for role-based data access control. International
Journal of Information Management 59, 102350.

Sreedevi, T. R., Santosh Kumar, M. B. 2020. Digital Twin in Smart Farming: A
Categorical Literature Review and Exploring Possibilities in Hydroponics.
Proceedings of the 2020 Advanced Computing and Communication

http://refhub.elsevier.com/S1751-7311(22)00069-6/h0005
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0005
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0005
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0010
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0010
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0010
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0010
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0015
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0015
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0015
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0020
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0020
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0025
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0025
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0030
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0030
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0030
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0035
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0035
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0035
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0040
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0040
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0040
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0045
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0045
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0045
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0050
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0050
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0050
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0050
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0055
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0055
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0055
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0060
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0060
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0060
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0075
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0075
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0075
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0075
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0075
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0085
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0085
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0085
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0090
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0090
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0090
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0095
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0095
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0095
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0095
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0100
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0100
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0105
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0105
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0105
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0110
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0110
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0110
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0115
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0115
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0115
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0120
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0120
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0120
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0125
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0125
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0130
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0130
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0130
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0140
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0140
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0145
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0145
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0145
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0145
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0150
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0150
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0155
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0155
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0155
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0160
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0160
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0160
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0165
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0165
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0165
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0170
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0170
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0175
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0175
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0185
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0185
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0185
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0190
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0190
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0195
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0195
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0195
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0200
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0200
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0200
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0205
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0205
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0205
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0210
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0210
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0210
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0215
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0215
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0215


L.M. Collins and L.M. Smith Animal 16 (2022) 100518
Technologies for High Performance Applications (ACCTHPA), 2-4 July 2020,
Kerala, India, pp. 120-124.

Suryawanshi, K., Redpath, S., Bhatnagar, Y., Ramakrishnan, U., Chaturvedi, V., Smout,
S., Mishra, C., 2017. Impact of wild prey availability on livestock predation by
snow leopards. Royal Society Open Science 4, 170026.

Torky, M., Hassanein, A.E., 2020. Integrating blockchain and the internet of things in
precision agriculture: Analysis, opportunities, and challenges. Computers and
Electronics in Agriculture 178, 105476.

UN General Assembly, 2015. Transforming our world: the 2030 Agenda for
Sustainable Development, 21 October 2015, A/RES/70/1. Retrieved on 10
September 2021 from https://www.refworld.org/docid/57b6e3e44.html.

United Nations (UN) Department of Economic and Social Affairs, Population
Division, World population prospects, 2019. Retrieved on 3rd August 2021
from https://www.un.org/development/desa/publications/world-population-
prospects-2019-highlights.html.
8

Villa-Henriksen, A., Edwards, G.T.C., Pesonen, L.A., Green, O., Sørensen, C.A.G., 2020.
Internet of Things in arable farming: implementation, applications, challenges
and potential. Biosystems Engineering 191, 60–84.

White, R.P., Schofield, C.P., Green, D.M., Parsons, D.J., Whittemore, C.T., 2004. The
effectiveness of a visual image analysis (VIA) system for monitoring the
performance of growing/finishing pigs. Animal Science 78, 409–418.

Wishart, H., Morgan-Davies, C., Waterhouse, A. 2015. A PLF approach for allocating
supplementary feed to pregnant ewes in an extensive hill sheep system.
Proceedings of 7th European Conference on Precision Livestock Farming, 15-17
September 2015, Milan, Italy. pp. 256-265.

Xinhuanet, 2020. Global precision agriculture market to hit 10.55 bln USD by 2025.
Retrieved on July 15th 2021 from https://www.xinhuanet.com/english/2018-
08/22/c_137410419.htm.

Zhai, Z., Martínez, J.F., Beltran, V., Martínez, N.L., 2020. Decision support systems for
agriculture 4.0: survey and challenges. Computers and Electronics in
Agriculture 170, 10526.

http://refhub.elsevier.com/S1751-7311(22)00069-6/h0225
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0225
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0225
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0230
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0230
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0230
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0245
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0245
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0245
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0245
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0250
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0250
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0250
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0265
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0265
http://refhub.elsevier.com/S1751-7311(22)00069-6/h0265

	Review: Smart agri-systems for the pig industry
	Introduction
	Precision livestock farming
	Advantage
	Beyond the farmgate
	Digital twinning
	How can a smart agri-system approach be applied to the pigindustry and what are the current barriers to adoption
	A case study using smart agri-systems for enhancedsustainability - the National Pig Centre at the University ofLeeds, UK
	Conclusions
	Author ORCIDs
	Author contributions
	Transparency Declaration
	References


