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 86 

To the editor: Ribosome profiling (Ribo-seq) has extended our understanding of the 87 

translational ‘vocabulary’ of the human genome, discovering thousands of open reading frames 88 

(ORFs) within long non-coding RNAs (lncRNAs) and presumed untranslated regions (UTRs) of 89 

protein-coding genes. However, reference gene annotation projects have been circumspect in 90 

their incorporation of these ORFs due to uncertainties about their experimental reproducibility 91 

and physiological roles. Yet, it is clear that certain ‘Ribo-seq ORFs’ make stable proteins, others 92 

mediate gene regulation, and many have medical implications. Ultimately, the absence of 93 

standardized ORF annotation has created a circular problem: while Ribo-seq ORFs remain 94 

unrecognised by reference annotation databases, this lack of recognition will thwart studies 95 

examining their roles. Here, we outline a community-led effort involving Ensembl / GENCODE, 96 

HGNC, UniProtKB, HUPO/HPP and PeptideAtlas to produce a standardized catalog of 7,264 97 

human Ribo-seq ORFs, a path to bring protein-level evidence for Ribo-seq ORFs into reference 98 

annotation databases, and a roadmap to facilitate research in the global community. 99 

 100 

Ribo-seq1 provides an RNA sequencing-based readout of mRNA translation by isolating 101 

ribosome-bound RNA fragments of ~30 nucleotides in length. Sequencing of these fragments 102 

offers genome-wide footprints of ribosome–RNA interactions, detecting translated ORFs with 103 

sub-codon resolution2–8. Although Ribo-seq circumnavigates the experimental difficulties of 104 

working with protein molecules (e.g., using mass spectrometry (MS) analytical tools) and readily 105 

finds translations missed by in silico evolutionary methods, it does not demonstrate actual 106 

protein existence, and most translations do not show signs of constraint as coding sequences 107 

(CDS). A wide range of ‘functional’ scenarios are therefore plausible for Ribo-seq ORFs (Table 108 

1).  109 

 110 

Several public resources already process and/or display Ribo-seq datasets, including sORFs.org9, 111 

GWIPS-viz10 and Trips-Viz11, whereas OpenProt12 and nORFs.org13 incorporate Ribo-seq into 112 



 

 

whole translatome catalogs. Meanwhile, McGillivray et al. have produced a catalog of upstream 113 

ORFs (uORFs) with predicted biological activity14. Such efforts have made important 114 

contributions in Ribo-seq ORF interpretation. Nonetheless, the global scientific community is 115 

constrained by the absence of ‘reference’ gene annotation, which supports most large-scale 116 

genomics projects and provides the framework for human variant interpretation (Fig. 1a, 117 

Supplementary Fig. 1).  118 

 119 

The creation of Ribo-seq annotations within existing reference gene and protein databases 120 

presents specific challenges that were not faced by previous cataloging efforts9–13. In particular, 121 

we must consider how these annotations can be integrated into the broad range of user 122 

workflows that are already supported by global annotation resources. For such reasons, reference 123 

annotation projects are generally conservative when it comes to the incorporation of new data 124 

types. Thus, rather than attempt to describe a ‘maximal’ set of potential Ribo-seq translations 125 

from the outset, our strategy is to build up a comprehensive resource in stages that is reciprocally 126 

improved by input from the scientific community (Fig. 1b).  127 

 128 

Here, as ‘Phase I’ of this work, we present a consolidated catalog of Ribo-seq ORFs from seven 129 

publications2–8 annotated onto GENCODE v35 (Fig. 1c; Supplementary Tables 1–9). A 130 

detailed description of the Ribo-seq datasets, our analysis methods, and ORF characteristics is 131 

available in the Supplementary Methods. We removed ORFs under 16 amino acids (aa) and 132 

those translated from non-ATG (‘near-cognate’) initiation codons, and merged redundant sense 133 

overlapping ORFs, resulting in a collated set of 7,264 unique ORFs (Fig. 1c). We classified these 134 

ORFs according to their spatial relationship with existing gene annotations (Fig. 1d), as 135 

presented in Table 2. We hope community usage of this catalog will help address the key 136 

technical and biological questions necessary to move this work into ‘Phase II’, where we aim to 137 

create a more comprehensive resource as outlined below. 138 

 139 

For Phase I, we investigated repeated ORF identifications between studies, observing that 3,085 140 

of 7,264 Ribo-seq ORFs were found by more than one publication (Supplementary Fig. 2; 141 

Supplementary Tables 2,3). However, whereas such ‘reproducibility’ would demonstrate 142 

consistency in Ribo-seq signal, it neither provides insights into biological function, nor indicates 143 



 

 

that the 4,179 non-replicated ORFs are ‘false’. A major goal of Phase II will be to incorporate a 144 

greater diversity of human cell types and tissues for improved estimates of ORF reproducibility, 145 

expression patterns, and potential cell-type specificity, along with further evaluation of criteria to 146 

quantify the technical confidence in Ribo-seq ORF calls.  147 

 148 

Furthermore, Phase I excluded many translations by restricting the consensus set to ATG-149 

initiated ‘cognate’ translations of at least 16 aa in length. Although these tiny ORFs may provoke 150 

skepticism in the absence of additional evidence — the smallest annotated human protein is 24 151 

aa — there may be no lower size limit for a functional ORF16. For example, the tarsal-less (tal) 152 

gene produces a polycistronic transcript translated into proteins as short as 11 aa in several insect 153 

species15.  Furthermore, the inclusion of ORFs initiated with near-cognate start codons can be 154 

complicated by ambiguous predictions of initiation site positions17. Ribo-seq following treatment 155 

with lactimidomycin or homoharringtonine, which inhibit translation elongation and result in 156 

accumulation of sequencing reads at the putative start sites, can help to identify near-cognate 157 

start sites17,18. Such datasets will be leveraged by our future Phase II efforts. For our current 158 

annotation resource, we have separately aggregated the Ribo-seq ORFs with near-cognate start 159 

codons or translations shorter than 16 codons (Supplementary Fig. 3a–c; Supplementary 160 

Tables 4,5), rather than including them in the Phase I catalog.  161 

 162 

A core aim of Phase II will be to identify which Ribo-seq ORFs participate in cell physiology 163 

and how they do so. One aspect is distinguishing between cellular function mediated by a stable 164 

protein versus functionality imparted at the level of translation itself. We here use ‘protein’ as an 165 

umbrella term for protein, peptide and polypeptide, although we recognize that the terms 166 

polypeptide, micropeptide, or microprotein are commonly used for small protein molecules 167 

(Table 2). Because of the challenges of protein sequencing, evolutionary analysis has played a 168 

major historical role in ORF annotation, which is based on the assumption that the evolution of 169 

translated sequences is driven by selection at the protein level. Within our Phase I dataset, 75 170 

Phase I replicated Ribo-seq ORFs (2.4%) present evidence of potential protein-level constraint as 171 

measured by PhyloCSF19 (Supplementary Fig. 3d-f), 10 of which have now been classified as 172 

protein coding by GENCODE (Supplementary Table 6).  173 

 174 



 

 

However, the evolutionary profile of many Phase I Ribo-seq ORFs remains hard to interpret. In 175 

part, this is because distinguishing ORF selection at the protein and DNA levels can be 176 

especially difficult for very small regions, noting that Ribo-seq ORFs are typically much smaller 177 

than known annotated proteins (Supplementary Fig. 3g-j). A second drawback is that 178 

evolutionary analysis cannot infer the protein-coding or regulatory potential of evolutionarily 179 

‘young’ de novo Ribo-seq ORFs20. Reference annotation projects remain skeptical on the 180 

existence of proteins that are not deeply conserved, despite the fact that some young proteins 181 

clearly do participate in cellular physiology20,21. Furthermore, there is a substantial knowledge 182 

gap on the mode and tempo of regulatory ORF evolution. Here, genetic variation within human 183 

populations may provide insights. For example, Whiffin et al22 recently used the gnomAD 184 

human variation dataset to identify 3,191 genes where uORF-perturbing variants are likely to be 185 

deleterious, thereby inferring the physiological importance of these translations. Meanwhile 186 

Neville et al.23 used the same dataset to find aggregate evidence of selective pressure against 187 

deleterious variants in their nORFs.org catalog13, especially pronounced for STOP-gain variants 188 

in uORFs. In prostate cancer, a recent analysis of 5′ UTR variants found regulatory roles for 189 

several uORFs23.  190 

 191 

While Ribo-seq ORFs may have regulatory roles irrespective of an encoded protein, the first step 192 

in confirming a protein-level physiological role for a Ribo-seq ORF is to demonstrate the 193 

existence of the protein in the cell. Mass spectrometry (MS) is a widely-accepted approach to 194 

catalogue the proteome, and its utility will be an important area of investigation for Phase II. At 195 

present, 609 of 7,264 Ribo-seq ORFs were reported to have support by published MS datasets 196 

(Supplementary Table 10). However, different groups use distinct methodologies and 197 

parameters for MS, and for Phase I these findings are simply reported in Supplementary Tables 198 

2 and 3 without further investigation. Reference annotation projects have historically favoured 199 

high stringency MS approaches, and the Human Proteome Organization (HUPO) / Human 200 

Proteome Project (HPP) — which aims to produce a full annotation of the human proteome — 201 

has published guidelines to standardize the nature of MS evidence required to annotate a human 202 

protein24. As one facet of our development of an MS workflow, these Ribo-seq ORFs have been 203 

added to the PeptideAtlas analytical pipeline, as used by HUPO. For Phase II, our projects will 204 

jointly examine the question of how best to use MS data to define which Ribo-seq ORFs produce 205 



 

 

proteins. For reference annotation, we see two aspects to this: first, how to set standards for 206 

accepting and reporting potential MS support for a prospective Ribo-seq ORF protein; and 207 

second, how to define the point at which the body of evidence supports protein-coding 208 

annotation.  209 

 210 

These aspects are illustrated by a preliminary analysis, which took advantage of the fact that 333 211 

of our Ribo-seq ORFs are present in sequences previously queried by the PeptideAtlas workflow 212 

(Supplementary Methods). We find single-mapping peptide-spectrum matches (PSMs) for 13 213 

Ribo-seq ORFs (Supplementary Table 11); all except one is supported by a single PSM, 214 

whereas most of the peptides identified are not fully tryptic (two examples are presented in 215 

Supplementary Fig. 4). The majority of observed PSMs derive from human leukocyte antigen 216 

(HLA) peptidome datasets, which is consistent with prior proteomic analyses demonstrating 217 

enrichment for peptides mapping to Ribo-seq ORFs in immunopeptidome data25–27. We 218 

emphasise that this preliminary analysis was not a full remapping of MS data and contained a 219 

fraction of the Ribo-seq ORFs; a larger, focused effort will be forthcoming.  220 

 221 

There are multiple aspects as to why Ribo-seq ORFs and certain classes of canonical proteins are 222 

infrequently detected in MS data, which are summarized elsewhere28. One consideration for 223 

HUPO is that an MS-based ‘canonical’ protein assignment requires multiple PSMs, ideally based 224 

on non-overlapping tryptic peptides. Although we recognise the value of these guidelines, very 225 

small proteins may be ‘less discoverable’ by MS, especially due to a paucity of identifiable 226 

tryptic fragments28. Notably, nearly 1,500 protein-coding genes annotated by GENCODE, 227 

UniProt and HGNC do not presently have MS support recognised by HUPO24. Moving forward, 228 

we are committed to examining all potential protein-coding Ribo-seq ORF cases with full 229 

manual gene annotation processes, and this workflow will be expanded to include manual 230 

analysis of the peptide spectra by PeptideAtlas.  231 

 232 

Although the value of MS in identifying translated proteins is indisputable, we believe a broader 233 

‘gold standard’ for evidence should employ additional methodologies, such as epitope tagging 234 

combined with western blot imaging or endogenous antibody work; HUPO already incorporates 235 

such data in collaboration with the Human Protein Atlas24. Consideration will also be given to 236 



 

 

emerging proteomics technologies, such as targeted proteomics workflows and 237 

immunopeptidomics, whereas progress is being made in medium-throughput functional 238 

screening assays. For example, recent large-scale studies have translated hundreds of Ribo-seq 239 

ORFs in mammalian cells through exogenous expression, finding that nearly 50% may stably 240 

produce proteins, despite little evidence of evolutionary constraint2,6,27.  241 

 242 

In addition to their evaluation as proteins or regulatory units, the reference annotation of Ribo-243 

seq ORFs necessitates the creation of integrated workflows to interpret overlapping variants, and 244 

notwithstanding great community interest in this field, standardised approaches are not yet 245 

available. We emphasise that variant interpretation pipelines designed to classify CDS mutations 246 

may be unsuitable for Ribo-seq ORFs (Table 1), and that a minority of overlapping variants fall 247 

within sequences displaying amino acid-level constraint. Neville et al.13 found that their 248 

nORFs.org catalog contains 48 Human Gene Mutation Database or ClinVar variants already 249 

considered pathogenic or likely pathogenic, despite the fact that they do not disrupt annotated 250 

CDSs. Although these variants may affect non-canonical ORFs, it will be important to define 251 

their mechanisms of action with experimental studies, as alternative explanations for 252 

pathogenicity are supported in certain cases, such as the creation of cryptic splice sites. After 253 

excluding variants in Ribo-seq ORFs that overlap annotated CDSs, a total of 1,142 single 254 

nucleotide variants present in the ClinVar database29 were located within our aggregated set of 255 

Phase I Ribo-Seq ORFs (Supplementary Methods). Fewer than 2% of these variants have been 256 

classified as pathogenic or likely pathogenic, but this is likely to be an underestimate because the 257 

absence of pathogenesis is commonly inferred due to the absence of overlap with known coding 258 

features, and because ClinVar variant coverage is heavily skewed towards annotated CDSs. 259 

 260 

Furthermore, there is major interest in the usage of Ribo-seq for the study of human disease. In 261 

particular, it is being widely used to explore the dynamics of translation in cancer cells with 262 

aberrant proteins as diagnostic markers or targets for immunotherapy25,26,30. At present, reference 263 

annotation projects do not attempt to distinguish aberrant translation from those events that 264 

contribute to ‘normal’ physiology. It will be important to deduce the fraction of Ribo-seq ORFs 265 

that encode proteins that exist in normal cellular conditions. Conversely, we envisage the value 266 



 

 

of classifying potentially aberrant translations within Phase II through a distinct annotation 267 

framework.  268 

 269 

Our intention is for the Ribo-seq Phase I catalog to be seen as a pragmatic interim solution to a 270 

long-term problem. We believe that reference annotation databases can advance both scientific 271 

and clinical research through the propagation and standardization of Ribo-seq ORF datasets, 272 

even — and perhaps especially — while the phenotypic impact of these features remains 273 

uncertain. As biological knowledge improves, this will support the development of more 274 

accurate annotations and variant interpretations, with the potential to yield substantial insights 275 

across all aspects of human biology. In this spirit, we hope the results of Phase I of this project 276 

will be useful and beneficial to the community and invite interested labs to join our future Phase 277 

II efforts. 278 

  279 
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Table 1: Approaches to interpret Ribo-seq ORFs 411 

 412 

Possible cellular interpretation of Ribo-seq 

ORF translation 

Comments 

A Ribo-seq ORF encodes a ‘missing’ 

conserved protein 

Ribo-seq ORFs may be recognised as 

canonical – in accordance with existing 

protein annotations – on the basis that the 

sequence of the protein they encode shows 

clear evidence of being maintained by 

evolutionary selection over a significant 

period of evolutionary time. 

A Ribo-seq ORF encodes a taxonomically 

restricted protein. 

Ribo-seq ORFs may encode proteins whose 

sequence and molecular activities are specific 

to one species or lineage. Evidence for 

selection or conservation across distant 

species or lineages is lacking for these ORFs, 

either because the protein sequence has 

diverged beyond recognition from its 

orthologues, or because the protein evolved 

recently from previously noncoding material 

and homologues do not exist in other species 

or lineages. 

A Ribo-seq ORF regulates protein or RNA 

abundance. 

Ribosome engagement of regulatory ORFs 

does not result in a protein product under 

selection but regulates the abundance of a 

canonical protein or RNA. This paradigm is 

well established for uORFs and uoORFs, as 

noted in Table 2, though it is applicable to 

other transcript scenarios. Regulatory ORFs 



 

 

may compete for ribosomes with their 

downstream canonical ORFs or produce 

nascent peptides that stall ribosomes, leading 

to the controlled ‘dampening’ of protein 

expression. Alternative modes of action, such 

as the induction of RNA decay pathways, the 

processing of small RNA precursors or the 

adjustment of RNA stability, have also been 

inferred. 

A Ribo-seq ORF is the result of random 

translation. 

The translation of some Ribo-seq ORFs may 

simply be ‘noise’. Since translation has a high 

bioenergetic cost, a protein that results from 

random translation is likely to be translated at 

lower levels than a canonical CDS and evolve 

neutrally; it may also be unstable in 

comparison, and be potentially rapidly 

degraded. Nonetheless, it is theoretically 

possible that certain proteins do exist as stable 

‘junk’ proteins, or that random translation 

events affect the expression of the canonical 

protein. The detection of random Ribo-seq 

ORFs is less likely to be reproducible.  

A Ribo-seq ORF encodes a disease-specific 

protein. 

This protein would not be produced under 

normal physiological homeostasis but could 

be of major interest for diagnostics and 

therapeutics. Insights are especially emerging 

in cancer biology, where transcription and 

translation are known to be dysregulated. This 

leads to the production of ‘aberrant’, possibly 



 

 

rapidly-degraded proteins that are commonly 

antigenic and presented on the cell surface by 

the HLA system, offering the prospect of 

neoantigens. In addition, antigens resulting 

from disease-specific dysregulated ribosome 

activity - sometimes called defective 

ribosomal products (DRiPs) - have also been 

explored. 

Note: a given ORF may encompass several of these possibilities, e.g., a translated ORF that is 413 

both regulatory and implicated in disease neoantigen production. 414 
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Table 2. Terminology and categories of Ribo-seq ORFs 416 

 417 

Term Definition Biological role 

Ribo-seq ORF Translated sequences 

identified by the Ribo-seq 

assay that have not already 

been annotated by reference 

annotation projects 

 

Also known as: non-canonical 

ORFs, alternative ORFs 

(altORFs), novel ORFs 

(nORFs). If <100 amino acids 

in size: small ORFs 

(smORFs), short ORFs 

(sORFs). Putative encoded 

proteins in smORFs/sORFs 

are also known as: 

microproteins, micropeptides, 

short ORF-encoded 

polypeptides (SEPs). 

See below 

 

Upstream ORFs (uORFs) Translated sequences located 

within the exons of the 5’ 

untranslated region (5’ UTR) 

of annotated protein-coding 

genes.  

Regulation of the translational 

efficiency of the downstream 

canonical protein. Cellular 

stress-related translation.  

May produce independently-

functional proteins. 

Upstream overlapping ORFs 

(uoORFs) 

Translated sequences 

beginning in the 5’ UTR of an 

Similar to uORFs. Regulation 

translation of their 



 

 

annotated protein-coding gene 

and partially overlapping its 

coding sequence in a different 

reading frame. 

overlapping CDS, but 

potentially stronger regulatory 

potential compared to uORFs. 

May produce independently-

functional proteins. 

Downstream ORFs (dORFs) Translated sequences located 

within the 3’ UTR of 

annotated protein-coding 

genes 

Less commonly detected and 

generally poorly understood. 

May act as cis translational 

regulators. 

Downstream overlapping 

ORFs (doORFs) 

Translated sequences 

beginning in the genomic 

coordinates of an annotated 

CDS but continuing beyond 

the annotated CDS and 

terminating in the 3’ UTR of 

the annotated protein-coding 

gene. 

Similar to dORFs 

Internal out-of-frame ORFs 

(intORFs) 

Translated sequences located 

on the mRNA of an annotated 

protein-coding gene and 

completely encompassed 

within the canonical CDS, but 

translated via a different 

reading frame. 

 

Also known as: altCDSs, 

nested ORFs, dual-coding 

regions. 

May regulate translation 

similar to uORFs in some 

cases. Detection of intORFs 

with Ribo-seq is possible but 

difficult due to the 

convolution of triplet 

periodicity signals from two 

reading frames; it largely 

depends on the length and 

translation level of the 

intORF relative to the 

overlapping canonical CDS. 



 

 

Long non-coding RNA ORFs 

(lncRNA-ORF) 

Translated sequences located 

within transcripts currently 

annotated as long non-coding 

RNAs (lncRNAs), including 

long intervening/intergenic 

noncoding RNAs (lincRNAs), 

long non-coding RNAs that 

host small RNA species 

(encompassing microRNAs, 

snoRNAs, etc), antisense 

RNAs, and others 

May produce independently-

functional proteins. Typically 

lack strong sequence 

conservation. 
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Figure 1. Characterization of a consensus set of Ribo-seq ORFs for annotation by GENCODE. 419 

(a) A schematic of the main steps and goals for this consortium effort. (b) A map showing the 420 

participating institutions included in this effort. (c) A schematic overview of employed filtering 421 

steps used to create the consensus set of ribosome profiling (Ribo-seq) ORFs. (d) A 422 

diagrammatic representation of all Ribo-seq ORFs according to ORF type (see Table 2 for more 423 

information).  424 

 425 
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