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ABSTRACT

We present a general method for computing interfacial free energies from atomistic simulations, which is particularly suitable for solid/liquid
interfaces. Our method uses an Einstein crystal as a universal reference state and is more flexible than previous approaches. Surfaces with
dipoles, complex reconstructions, and miscible species are all easily accommodated within the framework. It may also be extended to calcu-
lating the relative free energies of different phases and other types of defect.We have applied ourmethod to interfaces of bassanite and gypsum
with water and obtained interfacial free energies of the order of 0.12 J/m2, of which ∼45% is due to entropic contributions. Our calculations of
the interfacial free energy of NaCl with water obtained a value of 0.13 J/m2, of which only 19% is from entropic contributions. We have also
predicted equilibrium morphologies for bassanite and gypsum that compare well with experiments and previous calculations.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0095130

I. INTRODUCTION

The calculation of interfacial enthalpies is frequently performed
in atomistic simulations and used to predict properties such as
hydration energies and morphologies. For many materials, how-
ever, the enthalpy alone does not give the full picture of what is
happening. Entropic contributions also play a role in determining
the properties of many systems, particularly those at solid/liquid
interfaces, where the solid may impose ordering in the (usually dis-
ordered) liquid.1 By computing the free energy of the interface, the
entropic terms are included in addition to the enthalpy.

The calculation of free energies is significantly more challeng-
ing than the calculation of enthalpies. Many methods exist to calcu-
late free energies, but they usually depend on a reference state into
which the material under study can be transformed. This is straight-
forward when the system is composed of a single material or is in
a single physical state, and a thermodynamic pathway can be easily
defined. However, the calculation of interfacial free energies between
a solidmaterial and a liquid phase is particularly challenging asmany

simple thermodynamic pathways are plagued by divergences and
hysteresis.

Nevertheless, several ways to compute interfacial free energies
have been proposed. The most well-established methods are the
so-called “cleaving wall methods.”2–5 These introduce a potential
function that is used to separate the solid and liquid components
before deactivating the interactions between them. Finally, the solid
and liquid components are treated separately to re-form the bulk
solid and bulk liquid, respectively. While practical for simple sys-
tems, this approach has a few drawbacks. First, it assumes that the
top and bottom surfaces of the solid slab will re-form the bulk
when they meet, which may not be the case. Second, the cleaving
wall relies on there being a flat, well defined, solid/liquid interface.
Third, it is difficult to account for dipolar surfaces when a fully peri-
odic system is employed for the liquid/solid/liquid configurations
required.6,7

Other methods have also been proposed for calculating inter-
facial free energies, including direct simulation of contact angles,8

solid–liquid coexistence calculations using metadynamics,9,10
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“mold integration” approaches,11–13 non-equilibrium and non-slab
geometry approaches,14 and many others.15–21 All of these methods
have their own drawbacks. For instance the direct simulation
of contact angles requires very large simulation cells, the use of
metadynamics needs complex order parameters to differentiate
solid and liquid phases, and mold integration methods are only
suitable near the solid/liquid coexistence point (with respect to
temperature or concentration). It is therefore clear that a more
general approach is required.

We present a new method for calculating interfacial free ener-
gies based on using Einstein crystals22 as a common reference. Our
method can be applied to significantly more complex materials than
previous methods as well as to more complex solid/liquid interfaces.
Furthermore, it makes extensive re-use of calculated values to sig-
nificantly improve the efficiency of calculating the interfacial free
energy when making a number of different surface cuts of the same
material.

The method presented here is similar to the independently
developed approach of Addula and Punnathanam23 but has sev-
eral key advantages. First, we have optimized our method so that
the free energy of cleaving a liquid phase does not have to be
calculated explicitly, recognizing that this process is simply the
generation of liquid surface and is therefore equal to the free
energy of the liquid/vacuum interface multiplied by the surface
area. The free energy of the liquid/vacuum interface may there-
fore be calculated separately by more efficient methods and re-
used for every solid/liquid calculation. Second, by employing an
additional vacuum gap on either side of the liquid/solid/liquid
configurations, we are able to study dipolar surfaces through the
use of a dipole correction.6,7 Finally, and most importantly, our
method can deal with miscible molecules at the interface. These
are handled by employing a secondary thermodynamic pathway
designed specifically to transfer liquid molecules to an Einstein
crystal.

II. METHODOLOGY

Most free energies of interest are not defined with respect
to an ideal gas (whose absolute free energy is known) but with
respect to some other state. Chief among these are defect ener-
gies that can include 0D point defects, 1D line defects, 2D grain
boundaries or interfaces, and larger 3D defective structures, such as
nano-inclusions. The free energy of creating these defects is usually
defined with respect to pure bulk phases. There is no reason, how-
ever, why another reference cannot be used if it is more convenient.
We have chosen Einstein crystals22 as a common reference state as it
is relatively easy to transform solid materials to and from them and
calculate the change in free energy.

A. Einstein crystals

In an Einstein crystal, each atom is confined in an indepen-
dent harmonic potential with a fixed spring constant, and the atoms
do not interact with each other.22 While the Einstein crystal was
originally developed to explain experimental observations of heat
capacity, the simple nature of the model has lent itself to calcula-
tion of free energies.24,25 The total energy of an Einstein crystal is
given by

EEin. ≙ U + K
≙ ∑

i

(1
2
k(ri − ri0)2) +∑

i

(1
2
mivi ⋅ vi), (1)

where U is the configurational energy, K is the kinetic energy, and
k is the spring constant. ri, ri0, vi, and mi are the position, mini-
mum energy position, velocity, and mass of atom i, respectively. The
total energy of an Einstein crystal does not depend on the relative
arrangement of the constituent atoms in Cartesian space. The con-
figurational energy, U, depends only on the atom positions within
their respective independent harmonic wells and the stiffness of the
spring, k. In simple terms, the atoms do not “feel” each other. The
kinetic energy, K, is a function of the temperature and also does not
depend on relative Cartesian positions of the constituent atoms. This
means that an Einstein crystal may be re-arranged at will with no
change to the total energy. For fixed composition, temperature, and
k, the total energy of any possible arrangement of the species in an
Einstein crystal in Cartesian space is the same. This permits a uni-
fied approach to calculating the free energy difference between two
systems “A” and “B” of the same composition.

In general, the free energy of transforming system “A” into
system “B” (ΔFB

A), may be computed by transforming between the
systems along a continuous and reversible thermodynamic path-
way using thermodynamic integration (see Appendix A). Rather
than attempting to directly transform system “A” into system “B”
using some hard to define thermodynamic pathway, we can instead
transform in two stages using an Einstein crystal intermediate,

ΔF
B
A ≙ ΔFEin.(A)

A + ΔFB
Ein.(A), (2)

where ΔFEin.(A)
A is the free energy difference between system “A” and

the Einstein crystal with the same atomic configuration, “Ein.(A).”
Similarly, ΔFB

Ein.(A) is the free energy difference between the Einstein
crystal “Ein.(A)” and system “B.” Since the free energy is a function
of state, we can obviously write

ΔF
B
A ≙ ΔFEin.(A)

A + ΔFEin.(B)
Ein.(A) + ΔFB

Ein.(B), (3)

where “Ein.(B)” is the Einstein crystal with the same atomic con-

figuration of system “B.” Since we know that ΔFEin.(B)
Ein.(A) ≙ 0 from

the argument above and since manifestly ΔFEin.(B)
B ≙ −ΔFB

Ein.(B), we
obtain the following equivalent expression [noting that we can drop
the distinction between Ein.(A) and Ein.(B)]:

ΔF
B
A ≙ ΔFEin.

A − ΔFEin.
B , (4)

where we now have the transformation of system “B” to an Ein-
stein crystal as well. Equation (4) is entirely equivalent to Eq. (2),
except that it makes clear that the re-arrangement of the Einstein
crystal makes no contribution to the free energy, greatly simplify-
ing the calculation. A further advantage of this approach is that
if a large number of relative free energies are required (i.e., mul-
tiple “B” states), multiple transformations of “A” are not required
since all configurations are transformed by way of the Einstein crys-
tal. Another useful property is that the systems “A” and “B” need
not have identical numbers of atoms due to the extensive property
of free energies. This means that as long as systems “A” and “B”
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have the same stoichiometric ratio of atoms, the free energies can
be scaled. This can be particularly advantageous for systems with
multiple phases where the unit cells contain different numbers of
atoms.

The use of Einstein crystals as a universal reference may be
extended to multi-component systems. For two systems “A” and “B”
that may be combined to form system “C”,

ΔF
C
A+B ≙ ΔFEin.(A)

A + ΔFEin.(B)
B − ΔFEin.(C)

C , (5)

where we now differentiate between Einstein crystals of different
stoichiometry. Once again, this a highly efficient way to compute
the relative free energy if there are multiple “C” states that need to
be computed.

Although we are combining two Einstein crystals, an additional
“entropy of mixing” term is not required. As each atom is trans-
ferred to an Einstein crystal, the region of space it is able to explore is
reduced to a small volume, effectively “de-mixing” the system. The
“entropy of mixing” is thus included in the transfer to an Einstein
crystal, and the free energy change upon combining Einstein crystals
is zero,

ΔF
Ein.(C)
Ein.(A)+Ein.(B) ≙ 0. (6)

For notational convenience, we will no longer distinguish
between Einstein crystals of different stoichiometries. Instead, the
Einstein crystal will be assumed to be the same stoichiometry as the
system identified in the subscript,

ΔF
Ein.(C)
C ≙ ΔFEin.

C . (7)

The power of using an Einstein crystal as an intermediate state
comes fromnever having to re-arrange atoms. Only the start and end
states are needed, and complex thermodynamic pathways between
them need not be devised. This greatly simplifies the calculation
of relative free energies of systems, which include defects, defect
clusters, surfaces, and interfaces. These may contain very complex
structural reconstructions, and a simple thermodynamic pathway
may not be obvious. The only requirement is that the systems of
interest must be convertible to an Einstein crystal. This is trivial for
solid systems (Sec. II D), but extra care must be taken for liquids
(Sec. II F). To compute the relative free energy of transforming a sys-
tem into an Einstein crystal, we use the Thermodynamic Integration
(TI) method as explained in Appendix A.

Finally, we note that as we are calculating free energy differ-
ences between systems of the same stoichiometry, any combinatorial
terms arising from exchange of particles cancel out. This extends
to the three-component system described by Eq. (5) where systems
“A” and “B” may be considered a single system “A + B” with two
non-interacting halves and the same stoichiometry as system “C.”

B. Interfacial free energies

We start with a solid slab in the middle of the simulation cell
sandwiched between two liquid layers on either side. The rest of
the simulation cell contains a significant volume of vacuum, and
the liquid/slab/liquid configuration does not extend across a peri-
odic boundary, allowing the use of a dipole correction if required.6,7

This system is equilibrated with the lattice vector perpendicular to

the slab fixed. The average lattice vectors parallel to the surface are
calculated and then fixed for all subsequent simulations. Although
two liquid/vacuum interfaces are present in the system, these do not
change along the thermodynamic pathway and so their contribution
to the free energy change will be zero.

The method we have developed is best understood as starting
from bulk solid and a single thick liquid layer and constructing the
liquid/slab/liquid system shown in Fig. 1. We start with the single
thick liquid layer and generate a vacuum gap in the middle, large

enough to accommodate the solid slab (ΔFLiquid+Vacuum

Liquid
). Next, we

transfer the bulk solid into the vacuum gap, expressing the desired
surface in contact with the two liquid layers (ΔFSlab

Bulk). Dividing by
twice the surface area, A, of the simulation cell (because we have
generated two interfaces), we obtain

γInterface ≙ ΔF
Liquid+Vacuum

Liquid
+ ΔFSlab

Bulk

2A
, (8)

where γInterface is the interfacial free energy of the solid/liquid inter-
face. To facilitate the transformation of the bulk solid into a slab
inside the vacuum gap, we use an Einstein crystal (Sec. II A) and
write the free energy as

ΔF
Slab
Bulk ≙ ΔFEin.

Bulk − ΔFEin.
Slab. (9)

Equation (9) allows the use of the existing bulk solid and liq-
uid/slab/liquid systems. The bulk solid and the solid component of
the liquid/slab/liquid system are both transformed to an Einstein
crystal, as outlined in Secs. II D and II E, to obtain ΔFEin.

Bulk and
ΔFEin.

Slab, respectively. The free energy of transforming the bulk solid
to an Einstein crystal, ΔFEin.

Bulk, may be calculated once and scaled for
different slab geometries as required.

Since all Einstein crystals of a given composition have the same
free energy (Sec. II A), an explicit rearrangement of the atoms from
bulk solid to the solid slab is not required. Moreover, it is no longer a
requirement that the top and bottom surfaces of the solid slab meet
to re-form the bulk solid. Complex surface reconstructions are han-
dled as easily as more simple surfaces as they do not need to be
coaxed into being more bulk-like.

Using Eq. (9) in Eq. (8) and rearranging give

γInterface ≙ ΔF
Liquid+Vacuum

Liquid

2A
+ ΔFEin.

Bulk − ΔFEin.
Slab

2A
. (10)

The first term on the right-hand side of Eq. (10) corresponds
to the splitting of a single liquid slab into two liquid slabs with a
vacuum gap between them, divided by the total surface area of the
newly created liquid/vacuum interfaces. This is simply the surface
free energy of the liquid in contact with a vacuum, γLiquid, which for
liquids is equivalent to the surface tension (Appendix B). Simplifying
Eq. (10), we have

γInterface ≙ γLiquid + ΔFEin.
Bulk − ΔFEin.

Slab

2A
. (11)

The liquid surface free energy, γLiquid, can also be computed
once and re-used for multiple surface configurations.
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FIG. 1. Flow diagram for computing interfacial free energies. Terms in green boxes may be computed once and re-used. Terms in the blue box are computed for each slab
configuration. Note that all terms will be divided by 2A to obtain the interfacial free energy, obtaining Eq. (11). The additional NΔ f Ein.

Liquid term included in Eq. (12) has been

omitted for clarity.

Equation (11) is applicable to most well-defined solid/liquid
interfaces. In certain cases, however, the solid may contain species
(ions/molecules) that, although they formally belong to the solid
slab to maintain constant composition, behave as a liquid at the
interface, for example, crystals containing water of crystallization.
In these cases, the miscible species should not be transferred directly
to an Einstein crystal along with the solid slab, as this will create a
divergence in the thermodynamic integration (Sec. II F). Instead,
the miscible species should be treated as part of the liquid layer,
and a correction is applied to account for the free energy of tak-
ing the miscible species from the liquid layer and transferring it to
an Einstein crystal, restoring the stoichiometry. This is a complex
process, and a detailed discussion of how this is achieved is given
in Sec. II F.

The final equation with this correction is given by

γInterface ≙ γLiquid + ΔFEin.
Bulk − ΔFEin.

Slab −NΔ f Ein.Liquid

2A
, (12)

whereN is the number of miscible species that need to be transferred
from the liquid to restore stoichiometry of the Einstein crystal and
Δ f Ein.Liquid is the free energy per-species of taking the miscible species
from the liquid state to an Einstein crystal.

Equation (12) has been developed to allow for extensive re-
use of computed free energy values, which enables an efficient

workflow for calculating interfacial free energies of different sur-
faces. The workflow of our method is presented in Fig. 1 and may
be summarized as follows:

1. Compute γLiquid using the method outlined in Sec. II C.

2. Compute ΔFEin.
Bulk using the method outlined in Sec. II D.

3. Compute ΔFEin.
Slab (and the surface area A) for each desired

surface configuration via the method outlined in Sec. II E.
4. Compute the correction Δ f Ein.Liquid using the method outlined in

Sec. II F if required (not shown in Fig. 1).

The values of γLiquid, ΔF
Ein.
Bulk, and Δ f Ein.Liquid are computed once

and re-used for multiple different slab calculations that utilize the
same bulk solid and liquid but differ only in the expressed surface
of the slab. ΔFEin.

Bulk is scaled to match the composition of each slab
considered.

C. Calculation of surface tension of liquids

To calculate the surface free energy (surface tension) of a liquid,
we have adopted the approach of Kirkwood and Buff (KB),26 which
only requires information from a single simulation, rather than the
multiple simulations needed to form a thermodynamic pathway.
First, a system of fixed size and shape is set up, containing a sin-
gle thick layer of liquid aligned in the xy plane with vacuum both
above and below, exposing two liquid/vacuum interfaces. The KB
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method then relates the components of the pressure tensor to the
surface tension by the expression

γLiquid ≙ 1
2∫

Lz

0
∥Pzz − 0.5(Pxx + Pyy)∥ dz, (13)

where γLiquid is the surface tension of the liquid, Lz is the length of the
simulation cell in the z direction, and Pxx, Pyy, and Pzz are the diag-
onal components of the pressure tensor. The integral is performed
numerically by dividing the simulation cell into thin slices over the
perpendicular direction z and computing the average pressure ten-
sor in each slice. The prefactor of 1/2 accounts for the presence of
two liquid/vacuum interfaces.

Note the KB method is applicable only to fluid interfaces and
cannot be used for solids (see Appendix B).

D. Bulk solids to Einstein crystals

The conversion of a bulk solid to an Einstein crystal is generally
straightforward as both are in the same physical state. First, a sim-
ulation cell containing the bulk solid is prepared and equilibrated
under the target conditions, such that the average lattice vectors are
correct, using an NPT ensemble. All further calculations are per-
formed under an NVT ensemble and are equilibrated with the total
momentum of the system set to zero. Next, a random configuration
of the bulk solid is chosen from the molecular dynamics simula-
tion, and the atomic positions are used as the minimum positions
of the individual harmonic wells of the Einstein crystal. The mini-
mum positions of the harmonic wells need not be at the lattice sites
as long as they are representative of a state accessible to the simula-
tion. From here, the transformation to an Einstein crystal proceeds
in two stages:

1. Activate harmonic wells for each atom using TI (λHarm.).
2. Deactivate all inter- and intra-molecular interactions simulta-

neously using TI (λPot.).

In the first stage, the activation is performed by defining a TI
pathway between λHarm. ≙ 0 and 1 where the harmonic wells are
either fully off or on respectively. The TI pathway is broken up into
discrete simulations, each with a set λHarm. value. For each simula-
tion, a value of ∂H(λ)/∂λmay be obtained and an integral over the
TI pathway performed, as outlined in Appendix A, to obtain the free
energy change.

In the second stage, the deactivation is performed by defining a
TI pathway between λPot. ≙ 1 and 0 where the interactions are either
fully on or off respectively (excluding the harmonic wells). As before,
the TI pathway is broken up into discrete simulations and evaluated
to obtain the free energy change.We have defined λPot. to control the
strength of the interactions, so we take the negative of the integral
between λPot. ≙ 0 and 1.

When using TI to transform a solid into an Einstein crystal,
there are several considerations to bear in mind. Most important is
that the positions of the harmonic wells remain the same at every
point along the TI. If the wells are allowed to move between dif-
ferent TI points, then the free energy to contain the atoms in the
wells will not be consistent. It is only when all inter-atomic interac-
tions are deactivated that the Cartesian positions of the well have
no bearing on the energy. Thus, one should initiate all TI points

in both stages with the same atomic configuration and set the posi-
tions of the wells to the initial positions of the atoms. An additional
benefit of this approach is that all TI points may be computed in
parallel.

Although the minima of the harmonic wells are not located at
the minimum energy lattice sites of the crystal, the transformation to
an Einstein crystal is still consistent. This is because any additional
energy required to move the atoms from their minimum energy lat-
tice sites to the harmonic wells of the Einstein crystal in the first stage
is later recovered as the interactions are deactivated in the second
stage. This is possible because the free energy of all Einstein crystals
of a given composition is the same.

Another consideration is that the simultaneous deactivation of
all interactions could lead to an inter-atomic interaction stronger
than the harmonic wells, resulting in an infinite attraction between
two atoms and a divergence in the integral. In practice, the probabil-
ity of this occurring can be made arbitrarily small by increasing the
strength of the harmonic wells (see p. 245 of Frenkel and Smit25). In
essence, the atoms are protected from collision by being constrained
within the harmonic wells.

It is also prudent to maintain charge neutrality through-
out the deactivation of the inter-atomic interactions. Altering the
net charge across a thermodynamic pathway may require several
corrections.27–30 Additionally, highly charged systems may lead to
unstable dynamics and cause the simulation to crash.

Finally, a drift in the center of mass of the solid is possi-
ble in the limit of the harmonic wells being completely deacti-
vated25 (λHarm. → 0), resulting in a divergence in the thermody-
namic integration. We avoid this issue in two ways. First, each
TI simulation along the pathway (discrete value of λ) is equili-
brated to remove any total momentum; thus, drifts in the center of
mass can only occur through numerical drift, which is kept small
through the use of an appropriate timestep, thermostat, and robust
time integration algorithm. Second, we do not use λHarm. directly
but instead implement a sigmoid function of λHarm.. As discussed
in Appendix A, the use of the sigmoid function is equivalent to
increased sampling of the TI pathway as λHarm. approaches 0 or
1, ensuring convergence of the thermodynamic integration in the
limit λHarm. → 0. Indeed, we see no drift in the center of mass
in any of our simulations, and no divergence is observed in the
integrand.

In principle, a correction to account for the fixed center of
mass of the system is applicable.25 The origin of these corrections
is easily demonstrated when one considers an Einstein crystal com-
prising one atom with a fixed center of mass. Such a system cannot
evolve with time and so the harmonic well of the Einstein crystal is
never sampled. However, the size of the correction falls rapidly with
increasing numbers of atoms and is negligible for the system sizes
we use and the properties we are interested in.

Together, stages 1 and 2 give the value of ΔFEin.
Bulk in Eq. (12).

Because free energy is an extensive property, the transformation of
a bulk solid to an Einstein crystal needs to be performed only once
for each material. The free energy of the transformation can then be
scaled to the size of cell required. This means that this process may
also be applied to compute the free energy differences of systems
with the same composition as the bulk solid, e.g., the formation of
Schottky and Frenkel defects, stacking faults, grain boundaries, and
different polymorphs.
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E. Solid slabs to Einstein crystals

The transformation of a solid slab to an Einstein crystal is per-
formed in a similar way to that described for bulk solids in Sec. II D
with the key difference that we transform the solid component to an
Einstein crystal while leaving the liquid layers untouched. We again
do this in two stages:

1. Activate harmonic wells on all atoms in the solid state using
TI (λHarm.).

2. Deactivate solid–solid and solid–liquid interactions simulta-
neously using TI (λPot.), leaving liquid–liquid interactions in
place.

In the first stage, harmonic wells are activated on atoms in the
solid state in the same way as discussed in Sec. II D. In the second
stage, the solid–solid and solid–liquid interactions are deactivated
as described in Sec. II D. The liquid–liquid interactions are fully
retained at every stage. Together, stages 1 and 2 give the value of
ΔFEin.

Slab in Eq. (12).
In principle, other procedures are possible, which also trans-

form the solid slab to an Einstein crystal. For example, the
solid–liquid interactions could be deactivated first, which would give
the free energy of immersion of the dry solid surface. However, the
surface configuration of the solid slab in liquid may be significantly
different to the configuration in vacuum. If this is the case, there
may be a large reconstruction of the surface upon immersion. Such
a reconstruction may require long simulation times to converge at
each point along the TI pathway. Alternatively, there may be a dis-
continuity along the pathway and the free energy integral would
become ill-defined.

If the free energy of immersion in liquid is needed, then it
is once again simpler and more efficient to perform the calcula-
tion using an Einstein crystal. The transformation of the immersed
slab to an Einstein crystal may be calculated as above, and an
additional transformation of a dry solid slab to an Einstein crys-
tal is also calculated. It is then simple to subtract the two com-
puted values and divide by the surface area to obtain the free
energy of immersion. This procedure avoids any explicit recon-
struction of the slab surface upon immersion and is thus more
stable.

One possible problem when transforming an immersed slab
into an Einstein crystal is that there is nothing to prevent liquid
molecules detaching from the liquid layer and translating through
the partially transformed slab. This translation can result in a liq-
uid molecule approaching too closely to a transforming solid atom
and experiencing extremely large forces, leading to instabilities in
the dynamics and the simulation to crash. This scenario may be pre-
vented by introducing two additional TI stages that add and remove
walls to protect the slab during transformation, as was done by Qi,
Zhou, and Fichthorn.5 The modified procedure would then have
four stages:

1. Activate harmonic wells on the atoms in the solid state using
TI (λHarm.).

2. Activate protecting walls at the solid/liquid interface using TI(λWall-on).
3. Deactivate solid–solid and solid–liquid interactions simulta-

neously using TI (λPot.), leaving liquid–liquid interactions in
place.

4. Deactivate protecting walls at the solid/liquid interface using
TI (λWall-off ).
This four-stage procedure is more robust than the two-stage

procedure described above but doubles the number of TI pathways
that must be computed. For the systems we have tested, the detach-
ment and translation of a liquid molecule through the transforming
slab is rare. In such cases, we have simply restarted the simulation
with a new random velocity seed, which results in dynamics where
the liquid molecule does not detach from the liquid layer.

F. Correction for miscible species

Some solid materials contain miscible species that are very
loosely bound at an interface with a liquid and may become part
of the liquid layer. These species may be incorporated solvent
molecules or ions in equilibrium with the solution. These species
must still formally “belong” to the solid slab to maintain constant
composition, but they are free to diffuse in the liquid with no fixed
equilibrium position. To move these species directly to an Einstein
crystal would require integrating across a first-order phase transi-
tion. This leads to hysteresis in the thermodynamic pathway, and
the free energy integral over the pathway becomes ill-defined. In
this section, we will refer to molecules as the general case, but the
discussion equally applies to monatomic species.

To avoid the first-order phase transition between the liquid and
solid state, we instead transform into another state where the abso-
lute free energy is known analytically, the ideal gas. The absolute
free energy of an Einstein crystal is also known analytically and so
the connection between the liquid phase and the solid phase can be
made while avoiding the divergence. The absolute free energy of an
ideal gas of molecules31 is given by

FIdeal ≙ −kBT ln[VN

N!
( 1
Λ
2 )

3N/2], (14)

where kB is Boltzmann’s constant, T is the temperature, V is the vol-
ume of the system, andN is the number of ideal gas molecules in the
system. The thermal de Broglie wavelength is given by

Λ ≙ ( βh2

2πm
)
1/2

, (15)

where β ≙ (kBT)−1, h is Planck’s constant, and m is the mass of the
ideal gas molecule. The absolute free energy of an Einstein crystal32

is given by

FEin. ≙ kBT ln(βkΛ2

2π
)
3N/2

. (16)

Using Eqs. (14) and (16), the free energy of an Einstein crystal
with respect to an ideal gas is given by

ΔF
Ein.
Ideal ≙ FEin. − FIdeal
≙ kBT ln( βk

2π
)3N/2 + kBT ln(VN

N!
), (17)
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where the momentum terms of the free energies have canceled. We
may simplify Eq. (17) further as follows:

ΔF
Ein.
Ideal ≈ NkBT[3

2
ln( βk

2π
) + ln(Ve

N
)], (18)

where we have used Stirling’s approximation in the form

ln( 1
N!
) ≈ N ln( 1

N
) +N

≈ N ln( e
N
). (19)

The factor of e (Euler’s number), which arises in Eq. (18),
results in an additional NkBT of free energy when transforming an
ideal gas to an Einstein crystal. This additional energy is unrelated to
either the spring constant of the Einstein crystal, k, or the density of
the ideal gas, V/N (which together form a dimensionless argument
to the combined logarithm). Its origins lie in the indistinguishability
of the molecules in the ideal gas.

In an ideal gas, any two molecules may be exchanged without
altering the total energy of the system; they are indistinguishable.
Conversely, the molecules in an Einstein crystal are tethered to spe-
cific points in space by harmonic springs, and the exchange of any
two molecules results in the harmonic springs being “stretched.”
The “stretched” springs increase the total energy of the system, and
the molecules are therefore distinguishable. The additional NkBT of
energy arising in Eq. (18) can therefore be thought of as due to the
loss of “communal entropy” upon transformation from an ideal gas
to an Einstein crystal.31,33

To calculate the correction for miscible species, the slab systems
generated in Sec. II E should not be used. This is because the liquid
layers in the slab system have only a finite thickness, approximat-
ing an infinitely thick liquid layer. This approximation is sufficient
to capture the effects of liquid ordering at the interface but may
not be able to fully account for the entropy available to miscible
species. Additionally, for a finitely thick liquid layer, the V/N term
in Eq. (18) becomes poorly defined. Using a 3D periodic simulation
cell of the bulk liquid approximates the environment deep inside an
infinitely thick liquid layer and circumvents both of these issues.

The free energy of transforming a molecule in the liquid state
to an Einstein crystal is performed in an NVT ensemble over four
stages:

1. Deactivate all inter-molecular interactions using TI (λInter-off )
to form an ideal gas of N molecules.

2. Calculate analytically the free energy to transform an ideal gas
of N molecules into an Einstein crystal using Eq. (18).

3. Activate harmonic wells on all non-tethered atoms using TI
(λHarm.).

4. Deactivate intra-molecular interactions using TI (λIntra-off ).
In the first stage of the procedure, all inter-molecular inter-

actions are switched off using TI. This stage transforms the liquid
into a non-interacting ideal gas of molecules. At this stage, intra-
molecular interactions are retained for two reasons. First, many
molecular dynamics codes will return an error for the excessive
intra-molecular bond lengths, which will occur as the molecule
is broken apart into constituent atoms. Second, the translational

degrees of freedom of the non-interacting molecule are completely
separable from the internal degrees of freedom;31 thus, we can
treat the whole molecule as an ideal gas particle, ignoring internal
vibrations and rotations for the time being.

When deactivating the inter-molecular interactions, care
should be taken to avoid potentials with singularities at r ≙ 0, e.g., the
Lennard-Jones potential.34,35 In our calculations, we use soft-core
potentials,36 which remove the singularity at r ≙ 0. These soft-core
potentials deactivate the potential in a non-linear way such that
occasional high-force collisions have been traded for frequent low-
force collisions, and potential energy sampling does not become
harder as the atoms “shrink.”

In the second stage, the free energy of transforming an ideal
gas of molecules into an Einstein crystal is calculated analytically.
The value of N used in Eq. (18) should be the number of ideal
gas molecules, not the total number of atoms. After this stage, the
molecules are conceptually tethered to a specific position in space by
a harmonic well. However, the choice of position is arbitrary and has
no bearing on the free energy. Likewise, which part of the molecule
is tethered to the point in space is also arbitrary. We have made the
choice of taking a configuration from the ideal gas calculation and
tethering a single atom from each molecule to their initial positions
in space.

In the third stage, harmonic wells are activated for all remaining
non-tethered atoms in the molecule using TI. Because the remaining
atoms are bonded to the tethered atom, they are also localized in
space and so the TI process will converge. This stage accounts for
the previously ignored internal vibrational and rotational degrees of
freedom in the molecule.

In the final stage, the remaining intra-molecular interactions
are deactivated by TI. By postponing the deactivation of intra-
molecular interactions until harmonic wells have been introduced
on all atoms, the computed bond lengths will always be “reasonable”,
thus avoiding algorithmic errors in the molecular dynamics code.

This procedure is applicable to systems where the liquid layers
comprise a single molecular species. For situations where the liq-
uid is a solution of many different species, the procedure must be
modified (Appendix C).

Summing the contributions from all four stages gives the free
energy change of transforming a liquid into an Einstein crystal,
ΔFEin.

Liquid. Dividing this quantity by N gives the free energy of the
transformation per molecule, which can be used in Eq. (12),

Δ f
Ein.
Liquid ≙ ΔFEin.

Liquid

N
. (20)

G. Interfacial enthalpies

To calculate the enthalpy of an interface, we begin with the sys-
tem constructed for the interfacial free energies. For this system, we
calculate the average potential energy of the slab system (ΔHSlab)
and subtract off the average potential energy of the constituent
components, leaving just the enthalpy of the interface. The com-
ponents to subtract off are the bulk solid enthalpy (ΔHBulk), bulk
liquid enthalpy (ΔHLiquid), and liquid/vacuum interfacial enthalpy
(ΔHLiquid/Vacuum). These values are much more straightforward to
calculate as just the average potential energy and converge much
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quicker than free energy calculations. The interfacial enthalpy is then
given by

ΔHInterface ≙ ΔHSlab − ΔHBulk − ΔHLiquid − ΔHLiquid/Vacuum

2A
, (21)

where A is the area of the interface and the multiplication by 2 is
to account for the presence of two interfaces. The enthalpy values
for the bulk solid and liquid have been scaled to match the amount
of each present in the slab system, and the liquid/vacuum interfa-
cial enthalpy has likewise been scaled to the correct surface area
(accounting for the presence of two liquid/vacuum interfaces). Here,
the reference system can be considered to be the infinitely separated,
and therefore non-interacting, atoms. To get to this reference state,
we do not go via a continuous thermodynamic pathway but instead
simply place the atoms in the desired configuration. While this cap-
tures the enthalpic difference between the systems, the entropic
difference is entirely neglected.

III. CALCIUM SULFATE HYDRATES

The calcium sulfate hydrate system is an excellent model to
demonstrate the advantages of an approach based on using Einstein
crystals as a common reference state. Calcium sulfate hydrate exists
in three known phases of varying hydration. They are anhydrous
anhydrite (CaSO4 ⋅ 0H2O), hemihydrate bassanite (CaSO4 ⋅ 12H2O),
and dihydrate gypsum (CaSO4 ⋅ 2H2O). The presence of strongly
binding 2+ ions means that there is likely to be strong ordering of
the water layer on the surfaces of the materials. Furthermore, the
presence of stoichiometric water in the structure means that there
will be water molecules on the surface, which formally belong to
the solid but behave as a liquid. The correction required for these
miscible species is discussed in Sec. II F.

Bassanite crystallizes in the I121 space group,37 and the struc-
ture comprises columns of CaSO4 with channels of water between
them. When this water is evacuated, bassanite becomes soluble
anhydrite. The space group of bassanite contains no center of inver-
sion, and therefore, surfaces with mirror indices are not necessarily
identical (e.g., {1 1 0} and {−1 −1 0}), even if they are structurally
very similar. These distinct surfaces may give rise to dipoles in
simulations, which must be handled carefully (Sec. III A).

Gypsum, also called calcium sulfate dihydrate, is the most ther-
modynamically stable calcium sulfate hydrate under ambient condi-
tions.38 It crystallizes in the C12/c1 space group.39 This space group
contains a center of inversion, and therefore, surfaces with mirror
indices are always identical. In experiments, it is often observed that
bassanite forms first, followed by gypsum.38,40

Anhydrite is the anhydrous phase, which is most thermody-
namically stable at high temperatures.38 At ambient conditions,
there are two possible forms. Insoluble anhydrite41 (space group
Amma) is formed naturally on the Earth’s surface, whereas soluble
anhydrite42 (space group P6222) is formed by dehydrating bassanite.

There is a large degree of uncertainty over the solubility of
anhydrite in experiments due to very slow kinetics below 80 ○C.43

In addition, the potential model we employ44 performs poorly when
used to predict the dissolution free energies of the anhydrous phases.
We will therefore not consider anhydrite further in this work.

The interfacial free energy is a key property for understanding
the nucleation and growth of the calcium sulfate phases in solution.

Under classical nucleation theory, the free energy barrier to nucle-
ation is a function of the bulk free energy of the crystal nucleus and
the interfacial free energy between the nucleus and the surround-
ing medium.45 By computing the relative free energy of different
phases and their interfaces with solution, we can predict which phase
is more likely to nucleate.

A. Simulation methodology applied to the calcium
sulfate hydrates

We constructed the low index surfaces of both bassanite
and gypsum and relaxed them with the Minimum Energy Tech-
nique Applied to Dislocation, Interface, and Surface Energies
(METADISE) code46 to give an estimate of which surfaces were
likely to be the most stable. We also selected a number of experi-
mentally observed surfaces that were slightly higher in energy in our
preliminary calculations.

From the selected surfaces, slabs were constructed for use in
molecular dynamics simulations. The slab simulation cells were set
up such that the x direction was perpendicular to the slab surface.
The slabs were ∼30 Å thick with 30 Å of water on each surface. The
total x direction cell size was 200 Å. For gypsum, the top and bottom
surfaces of the slab were identical, but for bassanite, the top and bot-
tom surfaces are different (although frequently similar) for many of
the slabs, and so the calculated interfacial free energies are an average
of the top and bottom surfaces.

Molecular dynamics simulations were performed using
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) code.47 All simulations were performed with a 1 fs
timestep at 300 K and 0 bar. Long-ranged electrostatic interac-
tions were computed using the Particle–Particle Particle–Mesh
(PPPM) algorithm48 with a relative force accuracy of 1.0 × 10−5.
For our slab calculations, we also applied the dipole correction of
Ballenegger, Arnold, and Cerda.6,7 This correction is available in
LAMMPS natively but only for orthorhombic systems. Hence, we
implemented the correction using a script written with LAMMPS
commands, which is able to perform the correction for non-
orthorhombic systems and which can be applied in any orientation.
The script was thoroughly tested against the internal LAMMPS
correction and found to give the same results.

Each bulk and slab configuration was equilibrated at constant
NPT, using a Nosé–Hoover thermostat and barostat49,50 (0.1 and
1.0 ps relaxation times respectively), in order to obtain average lattice
vectors under the given conditions. Bulk solid cells were equilibrated
using full triclinic NPT simulations, with all lengths and angles
allowed to vary. Bulk liquid cells were equilibrated using isotropic
NPT simulations, where the lengths of the lattice vectors are only
allowed to vary in tandem. Slab geometry cells were equilibrated
with partial triclinic NPT simulations, where only the y, z, and yx
components of the lattice vectors were allowed to vary, keeping
the periodic slab distance and alignment fixed. The NPT simula-
tions were equilibrated for 100 ps, followed by 500 ps of production
simulation where the lattice vectors were recorded every 100 fs.
The average lattice vectors were then calculated and applied for all
following calculations.

For the free energy calculations (ΔF), we switched to a
Langevin thermostat51 (0.1 ps relaxation time). Additionally, the
random forces applied by the Langevin thermostat are constrained
such that the total applied force is zero, ensuring no drift of the
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center of mass (see Sec. II D). The switch to a Langevin thermo-
stat is important because near the end of the TI pathway, the system
is composed of almost pure harmonic oscillators, for which the
Nosé–Hoover thermostat does not provide ergodic sampling.50,52

The full thermodynamic pathway of transforming solid
bulk/slabs into Einstein crystals was divided into two stages, as out-
lined in Sec. II D. Each stage was subdivided into 128 equal intervals.
The Einstein crystal used a k of 10.0 eV/Å2 for the harmonic wells,
regardless of the atom type.

The correction for miscible water molecules from the bulk
solids was performed using the four-stage method outlined in
Sec. II F. The thermodynamic pathways of each stage (except the
analytical step) used 128 equal intervals per stage. The liquid water
simulation cell comprised 3200 water molecules in a cubic box
of ∼45.7 Å per side. The Einstein crystal once again used a k of
10.0 eV/Å2 for all atoms to maintain consistency with all other
calculations.

Each point along the TI pathways was first equilibrated for
100 ps followed by a 500 ps data collection phase. During the data
collection phase, the potential energy was sampled every 1 ps. The
derivative ∂H(λ)/∂λwas computed by finite differences, as outlined
in Appendix A.

The enthalpy calculations (ΔH) were performed using the
same setup as for free energy calculations to avoid errors associ-
ated with different thermostatting or data sampling. In essence, they
are identical to a single point on the thermodynamic pathway where
the Einstein crystal is fully off and the potential fully on. While this
is technically an average configurational energy, the kinetic energy
contributions cancel and the PV term is negligible due to the equili-
brated lattice and zero pressure, and so we use it as an enthalpy. The
interfacial enthalpy was then computed, as described in Sec. II G.
We then simply subtract the interfacial enthalpies from the inter-
facial free energies to obtain the interfacial entropy component
(−TΔS).

B. Potential model

We use the potential model of Byrne, Raiteri, and Gale44 (FF1,
Force Field 1), which has been fitted to reproduce the solvation free
energies of Ca2+ and SO4

2− and utilizes the popular SPC/Fw (Simple
Point-Charge / Flexible water) model of water.53 This CaSO4 ⋅ xH2O
potential model has also recently been used to study small clusters of
CaSO4 ⋅ xH2O.54

Two minor modifications to the potential model were made.
First, we opted not to use the long-range van der Waals (vdW)
correction available in many molecular dynamics codes.55,56 This
correction is to compensate for the finite cutoff of pair interactions.
However, the long-range vdW correction is only applicable for a
3D isotropic and homogeneous system where the radial distribu-
tion function (RDF) tends to unity at long distances. In the majority
of our systems, we have a 2D slab geometry where these condi-
tions are not met. Therefore, to maintain consistency, we have not
applied the long-range vdW correction to any of our simulations. As
the potential model of Byrne, Raiteri, and Gale makes heavy use of
the Mei-Davenport-Fernando (MDF) taper function,57 this change
only affects the water–water interactions. To compensate, we make
a second modification of the potential model where we increase
the interaction cutoff distance for water–water interactions to 12 Å,

which we found balanced accuracy and speed [similar to the conclu-
sions of an investigation by Pascal and Goddard58 into the related
Simple Point Charge / Extended (SPC/Ew) water model].

We verified our implementation of the potential model by suc-
cessfully reproducing the lattice parameters as calculated by Byrne,
Raiteri, and Gale. We further verified our model by computing the
surface tension of water (Sec. IV A) and by comparing the free
energy of transforming bulk bassanite into gypsum (Sec. IV B).

IV. RESULTS AND DISCUSSION

A. Surface tension of H2O

To compute the interfacial free energy of CaSO4 ⋅ xH2O in
water using the method proposed in Sec. II B, we require the
surface tension of our water model (SPC/Fw53). The surface ten-
sion of a liquid/vacuum interface (γLiquid) may be calculated in a
straightforward manner by the Kirkwood–Buff method outlined in
Sec. II C.

Ten simulation cells were constructed, which each contained
25 600 water molecules. All cells are orthorhombic with lattice para-
meters of 80 × 80 × 400 Å3. This configuration results in a slab of
liquid water ∼120 Å thick parallel to the xy plane. The simulation
cells were divided up into 4000 bins in the z direction of 0.1 Å thick-
ness each. Within each bin, the average local pressure tensor was
computed. The simulation cells were each run for 500 ps under NVT
conditions with a Langevin thermostat (0.1 ps relaxation time). The
dipole correction of Ballenegger, Arnold, and Cerda6,7 was applied
to remove any instantaneous dipole–dipole interactions and main-
tain consistency with all our other slab geometry simulations. The
computed local pressure tensors were used in Eq. (13) to calculate
the surface tension of the water slabs.

From this set of calculations, we obtained an average surface
tension of 58.1 ± 0.79 mN/m (0.0581 J/m2) for the SPC/Fw model
of water. This compares well to the computed value of 58.6 mN/m
(0.0586 J/m2) in a recent publication by Kadaoluwa Pathirannaha-
lage et al.59 The calculated surface tension of the SPC/Fw water
model (58.1 mN/m) is somewhat lower than the experimental value
of 71.99mN/m.60 However, this is not significantly worse thanmany
other available water models.59 Indeed, for its simplicity, SPC/Fw
does remarkably well for many properties of water.

B. Free energy of transforming bassanite
into gypsum

The applicability of an Einstein crystal extends beyond just
the calculation of interfacial free energies but can also be used to
link bulk phases together. The only chemical difference between the
CaSO4 ⋅ xH2O phases is the proportion of incorporated water. The
calculation of the free energy change of transforming a bulk solid to
an Einstein crystal is discussed in Sec. II D. Likewise, the method to
calculate the free energy change of transforming a liquid to an Ein-
stein crystal is given in Sec. II F. These values have been computed
for bassanite, gypsum, and water and are presented in Table I.

Combining the free energy to transfer bulk bassanite and gyp-
sum into Einstein crystals with transferring a liquid water molecule
to an Einstein crystal, we may write the expression

ΔF
Gyp.
Bas. ≙ ΔFEin.

Bas. + 1.5ΔFEin.
Water − ΔFEin.

Gyp.. (22)
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TABLE I. Free energy change to transform each material to an Einstein crystal
(kJ/mol).

Material ΔFEin.
Bulk

Bassanite (CaSO4 ⋅
1
2H2O) 2665.96

Gypsum (CaSO4 ⋅ 2H2O) 2782.70
Water (H2O) 76.43

From this expression, we can compute the free energy of
transforming one formula unit of bassanite into gypsum to be
−2.09 kJ/mol. This transformation may be written concisely as the
chemical reaction

CaSO4 ⋅
1
2
H2O + 1.5H2O

ΔF
Gyp.
Bas.Ð→

−2.09kJ/mol
CaSO4 ⋅ 2H2O. (23)

The free energy of transforming bassanite into gypsum may
also be obtained by taking the difference in the dissolution free
energies of bassanite and gypsum calculated by Byrne, Raiteri,
and Gale.44 Calculating this difference yields a raw ΔF

Gyp.
Bas. of

−6.13 kJ/mol at 298.15 K. However, upon dissolution of either phase,
the water contained in each material will become indistinguishable
from the water already present in the liquid. This leads to a further
correction of 1.5kBT due to the addition of 1.5 water molecules into
thematerial upon hydration and the loss of the associated communal
entropy as discussed in Sec. II F [Eq. (18)]. Applying this correction
to the dissolution free energies of Byrne, Raiteri, and Gale leads to a
ΔF

Gyp.
Bas. of −2.39 kJ/mol, in excellent agreement with our calculations.

These values are also in reasonable agreement with the experimen-
tal value of −4.85 kJ/mol computed from the National Bureau of
Standards (NBS) tables.61

C. Interfacial free energies between CaSO4 ⋅ xH2O
phases and water

The interfacial free energy of bassanite with water was calcu-
lated using the methods outlined in Sec. II E. Nine different Miller
indices were chosen and calculated as described above (Sec. III A),
plus one additional surface reconstruction of the {1 1 0} surface. By
comparing the interfacial free energies calculated using 64 and 128
intervals per stage of the thermodynamic integration (Appendix A),
we estimate that our bassanite/water interfacial free energies are
converged to within ∼0.005 J/m2, within the expected accuracy of
the potential model. The calculated interfacial free energies of the
bassanite/water interfaces are given in Table II.

The calculated enthalpic and entropic contributions to the
interfacial free energy are both positive. The enthalpic contribution
is generally very small due to the strong binding of water by the Ca2+

ions, which reduces the energy cost of creating the interface. How-
ever, the strong binding of water induces significant ordering in the
water layers, resulting in the loss of entropy compared to the bulk
liquid (ΔS < 0) and a strong entropic destabilization of the interface.
Entropic contributions to the interfacial free energy vary between
41% and 88% of the total interfacial free energy.

TABLE II. Interfacial energies of bassanite/water interfaces (J/m2). Free energies are
calculated with Eq. (12) (ΔF ≙ γInterface), and enthalpies are calculated with Eq. (21)
(ΔH ≙ ΔHInterface). The entropic contribution is obtained by subtraction.

Miller index
Free energy

ΔF
Enthalpy

ΔH
Entropy
−TΔS

{1 1 0}/{−1 −1 0} 0.0780 0.0283 0.0496
{1 1 0}/{−1 −1 0} (FLAT) 0.1374 0.0810 0.0564
{1 0 0} 0.0741 0.0253 0.0488
{0 −1 0}/{0 1 0} 0.1181 0.0620 0.0561
{0 0 1} 0.1697 0.0645 0.1052
{2 1 0}/{−2 −1 0} 0.1164 0.0584 0.0579
{−3 1 0}/{3 −1 0} 0.1272 0.0667 0.0604
{1 2 0}/{−1 −2 0} 0.1117 0.0566 0.0551
{1 1 −1}/{−1 −1 1} 0.1283 0.0337 0.0946
{2 0 1} 0.1156 0.0138 0.1018

We simulated two forms of the bassanite {1 1 0} surface. The
first, displayed in Fig. 2, is very rough, displaying surface crenella-
tions of CaSO4 chains. The second has the crenellations removed,
which we term the “FLAT” surface. It is clear from Table II that the
crenellated surface is much more stable, primarily due to lowered
enthalpic contributions. This can be accounted for by the increased
surface area exposed by the CaSO4 crenellations for binding to water.
Interestingly, the entropy contributions to the free energies are very
similar for the two surfaces, suggesting that the ordering of water
is similar for each surface. This can be reconciled with the very dif-
ferent surface structures by considering water ordering beyond the
first adsorbed layer. Figure 2 shows the probability density of finding
the oxygen atom of a water molecule, as calculated from a molecular
dynamics simulation of the crenellated bassanite {1 1 0}/{−1 −1 0}

FIG. 2. Probability density of finding O from H2O on the bassanite {1 1 0}/{−1−1 0}
surfaces. Calcium ions are displayed in dark blue, sulfur in yellow, and oxygen
in red. Although the top and bottom surfaces appear almost identical, the lack
of inversion symmetry means that they are not. There are almost imperceptible
differences in the probability of finding an oxygen atom at different surfaces, arising
from the small dipole moment.
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TABLE III. Interfacial energies of gypsum/water interfaces (J/m2). Free energies are
calculated with Eq. (12) (ΔF ≙ γInterface), and enthalpies are calculated with Eq. (21)
(ΔH ≙ ΔHInterface). The entropic contribution is obtained by subtraction.

Miller index Free energy ΔF Enthalpy ΔH Entropy −TΔS
{0 0 1} 0.1421 0.1083 0.0338
{0 1 0} 0.0444 0.0554 −0.0111
{0 1 1} 0.1344 0.1042 0.0302
{0 1 2} 0.1393 0.1080 0.0313
{0 2 1} 0.1198 0.0965 0.0233
{1 1 0} 0.0799 0.0324 0.0475
{−1 −1 1} 0.1762 0.1023 0.0739
{1 2 0} 0.0962 0.0637 0.0325
{−2 2 1} 0.1422 0.0651 0.0772

surface. Figure 2 shows that there is a large degree of water ordering
some distance into the water layers, which must contribute to the
entropy component of the interfacial free energy.

Nine gypsum/water interfaces were also constructed and sim-
ulated in the same way as the bassanite/water interfaces. In the
case of gypsum, the symmetry of the crystal means that there is a
center of inversion symmetry, and therefore, the top and bottom
surfaces are identical. Again, we compare the interfacial free energies
calculated using 64 and 128 intervals per stage of the thermody-
namic integration (Appendix A) and estimate that the gypsum/water
interfacial free energies are converged to within ∼0.001 J/m2, well
within the expected accuracy of the potential model. The calculated
interfacial free energies of the gypsum/water interfaces are given in
Table III.

The interfacial free energies of gypsum surfaces are, in general,
very similar to those of bassanite. However, the {0 1 0} surface dis-
plays an unusual negative entropy contribution to the interfacial free
energy (−TΔS i.e., ΔS > 0). We attribute this to the highly structured
water layers present in the gypsum structure, which are exposed
upon cleaving the [0 1 0] plane. As these water molecules gain disor-
der upon cleaving their entropy increases, their contribution to the
free energy becomes negative. The remaining surfaces of gypsum all
have positive entropy contributions to the free energy of between
19% and 59%, significantly lower than for bassanite. Our interfacial
entropies range from 0.023 to 0.105 J/m2 for both materials, up to
an order of magnitude higher than Mishra et al.62 who estimated an
entropy contribution of 0.015 J/m2 for calcium sulfates in general.
The significant difference arises because Mishra et al. assumed that
only the first water layer on the surface contributes to the reduction
in water entropy. Our simulations show that the ordering of water
molecules extends quite far into the liquid (Fig. 2). Furthermore,
Mishra et al. used the method of Kirkwood and Buff to compute
a rough interfacial free energy to support their arguments. How-
ever, this method is not applicable to interfaces that contain a solid
component (see Appendix B).

D. Interfacial free energy between NaCl and water

To demonstrate the effect of the charge of the cations on the
entropy of the solvent, we also simulated NaCl where the bulk solid

only has 1+ cations. We used the model of Joung and Cheatham63

and retained the SPC/Fw water model.53 We selected the {1 0 0} sur-
face as themost stable surface64 of NaCl and applied exactly the same
procedure as we did for CaSO4 ⋅ xH2O. We calculated the {1 0 0}
NaCl/water interface to have an interfacial free energy of 0.128 J/m2.
Our computed interfacial free energy compares well with the results
of Espinosa et al.12 of about 0.1 J/m2, which were obtained with a
different potential model and is calculated between bulk NaCl and a
saturated solution.

For the NaCl/water system, the contributions of enthalpy and
entropy to the interfacial free energy are 0.104 and 0.024 J/m2,
respectively. This is a marked difference to the CaSO4 ⋅ xH2O sys-
tems as here the enthalpic contribution dominates and the entropic
contribution is relatively small. The origin of this change is due to
the reduced binding of water to the ±1 cation/anion in NaCl. Water
is not as strongly bound to the NaCl surface, and there is clearly
less ordering when the probability density of finding O from H2O
is calculated (Fig. 3).

FIG. 3. Probability density of finding O from H2O on the NaCl {1 0 0} surface.
Sodium ions are displayed in purple and chlorine in green. One layer of higher
water density is clearly visible, with an additional layer partially visible.
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E. Thermodynamic morphologies and growth
of CaSO4 ⋅ xH2O phases

Using the interfacial free energies calculated in Sec. IV C, we
may predict the equilibrium morphologies of bassanite and gypsum
using a Wulff construction.65 These equilibrium morphologies are
of the material in a solution of pure water. The equilibrium
morphologies of bassanite and gypsum are given in Fig. 4.

The bassanite morphology (Fig. 4(a)) is a near-perfect hexag-
onal prism capped with trigonal pyramids that are truncated by
the {0 0 1} Miller plane. The sides of the prism comprise the
{1 1 0}/{−1 −1 0} surface pair (Fig. 2) along with the {1 0 0}
(non-dipolar) surface, which has a very similar structural motif.
This near-perfect hexagonal morphology is not surprising as,
although bassanite exhibits an I121 monoclinic space group, it is
strongly pseudo-trigonal (P3121).37 The aspect ratio of the bassanite
morphology predicted here is smaller than thatmost commonly seen
experimentally. A higher aspect ratio may be achieved by simple
stabilization of the near identical {1 1 0}, {−1 −1 0}, and {1 0 0}
surfaces, perhaps with surface modification or reconstruction.

This bassanite morphology is similar to that seen by Kong
et al.66 when bassanite is grown in reverse microemulsions. In the
conditions used by Kong et al., the grown bassanite crystals have a
much smaller aspect ratio than is usually observed for bassanite. It
is possible that the cetrimonium bromide used in the experiments of
Kong et al. is adsorbing to the surfaces of bassanite and preventing
adsorption of Ca2+ or SO4

2− ions, which may alter the morphol-
ogy. The morphology of bassanite in Fig. 4(a) is also very similar to
the morphology seen by Tang and Gao67 when bassanite is grown in
0.008M disodium succinate, where the surface may also be protected
from adsorbing ions.

The gypsum morphology bears a good resemblance to real-
world crystals with a tabular crystal habit and the main {0 1 0}
face adopting the shape of a parallelogram (see the work of Van
Driessche, Stawski, and Kellermeier,38 Fig. 2). Closer inspection,
however, reveals that the main edge faces of the calculated mor-
phology exhibit surfaces with the {0 2 1} and {1 1 0} Miller
indices, whereas the edges of real gypsum crystals are predomi-
nantly the {0 2 1} and {−1 1 1} Miller indices68 (note different
indexing of gypsum used in the reference). Our calculated gypsum
morphology does bear a strong resemblance to previous computa-
tionally predicted morphologies.69–71 In particular, Aquilano et al.71

proposed that the discrepancy may be due to the presence of stepped

and kinked surface forms, which we have not thoroughly explored in
our calculations.

We stress that these predicted morphologies are for large crys-
tals in thermodynamic equilibrium. For small nanocrystals, edge and
corner effects become more important and may alter the preferred
morphology. Additionally, kinetic effects may also alter the growth
mechanism and lead to different observed morphologies.

A couple of key quantities can be derived from the interfacial
free energies and the predicted morphologies. First, we can express
the surface area of the morphologies as a function of their volume.
While it is possible to give a direct expression, it is more useful to
describe the relationship as a deviation from a perfect sphere. The
surface area of a sphere as a function of volume is given by

ASphere ≙ 62/3π1/3V2/3 ≙ CV2/3, (24)

where ASphere is the surface area, V is the volume of the material, and
C is the collection of constant terms. We can then derive a “shape
factor” that describes the surface area of a morphology as a function
of the surface area of a sphere of the same volume,

fNano ≙ ANano

ASphere

, (25)

where fNano is the shape factor for the morphology. The shape factor
is always greater than or equal to 1 as a sphere minimizes the surface
area per unit volume of any 3D shape. Consequently the shape factor
may be seen as a descriptor of “deviation from spherical” of a given
morphology.

Another useful quantity is the average interfacial free energy of
the morphology. This quantity is not simply the average of the com-
puted interfacial free energies as the different surfaces contribute
different amounts of surface area, depending on the lattice, Miller
index, crystal symmetry, and interfacial free energy. Thus, the aver-
age interfacial free energy of the morphology is given by a weighted
average over the expressed faces,

γNano ≙ ∑
nfaces
i≙1 γiAi

∑nfaces
i≙1 Ai

, (26)

FIG. 4. Wulff construction of the equilibrium morphologies of (a) bassanite and (b) gypsum.
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TABLE IV. Nanoparticle shape factors, nanoparticle interfacial free energies, and
volume per formula unit of bassanite and gypsum.

fNano γNano (J/m
2) VBulk (Å

3)

Bassanite 1.22 0.0956 92.36
Gypsum 1.29 0.0751 128.20

where n faces is the number of expressed faces on the nanoparti-
cle and γi is the interfacial free energy of face i (note that a given
Miller index may express more than one face due to symmetry).
These quantities are readily available from the Wulff construction.
Nanoparticle shape factors, nanoparticle interfacial free energies,
and volume per formula unit for bassanite and gypsum are given in
Table IV.

There is very little difference in the shape factors, but gypsum
displays a slightly lower average interfacial free energy due to the
dominant {0 1 0} surface. This small difference may go some way
to explaining why bassanite is sometimes observed forming first in
solution and sometimes not38 as there may be very little difference
in the free energy of the preferred phase for small nanoparticles.

To probe this further, we calculated the free energy to con-
vert a bassanite nanoparticle into a gypsum nanoparticle in a
solution of pure water. First, we derive a function that gives the
free energy change of converting n formula units of bulk mate-
rial into a nanoparticle of n formula units in contact with pure
water,

ΔF
Nano
Bulk (n) ≙ γNano fNanoC(nVBulk)2/3. (27)

Here, we have used Eq. (24) to calculate the surface area of a
sphere composed of n formula units of bulk material. This surface
area is then scaled by the shape factor, fNano, and multiplied by the
average interfacial free energy of the morphology, γNano.

The relative free energy between a bassanite and gypsum
nanoparticle of the same number of CaSO4 formula units is then
given by the function

ΔF
Nano(Gyp.)
Nano(Bas.) (n) ≙ −ΔFNano(Bas.)

Bas. (n) + nΔFGyp.
Bas. + ΔFNano(Gyp.)

Gyp. (n).
(28)

The first term on the right-hand side of Eq. (28),

−ΔFNano(Bas.)
Bas. (n), corresponds to converting a bassanite nanopar-

ticle of n formula units of CaSO4 into bulk bassanite. The second
term, nΔF

Gyp.
Bas. , corresponds to converting n formula units of

bulk bassanite into bulk gypsum using Eq. (22). The final term,

ΔF
Nano(Gyp.)
Gyp. (n), corresponds to converting n formula units of bulk

gypsum into a gypsum nanoparticle in contact with pure water.
Plotting the function given in Eq. (28) as a function of number

of formula units (n) gives the graph in Fig. 5.
When the line in Fig. 5 is above the x axis, it indicates that

a bassanite nanoparticle is more favorable to form than a gypsum
nanoparticle. Conversely, below the x axis, it is more favorable for
gypsum to form. Figure 5 clearly shows that a bassanite nanoparti-
cle is unlikely to grow as the crossover point is at ∼1 formula unit
of CaSO4, much too small for any “bassanite-like” features to be
distinguishable.

However, it should be noted that the predicted crossover size
of nanoparticle stability is highly sensitive to even small changes in
the surface free energies. Increasing the average surface free energy
of gypsum by just 5% is enough to change the crossover size from 1
formula unit to 22 formula units. In addition, the surface free ener-
gies of bassanite tend to have a greater entropic component than the
surface free energies of gypsum. This greater entropic contribution
suggests that the bassanite surface free energies will be more sensi-
tive to temperature, as well as the presence of additional species in
the liquid, which may disrupt the water ordering above the surface.
These changes may easily be enough to swing the energy balance
and make small nanoparticles of bassanite more stable than gyp-
sum. Growth of bassanite nanoparticles from this point may then
be controlled by kinetics, rather than thermodynamics.

FIG. 5. Relative free energies of a gyp-
sum nanoparticle compared to a bassan-
ite nanoparticle as a function of CaSO4

formula units.
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V. CONCLUSIONS

We have demonstrated the development and application of a
new, general, method for the calculation of interfacial free energies,
which uses Einstein crystals as a common reference state. The new
method is similar to the one proposed independently by Addula
and Punnathanam23 but in addition can handle surface diffusion of
molecules belonging to the solid phase. Our method also includes
further optimizations that increase the efficiency of calculating the
interfacial free energy.

By using an Einstein crystal as a universal reference state, we
are able to deal with complex materials and interfaces where other
approaches would fail. When simulating liquid/solid/liquid systems,
our approach does not require that the two surfaces of the solid slab
are able tomeet to re-form bulk and so can deal with complex surface
motifs and reconstructions. The method is also able to handle inter-
faces with miscible species, which formally belong to the solid slab
due to requirements tomaintain constant composition but behave as
a liquid at the interface. Furthermore, we have divided up the steps
necessary to maximize the re-use of already computed values, saving
significant computational resources [Sec. II B].

While we have primarily applied our method to the solid/liquid
interface, there is no reason why our method cannot also be applied
to transformation between polymorphs, solid/solid interfaces (such
as grain boundaries), or many other types of defects. As long as the
transformation to an Einstein crystal can be achieved continuously
and reversibly, then the free energy of the defect can be computed.
We have demonstrated the ability of the method to calculate the free
energy of hydrating bassanite to gypsum, successfully reproducing
the results of Byrne, Raiteri, and Gale,44 which were computed via
an alternative method (Sec. IV B).

We have applied our method to the interface of bassanite and
gypsum with water and have demonstrated a significant entropic
contribution to the interfacial free energies, frequently equal to
or greater in size than the enthalpic contributions. Furthermore,
the size of the entropic contributions varies significantly depend-
ing on the surface, and it is clear that a single universal entropy
correction is not sufficient for predicting interfacial free energies
(Sec. IV C).

In contrast to the CaSO4 ⋅ xH2O system, we demonstrated that
the {1 0 0} surface of NaCl is dominated by the enthalpic contri-
bution, with entropy playing a smaller role. We attribute this to
the divalent nature of the ions in CaSO4 ⋅ xH2O as compared to
the monovalent ions in NaCl and the subsequent increase in water
ordering at the interface (Sec. IV D).

We have taken the calculated interfacial free energies of bassan-
ite and gypsum and used them to predict equilibrium morphologies
using a Wulff construction (Sec. IV E). The bassanite morphol-
ogy bears a good resemblance to some experimental morphologies,
retaining a hexagonal prism habit, but is somewhat shorter than
the rod-like crystals often seen experimentally.72,73 The predicted
gypsum morphology differs from experimental morphologies in the
proportion of the expressed edge faces but is in excellent agreement
with other computationally predicted morphologies, indicating a
common cause of the discrepancy.71

We used our calculated free energies along with the Wulff
constructions to predict the thermodynamic crossover size of
bassanite/gypsum nanoparticles (Sec. IV E). The results suggest that

bassanite nanoparticles are almost always less stable than a gypsum
nanoparticle of the same size. However, the crossover size is strongly
dependent on even small changes to the surface free energies,
and small changes to the conditions may make small bassanite
nanoparticles more favorable than gypsum.

In future work, we will use our method to study other systems
where the use of enthalpies alone is inadequate and understand-
ing the interfacial free energies is vital. We will also work to extend
our method to the calculation of interfaces with non-pure solutions,
which will pose challenges in maintaining consistent solution
concentrations. This extension to the method will be useful in
studying the effect of additive species on different surfaces and how
these may change the relative stability of bassanite and gypsum
nanoparticles.

SUPPLEMENTARY MATERIAL

See supplementary material for bassanite and gypsum surface
repeat units, 1D surface water density comparison between the NaCl
{1 0 0} and bassanite {1 1 0}, 3D bassanite and gypsummorphologies
and the LAMMPS input scripts used in this work.
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APPENDIX A: THERMODYNAMIC INTEGRATION (TI)

To obtain the free energy difference between two different
systems, we may integrate over an arbitrary thermodynamic
pathway between the two systems of interest. We avoid changes
to the atomic masses and so the kinetic energy contributions to
the integral are zero, and we may focus on the potential energy
contribution to the Hamiltonian, H. We use a control parameter,
λ, to smoothly switch between the two systems,

H(λ) ≙ (1 − λ)HA + λHB, (A1)

where HA is the Hamiltonian of system “A” and HB is the Hamilto-
nian of system “B.” When λ ≙ 0, the system is in state “A,” and when
λ ≙ 1, the system is in state “B.” The change in free energy between
the two systems is then given by the integral

ΔF
B
A ≙ ∫

λ≙1

λ≙0
⟨∂H(λ)

∂λ
⟩
λ

dλ, (A2)

where the angled brackets indicate an ensemble average for a given
value of λ. The thermodynamic pathway is entirely arbitrary as long
as it is both continuous and reversible. Using λ directly may cause
numerical convergence issues when λ approaches 0 or 1. To avoid
these issues, we use a function of λ instead,

f (λ) ≙ λ5(70λ4 − 315λ3 + 540λ2 − 420λ + 126), (A3)

which is a sigmoid function of λ with useful properties that improve
convergence.74,75 The switching function given in Eq. (A3) smoothly
approaches zero as λ approaches 0 or 1, improving convergence of
the integral. To obtain ∂H(λ)/∂λ as required in Eq. (A2), we then
use the chain rule,

∂H(λ)
∂λ

≙ ∂H( f (λ))
∂ f (λ)

∂ f (λ)
∂λ

, (A4)

where ∂f (λ)/∂λ is given analytically by

∂ f (λ)
∂λ

≙ 630(λ2 − λ)4. (A5)

This substitution of f (λ) for λ is equivalent to a re-weighting
scheme for the integral given in Eq. (A2). The use of Eq. (A3)
results in reduced sampling near λ ≙ 0.5 and increased sampling
as λ approaches 0 or 1. Equation (A5) then gives weights for the
new integral points. To obtain the value of ∂H( f (λ))/∂f (λ), we
use numerical differentiation of the potential energy by a symmetric
difference quotient,

∂H( f (λ))
∂ f (λ) ≈ H( f (λ) + δ) −H( f (λ) − δ)

2δ
. (A6)

As f (λ) varies non linearly with respect to λ a fixed value of δ
for all values of λ may lead to numerical issues when f (λ) becomes

very small. i.e., if f (λ) is very small and δ is relatively large, then the
perturbed potential may have a negative coefficient. To alleviate this,
we also make δ a function of λ,

δ(λ) ≙ 0.01 × f (λ). (A7)

To compute the value of ∂H( f (λ))/∂f (λ), we first run a sim-
ulation for a given value of λ, printing the simulation trajectory
frequently. The potential energy at each frame of the trajectory is
averaged together to obtainH( f (λ)). The values ofH( f (λ) + δ(λ))
and H( f (λ) − δ(λ)) are calculated by taking the trajectory used to
calculate H( f (λ)) and recalculating the average potential energy
with f (λ) ± δ(λ). This is possible because for a very small perturba-
tion of f (λ), the accessible phase space will be almost identical and a
second (or third) new simulation is not required to sample it, saving
significant simulation time. Another advantage with this approach
is that δ may be tuned a posteriori if the derivative obtained from
Eq. (A6) is poorly behaved due to the choice of δ.

The integral in Eq. (A2) is computed numerically via Romberg’s
method (The trapezoidal rule with Richardson extrapolation).
Romberg’s method requires successively dividing the integration
interval into two equal halves. The change in the estimate of the
integral (via the trapezoidal rule) over the increasing subdivisions is
used to extrapolate an improved estimate for the integral, canceling
leading order terms due to the curvature of the integrand. Further-
more, as the number of points in the integrand is doubled for each
Romberg iteration, we can estimate the error of the free energy based
on the convergence from one iteration to the next.

APPENDIX B: THE DIFFERENCE BETWEEN SURFACE
TENSION AND INTERFACIAL FREE ENERGY

The method of Kirkwood and Buff26 (Sec. II C) is able to cal-
culate the surface tension of a liquid. However, it is inapplicable to
interfaces with a solid component (such as solid/vacuum, solid/fluid,
or solid/solid) as the surface tension differs from the interfacial free
energy. The relationship between surface tension and interfacial free
energy as given by Shuttleworth76 is

σ ≙ γ + A( dγ
dA
), (B1)

where σ is the surface tension, γ is the interfacial free energy, andA is
the surface area. The second term on the right-hand side is zero for
liquids, as expanding the surface area simply creates more surface,
leaving the interfacial free energy unchanged. For solids, however,
expanding the surface results in a strained surface (altering γ), and
the second term is non-zero. This point has been expanded upon
and discussed by others previously.5,77

APPENDIX C: CORRECTION FOR MISCIBLE
SPECIES IN NON-PURE SOLUTIONS

The procedure outlined in Sec. II F is applicable for liquids that
comprise a single species. This is because transforming the entirety
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of the bulk liquid simulation cell to an Einstein crystal and dividing
by the number of transformed molecules is equivalent to transform-
ing a single molecule to an Einstein crystal and leaving the rest of the
simulation cell in the liquid state (with an adjustment to the correct
density).

When the liquid is a solution that contains multiple different
molecular species, this approach is not possible as it would result
in a free energy that is an average over the different species. To
obtain a free energy for a particular molecular species, two solu-
tions should be created; the first at the desired concentration and the
second at the desired concentration plus one additional molecule of
the species of interest. Transforming both to Einstein crystals and
taking the difference yields the free energy of transforming the single
molecular species to an Einstein crystal from the solution, under the
approximation of no change in solution concentration. An extrapo-
lation to infinitely small changes in concentration by using multiple
simulation cell sizes may also be useful.

It must be emphasized that the correction outlined in Sec. II F
is only applicable when the solid/liquid system is near equilibrium.
If the solid is highly soluble, then we are not dealing with miscible
species, but dissolution of the solid. Eventually, the systemmay reach
an equilibrium with a concentrated solution. If there is still a well-
defined interface between the solid and liquid, then the methods
in this paper will still be applicable, but the liquid phase will now
be a concentrated solution, and all values (such as the surface
tension, Sec. II C) should be calculated with respect to the con-
centrated solution. If a correction for restoring stoichiometry due
to miscible surface species is still required, it can be performed as
before.
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