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Uncertainty-Aware Variational Inference for Target

Tracking
Haoran Cui, Lyudmila Mihaylova, Xiaoxu Wang*, Shuaihe Gao

Abstract—In the low Earth orbit, target tracking with ground
based assets in the context of situational awareness is particularly
difficult. Because of the nonlinear state propagation between the
moments of measurement arrivals, the inevitably accumulated
errors will make the target state prediction and the measurement
likelihood inaccurate and uncertain. In this paper, optimizable
models with learned parameters are constructed to model the
state and measurement prediction uncertainties. A closed-loop
variational iterative framework is proposed to jointly achieve
parameter inference and state estimation, which comprises an
uncertainty-aware variational filter (UnAVF). The theoretical
expression of the evidence lower bound and the maximization
of the variational lower bound are derived without the need
for the true states, which reflect the awareness and reduction
of uncertainties. The evidence lower bound can also evaluate the
estimation performance of other Gaussian density filters, not only
the UnAVF. Moreover, two rules, estimation consistency and low-
er bound consistency, are proposed to conduct the initialization
of hyperparameters. Finally, the superior performance of UnAVF
is demonstrated over an orbit state estimation problem.

Index Terms—Dynamic system, nonlinear filter, Kalman filter,
variational inference

I. INTRODUCTION

A
EROSPACE technologies have witnessed a significan-

t development in recent years [1], especially for au-

tonomous vehicles in the low Earth orbit. However, this creates

a number of challenges, such as in collision avoidance, and

in security due to the growing number of resident space

objects (RSO) [2], [3]. Detection and tracking are essential

components of such systems. In response to such challenges,

this paper focuses on low Earth orbit tracking problems with

ground-based assets.

A. Related work

To cope with the nonlinear estimation problem, a popular

classical method is the Gaussian density filter (GDF) [4],

which comprises the state prediction stage and the measure-

ment update stage within the Bayesian update framework [5],

[6]. These two stages have a number of unknown parameters

that need to be updated, but cannot be calculated analytical-

ly due to intractable nonlinear integrals. By using different
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numerical methods to approximate the posterior update pa-

rameters of the GDF framework, many nonlinear filters are

proposed, such as extended Kalman Filter (EKF), unscented

Kalman Filter (UKF) [7], cubature Kalman Filter (CKF) [4],

Gaussian-Hermite Quadrature Filter (GHQF) [8], sparse-Grid

Quadrature Filter (SGQF) [9] and their improved variants

[10]–[13]. However, due to numerical approximations, there

is an inevitable error in the state prediction which propagates

further and impacts the estimation results. Moreover, in order

to improve the approximation accuracy, the iterated posterior

linearization filter (IPLF) [14] is proposed, which performs

iterated statistical linear regression with respect to the posterior

instead of the prior so that the approximation accuracy can be

improved.

Within the Kalman filtering framework [15], between the

moments of measurement arrivals, repeated state predictions

are performed until the receipt of the measurements. This

could lead to error accumulation in the likelihood which affects

the accuracy of the nonlinear state propagation.

Particle filters [16] have also been popular in solving

nonlinear non-Gaussian state estimation problems. However,

they face challenges with the state initialization and with high-

dimensional spaces [17]. Next, Markov chain Monte Carlo

(MCMC) methods [18] are proposed to enhance particle filters

where the estimates of the initial state conditions are uncertain

[19]. However, as the computational cost of MCMC methods

[19] increases with time, conventional MCMC can perform

well if the needed convergence conditions are met [20].

Compared with MCMC methods, the variational inference

(VI) is a faster and powerful tool [21]. There are four kinds

of VI, i.e., scalable VI, generic VI, accurate VI, amortized

VI [22]. The idea of VI is to first posit a family of densities

and then to find the member of that family close to the target,

which is measured by Kullback-Leibler (KL) divergence. In

VI-based methods [23], [24], the introduction of hyperparam-

eters is inevitable, which need to be artificially set in advance.

However, there are no well established adaptation approaches

to determine these hyperparameters. If the hyperparameters

deviate from their true values, the estimation performance will

be influenced greatly.

B. Contributions

This paper has the following main contributions:

1) A state prior model (SPM) and a measurement likeli-

hood model (MLM) are proposed to cope with inaccura-

cies during the state and measurement predictions. Prior

parameters and fitting parameters are introduced in the
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SPM and MLM, respectively, to reflect the uncertainty

in predictions.

2) A closed-loop coordinate ascent variational iterative

framework is designed to infer states and introduced

parameters by maximizing the variational lower bound

(VLBO). It includes model optimization and state es-

timation, which comprises a novel uncertainty-aware

variational filter (UnAVF).

3) Theoretical expressions for the evidence lower bound

(ELBO) and the maximization of VLBO are derived,

by which the higher estimation accuracy of UnAVF

compared with GDF can be theoretically explained.

4) Two rules, estimation and lower bound consistencies, are

proposed, which can determine the values of hyperpa-

rameters reasonably and adaptively in the VI approach.

There is no need to artificially and randomly set hyper-

parameters in advance.

In the UnAVF, the objective function, (VLBO for parameter

inference and state estimation) and the ELBO are known and

can be calculated without the need for the true states. However,

in conventional Kalman filters, the calculation of the root mean

square error (RMSE) needs the true states. Hence, the UnAVF

can be adaptively aware and reduce the impact of uncertainties

in the state and measurement predictions by monitoring the

ELBO and maximizing the VLBO. The proposed UnAVF is

validated and tested over an orbit state estimation problem.

C. Organization and notation

This rest of this paper is organized as follows: the consid-

ered problem is formulated and the motivation of UnAVF is

discussed in Section II. In Section III, the theoretical derivation

of the modeling and optimization process in the UnAVF are

shown. Section IV proposes a quantitative evaluation indicator

for different filters and two rules, estimation consistency and

lower bound consistency, to initialize hyperparameters. Section

V reports simulation results to demonstrate the superior perfor-

mance of UnAVF. Concluding remarks are given in Section VI.

We will use the following notations. The superscripts “−1”

and “⊤” represent the matrix inverse and transpose operations,

respectively; |·| and Tr(·) denote the matrix determinant

and trace, respectively; N (x|µ,P) denotes that variable x

obeys Gaussian distribution with mean µ and covariance P;

E[ · ] denotes mathematical expectation; p(x|z) represents the

conditional density of x on z; Im denotes the unit matrix;

the superscripts “∧” and “∼”, used as the hat of random

variables, represent the estimate and the estimation error,

respectively; for example, x̂ denotes the estimate of variable

x̂ and its estimation error is x̃ = x − x̂; C (·) and D (·)
denotes two functions with expressions C(x) = xx⊤ and

D(x,P) = x⊤Px, respectively.

II. PROBLEM FORMULATION

We consider the nonlinear state-space system given by






xτ = f (xτ−1) +wτ−1,

zk = h(xk) + vk,
(1)

where xτ ∈ R
n and zk ∈ R

m denote the system state

and the measurement, respectively; τ and k represent the

state propagation time and the measurement sampling time,

respectively. The sampling intervals of state and measurement

are ∆tx = tτ − tτ−1 and ∆tz = tk − tk−1, respectively. The

system noise wτ and the measurement noise vk are zero-mean

Gaussian white noises with covariances Q and R, respectively.

Note that the sampling interval ∆tz of measurements is

always larger than the sampling interval ∆tx of states. Hence,

states have a long nonlinear propagation during ∆tz without

any measurement to correct the accumulated error in mean and

uncertainty in covariance of state prediction. When the next

measurement arrives, the state and measurement predictions

have been influenced by the difference in the sampling rates.

This will affect the posterior state estimation processes.

A. Gaussian density filter

GDF is a powerful framework for solving the nonlinear state

estimation problems. In GDF, the joint state and measurement

predictive probability density function (PDF) is assumed to be

Gaussian

p(xk, zk|Z1:k−1) ∼ N
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(2)

where the state prior PDF and the measurement likelihood

PDF are given by

p(xk|Z1:k−1) ∼ N (xk| ξx,Σxx) , (3)

p (zk|xk) ∼ N (zk|ξz,Σzz) , (4)

where Z1:k−1=
[

z⊤1 , z
⊤
2 , · · · , z⊤k−1

]⊤
. The parameters ξx,

Σxx, ξz , Σzz are calculated via nonlinear integrals in (8)-

(11).

Based on the assumption in (2), the tractable update formula

of the state posterior PDF qGDF (xk) can be derived naturally

[25] as

qGDF (xk) ∼ N
(

xk| ξx|z,Σx|z

)

, (5)

ξx|z=ξx+ΣxzΣ
−1
zz (zk − ξz), (6)

Σx|z=Σxx −ΣxzΣ
−1
zz Σzx. (7)

However, the basic GDF framework has some disadvan-

tages. During the long measurement sampling interval ∆tz ,

GDF can only approximately calculate the state prior PDF

p(xk|Z1:k−1) under the minimum mean square error (MMSE)

criterion in (8)-(9). The error in mean and uncertainty in

covariance of the state prior PDF will accumulate and increase

with the nonlinear state propagation. Then, the measurement

likelihood PDF will also become inaccurate, because its cal-

culation in (10)-(11) also relies on the corrupted state prior

PDF. Finally, the joint Gaussian PDF assumption in (2) can not

reflect the true prior information when the next measurement

arrives.

In spite of this, these inaccurate assumption, state prior and

measurement likelihood PDFs in (8)-(11) are still directly used

to update the state posterior PDF in the measurement update

stage (5)-(7) without any optimization process. As a result, the

estimation performance of GDF will be influenced greatly.
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ξx =

∫

xkp(xk|Z1:k−1)dxk = E [f(xk−1)|Z1:k−1] =

∫

f(xk−1)p(xk−1|Z1:k−1)dxk−1 (8)

Σxx =

∫

C [f(xk−1)] p(xk−1|Z1:k−1)dxk−1 − C(ξx)+Q (9)

ξz =

∫

h (xk)N (xk|ξx,Σxx) dxk (10)

Σzz =

∫

C [h (xk)]N (xk|ξx,Σxx) dxk − C (ξz) +R (11)

B. Main idea

In order to accommodate the accumulated error in mean

and uncertainty in covariance of the state prediction discussed

above, we propose an optimizable SPM as

p (xk|Z1:k−1) ≈ p(xk|η,Λ)=N (xk|η,Λ−1), (12)

where η, Λ are prior parameters.

Remark 1: In (12), the state prediction PDF p (xk|Z1:k−1)
is approximated by the parameterized SPM N

(

x|η,Λ−1
)

.

The prior parameters are introduced to reflect the error in

mean and uncertainty in the covariance in the state prediction

caused by the long nonlinear propagation during ∆tz . Its

advantage is that the inaccurate state prediction is only the

initial value of the prior parameters at the beginning of the

variational iteration. In detail, based on the VI theory, the

convergency of the coordinate ascent variational iteration can

be guaranteed theoretically. When the variational iteration

converges, the optimized SPM will only slightly depend on

the inaccurate initial state prediction. Hence, through inferring

the prior parameters η and Λ, SPM can accommodate the

propagation error in mean and uncertainty in covariance of

the state prediction.

Moreover, in order to characterize the uncertainty in the

measurement likelihood, an optimizable MLM with fitting

parameters is constructed as follows

p(zk|xk) = N (zk|h(xk),R)

≈ N (zk|Hkxk + uk + µ, (λR̄)−1)
∆
= p(zk|xk,µ, λ), (13)

where R̄ = R−1; Hk ∈ R
m×n and uk ∈ R

m denote the

Jacobian matrix and the first-order constant term in the Taylor

expansion of the measurement function, respectively, The

fitting parameters µ ∈ R
m and the scalar λ need to be

optimized.

Remark 2: Indeed, the MLM (13) essentially fits the latent

variable x and the measured data z as a linear parametric

Gaussian regression process. Due to the Gaussianity in the

MLM, the simple and explicit results of parameter inference

and state posterior estimation can be obtained. Moreover,

through minimizing the KL divergence to infer the fitting

parameters µ and λ, the error in mean and uncertainty in

covariance caused by the inaccurate state prediction will be

decreased. Specially, the fitting parameter µ is introduced to

adjust the mean of p(zk|xk,µ, λ). The fitting parameter λ is

designed as a ratio to adjust the covariance. If the approximate

error of mean is large, λ will also amplify the covariance to

reflect the uncertainty of measurements.

The Gaussian-Wishart and Gaussian-Gamma, distributions

[26] are commonly adopted to represent parameters in the VI

framework.

p(η,Λ) = p(η|Λ)p(Λ)

= N (η|η0, β
−1
0 Λ−1)w(Λ|W0, ν0), (14)

p(µ, λ) = p(µ|λ)p(λ)
= N (µ|µ0, λ

−1M−1
0 )Gam(λ|c0,d0), (15)

where η0, β0, W0, ν0, µ0, M0, c0 and d0 are hyperparameters

[26], which denote the prior initialization values for depicting

the prior distributions of the introduced parameters. Here, the

prior distributions of µ and η are typically Gaussian, which is

an usual expression in using VI for regression analysis [27].

The prior parameters Λ and λ are used to manage the covari-

ance accuracy in (12) and (13). It is a standard processing to

consider the prior PDFs of Λ and λ as the Wishart and Gamma

distributions [28], [29]. Above constructed forms in (14)-(15)

guarantee that the posterior distributions of the fitting and

prior parameters conjugate with their prior ones for easing the

following maximization of the VLBO. Note that the correlated

characteristics can be expressed in other forms, as discussed

in [22].

Remark 3: In the iterative EKF (IEKF) and other Kalman

filter types, only the mean and covariance of the state posterior

PDF are estimated. There is no optimisation of the state

model and of the measurement model parameters to reduce

the approximation error (such as linearization) of measure-

ment likelihood and state PDFs. Hence, even if the nonlinear

functions are approximated via the updated posterior state, the

approximation error still exists and is not compensated. In the

IPLF, even if there are unknown parameters to be optimized

in approximation, only the first moment of their unknown

parameters is considered, which can not capture and reflect

the uncertainty and inaccuracy of the state and measurement

predictions well, caused by the difference in the sampling

rates in this paper. Then, in both IPLF and IEKF, based

on the approximation which does not contain optimizable

parameters or only considers the first moment of parameters,

their posterior states will become less informative and more

conservative, i.e., their covariances of posterior states will

become large. Accordingly, their posterior estimation accuracy

will also be influenced.

Remark 4: In UnAVF in the approximation (12)-(13),we

distribute the unknown parameters η, Λ, µ, λ, which contain

both first and second moments information. Hence, we need
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to iteratively infer the posterior distributions of the introduced

parameters η, Λ, µ, λ and update state posterior estimation, in-

stead of directly calculating the values of unknown parameters

(first moment) and posterior states. By inferring the posterior

distributions of the introduced parameters, the approximation

(12)-(13) in UnAVF can capture and aware the uncertainty and

inaccuracy of the state and measurement predictions. Then,

based on the approximation considering both the first and

second moments of the introduced parameters, the posterior

state estimation will become more informative and less con-

servative, i.e., the covariance of posterior states will become

small and estimation accuracy will also be guaranteed. This

is also the main reason why our proposed method is called

uncertainty-aware variational filter. The above analysis is also

demonstrated in the simulations in Figs. 9-10

The core idea of the proposed UnAVF is to construct

an interaction between the model optimization and the state

estimation via the maximization of the VLBO as shown in

Fig. 1. Based on the optimized SPM and MLM, the accurate

state estimation results are obtained in the VI measurement

update. Given the state estimation results, prior and fitting

parameters are inferred to optimize the SPM and MLM in

the VI state and measurement predictions. The prediction and

update comprise the coordinate ascent variational iteration

in the proposed UnAVF. In the variational iteration, the i-

naccurate and uncertain state and measurement information

only provide initial values for the optimization of the SPM

and MLM. As the convergency of the variational iteration,

the finial iterative estimation results will not be influenced

largely by the uncertain initial information. In the design of

the UnAVF, the following questions need to be answered:

measurementmeasurement

Optimization of

 prior state 

Optimization of

 prior state 
Variational inference

(maximization of lower bound)

Measurement

 input

state

State posteriori probability

VI measurement update

State posteriori probability

VI measurement update

State posteriori probability
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Fig. 1: The filter scheme of UnAVF

1) Optimization and estimation. How to efficiently optimize

the SPM, MLM and accurately estimate states in the VI

state and measurement predictions and the VI measure-

ment update?

2) Evaluation indicator. How to quantitatively evaluate the

performance of the UnAVF compared with the generic

GDF?

3) Initialization of hyperparameters. The hyperparameters

in (14)-(15) need to be initialized at the beginning of the

variational iteration. Hence, is there a rule to rationally

conduct the adaptive initialization, instead of setting

their values artificially and casually?

III. UNCERTAINTY-AWARE VARIATIONAL FILTER

In Section II, the motivation and core idea of the UnAVF

have been discussed. Through answering the first question, the

complete UnAVF algorithm will be proposed in Section III.

Based on the VI framework, the VI state and measurement

predictions and the VI measurement update will be derived

to iteratively maximize the VLBO for jointly optimizing the

SPM and MLM and estimating states.

To estimate the state xk and inferring the prior parameters

η, Λ and the fitting parameters µ, λ, the joint posterior PDF

p(xk,η,Λ,µ, λ|Z1:k) needs to be calculated. Because there

is no analytical solution to the joint posterior PDF in the

nonlinear system (1), the VI approach is therefore employed

to obtain a suboptimal approximation for the joint posterior

PDF. Based on the VI approach, we are going to look for

an approximate solution by making the following variational

approximation,

p (Θ|Z1:k) ≈ q (Θ) , (16)

∆
= q (xk) q (η,Λ) q (µ, λ) , (17)

where Θ = {xk,η,Λ,µ, λ}; q (.) denotes the variational

posterior PDF of p (.). The variational posterior PDFs q (xk),
q (η,Λ), q (µ, λ) can be calculated by minimizing the follow-

ing KL divergence between the factorized variational posterior

PDFs q (xk) q (η,Λ) q (µ, λ) and the true joint posterior PDF

p(Θ|Z1:k) [22], [26], [27] as

q (xk) q (η,Λ) q (µ, λ)

= argminKL (q (xk) q (η,Λ) q (µ, λ)‖ p(Θ|Z1:k)) , (18)

where KL (q (x)‖ p (x)) ∆
=

∫

q (x) log q(x)
p(x)dx is the KL

divergence between q (x) and p (x). Based on the VI theory

[26], the minimization of the KL divergence (18) is equal to

the maximization of the VLBO as follows

q (xk) q (η,Λ) q (µ, λ)

= argmaxLV (q (xk) q (η,Λ) q (µ, λ) , p (Θ,Z1:k)) , (19)

where

LV (q (xk) q (η,Λ) q (µ, λ) , p (Θ,Z1:k)) =
∫

q (xk) q (η,Λ) q (µ, λ) ln
p (Θ,Z1:k)

q (xk) q (η,Λ) q (µ, λ)
dΘ.

(20)

The optimal solution to (19) satisfies the equation [26] as

log q (θ) = EΘ( 6=θ) [log p (Θ,Z1:k)] + const, (21)

where θ is an arbitrary element of Θ and Θ( 6=θ) is a subset

of Θ with θ∪Θ( 6=θ) = Θ. The operator EΘ( 6=θ) [· · · ] denotes

an expectation with respect to the variational posterior PDF

q
(

Θ( 6=θ)
)

. Because the calculations of q (xk) q (η,Λ) q (µ, λ)
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are coupled with each other, the coordinate ascent variational

iteration is needed to solve (21).

In detail, t denotes the number of variational iteration. Based

on the results of the t-th variational iteration qt
(

Θ( 6=θ)
)

, the

variational posterior PDF q (θ) of an arbitrary element θ is

calculated as qt+1 (θ) at the t + 1-th variational iteration by

solving the expectation in (21).

In the following, we will calculate the variational posterior

PDFs q (η,Λ) q (µ, λ) q (xk) at the t + 1-th variational iter-

ation, denoted as qt+1 (η,Λ) qt+1 (µ, λ) qt+1 (xk) given by

Theorems 1-3, respectively. To this end, using the conditional

independence properties of the Gaussian Gamma state-space

model in (1) and (14)-(15), the joint complete-data likelihood

PDF can be factored as

p(Θ,Z1:k) = p(xk,η,Λ,µ, λ,Z1:k)

=p(zk,xk|η,Λ,µ, λ)p(η,Λ)p(µ, λ)p(Z1:k−1)

=p(zk|xk,µ, λ)p(xk|η,Λ)p(µ|λ)p(λ)p(η|Λ)p(Λ)p(Z1:k−1).
(22)

The direct probability graph is given in Fig. 2 to illustrate

the factorized complete-data likelihood PDF. The state xk is

controlled by the prior parameters η,Λ and the measurement

zk is controlled by the fitting parameters µ, λ and the state xk.

There is no direct connection between the fitting parameters

and the prior parameters so they are independent with each

other.

x
k

z
k

L

h

m

l

Fig. 2: Probability graph over variational prior distribution

A. Derivation of variational iteration process

Now, given the factorized complete-data likelihood PDF in

(22), based on the solution (21), the VLBO can be maximized

gradually by our derived coordinate ascent variational iteration

process. At the same time, the model optimization and state

estimation can also be iteratively achieved in Theorems 1-3.

Theorem 1 (VI state prediction): Let θ = {η,Λ} and

accordingly the variational posterior PDF of Θ( 6=θ) at the

previous t-th variational iteration is

qt(µ, λ) = qt(µ|λ)qt(λ)
= N (µ|µ̂t, λ

−1M̂−1
t )Gam(λ|ĉt+1,d̂t), (23)

qt(xk) = N (xk|x̂t
k, (P̂

t
k)

−1), (24)

then, based on (21)-(22), the variational posterior PDF of the

prior parameters at the t+ 1-th iteration are calculated as

qt+1(η,Λ) = qt+1(η|Λ)qt+1(Λ)

= N (η|η̂t+1,β̂
−1
t+1Λ

−1)w(Λ|Ŵt+1,ν̂t+1), (25)

where

β̂t+1 =β0 + 1, (26)

η̂t+1 =β̂−1
t+1

(

x̂t
k + β0η0

)

, (27)

ν̂t+1 =ν0 + 1, (28)

Ŵ−1
t+1 =W−1

0 +
(

P̂t
k

)−1

(29)

+
(

x̂t
k − η0

) (

x̂t
k − η0

)⊤ (

1 + β−1
0

)−1
. (30)

Proof. See Appendix A. �

Theorem 2 (VI measurement prediction): Let θ = {µ, λ}
and accordingly the variational posterior PDF of Θ( 6=θ) at the

previous t-th variational iteration is

qt(η,Λ) = qt(η|Λ)qt(Λ)

= N (η|η̂t,β̂
−1
t Λ−1)w(Λ|Ŵt,ν̂t), (31)

qt(xk) = N (xk|x̂t
k, (P̂

t
k)

−1
), (32)

then, based on (21)-(22), the variational posterior PDF of

the fitting parameters at the t + 1-th variational iteration are

calculated as

qt+1(µ, λ) = qt+1(µ|λ)qt+1(λ)

= N (µ|µ̂t+1, λ
−1M̂−1

t+1)Gam(λ|ĉt+1, d̂t+1),
(33)

with

Hk =
∂h (x̂t

k)

∂x̂t
k

, (34)

M̂t+1 =M0+R, (35)

µ̂t+1 =M̂−1
t+1

(

R̄
(

zk −Hkx̂
t
k

)

+ M̂0µ0

)

, (36)

ĉt+1 =c0 +
1

2
, (37)

d̂t+1 =d0 +
1

2
Tr

[

Hk(P̂
t
k)

−1
H⊤

k R̄
]

+
1

2
D

[

zk −Hkx̂
t
k − µ0,

(

M̂−1
0 +R−1

)−1
]

.

(38)

Proof. See Appendix B. �

Theorem 3 (VI Measurement Update): Let θ = {xk} and

accordingly the variational posterior PDF of Θ( 6=θ) at the t+1-

th variational iteration is

qt+1(µ, λ) = qt+1(µ|λ)qt+1(λ)

= N (µ|µ̂t+1, λ
−1M̂−1

t+1)Gam(λ|ĉt+1,d̂t+1), (39)

qt+1(η,Λ) = qt+1(η|Λ)qt+1(Λ)

= N (η|η̂t+1,β̂
−1
t+1Λ

−1)w(Λ|Ŵt+1,ν̂t+1), (40)

then, based on (21)-(22), the variational posterior PDF of states

at the t+ 1-th variational iteration is calculated as

qt+1(xk) = N (xk|x̂t+1
k , (P̂t+1

k )−1), (41)
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where

P̂t+1
k = Ŵtν̂t +

ĉt

d̂t
H⊤

k R̄Hk, (42)

x̂t+1
k = (P̂t+1

k )−1

[

ĉt

d̂t
H⊤

k R̄(zk − µ̂t − uk) + Ŵtν̂tη̂t

]

.

(43)

Proof. See Appendix C. �

Remark 5: In Theorems 1-2, the optimization of the SPM

and MLM is achieved. Then, based on the optimized models,

the state is estimated in Theorem 3. Accordingly, the state

posterior estimation will also contribute to the the optimization

in Theorems 1-2. The VI state and measurement prediction

and the VI measurement update in Theorems 1-3 comprise the

variational iteration by maximizing the VLBO in the UnAVF.

The uncertain and inaccurate state prior and measurement

likelihood PDFs are only the initial value of the variational

iteration. As the increase of the VLBO in the variational

iteration, the prior and fitting parameters can be inferred so

that the impact of uncertainties on the state estimation will be

reduced gradually.

Remark 6: In our proposed UnAVF, the optimization of the

MLM, i.e., Theorem 2 (VI measurement prediction), can be

considered as relinearization. Specifically, in Theorem 2, the

distributions of the learned parameters µ, λ in the MLM (13) is

updated. Besides, in each iteration, states x̂k is also updated

so Hk will also be recalculated using the new x̂k in each

iteration. These two points are equal to the relinearization in

the optimization of the MLM.

B. The complete algorithm flow of the UnAVF

The complete algorithm flow of the UnAVF includes two

iteration processes: sampling iteration and coordinate ascent

variational iteration. The sampling iteration represents the

advance of sampling time and the reception of the new

measurement. The variational iteration represents the maxi-

mization of the VLBO at each sampling time. The details of

the UnAVF are shown in the pseudocode, where tmax is the

maximum number of the variational iterations.

The terminal condition of the variational iteration at each

sampling time is to measure the difference between the t-th
and t + 1-th variational iteration results. If the difference is

too small, we can assess that the coordinate ascent variational

iteration has converged and should be stopped. Hence, in the

proposed UnAVF, the KL divergence with respect to the state

posterior PDFs in the t-th and t+ 1-th variational iteration is

considered as the terminal index. The setting of the threshold

value δ will be given in the simulation part.

IV. PERFORMANCE ANALYSIS

As discussed in Section III, the hyperparameters in the

UnAVF need to be initialized at beginning of variational

iteration. In Section IV, two rules will be proposed to conduct

the adaption initialization of hyperparameters. Moreover, we

need to derive an index to evaluate the KL divergences of

different filters for quantitatively comparing their accuracy

Algorithm 1 UnAVF

1: Initialize state x̂0, P̂0

2: for k = 1 to N do ⊲ sampling iteration

3: Initialize the hyperparameters µ0, M0, c0, d0, η0, β0,

W0, ν0
4: for t = 1 to tmax do ⊲ variational iteration

5: VI state prediction:

6: SPM optimization: calculate η̂t, β̂t,Ŵt, ν̂t using

(26)-(30).

7: VI measurement prediction :

8: MLM optimization: calculate Hk, µ̂t, M̂t, ĉt, d̂t
using (34)-(38).

9: VI Measurement Update:

10: state estimation: calculate x̂t
k, P̂

t
k using (42)-(43).

11: If (KL (qt+1 (xk) |qt (xk)) ≤ δ), stop iteration.

12: end for

13: end for

performance. To this end, it is necessary to transform the

KL divergence evaluation into the corresponding lower bound

evaluation.

A. Quantitative assessment by the ELBO

The VLBO in (20) is the objective function of the UnAVF

with respect to states and parameters η,Λ,µ, λ. Through it-

eratively maximizing the VLBO, states and parameters can be

joint inferred. This means that the increase of the VLBO is due

to the mutual effect of states and parameters. Consequently,

the VLBO can not measure the accuracy of other filters, which

do not introduce these parameters. Hence, we need to derive

a new lower bound only with respect to states to fairly and

theoretically evaluate the performance of different filters. To

this end, the ELBO is derived from the following equation

ln p(Z1:k) = ln

∫

q (xk)
p (xk,Z1:k)

q (xk)
dxk

= LE(q) + KL(q||p), (44)

where

KL(q||p) = −
∫

q(xk) ln
p(xk|Z1:k)

q(xk)
dxk, (45)

LE(q) =

∫

q(xk) ln
p(xk,Z1:k)

q(xk)
dxk. (46)

The subscript “E” aims to distinguish with the VLBO in (20)

and q(xk) denotes the the variational posterior PDF of states

at the t-th variational iteration.

Remark 7: From (44), q(xk) will approximate the true

posterior PDF p(xk|Z1:k) if the ELBO in (46) increases. Thus,

the ELBO has the ability to quantitatively evaluate accuracy

performance of different filters, i.e. that the higher the filter’s

ELBO is, the better the estimation performance is.

Calculating the ELBOs of the GDF and UnAVF starts from

LE(q)
∆
=

∫

q(xk) ln
p(zk|xk)p(xk|Z1:k−1)

q(xk)
dxk

= Eq(xk) [ln p(zk|xk)] + Eq(xk) [ln p(xk|Z1:k−1)]

− Eq(xk) [ln q (xk)] . (47)
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According to the modeling process in the GDF and UnAVF,

the expression forms of the measurement likelihood PDF, the

state prior PDF and the state posterior PDF can be summarized

respectively, as

p(zk|xk)≈ N (zk|Akxk +Bk,Ck), (48)

p(xk|Z1:k−1) = N
(

xk|x̂k/k−1, P̂k/k−1

)

, (49)

q (xk) = N
(

xk|x̂k/k, P̂k/k

)

. (50)

The difference of (48)-(50) in the GDF and UnAVF depends

on the expressions of these parameters Ak, Bk, Ck, x̂k/k−1,

P̂k/k−1, x̂k/k, P̂k/k.

Given (48)-(50), the completely uniform expression of the

ELBO in both GDF and UnAVF is

LE (q) =
n

2
− m

2
ln 2π +

1

2
ln

∣

∣

∣P̂k/k

∣

∣

∣

|Ck|
∣

∣

∣P̂k/k−1

∣

∣

∣

− 1

2
D

(

zk −Akx̂k/k −Bk,C
−1
k

)

− 1

2
D

(

x̂k/k − x̂k/k−1, P̂
−1
k/k−1

)

− 1

2
Tr

((

P̂−1
k/k−1+AC−1

k A⊤
)

P̂k/k

)

, (51)

where m and n represent the dimensions of measurement and

state vectors, respectively.

1) The ELBO of GDF

In GDF, expressions of parameters Ak, Bk, Ck, x̂k/k−1,

P̂k/k−1, x̂k/k, P̂k/k are given by

Ak = ΣzxΣ
−1
xx , Bk = uk = ξz −ΣzxΣ

−1
xx ξx,

Ck = Σzz −ΣzxΣ
−1
xxΣxz = Σz|x,

x̂k/k−1 = ξx, P̂k/k−1 = Σxx,

x̂k/k = ξx|z, P̂k/k = Σx|z. (52)

Then, we can obtain the following complete expression of the

ELBO in GDF

LE-GDF (q) =
n

2
− m

2
ln 2π +

1

2
ln

∣

∣Σx|z

∣

∣

∣

∣Σz|x

∣

∣ |Σxx|

− 1

2
D

(

zk − ξz −ΣzxΣ
−1
xx

(

x̂k/k − ξx
)

z
,Σ−1

z|x

)

− 1

2
Tr

((

Σ−1
xx+Σ⊤

xzΣ
−1
xxΣ

−1
z|xΣ

−1
xxΣxz

)

Σx|z

)

− 1

2
D

(

ξx|z − ξx,Σ
−1
xx

)

. (53)

2) The ELBO of the UnAVF

Based on the modeling of the SPM and MLM in Section

II, expressions of parameters Ak, Bk, Ck, x̂k/k−1, P̂k/k−1,

x̂k/k, P̂k/k in the UnAVF are

Ak = Hk, Bk = uk + µ̂t,Ck =
d̂t
ĉt
R,

x̂k/k−1 = η̂t, P̂k/k−1 = Ŵ−1
t ν̂−1

t ,

x̂k/k = x̂t+1
k , P̂k/k = (P̂t+1

k )−1. (54)

Then, the complete expression of the ELBO in the UnAVF

can be calculated as

LE-UnAVF (q) =
n

2
− m

2
ln 2π +

1

2
ln

ĉt

∣

∣

∣(P̂t+1
k )

−1
∣

∣

∣

d̂t |R|
∣

∣

∣Ŵ
−1
t ν̂−1

t

∣

∣

∣

− 1

2
D

(

zk −Hkx̂
t+1
k − uk − µ̂t,

ĉt

d̂t
R−1

)

− 1

2
Tr

((

Ŵtν̂t+
ĉt

d̂t
HkR

−1H⊤
k

)

(P̂t+1
k )

−1
)

− 1

2
D

(

x̂t+1
k − η̂t,Ŵtν̂t

)

. (55)

Summarizing the above, computing ELBOs of different

filters is achievable and tractable, without nonlinear integrals.

Moreover, it provides a quantitative assessment to the accuracy

performance of different filters. In (44), the ELBO increase

reflects the decrease of the KL divergence so that the varia-

tional approximate distribution q(xk) approximates well the

true posterior p(xk|Zk). If the ELBO of the UnAVF is higher

than that of GDF, then the UnAVF can outperform GDF.

B. Initialization of hyperparameters at the beginning of the

variational iteration

The principle of initialization is to ensure that the UnAVF

can at least outperform GDF. To this end, two rules, estimation

consistency and lower bound consistency, are proposed to

conduct the initialization of hyperparameters.

1) Estimation consistency: the state estimation of the

UnAVF at the beginning of variational iteration t = 0 at least

is identical with that of GDF. According to Theorem 3, only

if the hyperparameters µ0, c0, d0, η0, W0, ν0 are initialized

as

µ0 = 0, η0 = ξx,

c0 = d0, W0ν0 = Σ−1
xx ,

(56)

the state posterior estimation of the UnAVF qt=1(xk) will be

identical with that of GDF qGDF (xk) in (5). The similar proof

can be seen in [30] in Appendix B. In other words, GDF only

provides a prior estimation to the proposed UnAVF. Then,

due to the variational iteration, the UnAVF’s performance will

become better than that of GDF.

2) Lower bound consistency: based on the estimation con-

sistency, the ELBO of the UnAVF at the beginning of the

variational iteration should also be identical with that of GDF.

The aim of the lower bound consistency is to initialize the

hyperparameters and to further theoretically explain why the

UnAVF can outperform GDF.

At the beginning of the variational iteration t = 0, the

ELBOs of the UnAVF and GDF are calculated in (57) and

(58), respectively. Based on the estimation consistency, the

third terms in (57) and (58) are the same. To achieve the

lower bound consistency, the key point is to guarantee that

the first and second terms in (57) equal to that in (58), which
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LF-UnAVF
t=0(q) =

∫

qt=1(xk)qt=0(µ, λ) ln
p(xk,µ, λ,Z1:k)

qt=0(xk,µ, λ)
d {xk,µ, λ}

= Eqt=1(xk)p(µ,λ) [ln p(zk|xk,µ, λ)] + Eqt=1(xk)
ln p(xk|Z1:k−1)− Eqt=1(xk)

[ln qt=1(xk)] (57)

LF-GDF(q) =

∫

qGDF(xk) ln
p(z

k
|xk)p(xk|Z1:k−1)

qGDF(xk)
dxk

= EqGDF(xk)
[ln p(xk|Z1:k−1)] + EqGDF(xk)

[ln p(zk|xk)]− EqGDF(xk)
[ln qGDF (xk)] (58)

are calculated in (61)-(62) and (63)-(64), respectively. As a

result, two conditions are yielded as

(ψ (c0)− ln (d0))− Tr
[

M−1
0 R̄

]

= 0, (59)
n
∑

i=1

ψ

(

ν0 + 1− i

2

)

− ln ν0 + n ln 2− nβ−1
0 = 0. (60)

Summarizing above derivation and analysis, we can obtain

the following proposition for initializing hyperparameters at

the beginning of the variational iteration.

Proposition 1: Based on both estimation consistency and

lower bound consistency, the hyperparameters in the UnAVF

should be initialized as follows

c0 = d̂0 = ĉ0 = d0, µ̂0 = µ0 = 0,

(ψ (c0)− ln (d0)) = Tr
[

M−1
0 R̄

]

, M̂0 = M0,

ν̂0 = ν0 > n− 1,

η̂0 = η0 = ξx,Ŵ0 = W0 =
1

ν0
Σ−1

xx ,

β̂0 = β0 =

[

1

n

n
∑

i=1

ψ

(

ν0 + 1− i

2

)

− 1

n
ln ν0 + ln 2

]−1

.

(65)

where ξx and Σxx are calculated in the same way as GDF in

(8)-(9).

Although there are many hyperparameters, based on Propo-

sition 1, only c0 and ν0 need to be initialized. Frankly

speaking, there may exist other initialization methods, but at

least Proposition 1 provides an available initialization scheme

with both operability and practicability.

Remark 8: Note that with the condition of the two rules

in Proposition 1 to determine the hyperparameters, at the

beginning of the variational iteration t = 0, the ELBO of

UnAVF is the same as that of GDF. As shown in Fig. 3,

then, with the variational iteration proceeding, the iterative

optimization of the SPM and MLM can further promote the

ELBO of the UnAVF. Finally, the ELBO promotion in the

UnAVF implies its accuracy improvement and theoretically

explains why the posterior estimation of the UnAVF is more

accurate than that of GDF.

V. SIMULATION

In Section V, the proposed UnAVF is compared with the

EKF, SGQF, IEKF and IPLF. The performance of the UnAVF

is demonstrated in the orbit estimation problem.

( )E-UnAVFL q

( )UnAVFKL ||q p

( )E-GDFL q

( )GDFKL ||q p

Variational 

iterative 

optimization ( ) ( )E 1:L ln Z kq p=

( )KL || 0q p =

Fig. 3: The increase of the ELBO

In order to evaluate the performance of different filters, we

run different filters with 1000 Monte Carlo simulations and

use the RMSE:

RMSEk[i] =

√

√

√

√

1

Nmc

Nmc
∑

n=1

(xn
k [i]− x̂n

k [i])
2
, (66)

k = 1, 2, · · · ,K.

where Nmc = 1000 is the number of Monte Carlo simulations;

K is the simulation length in time steps; xn
k [i] is the true

value of state and x̂n
k [i] is the estimated value of state in n-th

simulation at time k. Furthermore, we used the average RMSE

(ARMSE) with respect to times k1s to k2s:

ARMSEk2

k1
[i] =

1

k2 − k1 + 1

k2
∑

k=k1

RMSEk [i]. (67)

We also considered the mean absolute error (MAE) over

time k of the n-th simulation run

MAEn [i] =
1

k

K
∑

k=1

|xn
k [i]− x̂n

k [i]|. (68)

The dynamic model of the low Earth orbit satellite [9] is

given by

r̈ = − µ

r3
r+ aG + aD + ν, (69)

where r = [x, y, z]
⊤

is the position of satellite in the inertial

coordinate frame (I-J-K); scalar r =
√

x2 + y2 + z2. Vector

ν is the zero-mean Gaussian state noise [9]. Vector aG is the

acceleration caused by the J2 perturbation [31]. Vector aD is

the atmospheric drag [32].
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Eqt=1(xk)p(µ,λ) [ln p(zk|xk,µ, λ)] =−
m

2
ln 2π −

1

2
ln |R| −

1

2
Eqt=1(xk)

[

D
(

zk −Hkxk − uk, R̄
)]

+
1

2
(ψ (c0)− ln (d0))−

1

2
Tr

[

M
−1
0 R̄

]

(61)

EqGDF(xk)
[ln p(zk|xk)] =−

m

2
ln 2π −

1

2
ln |R| −

1

2
EqGDF(xk)

[

D
(

zk −Hkxk − uk, R̄
)]

(62)

Eqt=1(xk)p(η,Λ) [ln p (xk|η,Λ)]

= −
n

2
ln 2π +

1

2
Ep(η,Λ) [ln |Λ|]−

1

2
Eqt=1(xk)p(η,Λ) [D (xk − η,Λ)]

= −
n

2
ln 2π −

1

2
ln

∣

∣

∣
(W0ν0)

−1
∣

∣

∣
−

1

2
D

(

x̂t=1
k − η0,W0ν0

)

−
1

2
Tr

[

(W0ν0)P
t=1
k

]

+
1

2

n
∑

i=1

ψ

(

ν0 + 1− i

2

)

−
1

2
ln ν0 +

n

2
ln 2−

n

2
β−1
0 (63)

EqGDF(xk)
[ln p(xk|Z1:k−1)] = −

n

2
ln 2π −

1

2
ln |Σxx| −

1

2
D

(

x̂t=1
k − ξx, ξ

−1
xx

)

−
1

2
Tr

[

Σ−1
xx Pt=1

k

]

(64)

The measurement model is described by























az = tan−1
(

ρe

ρn

)

+ naz

el = tan−1

(

ρu√
ρ2
e
+ρ2

n

)

+ nel

‖ρ‖ =
√

ρ2e + ρ2n + ρ2u + nρ

, (70)

where the azimuth(az), the elevation (el) and the range ρ =
[ρu, ρe, ρn]

⊤
can be obtained by the radar site on the ground

with respect to the local observer coordinate system. naz , nel
and nρ are the white Gaussian noise.

The transformation relationship between range ρ of mea-

surement and position r of state in the inertial coordinate frame

is described by











ρu

ρe

ρn











=











cos ε 0 sin ε

0 1 0

− sin ε 0 cos ε





















cosϑ sinϑ 0

sinϑ cosϑ 0

0 0 1











×











x− ‖L‖ cos ε cosϑ
y − ‖L‖ cos ε sinϑ
z − ‖L‖ sin ε











, (71)

where ‖L‖= 6378.1363 km is the earth radius; ε and ϑ are the

latitude and local sidereal time of the observer, respectively.

Generally speaking, a single radar can not track a satellite

with the entire orbit. In this simulation, the rational tracking

time is 300s. The measurement update interval ∆tz is 5s. For

the accurately describing the state propagation, the dynamic

model of the low Earth orbit satellite is discretized by fourth-

order Runge-Kutta algorithm with the step size ∆tx = 0.1s.
Hence, the satellite states have long nonlinear propagation

without any measurement. Other information about the radar

is identical with that in [9]. The trajectory of the low Earth

orbit satellite is shown in Fig. 4.

In the simulation of the low Earth orbit satellite, the

reasonable measurement noise covariance is assumed to be

[9]

Rk = diag
[

(0.015◦)
2

(0.015◦)
2

0.0252(km)
2
]

. (72)

The six dimensional state is

x =
[

x y z ẋ ẏ ż
]⊤

, (73)

and the true initial state value is

x0 =
[

x
p
0 xv

0

]⊤

, (74)

where







x
p
0 = [6949.599783 , 1045.733299, 64.918535] km

xv
0 = [−0.902571, 5.697655, 4.841182] km/s

In each Monte Carlo simulation, the initial states of dif-

ferent filters are both generated randomly from the Gaussian

distribution N
(

x̂0|0, P̂0|0

)

, where

x̂0|0 =
[

x̂
p
0 x̂v

0

]⊤

, P̂0|0 = diag
(

P̂p
0|0

P̂v
0|0

)

, (75)






x̂
p
0 = [7252.009273, 1358.40786, 383.904071] km,

x̂v
0 = [−0.613101, 5.991868, 5.138553] km/s,

(76)






P̂p
0|0

=
[

104, 104, 104
]

km2,

P̂v
0|0

=
[

10−2, 10−2, 10−2
]

(km/s)
2
.

(77)

According to the Proposition 1 in Section IV, only hyper-

parameters c0 and ν0 in the UnAVF need to be initialized as

c0 = 1000, ν0 = 100. (78)

In the following, we will evaluate and compare performance of

different filters from estimation error and estimation credibility

aspects. Moreover, we will demonstrate the validity of the

variational iteration in the UnAVF.

A. Estimation accuracy

Firstly, the ARMSEs of different filters with respect to

different times are shown in Tables I-II. The ARMSE of the

UnAVF is always the smallest from 1s to 300s. From times 1s
to 100s, the ARMSEs of different filters are similar. However,

when the results of different filters converge (from 201s to

300s), the accuracy of UnAVF is increased by 51.52% and

40% in the position and velocity, respectively, compared with

the IEKF.
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Fig. 4: trajectory of the low Earth orbit satellite

Then, the RMSEs of different filters and the posterior

Cramer-Rao lower bound (PCRLB) [33] are shown in Fig. 5.

At each sampling time of measurements, the UnAVF is better

than other filters in the RMSEs of the position and velocity.

The PCRLB is the lowest curve and the RMSE of the UnAVF

is closest to the PCRLB. During times 1s to 100s, the RMSEs

are similar, which is the same as the ARMSEs. From times

201s to 300s, the RMSEs of UnAVF are obviously smaller

than that of other filters. The RMSE curves can correspond

to the change of ARMSEs in Table I-II with different times.

Note that we do not show the EKF’s RMSE curves, because

its RMSE is quite large compare with other filters. Hence, we

only report its ARMSE in Tables I-II.

TABLE I: ARMSEs of position for different filters

Filters UnAVF IPLF IEKF EKF SGQF

ARMSE300
1 (km) 9.6210 9.6972 9.6973 68.4444 11.4906

ARMSE100
1 (km) 28.6315 28.6812 28.6812 80.5571 31.3160

ARMSE200
101(km) 0.1355 0.2128 0.2128 64.2808 1.7189

ARMSE300
201(km) 0.0959 0.1977 0.1978 60.4954 1.4369

TABLE II: ARMSEs of velocity for different filters

Filters UnAVF IPLF IEKF EKF SGQF

ARMSE300
1 (km/s) 0.0185 0.0200 0.0200 1.9760 0.1078

ARMSE100
1 (km/s) 0.0532 0.0567 0.0567 4.4044 0.2763

ARMSE200
101(km/s) 0.0017 0.0022 0.0022 0.9813 0.0328

ARMSE300
201(km/s) 0.00066 0.0011 0.0011 0.5423 0.0142

As we discussed in Section IV, only two hyperparameters

ν0, c0 need to be initialized at the beginning of the variational

iteration at each sampling time. For illustrating the influence

of ν0 and c0, the RMSEs of the UnAVF with different values

of ν0 and c0 are reported in Figs. 6-7. The estimation accuracy

of the UnAVF is not influenced dramatically by the values of

ν0 and c0. Especially for ν0, the RMSE curves with different

values of ν0 are almost the same. In Figs. 6-7 we do not show

the whole RMSE curves because the initial RMSE (from times

1s to 100s) is quite larger compared with the RMSE (from

times 201s to 300s), such as in Tables I-II and Fig. 5. Hence,

for clearly reporting the difference of RMSE curves, we show

most of the curves. Moreover, there is a trend that the larger

c0 and ν0 is, the lower the estimation error of the UnAVF is.

The trend of the results matches the theoretical analysis.

According to Proposition 1, we always set d0 = c0 and η0 =
ξx, which means that E (λ) = c0(d0)

−1
= 1 and E (η) = ξx

(ξx is the GDF’s state prediction mean, which is calculated by

(8)). However, we do not know any information about λ and

ξx is also inaccurate. A direct and efficient method to make

the UnAVF understand that E (η) and E (λ) are not reliable

is to increase the variances of λ and η. The larger variance

means the lower credibility and validity of mean. Hence, the

parameters c0 and ν0 should be small so that the variances of

λ and η will be large

V (λ) = c0(d0)
−2

= (c0)
−1
,

V (η) = (W0ν0β0)
−1
. (79)

where V (·) denotes a variance. This can clearly explain why

smaller c0 and ν0 are more rational and can yield more

accurate estimation results.
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Fig. 5: RMSEs of the position and velocity about different filters
(In the UnAVF c0 = 100, ν0 = 10.)

B. Estimation credibility

Besides the estimation error, the estimation credibility is

significant as well. For evaluating different filters’ estimation

credibility, the contour of the state prior and posterior PDFs at

times 1s, 150s and 300s are shown in Figs. 8-10. At time 1s,
the initial state prior PDFs of all filters are almost the same
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Fig. 6: RMSEs of the position and velocity about different filters (In the UnAVF, ν0 = 10, c0 is chosen as 1, 10, 100, 500, 1000,
respectively.)
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Fig. 7: RMSEs of the position and velocity about different filters (In the UnAVF, c0 = 100, ν0 is chosen as 10, 20, 30, 40, 50, respectively.)

and inaccurate. However, at times 150s and 300s, the state

prior PDF’s mean in the UnAVF is obviously more accurate

and its covariance is also smaller. This is because the flexible

SPM in the UnAVF can be iteratively optimized to fit the true

state situation by inferring prior parameters using Theorem 1,

which outperforms the unadjustable state prior PDF in GDF.

Moreover, based on a more accurate state prior PDF and the

approximation considering both the first and second moments

of introduced parameters, the calculation of the state posterior

PDF will be more credible and informative, which means a

smaller covariance. In Figs. 9-10, the posterior PDF’s contours

of the UnAVF are more tight and the contours’ centers of the

UnAVF are more close to the true state value as well. These

simulation results can further demonstrate that the UnAVF can

handle the inaccurate and uncertain state and measurement

predictions.

C. Validity of variational iteration in the UnAVF

In the proposed UnAVF, the variational iteration consists of

the VI state and measurement predictions and the VI mea-

surement update. The state estimation in the VI measurement

update has been reported in above simulation results. Hence,

to demonstrate the validity of the variational iteration, we
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Fig. 8: The contour of the prior and posterior PDFs of states with different filters at time 1 s
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Fig. 9: The contour of the prior and posterior PDFs of states with different filters at time 150 s

will focus on the optimization of the SPM and MLM in the

VI state and measurement predictions, respectively and the

maximization of the ELBO.

As discussed in Section IV, the ELBO is an evaluation about

the accuracy performance of different algorithms. The higher

the ELBO is, the better the estimation performance is. In Fig.

11, ELBOs of different filters are shown. The final ELBO of

the UnAVF is obvious higher than that of other filters. The

higher ELBO of the UnAVF can further explain why the state

posterior PDF of the UnAVF is closer to the true one than that

of other filters. Moreover, the increase from the initial to final

ELBOs can also demonstrate the validity and contribution of

the variational iteration at each sampling times.

The KL divergence of the estimated and true measurement

likelihood PDFs at each sampling time are shown in Fig. 12.

The final KL divergence of the UnAVF is smaller than that

of other filters. Thus, the optimized MLM in the UnAVF can

fit the true measurement model better. The decrease from the

initial to final KL divergence further demonstrates the validity

of the variational iteration in the UnAVF.

In addition, for more directly exhibiting the variation of the

MLM and SPM in the variational iteration, the changes of

the measurement likelihood PDF and the state prior error are

shown in Figs. 13-14, respectively. As the variational iteration
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Fig. 10: The contour of the prior and posterior PDFs of states with different filters at time 300 s
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Fig. 13: The variation of the measurement likelihood PDF of the UnAVF during the variational iteration at the time 5s (the black solid
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proceeding, the optimized measurement likelihood PDF can

gradually fit the true one and the state prior error is decreased

step by step. Hence, these changes of the ELBO, the KL

divergence and the state prior error can clarify the impact and

validity of the variational iteration in the UnAVF.

VI. CONCLUSION

Based on the VI framework, this paper develops a novel

nonlinear estimation method which dynamically optimizes the

parameterized state prior and measurement likelihood models

by maximizing the VLBO. In the VI state and measurement

predictions, the prior parameters and fitting parameters are

inferred so that the SPM and MLM will be self-adaptively

adjusted. Correspondingly, based on the optimized SPM and

MLM, the state posterior PDF can be calculated more accu-

rately in the VI measurement update. The uncertainties and

inaccuracies in the state priori and measurement likelihood

PDFs can only have effect at the beginning of the varia-

tional iteration. As the maximization of the VLBO by the
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the variational iteration of each sampling time, respectively.)
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Fig. 14: The variation of the prior state error of the UnAVF during the variational iteration at time 5s
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variational iteration proceeding, the uncertainties’ effect will

be decreased gradually. Moreover, the estimation and lower

bound consistency are proposed, which can rationally guide

the initialization of hyperparameters at the beginning of the

variational iteration at each sampling time. In the simulation,

we have shown that the performance of the UnAVF is better

and the validity of the variational iteration is demonstrated.

APPENDIX A

PROOF OF THEOREM 1

According to the mean-field theory, we have

log qt(η,Λ)

= Eqt(xk)

{

log p(xk,η,Λ,µ, λ, z
k
1 )
}

+ const

=
(ν0 −Dω + 1)

2
log |Λ| − 1

2
Eqt(xk) [D(xk − η,Λ)]

− 1

2
Tr

(

ω−1
0 Λ

)

− 1

2
β0D(η − η0,Λ) + const, (80)

where

E [D (xk − η,Λ)] = D
(

x̂t
k − η,Λ

)

+Tr

[

(

P̂t
k

)−1

Λ

]

.

(81)

For the following deduction, we introduce a constant term

independent of states as

prio(x̂t
k)

∆
=

∫

N
(

x̂t
k|η,Λ−1

)

N
(

η|η0, (β0Λ)
−1

)

dxk,

(82)

and

log prio(x̂t
k) = const+

1

2
log |Λ| − 1

2
Tr

[

(

x̂t
k − η0

) (

x̂t
k − η0

)⊤
Λ
(

1 + β−1
0

)−1
]

.

Then, log qt(η,Λ) can be rewritten as

log qt(η,Λ)

= log
N

(

x̂t
k|η,Λ−1

)

N
(

η|η0, (β0Λ)
−1

)

prio(x̂t
k)

+ log prio(x̂t
k)

+
(ν0 −Dω − 1)

2
log |Λ| − 1

2
Tr

[(

ω−1
0 +

(

P̂t
k

)−1
)

Λ

]

.

(83)

By rearranging log qt(η,Λ), we can obtain (26)-(30).

APPENDIX B

PROOF OF THEOREM 2

Given CLP p(xk,η,Λ,µ, λ, z
k
1 ), according to the mean

field theory it is easy to obtain

log q(µ, λ)

= Eqt+1(xk) [log p (zk|xk,µ, λ)] + log p(µ, λ) + const

=

(

c0 −
1

2

)

log λ− λd0 + logN
(

µ|µ0, (λ)
−1

M−1
0

)

− λ

2
Eqt+1(xk)

[

D
(

z∗k − µ, R̄
)]

+ const, (84)

where

z∗k = zk −Hkxk,

Eqt+1(xk)

[

D
(

z∗k − µ, R̄
)]

= D
(

zk −Hkx̂
t+1
k − µ, R̄

)

+Tr
[

Hk

(

P t+1
k

)−1
H⊤

k R̄
]

.
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For the following deduction, we define

p (z∗k) =

∫

N
(

z∗k|µ, λ−1R̄−1
)

N
(

µ|µ0, λ
−1M−1

0

)

dµ

= N
(

z∗k|µ0, λ
−1

(

M−1
0 + R̄−1

))

. (85)

The defined p(z∗k) is independent of state, but coupled with

parameter λ. Accordingly, p(z∗k) is decomposed as follows.

log p (z∗k) = logN
(

z∗k|µ0, λ
−1

(

M−1
0 + R̄−1

k
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=
1

2
log λ− λ

2
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k
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]
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(86)

Then, rewriting log q(µ, λ) with log p(z∗k), we have

log q(µ, λ)

= log
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(
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+ log p (z∗k) +

(

c0 −
1

2

)

log λ

− λ

(

1

2
Tr

[

Hk

(

P t+1
k

)−1
H⊤

k R̄
]

+ d0

)

+ const. (87)

Then by re-organizing log q(µ, λ), we can obtain (35)-(38).

APPENDIX C

PROOF OF THEOREM 3

According to the mean-field theory, we have

log qt+1(xk)

= Eqt+1(µ,λ)qt(η,Λ)

{

log p(xk,η,Λ,µ, λ, z
k
1 )
}

+ const

= −1

2
Eqt+1(µ,λ)qt(η,Λ)

[

D(xk − η̂t,Ŵtν̂t)
]

− 1

2
Eqt+1(µ,λ)qt(η,Λ)

[

λD(zk −Hkxk − µ, R̄)
]

+ const,

(88)

where

Eqt(µ,λ)qt(η,Λ) [D(xk − η,Λ)] = D(xk − η̂t,Ŵtν̂t) + β̂−1
t ,

(89)

Eqt(µ,λ)qt(η,Λ)

[

D(zk −Hkxk − µ, R̄)
]

= E [λ]D
(

zk −Hkxk − µ̂t, R̄
)

+Tr
(

M̂−1
t R̄

)

. (90)

For the following deduction, we introduce a probability

independent of states

prio(zk)
∆
=

∫

N
(

zk|Hkxk+µ̂t,E [λ]
−1

R̄−1
)

N
(

xk|η̂t, (ω̂tν̂t)
−1

)

dxk

= N
(

zk|Hkη̂t+µ̂t,Hk (ω̂tν̂t)
−1
k H⊤

k + Eqt(λ)[λ]
−1

R̄−1
)

,

(91)

so that

log qt+1(xk) = const+

log
N

(

zk|Hkxk+µ̂t+1,E [λ]
−1

R̄−1
)

N
(

xk|η̂t+1, ω̂
−1
t+1ν̂

−1
t+1

)

prio(zk)
.

(92)

By rearranging log qt+1(xk), we can obtain (42)-(43).
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