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ABSTRACT

Networks of interacting nodes connected by edges arise in almost every branch of scientific inquiry. The connectivity structure of the network
can force the existence of invariant subspaces, which would not arise in generic dynamical systems. These invariant subspaces can result in the
appearance of robust heteroclinic cycles, which would otherwise be structurally unstable. Typically, the dynamics near a stable heteroclinic
cycle is non-ergodic: mean residence times near the fixed points in the cycle are undefined, and there is a persistent slowing down. In this
paper, we examine ring graphs with nearest-neighbor or nearest-m-neighbor coupling and show that there exist classes of heteroclinic cycles
in the phase space of the dynamics. We show that there is always at least one heteroclinic cycle that can be asymptotically stable, and, thus,
the attracting dynamics of the network are expected to be non-ergodic. We conjecture that much of this behavior persists in less structured
networks and as such, non-ergodic behavior is somehow typical.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088856

From the coupled map lattices proposed in the 1980s to the
modern discipline of complex networks, the study of simple sys-
tems connected in some way forms a fundamental paradigm in
dynamical systems. Applications are plentiful and diverse and
include spatially extended systems, chemical reactions, biological,
and ecological networks and span many length scales.1 In many
cases, a goal of the study is spatiotemporal chaos,2 and this might
typically mean computing a long-term average (for example, a
Lyapunov exponent). However, it is well known that a class of net-
works—those with invariant subspaces forced by symmetries in
the system—permit heteroclinic cycles,3 that is, trajectories along
which time averages do not converge, instead slowing down as
they repeatedly and systematically get closer and closer to fixed
points. We investigate a family of coupled map lattices defined
on ring networks and establish stability properties of the many
possible families of heteroclinic cycles.

I. INTRODUCTION

We consider how the structure of the architecture, or topology,
of a network of physical nodes determines the architecture of a het-
eroclinic network in phase space between fixed points. We note that
this question was asked in the reverse by Ashwin and Postlethwaite,4

who showed how to construct a system of ordinary differential
equations into which was embedded a heteroclinic network of any
specified topology.

In particular, we consider systems of the form

x(k)
i+1 = f(x(k)

i ) e−γ
∑

j Ajkx
(j)
i , k = 1, . . . , N, (1)

where γ ≥ 0 is a parameter. Each of the x(k)
i ∈ [0, 1] measures the

activity at time i of the kth “node” in a network, and Ajk is an
adjacency matrix, which determines the connectivity between the
different nodes. We take the function f to be the logistic map,

f(x) = rx(1 − x),

where r ∈ (0, 4] is a parameter. The dynamics of the uncoupled sys-
tem with γ = 0 is well known,5 but briefly, for r ∈ (0, 1], the origin
is an asymptotically stable fixed point. At r = 1, there is a transcrit-
ical bifurcation creating a second fixed point at x = r−1

r
. This fixed

point is asymptotically stable for r ∈ (1, 3], and at r = 3 undergoes
a period-doubling bifurcation, which leads to a period-doubling
cascade followed by the onset of chaos at r ≈ 3.569 95.

When x(j) is non-zero for some j, then the term e−γ
∑

j Ajkx(j)
in

(1), with γ > 0, has an inhibitory effect upon any node connected
to j, i.e., those for which Ajk = 1. Specifically, if γ x(j) is large enough,
then this term can have the same effect as reducing the value of r in
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FIG. 1. The figures show time series for Eq. (2), where components x(1), x(2),
and x(3) are shown by the blue, red, and yellow lines, respectively. In panel (a),
r = 2, γ = 3.5; in panel (b), r = 3.5 and γ = 3.5.

the x(k) equation to less than 1 and, hence, causing the values of those
x(k) to decrease toward zero. Heuristically, it is then clear that oscil-
latory behavior is possible, as nodes can alternately be active (have a
non-zero value) and, hence, inhibit those nodes they are connected
to; decay, when other nodes in turn inhibit them; and finally grow
again to an active state as the nodes inhibiting them decay in turn.

In Fig. 1, we show a time series from a cycle of three such
coupled nodes, specifically, the set of equations,

x(1)
i+1 = f(x(1)

i ) e−γ x
(3)
i ,

x(2)
i+1 = f(x(2)

i ) e−γ x
(1)
i ,

x(3)
i+1 = f(x(3)

i ) e−γ x
(2)
i .

(2)

In panel (a), we use r = 2, so the dynamics of the uncoupled sys-
tem contains a non-zero stable fixed point. The time series clearly
shows the trajectory cycling between three fixed points, in a man-
ner essentially identical to that seen in the well-known Gucken-
heimer–Holmes heteroclinic cycle.3 In panel (b), we use r = 3.5, so
the uncoupled system is in the chaotic regime, and we see cycling
between three chaotic attractors. This phenomenon was previously
described by Ashwin et al.6,7

In this paper, we extend the work of Ashwin et al.6,7 and con-
sider larger networks of coupled systems in the form of (1). We
refer to these equations as describing the network of connections
between nodes in physical space, and for the remainder of the paper,
refer to this network as instead a directed graph with directed edges
between nodes. We begin in Sec. II, by considering another example:
a five-node ring graph with one-way nearest-neighbor coupling. We
determine the fixed points and the heteroclinic connections which
exist between them. We refer to this network of connections as the

phase space network, or heteroclinic network, which has heteroclinic
connections (or sometimes simply connections) between fixed points.
In Sec. III, we consider general systems of the form of (1) and
describe how to find the fixed points and heteroclinic connections
for such a system. In general, this procedure results in a very com-
plex heteroclinic network that is difficult to analyze, so in Sec. IV,
we look in detail at N-node directed graphs with one-way nearest-
neighbor coupling in the physical space. Here as well as determining
the structure of the heteroclinic network in phase space, we are able
to analyze the dynamic stability of subcycles within the network.
We use results from Podvigina8 and some classical results on solu-
tions to polynomials9,10 to prove Theorem 1, which shows that only
one of the subcycles can ever be stable, and then, only if γ is large
enough. In Sec. V, we make some conjectures about larger networks.
Section VI concludes.

II. EXAMPLE: FIVE-NODE RING GRAPH WITH

NEAREST-NEIGHBOR COUPLING

We give, in this section, an example of a five node directed
graph with one-way nearest-neighbor coupling. We determine the
possible fixed points in phase space and the heteroclinic connections
between them. We show time series of typical trajectories close to
the resulting heteroclinic network but defer the computation of the
stability of each of the sub-cycles to Sec. IV.

We begin with a few formal definitions. Consider the map

xi+1 = g(xi), xi ∈ R
n, i ∈ Z, (3)

with fixed points ζ1, . . . , ζM. A heteroclinic connection between ζj

and ζj′ is a solution to (3) for which xi → ζj as i → −∞ and
xi → ζj′ as i → ∞. Suppose that there exist heteroclinic connections
between ζjk

and ζjk+1
for k = 1, . . . , M − 1 and also one between ζjM

and ζj1 . Then, the set H consisting of the fixed points ζj and the
connecting orbits is a heteroclinic cycle. A heteroclinic network11 is
usually defined to be a union of heteroclinic cycles. In this paper,
we relax the definition somewhat: we allow a heteroclinic network
to consist of a set of fixed point solutions and heteroclinic connec-
tions between them, which contains at least one heteroclinic cycle.
Note that this means that not every heteroclinic connection in the
network need be part of a cycle.

For the example, we consider in this section, the network
of nodes in physical space is shown in Fig. 2(a). The equations
governing this system are

x(k)
i+1 = f(x(k)

i ) e−γ x
(k−1)
i , k = 1, . . . , 5, (4)

which are equivariant with respect to a rotation symmetry of the
coordinates.

Equation (4) has two different types of fixed points solution in
phase space, which are of interest to us, namely, those with one node
active (that is, with a single component that is O(1)) or those with
two nodes active. There may be other fixed points in this system, but
they are not part of the heteroclinic network of interest in this paper.
More precisely, assume for now that r ∈ [1, 3] and let x̂ = r−1

r
. Then,

using coordinates (x(1), x(2), x(3), x(4), x(5)), we label the fixed points

Chaos 32, 063104 (2022); doi: 10.1063/5.0088856 32, 063104-2

© Author(s) 2022

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. Panel (a) shows the physical network described by Eq. (9), with N = 5.
Here, the physical nodes are shown by circles and the inhibitory couplings by
flat-ended arrows. Panel (b) shows the corresponding heteroclinic network. The
dots represent fixed point solutions of system (9), and arrows indicate the pres-
ence of a heteroclinic connection. In this figure and those that follow, note the
distinction between circles for the nodes of the physical network, and filled dots
for the fixed points of the heteroclinic network in phase space.

with only x(1) active as

ξ1 = (x̂, 0, 0, 0, 0),

and similarly, we have ξ2, . . . , ξ5, where for each ξj, the jth compo-
nent is equal to x̂ 6= 0, and the remainder are equal to zero. Next, we
label

ξ1,3 = (x̂, 0, x̂, 0, 0),

and similarly define ξj,m, which has the jth and mth components
equal to x̂, where |j − m| 6= 1 (i.e., j and m are not adjacent nodes
in the ring graph). Note that ξj,m ≡ ξm,j but we typically list j and m
in increasing numerical order.

Note that in this example, there cannot be any fixed points with
more than two components equal to x̂ because of the connectivity
of the graph: two nodes that are connected by an edge cannot both
be active at a fixed point. In larger, more general graphs, we would
expect to see fixed points with more active components (see Sec. III
for the general setup).

We next consider the dynamics of (4) in two two-dimensional
subspaces and show that there exist heteroclinic connections from ξj

to ξj−1 and from ξj to ξj,j±2 (where indices are taken mod 5).
For the first, consider the dynamics in the subspace where

x(2) = x(3) = x(4) = 0, namely, the system

x(1)
i+1 = rx(1)

i (1 − x(1)
i ) e−γ x

(5)
i ,

x(5)
i+1 = rx(5)

i (1 − x(5)
i ).

(5)

System (5) has fixed points at (x(1), x(5)) = (x̂, 0) ≡ ξ1 and
(x(1), x(5)) = (0, x̂) ≡ ξ5. Consider an initial condition close to ξ1 but
with x(5)

0 6= 0. Since the x(5) equation is decoupled from x(1), then it
behaves as it would in the uncoupled logistic map, specifically, the
x(5) component initially grows and approaches the value x̂. As x(5)

grows, the coupling term in the x(1) equation has the effect of essen-
tially reducing the r value of the logistic map in the x(1) equation to,
eventually, re−γ x̂. Thus, if re−γ x̂ < 1, then x(1) will eventually decay
to zero, and the trajectory approaches ξ5. There is, thus, a hetero-
clinic connection from ξ1 to ξ5, and by symmetry, heteroclinic cycles
from ξj to ξj−1.

For the second type of connection, consider the dynamics in
the subspace where x(2) = x(4) = x(5) = 0, namely, the system

x(1)
i+1 = rx(1)

i (1 − x(1)
i ),

x(3)
i+1 = rx(3)

i (1 − x(3)
i ).

(6)

In this subspace, both x(1) and x(3) are decoupled from each other.
There are three fixed points, (x(1), x(3)) = (x̂, 0) ≡ ξ1, (x(1), x(3))

= (0, x̂) ≡ ξ3, and (x(1), x(3)) = (x̂, x̂) ≡ ξ1,3. Both ξ1 and ξ3 are sad-
dle points, and perturbations close to these fixed points will result in
trajectories, which approach ξ1,3. There are, thus, heteroclinic con-
nections between ξ1 and ξ1,3, ξ3 and ξ1,3, and by analogy, heteroclinic
connections between any ξj and ξj,m or ξm,j.

Finally, we consider the dynamics of (4) in a three-dimensional
subspace and show that there is a heteroclinic connection from
ξj,j+2 to ξj−1,j+2. Consider the dynamics in the subspace where x(2)

= x(4) = 0, namely, the system

x(1)
i+1 = rx(1)

i (1 − x(1)
i ) e−γ x

(5)
i ,

x(3)
i+1 = rx(3)

i (1 − x(3)
i ),

x(5)
i+1 = rx(5)

i (1 − x(5)
i ).

(7)

There are, as before, fixed points in this system with one compo-
nent non-zero, but of interest right now are the two fixed points with
(x(1), x(3), x(5)) = (x̂, x̂, 0) ≡ ξ1,3 and (x(1), x(3), x(5)) = (0, x̂, x̂) ≡ ξ3,5.
Note first that the x(3) and x(5) components are decoupled. Both have
stable fixed points at x(i) = x̂. Thus, perturbations close to ξ1,3 will
have an x(3) component, which remains close to x̂, but, as in the case
of the connection between ξ1 and ξ5, the x(5) component will grow,
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and again, so long as r e−γ x̂ < 1, the x(1) component will decay to
zero.

Due to the rotational symmetry of the system (4), we, thus, have
three families of heteroclinic connections, namely,

ξj → ξj−1,

ξj → ξj,k, k = j ± 2,

ξj,j+2 → ξj−1,j+2.

(8)

Note that here, indices are taken mod 5. In later sections, indexes
are taken mod n, where n is the number of nodes in the graph.
We refer to the families of heteroclinic connections as 1 → 1 con-
nections, 1 → 2 connections, and 2 → 2 connections, respectively,
where a p → q connection is a transition from a fixed point with p
nodes active to a fixed point with q nodes active.

The complete set of connections between fixed points is shown
in panel (b) of Fig. 2. Notice that there are two heteroclinic cycles,
one between fixed points of type ξj, with 1 → 1 connections, and
the other between fixed points of type ξj,k, with 2 → 2 connections.
The 1 → 2 connections are not part of any cycles. In Fig. 3, we
show numerical simulations showing trajectories close to each of
these cycles. We will compute the stability of cycles of these types
in general in Sec. IV that follows. We shall see that the cycle between
fixed points of type ξj,k can have some form of stability if parameters

are chosen correctly, specifically, if γ >
3 log r

2x̂
, but the cycle between

fixed points of type ξj can never be stable. However, if initial condi-
tions are chosen carefully (in a manner described in that section), we
can, as seen in panel (b) of Fig. 3, observe this cycle for a reasonably
long period of time.

III. ENUMERATION OF FIXED POINTS AND

HETEROCLINIC CONNECTIONS FOR A GENERAL

DIRECTED GRAPH

In this section, we describe how to find the fixed points and
heteroclinic connections in phase space for any directed graph with
inhibitory coupling. In Sec. IV that follows, we apply this to an
n-node graph with nearest-neighbor coupling.

A. Enumeration of fixed points

For convenience and readability, we restate the general system
(1) with N nodes,

x(k)
i+1 = f(x(k)

i ) e−γ
∑

j Ajkx
(j)
i , k = 1, . . . , N,

where Ajk is an adjacency matrix. We enumerate the fixed points that
can occur in this system, specifically, those with one or more non-
zero coordinates. Fixed points can have any number of non-zero
coordinates, so long as the corresponding nodes are not adjacent in
the physical network. More formally, consider a partition of the first
N natural numbers into two sets,

Z+={α1, α2, . . . , αJ}, Z0 = {β1, β2, . . . , βN−J},

FIG. 3. The figure shows the trajectories of Eq. (4) cycling between fixed points
with (a) two nodes active and (b) one node active. The components x(1), . . . , x(5)

are represented by the colors blue, red, yellow, purple, and green, respectively.
Both panels have r = 2. Panel (a) has γ = 3.04, and panel (b) has γ = 6.24.
The cycle shown in (a) is fragmentarily asymptotically stable, but the one in (b)
is not, as can be seen at i ≈ 850 where x5 (green) becomes O(1) and x2 (red)
remains on, indicating that the trajectory has moved away from the cycle with only
one node active at any one time.

with J < N, αk, βk ∈ {1, . . . , N}. Then, the point with

x(α) = x̂, α ∈ Z+,

x(β) = 0, β ∈ Z0

is a fixed point of (1) if Aα̂α = 0 for all pairs (α̂, α) ∈ Z+ × Z+. We
label this fixed point ξZ+ . In the language of graph theory, Z+ is
called an independent set.

B. Existence of heteroclinic connections in phase

space

Consider a fixed point ξZ+ in system (1), with |Z+| = J (i.e.,
there are J nodes active). We label the set of suppressed nodes at ξZ+
to be Zs(Z+), where

Zs(Z+) = {a1, a2, . . . , as(Z+)},

where for each al, there exists at least one αk ∈ Z+ with Aalαk

= 1. We further define the suppression number of a node al to
be the number of different αk ∈ Z+ with Aalαk

= 1. The remain-
ing nodes are the growing nodes, and we define Zg(Z+) = {1, . . . ,
N}\(Z+ ∪ Zs(Z+)).
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It is simple to check that the linearization of system (1) about
ξZ+ has the following eigenvalues:

• J eigenvalues equal to 2 − r, with eigenvectors in each of the
directions corresponding to the active nodes.

• s(Z+) eigenvalues in the suppressed directions. Each of these
will be equal to r e−nsγ x̂, where ns is the suppression number of
that node.

• N − J − s(Z+) eigenvalues equal to r. These are the growing
nodes.

We assume that 1 < r < 3 and r e−γ x̂ < 1, so each fixed point
is a saddle. There are two ways in which heteroclinic connections
between fixed points can arise.

Consider a fixed point ξZ+ and let b ∈ {1, . . . , N}\Z+. Consider
the subspace in all components in Z+ ∪ {b} are fixed at zero. There
are then three possible cases:

1. b ∈ Zs(Z+) and so ξZ+ is a sink in this subspace. There are no
heteroclinic connections from ξZ+ in this subspace.

2. b ∈ Zg(Z+) and Z+ ∩ Zs({b}) = ∅. Then, there is a heteroclinic
connection from ξZ+ to ξZ+∪{b}. This is a heteroclinic connection
of type |Z+| → |Z+| + 1.

3. b ∈ Zg(Z+), and Z+ ∩ Zs({b}) = Z− is non-empty. Then, ini-

tial conditions near ξZ+ will have an increasing x(b) component.
All x(a) (for a ∈ Z−) will eventually decay, and the trajectory
will asymptote toward the fixed point ξZ+∪{b}\{Z−} (which has
node b active but nodes in Z− inactive). This is a heteroclinic
connection of type |Z+| → |Z+| − |Z−| + 1.

Note that for the directed graph with nearest-neighbor cou-
pling, each node only inhibits one single other node, and so in case 3
above, |Z−| = 1 always. Thus, for those examples, the number of
active nodes can increase via way of heteroclinic connections but
it can never decrease.

IV. DIRECTED GRAPH WITH NEAREST-NEIGHBOR

COUPLING

In this section, we consider the case of a general n-node ring
graph, with one-way nearest-neighbor coupling. That is, system (1)
with A a cyclic permutation matrix, given by equation

x(k)
i+1 = f(x(k)

i ) e−γ x
(k−1)
i , k = 1, . . . , N. (9)

We refer to these graphs as (N, 1)-graphs.
Note that system (9) is equivariant with respect to the group

ZN, generated by the element σ , which has the action

σ(x(1), . . . , x(N)) = (x(N), x(1), . . . , x(N−1)). (10)

As for the five-node system, Eq. (9) has n fixed point solutions
ξj each with the jth component equal to x̂, and all other components
zero. Other fixed points are found using the method in Sec. III A.12

Note that for any set of nodes Z+, Zs(Z+) = |Z+|, that is, the number
of suppressed nodes is the same as the number of active nodes, and
each suppressed node has a suppression number of one.

FIG. 4. The figure shows part of the resulting heteroclinic network between fixed
points for the (6, 1)-graph. Not shown (for clarity) are the ξj fixed points, the het-
eroclinic cycle between these, and the other heteroclinic connections from them,
or the xj,j+2,j+4 fixed points (which are stable).

A. Examples of heteroclinic networks

Using the methods described in Sec. III, we give some further
examples of the heteroclinic networks, which occur in (N, 1)-graphs.

1. (6, 1)-graph

The (6, 1)-graph has six fixed points with one non-zero com-
ponent, nine with two non-zero components, and two with three
non-zero components. The latter are stable and the remainder are
saddles. Each of the ξj fixed points with one non-zero component
has heteroclinic connections to ξj−1, and to the three fixed points
ξj,j+2, ξj,j+3, and ξj,j+4 with two non-zero components. There is, thus,
a heteroclinic cycle between the nodes of type ξj. Note that the
fixed points with two non-zero components can be divided into two
classes depending on whether the spaces between the active com-
ponents is 2 and 2 (the fixed points ξj,j+3) or 1 and 3 (the fixed
points ξj,j+2). The subset of the heteroclinic network between just
these fixed points is shown in Fig. 4 .

2. (7, 1)-graph

The (7, 1)-graph has 7 fixed points with 1 non-zero component,
14 with 2 non-zero components, and 7 with 3 non-zero compo-
nents. The fixed points with two non-zero components can further
be divided into two classes of types ξj,j+2 and ξj,j+3. The heteroclinic
network between the fixed points with two or three non-zero com-
ponents is shown in Fig. 5. Each of the ξj fixed points, which is not
shown here, will have heteroclinic connections to ξj−1, ξj,j+2, ξj,j+3,
and ξj,j+4, again, creating a heteroclinic cycle between the nodes of
type ξj.
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FIG. 5. The figure shows part of the resulting heteroclinic network between fixed
points for the (7, 1)-graph. Not shown (for clarity) are the ξj fixed points and the
heteroclinic connections from (and cycle between) these.

B. Symmetric subcycles

As can be seen from the examples given so far of the (5, 1)-,
(6, 1)-, and (7, 1)-graphs, there can exist many different heteroclinic
cycles within the heteroclinic network in phase space. As the num-
ber of nodes in the ring graph increases, so too will the number of
heteroclinic cycles. In the following, we establish stability results for
some of these subcycles. Although in theory our method can be used
for any subcycle, in practice, it is much easier to compute explicit
stability conditions if the cycle is symmetric. That is, if the cycle
is between n fixed points ζ1, . . . , ζn, then there exists a symmetry
ρ = σ M (for some M) such that ζj = ρζj−1 for all j ∈ 2, . . . , n (and
ζ1 = ρζn).

Note that for both the (6, 1)- and the (7, 1)-graph, such cycles
exist between the ξj fixed points. For the (7, 1)-graph, symmet-
ric cycles also exist between the ξj,j+3 fixed points and the ξj,j+2,j+4

fixed points. However, for the (6, 1)-graph, there is no symmet-
ric cycle between fixed points with two non-zero components
(see again Fig. 4).

In this section, we enumerate the possible symmetric cycles in
(N, 1)-graphs. Clearly, the symmetry requires the number of active
coordinates at each fixed point to be the same, and additionally, that
the spacing of the active coordinates around the ring is the same
at each fixed point. This gives restrictions on the allowed spacing
between the active nodes, as follows.

In Fig. 6(a), we show an n-node ring graph and suppose that
there are three nodes which are active (colored blue). The nodes col-
ored red are those which are being suppressed by the blue nodes,
and all others are colored green. Suppose that there are n1, n2, and
n3 green nodes between each pair of blue and red nodes (as marked
in the figure) (where n1 ≥ 1, n2, n3 ≥ 0). In order for the next fixed

point to have the same number of active components, the next node
to reach O(1) much be adjacent to a blue node: the heteroclinic
connection must be of type 3 → 3. Without loss of generality, we
suppose that the next node to reach O(1) is the node marked with a
yellow star. The next fixed point in the cycle, thus, has nodes colored
as in Fig. 6(b) (the yellow star marks the same node). There are then
two options for how we could rotate the arrangement at the second
fixed point to match the arrangement at the first. Either (i) we rotate
panel (b) anticlockwise by n1 + 1 nodes, and must, therefore, have

n1 − 1 = n2, n2 = n3, n3 + 1 = n1,

which implies n2 = n3 = n1 − 1; or, (ii), we rotate panel (b) clock-
wise by n1 + 1 nodes, and then we must have

n1 − 1 = n3, n3 + 1 = n2, n2 = n1,

which implies n1 = n2 = n3 + 1.
If there are instead J > 3 nodes active, rather than just three,

similar arguments can be made, and the results give the same two
possible cases. In case (i), we write n1 = p − 1, n2, . . . , nJ = p − 2,
and the total number of nodes is N = pJ + 1, for some p ≥ 2. In case
(ii), we write nJ = s − 3, n1, . . . , nJ−1 = s − 2 and the total number
of nodes is N = sJ − 1, for some s ≥ 3.

In the case where there is only a single active node (J = 1), then
clearly all fixed points are symmetric. In the case where J = 2, the
same arguments apply as for J = 3 or more, except that there is no
distinction between cases (i) and (ii) above.

Note that in both cases (i) and (ii), the spacing between the
active nodes is such that all gaps between active nodes are of equal
length except one that is one greater or fewer than the others. In
Fig. 7, we show four possible types of fixed points in the graph with
N = 11, with two, three, four, and five active nodes, respectively. The
fixed points with three [Fig. 7(b)] and four [Fig. 7(c)] active nodes
are in case (ii): one gap is smaller than the others. The fixed point
with five active nodes [Fig. 7(d)] is in case (i): one gap is bigger than
the others.

The maximum value that J can take (the maximum number
of active nodes at a fixed point) is equal to N/2 if N is even, and
(N − 1)/2 if N is odd. We refer to these fixed points as maximally
active fixed points.

C. Construction and analysis of heteroclinic cycles

We now specifically construct a heteroclinic connection
between two fixed points and use this construction to show how
the stability of a heteroclinic cycle between fixed points can be com-
puted. We first consider the dynamics within an epoch, which we
define to be the length of time a trajectory spends in a neighbor-
hood of a single fixed point. We then discuss how the trajectory
transitions between epochs. This method echoes the construction of
Poincaré maps, which is typical in the analysis of heteroclinic cycles
in continuous-time systems.8,11,13,14

1. Dynamics within one epoch

Consider the dynamics of (9), with N nodes in the graph, near
a fixed point at which J nodes are active, that is, an equilibrium
at which J components are equal to x̂. Then, by the arguments
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FIG. 6. Each figure (a) and (b) shows a schematic diagram of a fixed point in
an N-ring graph with nearest-neighbor one-way connections. The blue nodes are
active, the red nodes are suppressed, and the remainder are green. The numbers
(e.g., n1) indicate the number of green nodes between the red/blue pairs. The fixed
points in (a) and (b) are considered to be adjacent in a heteroclinic cycle.

given in Sec. III B, there will be J negative eigenvalues and, hence,
J components, which are decaying. Similarly, there will be N − 2J
components that are growing. We give a schematic sketch of this in
Fig. 8 and note that the only initial condition we have specified is
that one of the decaying components starts at O(1). We have further
specified that one of the growing components reaches O(1) at the
end of the period of time shown in the figure. We label this period of
time one epoch and note that after this epoch, the trajectory will be
in the neighborhood of a different fixed point, which may have the
same, or one more, nodes that are active.

We label each of the growing components, in order of largest
to smallest initial conditions,

FIG. 7. The figures show fixed points in an 11 node network with (a) two, (b) three,
(c) four, and (d) five active nodes, respectively. Each of these fixed points has a
spacing between the active nodes where all gaps are equal except one, that is
one greater or fewer than the others.

FIG. 8. The figure shows a schematic of a time series of one epoch of a trajectory
close to a fixed point in system (9).
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xe, xs1 , . . . , xsL ,

where L = N − 2J − 1, and we label each of the decaying compo-
nents, again in order of largest to smallest initial conditions,

xc, xtJ−1
, xtJ−2

, . . . , xt1 .

We use a superscript “in” and “out” to indicate the initial and final
conditions for each of the components. Recall that each of the grow-
ing components grows at a rate r > 1, and each of the decaying
components decays at a rate r exp(−γ x̂) < 1. Let the number of
iterations in the epoch shown in Fig. 8 be T, and then we have

log(xin
e ) + T log r = O(1),

or, assuming that xin
e � 1 and, hence, T is large

T = − log(xin
e )

log r
+ O(1).

We can then use this expression for T to compute the “out” coor-
dinates of the other components in terms of the “in” components.
Specifically, we find

log(xout
si

) = log(xin
si
) − log(xin

e ), i = 1, . . . , L,

log(xout
ti

) = log(xin
ti
) +

(

γ x̂

log r
− 1

)

log(xin
e ), i = 1, . . . , J − 1,

log(xout
c ) =

(

γ x̂

log r
− 1

)

log(xin
e ).

We write δ =
(

γ x̂

log r
− 1

)

, Xc = log(xc), etc. and then have the

following linear map from the “in” variables to the “out” variables,




Xout
si

Xout
ti

Xout
c



 =





−1l Il 0
δ1j−1 0 Ij−1

δ 0 0









Xin
e

Xin
si

Xin
ti



 , (11)

where 1m is a length m column vector of 1’s, and Im is the m × m
identity matrix.

2. Transitions between epochs

In this section, we discuss how to map the “out” variables given
in Eq. (11) onto a new set of “in” variables for the next epoch.

In Fig. 9, we show how the nodes are labeled (as in the time
series schematic shown in Fig. 8) for case (i). The node with the
yellow star is xe, as described above. The remaining growing nodes
are xs1 , . . . , xsL , where L = N − 2J − 1. As per the labeling scheme
in Fig. 8, xs1 is the component that will become O(1) next in the
sequence (following xe), and by applying the necessary rotations
between fixed points, it can be seen how this node is selected. Simi-
lar arguments explain how the other growing nodes are labeled. The
labeling of the contracting nodes is done in a similar fashion: xc is the
component that was O(1) at the start of the epoch and, hence, was
blue in the previous fixed point: application of the rotation between
panels (a) and (b) in Fig. 6 gives us this label. The xti labels are found
in a similar way.

This results, for case (i), in the following transformation
between the “out” coordinates of the last fixed point, and the “in”

FIG. 9. The figure shows the labeling of the nodes in case (i).

coordinates of the next one,

xout
s1

= xin
e ,

xout
si

= xin
si−1

, i = 2, . . . , L,

xout
t1

= xin
sl

,

xout
ti

= xin
ti−1

, i = 2, . . . , J,

xout
c = xin

tJ
.

Combining this with the linear map in (11), we get that the
logarithmic coordinates in each epoch are transformed under the
map,

X → MX, (12)

where M is called a transition matrix and is given by

M =













































−1 1 0
... 0

... 0 · · · 0 0

−1 0 1
... 0

... 0 · · · 0 0
...

...
...

. . .
...

. . .
...

...
...

...

−1 0 · · ·
... 0

... 1 0 · · · 0

δ 0 · · ·
...

... 0 1 0 0
...

...
...

...
...

...
...

δ 0 · · ·
... 0

... 0 0 0 1

δ 0 · · ·
... 0

... 0 0 0 0













































. (13)
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The matrix M is a q × q-square matrix, where q = N − J − 1
= J(p − 1). There are L = N − 2J − 1 = J(p − 2) rows starting with
a −1 and J rows starting with a δ, and 1’s on the upper diagonal.

Here, δ = γ x̂

log r
− 1 as before.

In case (ii), the labeling of the coordinates can be computed in
the same way (although the labeling turns out to be different), but
the resulting map is exactly the same. That is, M is a q × q-square
matrix, with q = N − J − 1 = J(s − 1) − 2, the number of rows of
M starting with a −1 is L = N − 2J − 1 = J(s − 2) − 2, the number
of rows starting with a δ is still J.

In the original x coordinates, the map (12) has a fixed point
at x = 0, which corresponds to the heteroclinic cycle in the original
system. Podvigina8 gives results on the stability of this heteroclinic
cycle, dependent on the properties of the eigenvalues and eigenvec-
tors of the transition matrix. In Sec. IV D, we give a brief heuristic
argument explaining Podvigina’s results and then state the precise
requirements for stability.

D. Transition matrices and fragmentary asymptotic

stability

We begin this section with some formal definitions, referring
back to a generic dynamical system of form (3).

We define the ε-local basin of attraction of a set H, invariant
under f, as Bε(H),

Bε(H) = {x ∈ R
n | d(f i(x), H) < ε ∀ i ≥ 0

and

lim
i→∞

d(f i(x), H) = 0}. (14)

From Podvigina,8 we also have the following:
Definition 1. An invariant set H is fragmentarily asymptoti-

cally stable if, for any ε > 0,

µ(Bε(X)) > 0,

where µ is the Lebesgue measure of a set in R
n.

Now, suppose that for a heteroclinic cycle H, we have derived
a Poincaré map in logarithmic coordinates, as in Sec. IV C, of the
form

Xi+1 = MXi.

Here, the subscript index i now counts epochs, rather than individual
iterations of the original map. Let Xi have dimension q, so M is an
q × q matrix and then we can write the initial condition X0, in the
basis of eigenvectors vj of M, i.e.,

X0 = 6
q
j=1cjvj,

where the cj are scalars. Then, we find

Xi = 6
q
j=1λ

i
jcjvj,

where λj is the eigenvalue corresponding to the eigenvector vj. Let
λmax be the eigenvalue with the largest absolute value; then, the
leading order term of Xi is

Xi ≈ λi
maxcmaxvmax.

Recall that Xi are logarithmic variables, so xi → 0 if Xi → −∞, that
is, in order for the heteroclinic cycle to be stable, we require at least

that |λmax| > 1. However, in addition, the Xi values are required to
stay real and negative, so additional conditions are required, namely,
that λmax is real, and that all the entries in the eigenvector vmax are of
the same sign. Podvigina shows that if these conditions are satisfied,
then there exists an open set of initial conditions that remain close to
the heteroclinic cycle for all time, more specifically, the heteroclinic
cycle is fragmentarily asymptotically stable.

Lemma 1 (Adapted from Podvigina8). Let M be a transi-
tion matrix for a heteroclinic cycle H. Let λmax be the eigenvalue
with the largest absolute value of the matrix M, and vmax be the
associated eigenvector. Suppose λmax 6= 1. Then, H is fragmentarily
asymptotically stable if the following conditions hold:

1. λmax is real,
2. λmax > 1, and
3. vl

maxv
j
max > 0 for all l, j.

Note that the last condition is equivalent to requiring all the
entries of the eigenvector vmax to be non-zero and of the same sign.

E. Stability calculations

In this section, we will prove the following:

Theorem 1. Let δ∗ = q+1−J

J
. If q = J, then the correspond-

ing heteroclinic cycle is f.a.s. if δ > δ∗ and is unstable otherwise. All
heteroclinic cycles with q > J are unstable.

Note that δ > δ∗ is equivalent to γ >
log r

x̂
N−J

J
.

We prove Theorem 1 by presenting results about the eigenval-
ues of the matrix M. First, note that the characteristic polynomial of
M is

P(λ) = λq + λq−1 + · · · + λJ − δ(λJ−1 + · · · + λ + 1) = 0 (15)

(this follows, e.g., from Claim 1 in Postlethwaite and Dawes,15

p. 629), and recall that q = J(p − 1), p ≥ 2, J ≥ 1. To establish the
properties of the roots of the polynomial P(λ), we will appeal to three
classical results.

Theorem 2 (Descartes rule of signs). For a polynomial with
real coefficients, ordered by descending variable exponent, the number
of positive roots of the polynomial is either equal to the number of sign
changes between consecutive (nonzero) coefficients, or is less than it by
an even number. A root of multiplicity k is counted as k roots.

Of the q complex roots of P(λ), exactly one, r+, is real and pos-
itive, by Theorem 2. Note that since P(1) = (q − J) − δJ, we have
r+ > 1 if and only if δ > δ∗. Next, given a polynomial

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0,

with an 6= 0, define

f+(x) = |an|xn + |an−1|xn−1 + · · · + |a1|x − |a0|,

f−(x) = |an|xn − |an−1|xn−1 − · · · − |a1|x − |a0|,

and note that Theorem 2 shows that f+(x) has exactly one real

positive root, ˆf+ > 0, and f−(x) has exactly one real positive root
ˆf− > 0.

Theorem 3 (Cauchy9). All zeros z of f(x) lie in the annular
region

ˆf+ ≤ |z| ≤ ˆf−.
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We will also use the following:
Theorem 4 (Rouché10). Let f and g be functions analytic inside

and on a simple closed contour C, and suppose |g(z)| < |f(z)| on C.
Then, both f and f + g have the same number of zeros inside C (with
each zero counted as many times as its multiplicity).

We will prove the following:
Proposition 1. The polynomial P(λ) (with δ > 0) has roots

satisfying the following:

1. When q = J, r+ > 1 is the root of the largest magnitude.
2. When q > J we have the following cases:

(a) If J is odd and q is even, the root of largest magnitude is real
and negative. Call this root r−; then, there are q − 1 roots
inside |λ| = r−, one of which is r+, and q − 2 of which are
complex.

(b) If J and q are both even, or if q is odd, then there are
J − 1 roots inside |λ| = max{r+, 1}, of which exactly one, r−,
is real if and only if J is even, and there are q − J complex
roots outside |λ| = r+.

Proof. 1. First, in the case q = J, P(λ) = P−(λ), and so by
Theorem 3, all roots of P(λ) are bounded in magnitude by r+.
Recall that r+ > 1 when δ > δ∗.

2. When q > J, Theorem 3 is no longer of use. It is convenient to
study the related polynomial

Q(λ) = (λ − 1)P(λ) = λq+1 − (1 + δ)λJ + δ,

which has the same roots as P(λ), plus a root at λ = 1. Con-
sidering Q′(λ) = (q + 1)λq − J(1 + δ)λJ−1, and recalling that a
double root of a polynomial is also a root of the polynomial’s
derivative, we see that r+ = 1 when δ = δ∗ = (q + 1 − J)/J, and
that

Q′(r+) = (q + 1)r
q
+ − J(1 + δ)rJ−1

+ > 0 (16)

when δ > δ∗ (and Q′(r+) < 0 when δ < δ∗).
(a) In the case J odd and q even, we have

Q(−λ) = −λq+1 + (1 + δ)λJ + δ

= −Q(λ) + 2δ,

so Q(−r+) = −Q(r+) + 2δ = 2δ > 0. Since Q(λ) → −∞
as λ → −∞, there must exist a real root of Q(λ) between
−∞ and −r+. Thus, Q(λ), and hence also P(λ), has a real
negative root, r−, of greater magnitude than r+. The same
argument applies to Q(−1), so r− is also of greater mag-
nitude than the root at λ = 1. To show that (in this case)
r− is the root of largest magnitude, we apply Theorem 4, set-
ting f(λ) = λq+1 and g(λ) = −(1 + δ)λJ + δ. We have, on
the circle of radius |λ| = (1 + ε)|r−|,

|f(λ)| = |(r−(1 + ε))q+1|

> |(1 + δ)(r−(1 + ε))J| + δ

≥ |(1 + δ)(r−(1 + ε))J − δ|
= |g(λ)|,

where the first inequality follows since |rq+1
− | = |

(1 + δ)rJ
−| + δ and the second by the triangle inequality.

Then, by Theorem 4, Q(λ) = f(λ) + g(λ) has the same
number of complex zeros inside that circle as f(λ), namely,
q + 1. Hence, r− is the root of largest modulus.

(b) In the other cases, we will again apply Theorem 4. First,
consider δ < δ∗, so r+ < 1 and take f(λ) = −(1 + δ)λJ

and g(λ) = λq+1 + δ. For ε < 2(1 + q − J(1 + δ))/(q(q
+ 1)) (observing that ε > 0 since δ < δ∗), we have, on the
circle |λ| = 1 − ε,

|f(λ)| = |−(1 + δ)(1 − ε)J|
> (1 + δ)(1 − Jε)

= 1 + δ + ε(−J(1 + δ))

> 1 + δ + ε(−(q + 1) + εq(q + 1)/2)

= 1 − ε(q + 1) + ε2q(q + 1)/2 + δ

> (1 − ε)q+1 + δ

> |(1 − ε)q+1 + δ|
= |g(λ)|.

Similarly, if δ > δ∗, so r+ > 1, we inspect f(λ) and
g(λ) on the circle |λ| = (1 − ε)r+, with ε < 2(1 + q − J
(1 + δ)/rq+1−J)/q(q + 1) [which is again positive by (16)].
We have, similarly,

|f(λ)| = | − (1 + δ)(1 − ε)JrJ
+|

> (1 + δ)(1 − Jε)rJ
+

= r
q+1
+ + δ + εrJ

+(−J(1 + δ))

> (1 − ε)q+1r
q+1
+ + δ

> |(1 − ε)q+1rq+1 + δ|
= |g(z)|.

Theorem 4 implies that Q(λ) has J roots inside the circle |λ|
= 1 − ε (respectively, |λ| = (1 − ε)r+) if δ < δ∗ (respectively,
δ > δ∗), and so P(λ) has J − 1 roots inside those circles.

�

Proof of Theorem 1. When q = J, Proposition 1 shows that
λmax for the matrix M is real and is greater than 1 when δ is suffi-
ciently large (when δ > 1/J = δ∗). Note that since L = 0 in this case,
the first column of the matrix M only contains δ’s, and there are no
rows starting with a −1. Moreover, an easy calculation shows that
the corresponding eigenvector vmax is given by

vmax =





























1
δ

r+

(

∑J−2
k=0

1

r+k

)

δ

r+

(

∑J−3
k=0

1

r+k

)

...

δ

r+

(

1 + 1
r+

)

δ

r+





























, (17)
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which clearly has all entries non-zero and the same sign, and
Lemma 1 confirms that this state is fragmentarily asymptotically
stable.

When q > J, the conditions of Lemma 1 are not met, as λmax is
no longer real and positive. �

F. Appearance of instabilities

As described in the section above, many of the heteroclinic
cycles we find are unstable. However, if initial conditions are care-
fully chosen, then the cycles can be observed for reasonably long
times in numerical simulations. Specifically, suppose that a het-
eroclinic cycle H has transition matrix M, with eigenvalues and
corresponding eigenvalues λi and vi. Suppose that the heteroclinic
cycle is unstable so that the eigenvalue with largest magnitude,
which without loss of generality, we assume to be λ1, does not sat-
isfy the conditions of Lemma 1. Assume further that λ2 does satisfy
the conditions of Lemma 1. Then, if we choose initial conditions
X0 = c2v2, then the forward trajectory will remain close to H.

In numerical simulations, of course, errors accumulate, and the
trajectory can only remain close to H for a finite time. In Fig. 10(a),
we show an example of a trajectory, which remains close to an
unstable cycle for a long time. Here, the cycle in question is the
one between fixed points with one node active in the (5, 1)-graph.
In Fig. 10(b), we show the coordinates from (a) at the bottom of
each “valley” in the time series: this corresponds to the coordinates
at the transition between epochs and, hence, the coordinates Xj.
For the particular transition matrix for this cycle with the noted
parameters, λ1 and λ2 satisfy the assumptions given above, and λ1

is complex. Using these values for λ1 and λ2, we use least squares

to estimate the values of c1, c2, and c3 to fit the curve Xj = c1λ
j
2

+ c2|λ1|j cos(j arg(λ1) + c3) to the obtained data. The dashed line

in (b) shows the curve Xj = c1λ
j
2, that is, the data that would be

expected if there were no numerical errors and we were able to start
exactly on the required eigenvector. The solid curve includes the
second term and is clearly an excellent fit to the data points.

V. ANALYSIS OF RING GRAPH WITH

m-NEAREST-NEIGHBOR COUPLING

In this section, we expand on our results from Sec. IV to dis-
cuss ring graphs with m-nearest-neighbor coupling (m < N/2). We
find that, depending on the number of nodes, N, in the graph, and
the number m of neighbors coupled, different types of heteroclinic
networks can arise in the dynamics. Some of these have dynamics,
which can be described using the same methods as in Sec. IV, and
some of these are more complex. We refer to the N-node graph, with
m-nearest-neighbor coupling as the (N, m)-graph.

The smallest graph, which falls into this category (with m 6= 1),
is the a five-node graph, with m = 2, shown in Fig. 11(a). In this
example, it is not possible to have any fixed points, which have more
than one component non-zero, and the network of heteroclinic con-
nections between these fixed points is shown in Fig. 11(b). There
are two-subcycles in this network between five fixed points, and the
transition matrices for these cycles can be found using the methods
in Sec. IV. We find, for the cycle ξ1 → ξ5 → ξ4 → ξ3 → ξ2, that the

FIG. 10. (a) The figure shows a trajectory of Eq. (4) with initial conditions near
the unstable heteroclinic cycle between fixed points with one node active. The
components x(1), . . . , x(5) are represented by the colors blue, red, yellow, pur-
ple, and green, respectively. Parameters are r = 2 and γ = 6.24. The blue dots
in panel (b) show the coordinates at the bottom of each of the “valleys” in the

time series in panel (a). The dashed curve is Xj = c1λ
j

2. The solid curve is

Xj = c1λ
j

2 + c2|λ1|j cos(j arg(λ1) + c3). See the text for more details.

transition matrix is




−1 1 0
δ 0 1
δ 0 0



 .

The eigenvalues can be found explicitly as ±
√

δ, −1, and, thus, this
cycle can never be fragmentarily asymptotically stable. For the cycle
ξ1 → ξ4 → ξ2 → ξ5 → ξ3, the transition matrix is





δ 1 0
−1 0 1
δ 0 0



 ,

which has eigenvalues δ, ±i, but the eigenvector for the eigenvalue δ

has a zero in the second component and so this cycle can also never
be fragmentarily asymptotically stable. There are other routes tra-
jectories can take while still approaching the network: in fact, this
network is equivalent to the Rock–Paper–Scissors–Lizard–Spock
network investigated by Postlethwaite and Rucklidge (for ODEs),16

which has some very complicated dynamics: see Fig. 12 for a typical
time series.
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FIG. 11. The figure shows, in panel (a), the physical network of nodes for the
(5, 2)-graph, and in panel (b), the resulting heteroclinic network between fixed
points.

As a second example, consider the seven-node graph with two-
nearest-neighbor coupling, shown in Fig. 13(a). In this example,
there are seven fixed points, which have exactly one non-zero com-
ponent, and seven with exactly two non-zero components. The het-
eroclinic network between these fixed points is shown in Fig. 13(b).
Note the similarity in structure between this network and the net-
work shown in Fig. 2(b). The stability of the cycles between the fixed
points with either one or two non-zero components can be com-
puted in exactly the same way as shown previously, and we find that
the cycle between the fixed points with two non-zero components
can be stable if δ is large enough but the other cycle cannot.

As in the examples of the (N, 1) graphs, when transitioning
from one fixed point to another along a heteroclinic connection, the

FIG. 12. The figure shows a typical trajectory for the network shown in Fig. 11.
The components x(1), . . . , x(5) are represented by the colors blue, red, yellow,
purple, and green, respectively. Parameters are r = 2.5, γ = 3. Although the
network appears to be attracting (trajectories get closer to the fixed points as
time increases), the sequence in which the fixed points are visited is irregular and
complicated.

number of active nodes may increase, but it can never decrease. We
refer to those fixed points with the largest number of active nodes as
the maximally active fixed points, and in the following, discuss the
possible network of heteroclinic connections between these nodes
for a general (N, m)-graph. We have the following:

• If N = 0 mod (m + 1), then all maximally active fixed points
are asymptotically stable, and there are no heteroclinic connec-
tions.

• If N = 1 mod (m + 1), then all maximally active fixed points
have an unstable manifold of dimension one, and there exists
a heteroclinic cycle between the fixed points. The transition
matrix for this heteroclinic cycle takes the form of M in Eq. (13),
with all rows starting with a δ. It can, thus, be asymptotically
stable if δ is sufficiently large.

• If N = p mod (m + 1), p 6= 0, 1, then all maximally active fixed
points have an unstable manifold of dimension p, and there
exists a heteroclinic network between the fixed points. We con-
jecture that this network can be asymptotically stable for large
enough δ but may have complex dynamics.

VI. DISCUSSION

In this paper, we have shown that heteroclinic networks can
typically arise in the phase space dynamics of certain types of sym-
metric (physical space) graphs with inhibitory coupling. We further
showed that at most, one of the subcycles can be stable for an
open set of parameters and, hence, observable in simulations. Many
studies of coupled map lattices and complex networks seek asymp-
totic behavior described by a Sinai–Ruelle–Bowen (SRB) invariant
measure.17 However, the dynamics associated with a stable hetero-
clinic cycle preclude this behavior—the dynamics is not ergodic,
and long-term averages do not converge. In particular, averaged
observed quantities, such as Lyapunov exponents, are ill-defined and
will oscillate at a progressively slower rate.
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FIG. 13. The figure shows, in panel (a), the physical network of nodes for the
(7, 2)-graph, and in panel (b), the resulting heteroclinic network between fixed
points.

From this work arises the more general question of whether
or not a stable heteroclinic cycle is likely to be found in the cor-
responding phase space network of a randomly generated physical
network of nodes. We performed some preliminary investigations
on this question numerically, for randomly generated Erdos–Rényi
graphs (where each edge exists with some fixed probability). We
find that the probability of the existence of heteroclinic cycles in
the phase space network increases both as the number of nodes in
the physical network increases and also as the density of edges in the

physical network decreases. However, even in cases where the prob-
ability of the existence of heteroclinic cycles is very high, there is also
a very high chance of the existence of a stable fixed point in the phase
space. Thus, the question of the stability of the heteroclinic cycle is
important in determining whether or not the heteroclinic cycle, and
associated slowing down of trajectories, will be observed in the phase
space associated with a randomly generated graph. The methods we
describe in this paper can be used to determine the stability of any
specific heteroclinic cycle but as yet, it is not clear how one would
determine the likelihood of a heteroclinic cycle to be stable in such a
randomly generated network.

In this work, we consider specific dynamics for each single node
in the directed graph in physical space; specifically, we suppose that
there is only an “on” state and an “off” state. If more general dynam-
ics are allowed, then other types of heteroclinic cycles can be found
in ring graphs.18

An obvious extension of this work would include different
types of coupling and/or different dynamics in the uncoupled nodes.
For example, neural networks may also be modeled with dynamics,
such as phase-coupling and pulse-coupling.19 Specifically, a situa-
tion that might better exemplify neuronal dynamics could include
both inhibitory and excitatory types of connections, and nodes could
require a “kick” from an “on” excitatory connection in order to leave
a stable zero state. Networks of this type were investigated by Ash-
win and Postlethwaite,20 although they made no attempt to classify
the possible heteroclinic networks that could occur. Further work on
this avenue of investigation is ongoing.
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