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Single-shot error correction corrects data noise using only a single round of noisy measurements on

the data qubits, removing the need for intensive measurement repetition. We introduce a general concept

of confinement for quantum codes, which roughly stipulates qubit errors cannot grow without triggering

more measurement syndromes. We prove confinement is sufficient for single-shot decoding of adversar-

ial errors and linear confinement is sufficient for single-shot decoding of local stochastic errors. Further

to this, we prove that all three-dimensional homological product codes exhibit confinement in their X

components and are therefore single shot for adversarial phase-flip noise. For local stochastic phase-flip

noise, we numerically explore these codes and again find evidence of single-shot protection. Our Monte

Carlo simulations indicate sustainable thresholds of 3.08(4)% and 2.90(2)% for three-dimensional (3D)

surface and toric codes, respectively, the highest observed single-shot thresholds to date. To demonstrate

single-shot error correction beyond the class of topological codes, we also run simulations on a randomly

constructed family of 3D homological product codes.

DOI: 10.1103/PRXQuantum.2.020340

I. INTRODUCTION

Quantum error correction encodes logical quantum

information into a codespace [1]. Given perfect measure-

ment of the codespace stabilizers we obtain the syndrome

of any error present. A suitable decoding algorithm can

determine a recovery operation that returns the system to

the codespace. Either this recovery is a perfect success, or a

failure resulting in a high weight logical error. However, in

real quantum systems the measurements are not perfect and

this simple story becomes more involved. The three main

strategies for tackling noisy measurements are as follows:

repeated measurements on the code [2,3]; performing mea-

surement driven error correction on a cluster state [4–9]; or

using a single-shot code and decoder [10]. Focusing on the

last strategy, the single-shot approach has the advantage of
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no additional time cost or cluster-state generation cost and

provides a resilience against time-correlated noise [11]. In

single-shot error correction, some residual error persists

after each round of error correction, but this residual error

is kept small and does not rapidly accumulate. However,

only a special class of codes support single-shot error cor-

rection, but exactly which codes and why is not yet fully

understood.

Bombín coined the phrase single-shot error correction

and remarked that it “is related to self-correction and

confinement phenomena in the corresponding quantum

Hamiltonian model.” [10]. He defined confinement for

subsystem codes, and showed that it is sufficient for single-

shot error correction with a limited class of subsystem

codes. In particular, he proved that the three-dimensional

(3D) gauge color code supports single-shot error cor-

rection, though it is unknown whether the correspond-

ing Hamiltonian exhibits self-correction. Later single-shot

error correction was numerically observed in a variety of

higher-dimensional topological codes, including the fol-

lowing: the 3D gauge color code [12], four-dimensional

(4D) surface codes [13] and their hyperbolic cousins [14],

and 3D surface codes with phase noise [15–17]. Campbell

established a general set of sufficient conditions, encap-

sulated by a code property called good soundness, that

ensured adversarial noise could be suppressed using a

2691-3399/21/2(2)/020340(35) 020340-1 Published by the American Physical Society
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single-shot decoder [18]. While Campbell’s sufficiency

conditions explained single-shot error correction in a wide

range of codes, around the same time it was shown that

quantum expander codes [19–21] supported single-shot

error correction [22]. However, quantum expander codes

lack the soundness property so neither Bombín’s notion

of confinement or Campbell’s notion of soundness is suf-

ficient to encompass all known examples of single-shot

error correction. Our work provides the first framework

that captures all known forms of single-shot error cor-

rection, encompassing both previous approaches within a

single theory.

We can use different classical algorithms to decode a

given quantum code, and this choice will affect the utility

of the code. Different decoders have various time com-

plexities and error tolerances, which affects the resources

required by a quantum computer based on the code

[23–25]. Thus far, single-shot decoders come in two fla-

vors. The first are two-stage decoders [12,13], where stage

1 decoding repairs the noisy syndrome using redundancy

in the parity check measurements and stage 2 decoding

solves the corrected syndrome problem. The second fla-

vor of decoders computes a correction from the noisy

syndrome without attempting to repair it. Most exam-

ples of such decoders are local decoders, meaning that

the whole correction is made up of corrections computed

in small local regions of the code using syndrome infor-

mation in the immediate neighborhood [14–17,21,26,27].

However, there are some examples of nonlocal decoders

such as belief propagation (BP) being used for single-shot

error correction without syndrome repair [14,27]. A natural

question to ask is the following: what is the optimal decod-

ing strategy for single-shot codes? Even in the simple case

of the 3D toric code this is not well understood.

The remainder of this paper is structured as follows.

In Sec. II, we give a summary of our results. In Sec. III,

we formally state our results on confinement and single-

shot decoding. In Sec. IV, we detail the construction of 3D

product codes. In Sec. V, we present our numerical sim-

ulations and analyse their results. Finally, in Sec. VI, we

discuss future research directions that flow from this work.

II. SUMMARY OF RESULTS

This paper is in two parts: on the one hand, we propose

the concept of confinement as an essential characteris-

tic for a code family to display single-shot properties; on

the other, we investigate the single-shot performances of

the class of 3D homological product codes [19,28,29],

which we call 3D product codes. First, we introduce con-

finement in Sec. III. Loosely, confinement stipulates that

syndrome weight must increase with qubit weight, under

some caveats. We formalize the notion of a code family

having good confinement, which we prove is a sufficient

condition for single-shot decoding in the adversarial noise

setting. In addition to that, we prove that good linear con-

finement is a sufficient condition for a family of codes

to exhibit a sustainable single-shot threshold for local

stochastic noise (Appendix A). Second, we review the con-

struction of the 3D product codes in Sec. IV, and show that

the 3D surface and toric codes are particular instances of

this more general class of codes in Appendix B. We prove

that all 3D product codes have (cubic) confinement for

phase-flip errors (Appendix C), and therefore have single-

shot error correction for adversarial phase-flip noise. We

expect these codes to have single-shot error correction

for local stochastic phase-flip noise as well. In fact, our

definition of confinement generalizes the definition pro-

posed by Bombín [10] for the gauge color code and the

notion of robustness for expander codes [20]; since both

class of codes are proven to have a single-shot thresh-

old for local stochastic noise [10,22] we conjecture that

low-density parity-check (LDPC) codes with good (super-

linear) confinement have a threshold too. We investigate

this case numerically.

In the single-shot setting, the code always has some

residual error present and the error-correction procedure

introduces noise correlations in subsequent rounds of

single-shot error correction. How then do we assess suc-

cess or failure of a decoding algorithm? The concept of

sustainable threshold was proposed by Brown et al. [12]

as a metric for single-shot codes and decoders. We use

pth(N ) to denote the threshold of a code-decoder family

given N cycles of qubit noise, noisy syndrome extraction,

and single-shot decoding, with the N th cycle followed by a

single round of noiseless syndrome extraction and decod-

ing. The final round ensures that we return the system

to the codespace and assess success by the absence of a

logical error. We define the sustainable threshold of the

code-decoder family to be

psus = lim
N→∞

pth(N ). (1)

Numerically, this is estimated by plotting pth(N ) against N

and fitting to the following ansatz,

pth(N ) = psus{1 − [1 − pth(0)/psus]e
−γ N }. (2)

We numerically estimate the sustainable error thresholds

of 3D toric and surface codes for two different two-stage

decoders. We surpass all previous single-shot error thresh-

olds for these code families, and we also obtain the highest

phase-flip noise threshold; see Table I. For our single-

shot simulations, we use an independent and identically

distributed noise model where each qubit experiences a

phase-flip error with probability p , and each stabilizer

measurement outcome is flipped with probability q = p .

We investigate two decoding strategies: one where we use

minimum-weight perfect matching (MWPM) for stage-1

decoding and belief propagation with ordered statistics

020340-2
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TABLE I. Comparison of the error thresholds of toric code

decoders (results from this work are highlighted in bold).

For phase-flip noise, BP+OSD outperforms all prior art, and

approaches the theoretical upper bound given by mapping to a

statistical mechanical model. In the single-shot regime, MWPM

and BP+OSD outperforms the Sweep decoder (the theoretical

maximum is unknown in this case).

Toric code decoder Phase-flip threshold

Erasure mapping [30] 12.2%

Toom’s rule [15] 14.5%

Sweep [17] 15.5%

Renormalization group [13] 17.2%

Neural network [31] 17.5%

BP+OSD 21.55(1)%

Statistical phase transition [32–36] 23.180(4)%

Single-shot threshold

Sweep 1.7%

MWPM and BP+OSD 2.90(2)%

decoding (BP+OSD) for stage-2 decoding and another

where we use BP+OSD for both decoding stages. Figure 1

shows the 3D surface code sustainable threshold fit, using

the MWPM and BP+OSD decoding strategy. We find a

comparable sustainable threshold for the 3D surface code

using BP+OSD for both decoding stages, as shown in

Table II.
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FIG. 1. Numerical estimate of the sustainable threshold of the

3D surface code for a two-stage decoder where we repair the syn-

drome using MWPM, and solve the corrected syndrome problem

using BP+OSD. We plot the errors threshold pth(N ) for different

numbers of cycles, N . Using the ansatz in Eq. (2), we estimate

the sustainable threshold to be psus = 0.0308(4) with γ = 3.23.

The inset shows a plot of the logical error rate, pfail, against the

phase-flip and measurement error rate, p , for N = 8. The error

threshold pth(8) is the point at which the curves intersect (L is

the code distance).

TABLE II. Sustainable thresholds for 3D toric and surface

codes for different single-shot decoding strategies. For each entry

in the table, we did an analogous simulation to that described in

Fig. 1. The numbers in brackets are the standard errors.

Code MWPM and BP+OSD BP+OSD ×2

Surface 3.08(4)% 2.90(1)%

Toric 2.90(2)% 2.78(2)%

There is an important difference in single-shot decoding

for the 3D toric code when compared with the 3D surface

code. Specifically, in the 3D toric code, the syndrome-

repair stage of single-shot decoding can fail, producing a

“syndrome” for which there is no corresponding error. We

find that this failure mode substantially increases the logi-

cal error rate of the 3D toric code when compared with the

3D surface code (although the thresholds are very similar).

We provide a novel decoding subroutine for dealing with

these errors, which dramatically improves the performance

of the 3D toric code. Furthermore, our subroutine is appli-

cable to any single-shot LDPC code whose parity-check

matrix is not full rank.

The advantage of using BP+OSD for stage-1 decoding

is that, unlike MWPM, this decoder does not rely on the

special structure of the looplike syndrome present in 3D

toric and surface codes. We use BP+OSD for single-shot

decoding of a family of nontopological 3D product codes,

achieving sustainable thresholds that are comparable to

those of the 3D surface code. This is the second example

of single-shot decoding of nontopological codes, the first

being the quantum expander codes considered in Ref. [27].

Whilst our single-shot threshold (2.7%) is slightly below

the corresponding value observed in quantum expander

codes (3%), our code family has other advantages over

expander codes. Most importantly, the expansion prop-

erties of our code family are less severe, which implies

that our code family would be easier to implement in

architectures with geometrically constrained connectivity.

III. DEFINITIONS AND THEOREMS

In this section, we introduce the definition of confine-

ment for a stabilizer code and exhibit a theoretical two-

stage decoder, the shadow decoder, which we prove is

single shot on confined codes against adversarial noise. We

refer the reader to Appendix A to see how a variant of the

shadow decoder can be used to prove that good families of

codes with linear confinement have a single-shot threshold

for local stochastic noise.

A stabilizer code encoding k logical qubits into n physi-

cal qubits can be described by its stabilizer group S and a

syndrome map σ(·). The stabilizer group S is an Abelian

subgroup of the Pauli group Pn on n qubits, which does not

contain −1 and has dimension n − k. The syndrome map

is not unique: any generating set of the group S defines a

020340-3
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valid syndrome map for the code. If {s1, . . . , sm} is one such

generating set, the associated function σ(·) maps a qubit

operator p ∈ Pn into the binary vector (s̄1, . . . , s̄m)T ∈ Fm
2 ,

where s̄i = 1 if si anticommutes with p and 0 other-

wise. Importantly, σ(·) is linear, meaning that σ(p · q) =
σ(p) + σ(q) over Fm

2 . Because any Pauli operator p ∈ Pn

can be factorized as the product of an X and a Z oper-

ator pX and pZ , we can identify it with a binary vector

p̄ = (p̄X , p̄Z)T ∈ F2n
2 , where the ith entry of p̄X /p̄Z is 1 if

and only if pX /pZ acts nontrivially on the ith qubit. Given

a Pauli operator p , its weight |p| is the number of qubits

on which its action is not the identity. Consider a stabilizer

code with syndrome function σ(·), then the reduced weight

of a Pauli operator p ∈ Pn on the physical qubits is

|p|red := min{|q| : σ(q) = σ(p), q ∈ Pn}.

A stabilizer code is said to be distance d if d is the min-

imum weight of a Pauli operator not in S that has trivial

syndrome. We refer to a code of length n, dimension k,

and distance d as a [[n, k, d]] code.

For a stabilizer code, we then have the following.

Definition 1 (Confinement). Let t be an integer and f :

Z → R some increasing function with f (0) = 0. We say

that a stabilizer code has (t, f ) confinement if, for all errors

e with |e|red ≤ t, it holds

f (|σ(e)|) ≥ |e|red.

The reduced weight of operators is crucial in this

definition to avoid making confinement fail by adding sta-

bilizer operators to arbitrarily increase the weight of an

otherwise low weight error.

Let us contrast this with Bombín’s notion of confine-

ment (Definition 16 of Ref. [10]) that has some simi-

larities but allows only for linear functions of the form

f (x) = κx for some constant κ . Many codes, including

3D product codes, have superlinear confinement functions,

as such Bombín’s definition does not encompass them.

Moreover, the concept of confinement is closely related

to soundness [18] but it is weaker and so able to encom-

pass more families of codes, such as the expander codes

[19–21], which are confined but not sound. Roughly speak-

ing, a code has good confinement if small qubit errors

produce small measurement syndromes; this differs from

good soundness, which entails that small syndromes can

be produced by small errors.

Formally, we define the following notion of good con-

finement for a family of stabilizer codes.

Definition 2 (Good confinement). Consider an infinite

family of stabilizer codes. We say that the family has good

confinement if each code in it has (t, f ) confinement, where

the following holds:

1. t grows with the length n of the code: t ∈ �(nb) with

b > 0;

2. and f (·) is monotonically increasing and indepen-

dent of n.

We say the code family has good X confinement if the

above holds only for Pauli-Z errors.

Our main analytic result is that codes with good confine-

ment are single shot.

Theorem 1. Consider a family of [[n, k, d]] quantum-

LDPC codes with good confinement and growing distance

d ≥ anb with a > 0 and b > 0. This code family is single

shot for the adversarial noise model. If the code family only

has good X confinement then it is single shot with respect

to Pauli-Z noise.

We conjecture that the result of Theorem 1 can be

extended to deal with local stochastic noise and used to

show that LDPC codes with good confinement have a

single-shot threshold. In this direction, we are able to prove

that linear confinement is sufficient for codes to exhibit a

single-shot threshold in the local stochastic noise setting.

Theorem 2. Consider a family of [[n, k, d]] quantum-

LDPC codes with qubit degree at most ω − 1 and good

linear confinement such that d ≥ anb with a > 0 and b >

0. This code family has a sustainable single-shot thresh-

old for any local stochastic noise model. If the code family

only has good X confinement then it has a sustainable

single-shot threshold with respect to Pauli-Z noise.

We further prove that 3D product codes have X confine-

ment.

Theorem 3. All 3D product codes have (t, f ) X confine-

ment, where t is equal to the Z distance of the code and

f (x) = x3/4 or better.

Theorems 1 and 3 together motivate our numerical

experiments reported in Sec. V.

We now proceed to prove Theorem 1. To this end, we

use the shadow decoder that we introduce in Definition 3.

The shadow decoder differs from previous single-shot two

stage decoders (e.g., the MW single-shot decoder intro-

duced in Definition 6 of [18]) in that it does not rely on

metachecks on syndromes. If syndromes are protected by

a classical code, as is the case for X syndromes of 3D

product codes introduced in Sec. IV, then a single-shot

decoding strategy could work as follows: (1) correct the

measured syndrome whenever it does not satisfy all the

constraints defined by the metacode; (2) find a recovery

operator on qubits that has syndrome equal to the one

found at point (1). The shadow decoder, instead, corrects

020340-4



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

the syndrome both anytime it fails to satisfy all the con-

straints of the metacode and when it is generated by high

weight errors. We do not describe how to implement it or

make statements concerning the complexity of decoding.

Our proof makes similar assumptions as the Kovalev-

Pryadko quantum-LDPC threshold theorem [37] where

they assumed a minimum-weight decoder without address-

ing implementation issues. Indeed, decoding for arbitrary

LDPC codes is an nondeterministic polynomial-time com-

plete (NP complete) problem that we do not expect to be

efficiently solvable in full generality.

The building blocks of the shadow decoder are the

t shadows of the code. A t shadow is a set in the syndrome

space, which contains all the images of Pauli errors e on the

physical qubits that have weight at most t. In other words,

if we identify Pauli errors e on n qubits with 2n-bit strings

and we consider the metric space M = F2n
2 endowed with

the Hamming distance [i.e., the distance d(ē1, ē2) between

the vectors ē1 and ē2 corresponding to the Pauli errors

e1 and e2, respectively, is defined as d(ē1, ē2) = |e1 + e2|]
then the t shadow of the code is the image, via the syn-

drome function σ(·), of the ball of radius t centered at 0

in M. Note that, because balls on M are not vector spaces,

the shadows are not vector spaces either.

We are now ready to introduce the shadow decoder.

Definition 3 (Shadow decoder). The shadow decoder has

variable parameter t > 0. Given an observed syndrome

s̄ = σ(e) + s̄e where s̄e ∈ Fm
2 is the syndrome error, the

shadow decoder of parameter t performs the following two

steps:

1. Syndrome repair: find a binary vector s̄r of minimum

weight |s̄r| such that s̄ + s̄r belongs to the t shadow

of the code, where

t shadow = {σ(e) : |e| ≤ t}.

2. Qubit decode: find er of minimum weight |er| such

that σ(er) = s̄ + s̄r.

We call r = er · e the residual error.

A key result in proving Theorem 1 is the following

promise on the performance of the shadow decoder: when

a code has confinement, the weight of the residual error

after one decoding cycle is bounded by a function of the

weight of the syndrome error.

Lemma 1. Consider a stabilizer code that has (t, f ) con-

finement. Provided that the original error pattern e has

|e|red ≤ t/2, on input of the observed syndrome s̄ = σ(e) +
s̄e, the residual error r left by the shadow decoder of

parameter t/2 satisfies

|r|red ≤ f (2|s̄e|). (3)

Assume |e|red ≤ t/2. By construction, er has minimum

weight among all errors with syndrome σ(e)+ s̄e + s̄r ∈ t/2

shadow of the code. In particular, |er| ≤ t/2. By the trian-

gular inequality for the weight function,

|er · e|red ≤ |er|
red + |e|red ≤ t. (4)

Therefore, we can apply the confinement property on the

residual error r = er · e:

f
(

|σ(er · e)|
)

≥ |er · e|red. (5)

By linearity of the syndrome function σ(·):

σ(er · e) = σ(er) + σ(e) = s̄e + s̄r. (6)

Note that the syndrome error s̄e is a possible solution of

the syndrome repair step of the shadow decoder, because

by assumption |e|red ≤ t/2. Thus, |s̄r| ≤ |s̄e| and

|s̄e + s̄r| ≤ |s̄e| + |s̄r| ≤ 2|s̄e|. (7)

Combining these and the monotonicity of f leads to the

required bound on the residual error r = er · e:

|er · e|red ≤ f
(

2|s̄e|
)

. (8)

Theorem 1 follows directly from Lemma 1. In particu-

lar, Lemma 1 entails that a code with (t, f ) confinement

is robust against N cycles of qubit noise, noisy syndrome

extraction, and single-shot decoding, as explained below.

At each cycle τ , we assume that a new error eτ is intro-

duced in the system and it is added to the residual error

rτ−1. We assume that for the new physical error eτ and the

syndrome measurement error s̄τ
e the following hold:

|eτ |red ≤ t/4 and f (2|s̄τ
e |) ≤ t/4. (9)

We perform syndrome extraction on the state êτ = eτ ·
rτ−1. The noisy syndrome s̄τ = σ(êτ ) + s̄τ

e is used as input

for the shadow decoder of parameter t/2. The recovery

operator eτ
r found by the shadow decoder is then applied to

the state and finally a new cycle starts where rτ = eτ
r · êτ .

Let r0 = 1, so that the initial state of the system is given

by ê1 = e1, s̄1 = σ(ê1) + s̄1
e . Note that if

|eτ |red, |rτ−1|red ≤ t/4 (10)

then |êτ |red = |eτ · rτ−1|red ≤ t/2 and the hypotheses of

Lemma 1. Combining this with the bound on the syndrome

error, Eq. (9), we obtain

|rτ |red ≤ f (2|s̄τ
e |) ≤

t

4
.

In conclusion, provided that the conditions on the physical

and the measurement errors, Eq. (9), are satisfied for each
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iteration up to τ − 1, the residual error after the τ th cycle

is kept under control too.

Theorem 2 is proven in Appendix A. There, we intro-

duce a novel notion of weight to describe local stochastic

errors: the closeness weight. We then present the stochas-

tic shadow decoder, a variant of the (adversarial) shadow

decoder of Definition 3. Importantly, on confined codes, it

keeps the closeness weight of the residual error under con-

trol over repeated correction cycles. Finally, the proof of

Theorem 2 follows by combining these results with some

classic percolation theory bounds.

The proof of Theorem 3 is very technical and is deferred

to Appendix C. It is an adaption of the one of soundness

for 4D codes given in Ref. [18], and it is reported in this

paper for completeness. We remind the reader that, for our

numerical studies on 3D product codes, we do not use the

shadow decoder, but rather heuristics that perform well

in practice. In particular, we use a two-stage decoder that

exploits a metacheck structure on syndromes and attempts

to repair the syndrome if and only if it does not pass all

metachecks (see Sec. V C).

Our main motivation to introduce the concept of con-

finement and the shadow decoder was to find a feature of

codes able to encompass all known examples of single-

shot codes. Campbell [18] introduced the notion of sound-

ness and showed that this property is a sufficient condition

for codes to show single-shot properties in the adversar-

ial setting. Nonetheless, Fawzi et al. [22] showed that

expander codes have a single-shot threshold for local

stochastic noise, even though they do not have the sound-

ness property. As already said though, expander codes do

have confinement. In Corollary 9 of Ref. [20] the authors

prove that their confinement function is linear and call

this property robustness. Confinement, in other words, fills

the gap leaved by the concept of soundness. Furthermore,

as Lemma 2 states, it is a requirement strictly weaker

than soundness: any LDPC family of codes with good

soundness has good confinement.

Definition 4 (Soundness [18]). Let t be an integer and

f : Z → R be a function with f (0) = 0. Given a stabi-

lizer code with syndrome map σ(·) we say it is (t, f )

sound if for all error sets e with |σ(e)| ≤ t it follows that

f (|σ(e)|) ≥ |e|red.

Definition 5 (Good soundness [18]). Consider an infinite

family of codes with syndrome maps σn(·). We say that the

family has good soundness if each code in it is (t, f ) sound

where the following holds:

1. t grows with n such that t ∈ �(nb) with b > 0;

2. and f (·) is monotonically increasing and indepen-

dent of n.

It follows easily from Campbell’s definition of sound-

ness and our definition of confinement that the former

entails the latter.

Lemma 2. Consider a LDPC code that is (t, f ) sound with

f increasing. If its qubit degree is at most ω, then it has

((t/ω), f ) confinement.

If e is an error set with |e|red ≤ t/ω, for its syndrome the

following holds:

|σ(e)| ≤
t

ω
× ω = t. (11)

By soundness of the code,

f (|σ(e)|) ≥ |e|red. (12)

In conclusion, confinement successfully describes gen-

eral and inclusive properties related to single-shot error

correction. More than that, good confinement is a require-

ment strictly weaker than good soundness as the following

example illustrates. We consider the quantum expander

code family of Ref. [20], which has the following four

properties: (i) they have full-rank parity-check matrices;

(ii) they have (t, 3x) confinement, with t ∈ �(d); (iii) for

every small error e with |e| ≤ 3, we have |σ(e)| > 1 (see

Appendix D for details).

By property (i), every syndrome is a valid syndrome and

we can consider some weight-1 syndrome s. Assume to the

contrary that there exists an |e| ≤ t giving the syndrome

s = σ(e), then by (t, 3x) confinement

3|σ(e)| ≥ |e|red,

and plugging in |σ(e)| = 1 gives

3 ≥ |e|red.

We know by property (iii) that this would entail |σ(e)| > 1,

which leads to a contraction. Therefore, the assumption

|e| ≤ t must be false and so |e| > t.

Therefore, if the code family had (τ , ϕ) soundness, then

ϕ(1) > t. (13)

Because ϕ is the same across the whole family, and t ∈
�(d) increases proportionally to the code distance, by

considering bigger codes if necessary, this leads to a con-

tradiction. In other words, we show that this family of

expander codes with good linear confinement cannot have

good soundness.

The remainder of this paper is devoted to the study of the

3D product codes. We recall their construction in Sec. IV

and we numerically assess their single-shot performance

under local stochastic noise in Sec. V.
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IV. CODE CONSTRUCTION

The identification of Pauli operators p ∈ Pn with binary

vectors p̄ = (p̄X , p̄Z) ∈ F2n
2 is a group homomorphism

(i.e., multiplication of Pauli operators corresponds to the

sum of their vector representation in F2n
2 ) and because σ(·)

is linear, syndrome measurement can be simulated via a

matrix-vector product:

σ : F2n
2 −→ Fm

2
(

p̄X

p̄Z

)

�→ H

(

p̄X

p̄Z

)

,

where the vector (p̄X , p̄Z)T ∈ F2n
2 represents a Pauli error

on the physical qubits. Following the nomenclature from

classical coding theory, we refer to the syndrome matrix

H as parity-check matrix and we say that a code is LDPC

when its parity check is low density.

A stabilizer code is a Calderbank-Shor Steane (CSS)

code if its stabilizer group can be generated by the disjoint

union of a set of X operators and a set of Z operators. In

this case, its parity check is a block matrix:

H =

(

0 HX

HZ 0

)

, (14)

where HX has size mx × n and HZ has size mz × n if the

generating set of X stabilizers and Z stabilizers has cardi-

nality mx/mz. Equation (14) entails that syndrome extrac-

tion can be performed separately for the X component and

for the Z component. In fact, if a Pauli operator has vector

representation (p̄X , p̄Z)T = (p̄X , 0)T + (0, p̄Z)T ∈ F2n
2 , then

for its syndrome the following holds:

H

(

p̄X

p̄Z

)

= H

(

p̄X

0

)

+ H

(

0

p̄Z

)

=

(

0

HZ p̄X

)

+

(

HX p̄Z

0

)

=

(

0

s̄Z

)

+

(

s̄X

0

)

,

where s̄Z ∈ Fmz
2 and s̄X ∈ F

mx
2 . In other words, it is possible

to truncate these vectors without losing information and

deal with X and Z operators separately. For this reason, we

say that a CSS code is provided with two syndrome maps,

which correspond to the two blocks or matrices HX and

HZ , respectively. Accordingly, a CSS code will have a X

distance and a Z distance and can be compactly refereed to

as a [[n, k, dx, dz]] code.

For our purposes, it is useful to describe CSS codes in

terms of chain complexes. We first explain how a CSS code

yields a chain complex and then how to define valid CSS

codes starting from chain complexes. This last step ulti-

mately allows us to use a standard method to iteratively

build chain complexes, namely the product of complexes,

to build interesting CSS codes (see, for instance, Ref. [38]

for a comprehensive discussion on the subject).

Consider a CSS code C defined by the syndrome maps

HX and HZ of size mx × n and mz × n respectively. The

sequence of maps and vector spaces,

Fmz
2

HT
Z

−→ Fn
2

HX
−→ F

mx
2 , (15)

contains all the information needed to define C. In fact,

the dimension of the vector space in the middle, n, is the

length of the code, and the dimensions mx and mz of the

external spaces are, respectively, the number of X and Z

stabilizer generators. The logical dimension k of the code

C equates to

k = dim(ker HX ) − dim(Im H T
Z )

= dim(ker HZ) − dim(Im H T
X ).

We use ker H for the kernel of H , which is the set of all v

such that Hv = 0. We use Im H for the image of H , which

is the set of all vectors w that can be written as w = Hv for

some v. The distances dx and dz are given by

dx = min{|v| such that v ∈ ker HZ , v �∈ Im(H T
X )},

dz = min{|v| such that v ∈ ker HX , v �∈ Im(H T
Z )}.

Lastly, because rows of HX and HZ represent the support

of X and Z stabilizer generators, respectively, we can also

verify that X and Z stabilizers commute by assuring that

the scalar product of each row of HX and any row of HZ

(or equivalently each row of HZ and any row of HX ) is 0

in F2. In fact, this is equivalent to verifying that the sup-

ports of any two X and Z stabilizer generators have even

overlap and therefore that they represent commuting Pauli

operators. In other words, for HX and HZ it holds that

HX H T
Z = 0 ∈ F

mx×mz
2 . (16)

To sum up, we completely define the CSS code C in terms

of the sequence described by Eq. (15), which in homology

theory is referred to as a length-2 chain complex. As we

now detail the converse is also true, and any chain complex

of length 2 or greater determines a CSS code.

A length ℓ chain complex C is a collection of vector

spaces C0, . . . , Cℓ and linear maps δi : Ci → Ci+1:

C0 δ0
−→ C1 −→ · · · −→ Ci δi

−→ Ci+1 −→ · · · −→ Cℓ, (C)

with the only constraint

δiδi−1 = 0, (17)

for i = 1, . . . , ℓ − 1. Whenever the spaces Ci are vector

spaces on the binary field F2 and ℓ ≥ 2, we can define a
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CSS code on C. To see how this is the case, let 0 < i ≤
ℓ − 1. We define a CSS code C(Ci) on the chain complex

C by equating

HZ = δT
i−1, HX = δi. (18)

Notice that the defining property of chain complexes,

Eq. (17), entails that our choice, Eq. (18), for HX and HZ

is valid: the stabilizer group generated by the X and Z

operators supported on rows of HX and HZ respectively, is

Abelian. Therefore, the unique CSS code C(Ci) associated

to the syndrome maps given in Eq. (18) is well defined.

Importantly, the parameters [[n, k, dx, dz]] of C(Ci) all have

a translation in the chain-complex language. Using such

terminology, we say that the code has length n = dim(Ci).

It is known that the number of logical qubits k is equal to

the dimension of the ith homology group Hi or, equiva-

lently, the dimension of the (i − 1)th cohomology group

H∗
i+1, defined, respectively, as the quotient groups:

Hi = ker δi/Im δi−1,

H∗
i+1 = ker δT

i−1/Im δT
i .

The X distance equates the minimum weight of any

nonzero vector in H∗
i−1, while the Z distance is the min-

imum weight of any nonzero vector in Hi. It is easy to

verify that these definitions in terms of homology and

cohomology are actually equivalent to the ones given

above for the CSS code described by Eq. (15); we refer the

interested reader to Ref. [39] for a detailed presentation of

homology theory.

We introduce the homology language because it allows

us to succinctly describe the class of 3D product codes

studied here. By 3D product codes we refer to the CSS

codes derived by the homological product of three length-

1 chain complexes, as described in Ref. [40]. Given three

classical linear codes with parity-check matrices δA, δB,

and δC they define three length-1 chain complexes:

δA : C0
A −→ C1

A,

δB : C0
B −→ C1

B,

δC : C0
C −→ C1

C,

where C0
ℓ = F

nℓ

2 and C1
ℓ = F

mℓ

2 if δℓ has size mℓ × nℓ for

ℓ = A, B, C. By using tensor product and direct sum of vec-

tor spaces and maps, we can combine these three chain

complexes to build a bigger length-3 chain complex.

The tensor product is denoted by the symbol ⊗. Given

two vector spaces A and B over a field F, their tensor prod-

uct is the vector space A⊗B generated by the formal sums
∑

a⊗b where a ∈ A and b ∈ B and the operator ⊗ is bilin-

ear, i.e., for any a1, a2, b1, b2 in A and B, respectively, it

holds that

(a1 + a2)⊗b1 = a1⊗b1 + a2⊗b1,

a1⊗(b1 + b2) = a1⊗b1 + a1⊗b2.

If α : A → A′ and β : B → B′ are linear maps, their tensor

product is defined as the linear map:

α⊗β : A⊗B −→ A′⊗B′ :

a⊗b �−→ α(a)⊗β(b).

It is of course possible to iterate this construction and

define the tensor product of three (or more) spaces and

maps, as we do now in order to obtain a length-3 chain

complex C′′′ from the seed matrices δA, δB, δC. The chain

complex C′′′ is compactly described by the sequence of

spaces and maps:

C0

δ0
−→ C1

δ1
−→ C2

δ2
−→ C3,

which correspond to the tensor-product structure:

C1

A ⊗ C1

B ⊗ C1

C

C1

A ⊗ C1

B ⊗ C0

C C1

A ⊗ C0

B ⊗ C1

C C0

A ⊗ C1

B ⊗ C1

C

C1

A ⊗ C0

B ⊗ C0

C C0

A ⊗ C1

B ⊗ C0

C C0

A ⊗ C0

B ⊗ C1

C

C0

A ⊗ C0

B ⊗ C0

C

C3

C2

C1

C0

δ2

δ1

δ0

where

C0 = C0
A⊗C0

B⊗C0
C,

C1 = C1
A⊗C0

B⊗C0
C ⊕ C0

A⊗C1
B⊗C0

C ⊕ C0
A⊗C0

B⊗C1
C,

C2 = C1
A⊗C1

B⊗C0
C ⊕ C1

A⊗C0
B⊗C1

C ⊕ C0
A⊗C1

B⊗C1
C,

C3 = C1
A⊗C1

B⊗C1
C,

and

δ0 =

⎛

⎜

⎝

δA⊗1⊗1

1⊗δB⊗1

1⊗1⊗δC

⎞

⎟

⎠
,
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δ1 =

⎛

⎜

⎜

⎜

⎝

1⊗δB⊗1 δA⊗1⊗1 0

1⊗1⊗δC 0 δA⊗1⊗1

0 1⊗1⊗δC 1⊗δB⊗1

⎞

⎟

⎟

⎟

⎠

,

δ2 =
(

1⊗1⊗δC 1⊗δB⊗1 δA⊗1⊗1
)

.

It is easy to verify that the chain complex (C′′′) satis-

fies condition (17) for i = 1, . . . , 2 and it is therefore well

defined. As done above, we define a CSS code C(δA, δB, δC)

on (C′′′) by equating

HZ = δT
0 , HX = δ1.

We refer to the matrix M = δ2 as the metacheck matrix for

the X stabilizers. Condition (18) entails MHX = 0 and as

a consequence we can think of the matrix M as a parity-

check matrix on the X syndromes: any valid X syndrome

satisfies the constraints defined by M .

Remarkably, the parameters of the code C(δA, δB, δC) can

be derived in terms of the properties of the seed matri-

ces δA, δB, δC. In fact, let [nℓ, kℓ, δℓ]/[nT
ℓ , kT

ℓ , dT
ℓ ] be the

parameters of the classical linear code with parity-check

matrix δℓ/δ
T
ℓ , ℓ = A, B, C. As shown in Ref. [40], the chain

complex (C′′′) yields an [[n, k, dx, dz]] code such that, if

k �= 0,

n = nT
anbnc + nanT

bnc + nanbnT
c ,

k = kT
a kbkc + kakT

b kc + kakbkT
c ,

dx = min{dT
a , dT

b , dT
c },

dz = min{dbdc, dadc, dadb}.

By convention, the distance of a code with dimension 0 is

∞. We define the single-shot distance dSS [18] of the chain

complex (C′′′) as the minimum weight of a vector in C2

that satisfies all the constraints given by δ2 (i.e., it belongs

to the kernel of δ2) but is not a valid X syndrome (i.e., it

does not belong to the image of δ1). In other words, dSS is

the minimum weight of a vector in the second homology

group H2 = ker δ2/ Im δ1 of the chain complex C. Follow-

ing Ref. [40] it is easy to verify that dSS = min{da, db, dc}
if H2 �= 0 and ∞ otherwise.

It is important to note that, if the matrices δℓ are LDPC,

then their 3D product code is quantum LDPC. In fact, if δℓ

has column (row) of weight bounded by cℓ (rℓ), then δi has

column and row weight bounded by ci and ri, respectively,

where

i. c0 ≤ ca + cb + cc and r0 ≤ max{ra, rb, rc};
ii. c1 ≤ max{ca + cb, ca + cc, cb + cc}

and

r1 ≤ max{ra + rb, ra + rc, rb + rc};
iii. c2 ≤ max{ca, cb, cc} and r2 ≤ ra + rb + rc.

A. On geometric locality

In addition to preserving the LDPC properties of the

seed matrices, the 3D product yields local codes when

qubits are placed on edges of a 3D cubic lattice. We defer

the reader to Appendix B for a thorough discussion on the

embedding of 3D product codes on a cubic lattice and we

here present a loose summary.

Qubits of a 3D product code associated to the chain com-

plex (C′′′) are in bijection with basis elements of the space

C1; since C1 is the direct sum of the three vector spaces

C1
A⊗C0

B⊗C0
C, C0

A⊗C1
B⊗C0

C and C0
A⊗C0

B⊗C1
C we introduce

three different types of qubits: transverse, vertical, and

horizontal. Qubit types naturally correspond to the three

different orientations of edges on a cubic lattice, namely

edges parallel to each of the three crystal planes. Refer-

ring to this particular display of qubits, the stabilizers of

the code defined by Eq. (C′′′) have support as follows:

1. X stabilizers have support on a two-dimensional

(2D) cross of qubits of two types out of three, con-

tained in one of the three crystal planes; the crossing

is defined by a square face of a cube (see Fig. 7);

2. Z stabilizers have support on a 3D cross of qubits,

with crossing defined by a vertex of a cube (see

Fig. 8).

The cubic lattice considered can present some irregu-

larities: in general it is a cubic lattice with some missing

edges. Nonetheless, square faces and vertices are uniquely

defined and they correspond to a stabilizer every time they

contain at least one edge. More specifically, a square face

identifies two perpendicular lines of edges i.e., qubits on

a plane, which are the edges parallel to the boundary of

the square face itself. The corresponding X stabilizer has

support contained on those lines of edges i.e., qubits. Sim-

ilarly, a vertex identifies three perpendicular lines of qubits

and the corresponding Z stabilizer has support there con-

tained. When combined with some locality properties of

the seed matrices, this characteristic “cross shape” of the

stabilizers support entails that 3D product codes are local

on a cubic lattice (Proposition 1 in Appendix B). Here,

by locality, we mean that for some positive integer ρ, the

following hold:

1. any X -stabilizer generator has weight at most 2ρ

with support contained in a 2D box of size ρ × ρ;

2. any Z-stabilizer generator has weight at most 3ρ

with support contained in a 3D box of size ρ × ρ ×
ρ.

Interestingly, it follows easily as a corollary of our locality

proof that the 3D toric and surface codes are in fact 3D

product codes. We now detail an explicit construction of

the 3D toric and surface codes as 3D product codes and we

refer the reader to Appendix B for further details.
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The 3D toric code is the 3D product code obtained by

choosing δA = δB = δC = δ as seed matrices, where δ is

the parity-check matrix of the repetition code. For instance,

the 3D toric code with linear lattice size L = 3 is given by

δ =

⎛

⎝

1 1 0

0 1 1

1 0 1

⎞

⎠ .

In general, the 3D toric code of lattice size L, has

parameters

[[3L3, 3, L, L2]]

and single-shot distance dSS = L.

The 3D surface code is obtained from this construction

by choosing, for linear lattice size L = 3,

δA = δB =

(

1 1 0

0 1 1

)

and

δC =

(

1 1 0

0 1 1

)T

.

Therefore, for lattice size L, it has parameters

[[2L(L − 1)2 + L3, 1, L, L2]]

and single-shot distance dSS = ∞. Further details can be

found in Appendix B.

It should be noted that the surface and toric codes are

special instances of 3D product codes that have geometri-

cally local stabilizers. This is beneficial, as it means they

could be implemented on a quantum computer using only

nearest-neighbor (in 3D) interactions between qubits. The

disadvantage of the 3D surface and toric codes is that

they have fixed dimension, encoding only one and three

qubits, respectively. The 3D product construction can be

used to obtain codes that are not geometrically local, but

have improved encoding rates over the surface and toric

codes. We refer to these codes as “nontopological” codes

and investigate their decoding in Sec. V E.

V. NUMERICS

To assess the single-shot performance of the 3D product

codes, we simulate the decoding of phase-flip (Z) errors.

As 3D product codes are CSS codes, the relevant sta-

bilizers are the X stabilizers. Let ēZ ∈ Fn
2 describe the

support of a phase-flip error, i.e., (ēZ)i = 1 if qubit i has

a phase-flip error. The syndrome, s̄X , of this error is then

s̄X = HX ēZ , (19)

where HX ∈ Fm×n
2 is the parity-check matrix of the X

stabilizers of the code [see Eq. (14)].

Owing to the chain-complex structure of 3D product

codes (outlined in Sec. IV) the syndromes s̄X are them-

selves the codewords of a classical linear code with parity-

check matrix M such that Ms̄X = 0 for all s̄X ∈ Im(HX ).

We refer to such a code on the syndromes as a metacode.

The metacheck matrix can be used to detect and correct

syndrome noise.

In a two-stage single-shot decoder, stage-1 decoding

corrects the syndrome noise using M before stage-2 decod-

ing corrects the data qubits. In general, decoding is an

NP-complete problem that cannot be solved exactly in

polynomial time. However, good heuristic techniques exist

that allow approximate solutions to be efficiently com-

puted. In this work, we use two such decoding methods:

minimum-weight perfect matching and belief propaga-

tion plus ordered statistics decoding. Both MWPM and

BP+OSD are algorithms that run over graphical models

that encapsulate the structure of the code. We now briefly

describe each decoder.

A. Minimum-weight perfect matching

The minimum-weight perfect-matching decoder is use-

ful for codes in which chains of errors produce weight-2

syndromes. The method works by mapping the decoding

problem to a graph where nodes represent the code’s stabi-

lizer generators and weighted edges represent error chains

of different lengths. For a given pair of unsatisfied stabi-

lizers, MWPM deduces the shortest error chain that could

have caused it [41].

MWPM finds use for a variety of topological codes,

most famously for the 2D surface and toric codes [2,42–

45]. For 3D codes, MWPM is a suitable candidate for

the syndrome-repair step referred to as stage-1 decoding.

Specifically, the syndrome of a phase-flip error can be

viewed as a collection of closed loops of edges in a sim-

ple cubic lattice [46] (with boundary conditions depending

on the code). Measurement errors cause loops of syn-

drome to be broken, and the job of stage-1 decoding is to

repair these broken syndromes. To obtain the correspond-

ing matching problem, we create a complete graph whose

vertices correspond to the break-points of the broken syn-

drome loops, with edge weights that are equal to the path

lengths between the break points. We use the Blossom V

[47] implementation of Edmonds’s algorithm to solve this

matching problem. The edges in the matching correspond

to the syndrome-recovery operators.

B. Belief propagation + ordered statistics decoding

Belief propagation is an algorithm for performing infer-

ence on sparse graphs that finds widespread use in high-

performance classical coding. Classical LDPC codes, for

example, achieve performance close to the Shannon limit

when decoded with BP [48]. In the context of quantum
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coding, BP is useful for codes that do not produce pairs of

syndromes and therefore cannot be decoded with MWPM.

The BP algorithm maps the decoding problem to a

bipartite factor graph where the two node species repre-

sent data qubits and syndromes, respectively. Graph edges

are drawn between the data and syndrome nodes accord-

ing to the code’s parity-check matrix. The factor graph is

designed to provide a factorization of the probability distri-

bution that describes the relationship between syndromes

and errors. The BP algorithm proceeds by iteratively pass-

ing “beliefs” between data and syndrome nodes, at each

step updating the probability that a data node is errored.

The algorithm terminates once the probability distribution

implies an error pattern that satisfies the inputted syn-

drome. For a full description of the BP algorithm we direct

the reader to Ref. [49].

For quantum codes, the standard BP algorithm alone

does not achieve good decoding performance due to the

presence of degenerate errors. These cause “split beliefs”

and prevent the algorithm from terminating. Various meth-

ods have been proposed for adapting BP decoding to

quantum codes [27,50–54]. A particularly effective recent

proposal involves combining BP with a postprocessing

technique known as ordered statistics decoding [55]. The

OSD step uses the probability distribution outputted by BP

to select a low-weight recovery operator that satisfies the

syndrome equation.

The BP+OSD algorithm was first applied to quantum

expander codes by Panteleev and Kalachev [55]. Follow-

ing this, Roffe et al. [56] demonstrated that the BP+OSD

decoder applies more widely across a broad range of

quantum-LDPC codes, including the 2D surface and toric

codes. For this work, we use the software implementa-

tion of BP+OSD from Ref. [56], which can be downloaded

from Ref. [57].

C. The two-stage single-shot decoding algorithm

Our simulations of the two-stage single-shot decoder

employ two strategies. (1) MWPM and BP+OSD: stage-1

decoding is performed using MWPM and stage-2 decod-

ing uses BP+OSD. (2) BP+OSD × 2: both stages are

BP+OSD.

Algorithm 1 describes our methodology for the simula-

tions of the two-stage single-shot decoder.

The 3D toric code has a failure mode that is not present

in the 3D surface code. In such codes, syndromes s̄X exist

that satisfy all of the metachecks, Ms̄X = 0, but are invalid

syndromes, meaning that s̄X does not belong to the image

of HX . In other words, s̄X is invalid if there is no error

vector ēZ ∈ C1 with syndrome s̄X but s̄X is a codeword of

the metacode.

More generally, referring to the chain complex (C′′′):

C0

δ0
−→
HT

Z

C1

δ1
−→
HX

C2

δ2
−→
M

C3

we see that nonvalid syndromes do exist whenever Im δ1 �
ker δ2. In the homology language, we say that invalid syn-

dromes are nontrivial elements of the second homology

group:

H2 = ker δ2/ Im δ1 = ker M/ Im HX .

If km is the dimension of H2, the set of invalid syndromes

is a vector subspace of C2 of dimension km whose vectors

can be written as ū + HX ēZ where ū is a representative of

the equivalence class [ū] ∈ H2 and ēZ ∈ C1. Thus, if FM is

a matrix whose columns are km vectors in C2 that generate

H2 (meaning that they belong to km different equivalence

classes in H2), we can write any invalid syndrome s̄X as

s̄X = FM v̄ + HX ēZ , (20)
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where v̄ ∈ F
km
2 is nonzero if and only if s̄X is invalid and

ēZ is any error vector in C1.

By duality on (C′′′), the second cohomolgy group:

H∗
2 = ker δT

1 / Im δT
2 = ker H T

X / Im M T,

has order km too. If LM is a matrix whose km rows generates

H∗
2, then the product � = LM FM has full rank km because

both LM and FM have full rank. Moreover, since the rows

of LM in particular belongs to ker H T
X , it holds LM HX = 0.

Combining these two observations with Eq. (20) yields

LM s̄X = LM FM v̄ + LM HX ēZ

= �v̄,

where �v̄ = 0 if and only if v̄ = 0 because � is full rank.

In conclusion, we find that

LM s̄X �= 0

if and only if s̄X is an invalid syndrome. As a consequence,

we can assess whether a syndrome is invalid or not by cal-

culating this product. The meaning of matrices LM and FM

can be understood by looking at elements in H2 and H∗
2

as logical operators of a CSS code defined on (C′′′) with

qubits in C2 (see Sec. IV). In this setting, the full-rank con-

dition rank(LM FM ) = km translates in the anticommuting

relation between logical X and logical Z operators of the

code.

In the 3D toric code, these invalid syndromes are loops

of edges around one of the handles of the torus, and are

equivalent to the logical operators of the metacode. It

is therefore possible to check whether stage-1 decoding

results in such a failure by checking whether the repaired

syndrome anticommutes with a matrix LM whose rows

generate the relevant group of the logical operators of

the metacode. When a metacode failure is encountered,

a failure-mode subroutine (line 13 of Algorithm 1) is

called that forces the repaired syndrome into the correct

form. This subroutine involves using BP+OSD to decode

a modified version of the metacheck matrix M ′ defined as

follows:

M ′ =

(

M

LM

)

. (21)

The additional constraints in the modified metacheck

matrix ensure that the repaired syndrome is never an

invalid syndrome. We use this subroutine only when we

have an invalid syndrome (rather than all the time) as the

LM component causes M ′ to have higher maximum row

and column weights than M , resulting in a reduction in BP

decoding performance. Indeed, the rows of LM must have

weight lower bounded by the transpose distances of the

seed codes [58]. Since the transpose distances of the seed

0.0 0.5 1.0 1.5 2.0 2.5 3.0

×10−2

10−4

10−3

10−2

10−1

100

q

p
fa

il

Metacode failure-mode error rate

Single-shot decoding (no subroutine)

Single-shot decoding (with subroutine)

FIG. 2. Single-shot decoding of the 3D toric code with L = 5,

with and without the metacode failure-mode subroutine. The fail-

ure rate pfail is plotted against increasing values of the syndrome

error rate q, whilst the phase-flip error rate is set to p = 0.1. With-

out the subroutine, the single-shot decoder rapidly converges to

the failure-mode error rate (dotted line). For large values of q the

subroutine improves the logical failure rate by over an order of

magnitude. In this simulation, BP+OSD is used for both stage-1

and stage-2 decoding.

codes also determine the Z distance of the quantum code

(Sec. IV), we want these quantities to be growing with the

length n of the code and therefore the matrix LM is not, in

general, LDPC.

We find that whilst the failure-mode subroutine does not

change the error threshold of the decoder, it does consider-

ably reduce the logical error rate for all values of the lattice

parameter L. This is illustrated for L = 5 in Fig. 2, which

shows the single-shot logical error rate with and with-

out the failure-mode subroutine. For large syndrome error

rates, Fig. 2 shows the failure-mode subroutine improves

decoding performance by over an order of magnitude.

D. 3D toric and surface codes

We estimate the sustainable threshold of the 3D toric and

surface codes using our two decoding strategies. For code-

capacity noise (i.e., perfect syndrome measurements), the

syndrome-repair step is not required, so both decoding

strategies are the same. For each code family, we observe

a code capacity threshold of pth ≈ 21.6%, as illustrated in

Fig. 3. To obtain our threshold estimates, we use the stan-

dard critical exponent method [59] (see Appendix E for

details). In the single-shot setting, we find similar perfor-

mance for both our decoding strategies, as summarized in

Table II. Our results compare favorably with the perfor-

mance of other decoders, which we list in Table I. We
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FIG. 3. Code-capacity threshold of the 3D toric code. We plot

the logical error rate pfail as a function of the phase-flip error

rate p for codes with linear lattice size L. The inset shows an

enlargement of the threshold region, where the lines show the

threshold fit described in Appendix E. All data points have at

least 25 failure events. The error bars show the 95% confidence

intervals pfail = p̂fail ± 1.96
√

pfail(1 − pfail)/η, where η ≥ 104 is

the number of Monte Carlo trials.

obtain the highest reported code-capacity threshold and the

highest reported single-shot threshold.

We remark that the sustainable threshold that we observe

for the 3D toric code is very close to the threshold of

MWPM for stringlike errors in the 3D toric code [60]. This

implies that the performance of decoder 1 (the syndrome-

repair step) is limiting the performance of the entire decod-

ing procedure, as was suggested in Ref. [13]. Although the

sustainable thresholds we observe for 3D surface codes

are slightly higher than for 3D toric codes, the codes we

consider are relatively small, which means that bound-

ary effects may be having an impact on our sustainable

threshold estimates.

We also investigate the suppression of the logical error

rate below threshold in the 3D toric code, using MWPM

and BP+OSD. We use the following ansatz for the logical

error rate for values of p < pth,

pfail(L) ∝ (p/pth)
αLβ

, (22)

where α and β are parameters to be determined. The code

distance of the 3D toric code for Z errors is L2, so if

the decoder is correcting errors up to this size, we would

expect β ≈ 2. Using the fitting procedure described in

Appendix E, we estimate β = 1.91(3) for N = 0 (code

capacity) and β = 1.15(3) for N = 8 (eight rounds of

single-shot error correction). Therefore, for the (relatively

small) codes that we consider, we find evidence that

BP+OSD is correcting errors of weight up to the code

distance. Viewed as an error-correction problem, the dis-

tance of the syndrome-repair step of decoding (i.e., the

single-shot distance dSS) is L, which is consistent with our

observed value of β in the single-shot case. This provides

further evidence that the bottleneck of our single-shot

decoding procedure is the syndrome-repair step.

E. Nontopological codes

Up to this point, we explore the single-shot decod-

ing performance of the 3D surface and toric codes. As

explained in Sec. IV A, the 3D surface and toric codes

are topological codes obtained by taking the 3D product

of classical repetition codes. In this section, we extend our

numerical analysis to nontopological codes constructed via

the 3D product of random classical codes. Our motivation

for investigating nontopological codes is twofold. First, by

demonstrating that a random 3D product code has a sus-

tainable threshold, we provide evidence for our conjecture

that the results of Theorems 1 and 3 extend to the stochastic

noise setting. Second, we provide evidence that BP+OSD

is a general decoding method that applies beyond the class

of well-studied topological 3D product codes.

Table III shows a family of nontopological codes

C(δA, δB, δC) obtained by taking the 3D product of a ran-

dom code, δA, with two codes obtained from full-rank

repetition codes, δB and δC. For this example, we choose

δA to be a classical LDPC code constructed by ran-

domly generating parity checks under the constraint that

the parity-check matrix δA has column and row weights

upper bounded by three and four, respectively. The specific

advantage of nontopological codes is that they can have

nonfixed dimension. For example, the d = 6 instance of

C(δA, δB, δC) encodes four logical qubits, whilst the d = 10

instance encodes ten logical qubits. In contrast, the dimen-

sion of the surface and toric codes are fixed at one and three

for all code distances. The trade-off is that nontopologi-

cal codes have nonlocal stabilizer checks, meaning they

would have to be implemented on hardware with the ability

to perform beyond-nearest-neighbor interactions between

TABLE III. A family of 3D product codes. The seed codes

{δA, δB, δC} are set as follows: δA is a parity-check matrix of an

[n, k, d] LDPC code constructed under the constraint that the

column and row weights of its parity-check matrix are upper

bounded by three and four, respectively; δB is a [L, 1, L] full-rank

repetition code; δC is the transpose of a [L, 1, L] full-rank repeti-

tion code. We denote by C(δA, δB, δC) the 3D product code with

seed matrices δA, δB, δC. The code distance is set to ∞ for codes

of dimension 0.

δA δB δC C(δA, δB, δC)

[16, 4, 6] [6, 1, 6] [6, 0, ∞] [[1336, 4, 6]]

[20, 5, 8] [8, 1, 8] [8, 0, ∞] [[3100, 5, 8]]

[24, 6, 10] [10, 1, 10] [10, 0, ∞] [[5964, 6, 10]]
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FIG. 4. Threshold plot for the family of nontopological 3D

product codes listed in Table III after 16 rounds of single-shot

error correction using the BP+OSD × 2 decoder. The simulation

results suggest a threshold at 2.7%. The error bars show the 95%

confidence intervals pfail = p̂fail ± 1.96
√

pfail(1 − pfail)/η, where

η is the number of Monte Carlo trials.

qubits. An interesting feature of product-code construc-

tions is that they can be used to interpolate between

completely local topological codes and random quantum

LDPC codes, as explored for the 2D setting in Ref. [56].

To numerically benchmark the single-shot performance

of the nontopological code family listed in Table III, we

simulate error correction under the two-stage decoder. The

strategy we employ is BP+OSD × 2, for which both stage-

1 and stage-2 decoding use the BP+OSD decoder. The

MWPM and BP+OSD strategy used for the surface and

toric codes would not work in this setting, as nontopolog-

ical codes do not have the looplike metacheck syndromes

required for MWPM decoding. The simulation results are

summarized by Fig. 4, which shows a sustained threshold

for the C(δA, δB, δC) family of nontopological codes in the

region of 2.7%. This result demonstrates that the BP+OSD

decoding strategy can be used to decode new 3D product

codes and achieve performance close to that of established

codes such as the 3D surface and toric codes.

VI. CONCLUSION

In this paper, we investigate single-shot decoding of 3D

product codes. We gave a formal definition of confine-

ment in quantum codes and proved that all 3D product

codes have confinement for Z errors. We also prove that

confinement is sufficient for single-shot error correction

against adversarial noise. This is a strengthening of the

result of Campbell [18], who showed that a property called

soundness is sufficient for single-shot error correction, in

that soundness implies confinement but the converse is

not true. Remarkably, there are important classes of codes,

such as quantum expander codes, which have confine-

ment but not soundness. Further to that, we prove that

codes with linear confinement, and so expander codes, do

have a single-shot threshold for local stochastic noise. The

obvious open problem arising from our work is how to

extend our findings for linear confinement to the superlin-

ear case. Is confinement, in general, a sufficient condition

for quantum-LDPC codes to exhibit a single-shot thresh-

old? If not, what other requirements should a code satisfy

to ensure the existence of a single-shot threshold?

We simulate single-shot error correction for a variety

of 3D product codes, concentrating on 3D toric and sur-

face codes. Using MWPM and BP+OSD, we achieve the

best known code-capacity error threshold and sustainable

single-shot error threshold for this code family (for phase-

flip noise). Our results strongly suggest that the bottleneck

of two-stage decoders is the first stage where the noisy

syndrome is repaired. For the 3D toric code, the opti-

mal threshold of the syndrome-repair step is 3.3% [33],

whereas the optimal threshold of the entire decoding prob-

lem is 11.0% [35]. This implies that two-stage decoders

can never achieve optimal performance in these codes, so

perhaps other single-shot decoding methods ought to be

investigated in future.

We also simulate single-shot error correction for a fam-

ily of nontopological 3D product codes, using BP+OSD for

both decoding steps. We achieve performance very close to

that of the 3D toric and surface codes, which indicates that

BP+OSD is a high-performance single-shot decoder. Fur-

thermore, the versatility of BP+OSD means that we expect

it to work as a single-shot decoder for general LDPC 3D

product codes. We leave confirmation of this to future

work, and we conjecture that BP+OSD will achieve good

performance for other classes of quantum-LDPC codes

such as topological fracton codes [61,62].
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APPENDIX A: LINEAR CONFINEMENT AND

SINGLE-SHOT THRESHOLD

We present the stochastic shadow decoder, a variant of

the (adversarial) shadow decoder described in Definition

3, and prove that it succeeds in correcting errors that

have connected components that are sufficiently sparse and

of bounded size, both on the syndrome and the qubits

(Lemma 6). Theorem 2 will then follow from Lemma 6 on

the performance of the stochastic shadow decoder: a fam-

ily of codes with good linear confinement has a single-shot

threshold under the local stochastic noise model.

This appendix is organized as follows. After fixing

some graph-theory notation in Appendix A 1, we intro-

duce a novel weight function for node sets in a graph,

the closeness function, Appendix A 2. We prove that

the closeness weight function preserves confinement and

that the stochastic shadow decoder can be used on con-

fined codes to keep the closeness of error under control

(Appendix A 3). Crucially, the closeness weight function

characterizes the structure of local stochastic errors better

that the Hamming weight does, as some classic results in

percolation theory show. We conclude, in Appendix A 4,

by showing that a family of codes with good linear con-

finement has a sustainable single-shot threshold (Theorem

1). Our proof is built on the results in Refs. [22,65], where

the authors prove that expander codes (which have linear

confinement) have a single-shot threshold when decoded

via the small-set flip decoder.

1. Notation and preliminaries

Given a stabilizer code on n qubits with stabilizer group

S ⊆ Pn, we associate to it two graphs: (Gq, ∼q), the qubit

graph, and (Gs, ∼s), the syndrome graph. The set of nodes

are Gq, the n qubits, and Gs, a generating set of the stabi-

lizer group S [66]. The adjacency relations ∼q and ∼s are

defined as

q1 ∼q q2 ⇔ ∃s ∈ Gs such that {q1, q2} ⊆ supp(s),

s1 ∼s s2 ⇔ ∃q ∈ Gq such that q ∈ supp(s1) ∩ supp(s2);

where the support supp(s) of a Pauli operator s in Pn is the

set of all the qubits on which its action is nontrivial. We

use lowercase symbols for Pauli operators in Pn and the

corresponding uppercase symbol to indicate its support,

e.g., E := supp(e). We use the term error to refer inter-

changeably to a Pauli operator or its support, in particular

given two Pauli operators e1 and e2 we use the symbol +
to indicate the support of the product operator e1 · e2 [67],

so that

E1 + E2 = supp(e1 · e2).

In this picture, the syndrome σ(·) maps the set of Pauli

operators on n qubits Pn into the power set of Gs,

σ : Pn −→ P(Gs)

e −→ {s ∈ Gs : se = −es}.

We define the neighbor map Ŵ as

Ŵ : Pn −→ P(Gs)

e −→ {s ∈ Gs : supp(s) ∩ E �= ∅}.

With slight abuse of terminology, we call syndrome any

element of P(Gs), even when such a set does not belong

to the image of σ . When referring to an error as a set E,

it is always to be intended as corresponding to a fixed

Pauli operator e ∈ Pn such that E := supp(e). We write

interchangeably σ(e)/σ (E) and Ŵ(e)/Ŵ(E) to indicate

the image, via the syndrome map and the neighbor map,

respectively, of the Pauli error e.

Given two syndromes sets in Gs we use the symbol + to

indicate their symmetric difference. It is easy to verify that

the map σ(·) preserves the + operation (i.e., it is linear):

σ(e1 · e2) = σ(E1 + E2) = σ(E1) + σ(E2).

Moreover, the image via σ of disjoint nonconnected sets

is disjoint. In fact, if E1, E2 are two disjoint nonconnected

sets in Gq and we suppose that their syndrome sets are not

disjoint we find a contradiction. Let ŝ be a stabilizer in

σ(E1) ∩ σ(E2). By definition of σ , this entails that e1 and

e2 both anticommute with ŝ, which is equivalent to say-

ing that their supports have odd overlap with supp(ŝ). In

particular, there exists qi ∈ Ei such that qi ∈ supp(ŝ) and,

by the definition of the adjacency relation ∼q, q1 ∈ E1 and

q2 ∈ E2 would be connected via ŝ, against the assumption.

Note that, in general the image via the syndrome map σ(·)
of a connected set needs not to be connected. However, the

neighbor function Ŵ(·) maps connected sets into connected

sets. We make use of these properties in Appendix A 3.

2. The closeness weight function

When errors are local stochastic it can be handy to use

definitions of weight other than the cardinality and Ham-

ming weight. For instance, the authors in Ref. [22] define

the quantities of Definition 6 and study a related notion of

percolation to understand the tolerance to errors of a given

connected graph.

Definition 6 (α subsets, MaxConnα(E) [22]). An α subset

of a set E ⊆ Gq is a set K such that |K ∩ E| ≥ α|K |. The

maximum size of a connected α subset of E is denoted by

MaxConnα(E).
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We here introduce a conceptual cousin to MaxConnα(E),

the β closeness of an error set E, and prove that it is a well-

defined weight function (see Lemma 3). We do not explic-

itly detail the relations between α subsets and closeness

here. However, we implicitly use them, as our percolation

results and ultimately the proof of Theorem 1 heavily rely

on those relations and the proofs in Refs. [22,65].

Definition 7 (β closeness). Let G be a connected graph,

i.e., a graph in which there exist a path between any two of

its nodes. Given a subset E of nodes and a positive integer

β, we define its β closeness as the quantity:

‖E‖β := max{|K ∩ E| : K is connected, |K | = β}.

We call any connected subset of β nodes a β patch and any

β patch K such that |K ∩ E| = ‖E‖β maximal patch for E.

Since we are interested in the β closeness of error sets

on a qubit graph Gq, it is natural to introduce the notion of

reduced β closeness.

Definition 8. Given a qubit error set E ⊆ Gq, its reduced

β closeness ‖E‖red
β is defined as

‖E‖red
β := min{‖E + T‖β : σ(E + T) = σ(E),

T = supp(t) for some t ∈ Pn}.

Crucially, we see in Lemma 5 that the closeness function

preserves confinement. As a consequence, we can build a

variant of the shadow decoder (Definition 9) that succeeds

in correcting errors of small reduced closeness.

We now prove some basic properties of the β-closeness

weight function ‖ · ‖β on a connected graph G.

Lemma 3. Let G be a connected graph and denote by |G|
the number of its nodes. For any positive integer β < |G|,
the following hold:

(i) ‖ · ‖β ≤ | · |;
(ii) ‖ · ‖β ≤ β; the equality holds if and only if the con-

sidered set of nodes has a connected component of

size at least β; conversely, if ‖ · ‖β < β then the

connected components of the set all have size less

than β;

(iii) it is positive:‖E‖β ≥ 0 and equality holds if and

only if E = ∅;

(iv) it satisfies the triangle inequality: for any E1, E2,

‖E1 ∪ E2‖β ≤ ‖E1‖β + ‖E2‖β .

(v) it is monotonic: if E1 ⊆ E2 then ‖E1‖β ≤ ‖E2‖β;

In the following, let K ⊆ G be a maximal β patch for E,

i.e., ‖E‖β = |K ∩ E|.

(i) ‖E‖β = |K ∩ E| ≤ |E|.

(ii) |K ∩ E| ≤ |K | = β. Equality holds if and only if

K ∩ E = K ⊆ E, which entails that E has a con-

nected component of size at least β, since K is

connected.

(iii) If E is nonempty then there exists at least one node

g ∈ E. Since G is connected, for any integer 1 ≤
β ≤ |G| there exists a β patch that contains g so that

‖E‖β ≥ 1.

(iv) Let J be any β patch in G. The following hold:

|J ∩ (E1 ∪ E2)| = |(J ∩ E1)| + |(J ∩ E2)| +

− |J ∩ (E1 ∩ E2)|

≤ |J ∩ E1| + |J ∩ E2|

≤ ‖E1‖β + ‖E2‖β .

Since this holds for any β patch, we obtain

‖E1 ∪ E2‖β ≤ ‖E1‖β + ‖E2‖β .

(v) Let K1, K2 be maximal β patches for E1 and E2,

respectively. Then

|K1 ∩ E1| ≤ |K1 ∩ E2| because E1 ⊆ E2,

≤ |K2 ∩ E2| by maximality of K2,

which yields ‖E1‖β ≤ ‖E2‖β .

Lemma 2 below states that there exists a canonical form

for maximal β patches of an error set E. Roughly speak-

ing, a canonical β patch K will be made up of some entire

connected components of E, plus at most one connected

proper subset of a connected component of E, and some

other nodes not in E (see Fig. 5). The existence of a canon-

ical β patch is key in proving that the closeness function

preserves confinement in the sense explained by Lemma 5.

Lemma 4 (Canonical β patch). For any error E on a qubit

graph G there exists a maximal β patch T such that, for all

but one connected component Ei of E, the following holds:

either Ei ⊆ T or Ei ∩ T = ∅.

In other words, if E1, . . . , Em are the connected compo-

nents of E, reordering if necessary, there exists an index

ν such that

|T ∩ Ei| = |Ei| if i < ν,

|T ∩ Ei| ≤ |Ei| if i = ν,

|T ∩ Ei| = 0 if i > ν. (A1)

We call any such T a canonical β patch for the set E.

Let J be any maximal β patch for E, i.e., J is connected,

has size β and |J ∩ E| = ‖E‖β . Starting from J we build a
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(a) (b)

FIG. 5. Graphical representation of patches on a graph. To help the visualization we imagine the qubit graph and the syndrome graph

to be superimposed. Black rectangles: connected components of the error E1, . . . , E5. Dashed grey lines: neighbour sets Ŵ(Ei) of the

underlying rectangle and error component. Orange crosses: syndrome nodes in σ(Ei). Dotted blue curve: t patches on the qubit graph.

Green curve: ωt patches on the syndrome graph. In (a) the patches are generic while in (b) the dotted and error patch is a canonical

patch for the error. The importance of the canonical form for a patch is highlighted in the differences between the patches in (a),(b).

We observe how the crosses and syndrome nodes σ(Ei) are scattered inside the dashed curve and neighbor set Ŵ(Ei). For this reason,

in order to group enough syndrome nodes inside a patch of bounded size, we need some care in the choice of the error nodes. When

we include entire connected components of the error in a patch in Gq, we are able to build a patch in Gs, which includes entire neighbor

sets and, as a consequence, all the corresponding syndrome nodes. In fact, even if we assume that the dotted blue and error patches

in (a),(b) have the same size, when we enlarge them by a factor of ω to build the green and syndrome patch, we obtain dramatically

different results. In (a) since the dotted and error patch contains several incomplete components, the corresponding green and syndrome

patch contains incomplete portions of the dashed and neighbor sets Ŵ(Ei). Hence, we have no guarantee on the number of crosses and

syndrome nodes included in the patch. In (b) the dotted blue patch is a canonical patch for the error. We can see how the green and

syndrome patch entirely contains the dashed and neighbor sets of all but one component of the error contained in the dotted blue and

qubit patch. In this way we have the certainty to include in the green and syndrome patch a sufficient number of crosses and syndrome

nodes to ensure confinement.

set T with the desired form. Write J ∩ E as disjoint union

of connected sets:

J ∩ E = J1 ⊔ · · · ⊔ Jν .

We call these Ji’s patch-error components. Let E1 . . . Eμ be

the connected components of the error E. We recall that a

connected component Ei of E is a connected set, which is

connected to no additional nodes in E \ Ei. We say that Ei

is incomplete with respect to J if it has nontrivial overlap

with J but it is not entirely contained in J , i.e.,

J ∩ Ei �= ∅ & Ei �⊆ J ⇒ |J ∩ Ei| < |Ei|.

Note that it can be the case for two disjoint (but internally

connected) error-patch components Ji1 and Ji2 to overlap

with the same incomplete error component Ei′ .

We consider a metagraph G whose metanodes are con-

nected sets in G and metaedges are paths in G. Because

the error-patch components are both internally and recip-

rocally connected in J , there exists a meta spanning tree

T ⊆ G whose ν nodes Ji are the error-patch components

Ji and whose metaedges εij are formed by minimum length

paths in G between the Ji’s with nodes in J \ E. In the

following we indicate with T ,Ji and εij the metatree, its

metanodes, and its metaedges and with T, Ji, and ei,j the

corresponding sets of nodes in G. Note that, by this identifi-

cation, T has at most β nodes. We now show how to modify

the metatree T so that the corresponding set of nodes T in

G is canonical for E. We do this in two steps: the balancing

and the enlargement step.

a. BALANCING

We show by induction on the number ν of the metanodes

Ji’s that it is possible to modify T so that the correspond-

ing set of nodes T ⊆ G satisfies conditions (A1) on its

overlap with the connected components of E.

ν = 1 : the thesis is trivially verified.

ν > 1 : if J is not canonical for E then E must have at

least two incomplete components with respect to the patch

J . Let Jℓ be a metaleaf of T and Jℓ its corresponding sub-

set of nodes in G. We iteratively remove from T the nodes

of Jℓ, both preserving connectivity of T and the size of

T ∩ E.

For any node qλ in Jℓ, we choose a node qχ such that

the following holds:

i. qχ belongs to some incomplete component of the error

disjoint from Jℓ: qχ ∈ Eχ and Eχ ∩ Jℓ = ∅;
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ii. qχ is a new node, i.e., it does not belong to J : qχ ∈
G \ J ;

iii. qχ is connected to at least one node in some error-

patch component other from Jℓ: qχ ∼q qχ ′ , qχ ′ ∈ Jχ

for some χ �= ℓ.

We remove qλ from J and add qχ to J , and thereby

update T accordingly. This process terminates when either

(a) we are not able to find such a new node qχ or (b) there

are no more nodes qλ in Jℓ.

Case (a) entails that E has at most one incomplete com-

ponent with respect to T. In fact, if E had an incomplete

component Eχ disjoint from Jℓ such a node qχ always

exists. As a consequence, if we are not able to find a new

error node to enlarge one of the error-patch components

Jχ �= Jℓ the only incomplete component of E must be the

one relative to Jℓ. The updated node set T has the desired

property, provided that we had removed nodes qλ from Jℓ

preserving connectivity (for instance, considering a span-

ning tree for nodes in Jℓ and iteratively removing leaves).

If case (b) is verified, we remove from T all the metaedges

that are incident to Jℓ. The updated metatree T derived

from the updated set T has ν − 1 metanodes. By the induc-

tion hypothesis, it can be modified to obtain the desired

form.

In other words, we pick a metaleaf of T and we either

remove part of its nodes [case (a)] or all of them [case

(b)]. We preserve the quantity |T ∩ E| by adding new error

nodes to some different error-patch component that over-

laps with an incomplete component of the error E. By

choosing a leaf, we are able to preserve the connectivity

of T and thus the connectivity of the corresponding node

sets T.

We iterate this procedure over metaleaves of T until the

overlap of the corresponding set T in G and the error set E

has the desired form.

b. ENLARGEMENT

By contradiction, we prove that it is possible to add

nodes to the set T corresponding to the balanced metatree

T so that it is connected, it has size exactly β and |T ∩
E| = ‖E‖β . First note that during the balancing procedure,

the number |T ∩ E| remains constant and the following

holds:

|T ∩ E| =

ν
∑

i=1

|Ji| = |J ∩ E| = ‖E‖β .

Moreover, the initial tree is connected and the balancing

procedure preserves connectivity. However, we only have

an upper bound on the size of T. In fact, if T is the ini-

tial metatree and T is its corresponding subgraph in G, it

holds T ⊆ J and therefore |T| ≤ β. During the balancing

step the size of T could decrease when we remove nodes

of eij , belonging to a metaedge εij . Thus, in general, after

the balancing step for the weight of T holds:

|T| ≤ β.

If |T| = β, then T is a β patch with maximum overlap

with E and, by balancing, it is canonical. If |T| < β, then

there must exist at least β − ‖E‖β nodes in G \ (E ∪ T)

that are connected to T. In fact, a connected proper sub-

set can always be enlarged in a connected graph. If the

only way to enlarge T to a β patch were by adding nodes

in E, then we would have found a β patch whose overlap

with E has size greater than its β closeness, which con-

tradicts the definition of ‖E‖β . In conclusion, any of such

enlargements of the tree T is a canonical β patch for E.

3. Confinement and stochastic shadow decoder

Here, we first prove that the closeness function pre-

serves confinement, as Lemma 5 states. Then, we present

the stochastic shadow decoder (Definition 9) and prove,

in Lemma 6, that it succeeds in correcting errors of small

enough closeness. These findings, together with the perco-

lation results of Appendix A 4, will yield the proof of the

existence of a single-shot threshold for codes with linear

confinement.

Lemma 5 (Closeness preserves confinement). Consider a

code with qubit degree at most ω̃ and (t, f ) confinement,

where f is convex. Then, for any error E with ‖E‖red
t ≤

(t/2), the following holds:

f (‖σ(E)‖ωt) ≥ ‖E‖red
t ,

where ω = ω̃ + 1.

To ease the notation, let F be an error set such that

σ(E) = σ(F), ‖F‖t = ‖E‖red
t . If F1, . . . , Fμ are the con-

nected components of F , by Lemma 4 there exists a

canonical patch K for F such that

|K ∩ Fi| = |Fi| if i < ν,

|K ∩ Fi| ≤ |Fi| if i = ν,

|K ∩ Fi| = 0 if i > ν.

for some ν ≤ μ + 1.

First, we prove that there exists a ωt patch J in the

syndrome graph Gs such that it contains the syndrome of

the connected components F1, . . . , Fν of the error, which

intersect the canonical patch K :

ν
⊔

i=1

[σ(Fi)] ⊆ J .

Then, we prove that such a patch J has overlap with σ(F)

of Hamming weight large enough to ensure confinement

020340-18



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

with respect to the closeness function:

f (‖σ(F)‖ωt) ≥ ‖F‖t.

We then find the desired bound on E using the initial

assumptions σ(F) = σ(E) and ‖F‖t = ‖E‖red
t .

a. EXISTENCE OF J

We build a ωt patch J on Gs as follows. We define J as

the disjoint union of the (at most) ω̃|Fi| connected nodes

Ŵ(Fi):

J =

ν
⊔

i=1

Ŵ(Fi).

Let π be the set of edges of a minimum length path in K

that connects all its ν disjoint error components Fi. These

edges correspond naturally to a set πs ⊆ Gs if we asso-

ciate to the edge (q1, q2), the corresponding stabilizer in

Gs, remembering that

q1 ∼q q2 ⇔ {q1, q2} ⊆ supp(s), s ∈ Gs.

Under this identification, importantly, adjacent edges are

mapped into neighboring syndrome nodes. We add the set

πs to J . As a result, J is now connected. For the size of J ,

the following holds:

|J | ≤ ω̃

ν
∑

i=1

|Fi| + |πs|.

By hypothesis, t/2 ≥ ‖F‖t = |K ∩ F| and because K is

canonical for F , i.e., |K ∩ F| ≤
∑ν

i=1 |Fi|, we have

ν−1
∑

i=1

|Fi| ≤
t

2
.

Combining property (ii) of the closeness weight function

and the assumption ‖F‖t ≤ (t/2), yields, for any i, and ν

in particular,

|Fi| ≤
t

2
. (A2)

Since π has edges in K , πs has size at most |K |, i.e.,

|πs| ≤ t.

Adding up, we obtain

|J | ≤ ωt,

where ω = ω̃ + 1. By enlarging J if necessary to include

exactly ωt nodes, and remembering that by construction it

is connected, we find that J is a ωt patch in Gs, as desired.

b. OVERLAP OF J WITH THE ERROR SYNDROME

Equation (A2) entails in particular that any connected

error component F1, . . . , Fν that has nontrivial overlap

with the patch K , has size smaller than t and therefore it

has confinement:

f (|σ(Fi)|) ≥ |Fi|. (A3)

Because σ maps disjoint sets of Gq in disjoint sets of Gs,

σ

(

ν
⊔

i=1

Fi

)

=

ν
⊔

i=1

σ(Fi)

⇒
∣

∣

∣
σ

(

ν
⊔

i=1

Fi

)

∣

∣

∣
=

ν
∑

i=1

|σ(Fi)|. (A4)

Thus, applying f to each term of the summation of

Eq. (A4) we have

ν
∑

i=1

f (|σ(Fi)|) ≥

ν
∑

i=1

|Fi|. (A5)

For the left-hand side of Eq. (A5), using convexity of f we

obtain

f

(

ν
∑

i=1

|σ(Fi)|

)

≥

ν
∑

i=1

f (|σ(Fi)|),

for the right-hand side of Eq. (A5) instead, since K is

canonical for F , it holds that

ν
∑

i=1

|Fi| ≥ |K ∩ F|,

Combining these two bounds for Eq. (A5) yields

f

(

ν
∑

i=1

|σ(Fi)|

)

≥ ‖F‖t. (A6)

To obtain the thesis from Eq. (A6), we just need to sub-

stitute the Hamming weight on the left-hand side with the

closeness weight ‖ · ‖ωt. By construction, for J it holds that

|J ∩ σ(F)| ≥

ν
∑

i=1

|σ(Fi)|. (A7)

Moreover, since J is a ωt patch:

‖σ(F)‖ωt ≥ |J ∩ σ(F)|. (A8)

Using the monotonicity of f and combining Eqs. (A7),

(A8), and (A6) yields

f (‖σ(F)‖ωt) ≥ ‖F‖t.
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c. CONCLUSION

Because F is an error set equivalent to E, i.e., σ(F) =
σ(E), such that ‖F‖t = ‖E‖red

t , we conclude

f (‖σ(E)‖ωt) ≥ ‖E‖red
t

for ω = ω̃ + 1.

Lemma 5 in particular entails that the closeness weight

is in fact a sensible quantity to look at when dealing with

errors on confined codes.

We now introduce the stochastic shadow decoder. The

difference between this variant and the one previously

presented (Definition 3) is on the weight functions used.

While the standard and adversarial shadow decoder tries

to minimize the Hamming weight of the residual error, the

stochastic shadow decoder attempts to keep under control

its closeness.

Definition 9 (Stochastic shadow decoder). The stochastic

shadow decoder has variable parameters 0 < α ≤ 1, and

0 < β, γ ∈ Z. Given an observed syndrome S = σ(E) +
Se where Se ⊆ Gs is the syndrome error, the stochas-

tic shadow decoder of parameters (α, β, γ ) performs the

following two steps:

1. Syndrome repair: find Sr of minimum γ closeness

‖Sr‖γ such that S + Sr belongs to the (α, β) shadow

of the code, where

(α, β) shadow = {σ(E) such that ‖E‖β ≤ αβ}.

2. Qubit decode: find Er of minimum β closeness

‖Er‖β such that σ(Er) = S + Sr.

We call R = E + Er the residual error.

We have the following promise on the stochastic shadow

decoder, which mirrors the results of Lemma 1 for the

adversarial shadow decoder.

Lemma 6. Consider a stabilizer code that has (t, f ) con-

finement and qubit degree ≤ ω − 1. Provided that the

original error pattern E has ‖E‖red
t ≤ t/2, on input of

the observed syndrome S = σ(E) + Se, the residual error

R left by the stochastic shadow decoder of parameter

[(1/2), t, ωt] satisfies

‖R‖red
t ≤ f (2‖Se‖ωt). (A9)

Thanks to Lemma 5, we know that the closeness func-

tion preserves confinement. The proof is then a straight-

forward adaption of the proof of Lemma 1, where the

Hamming weight has to be substituted with ‖ · ‖t on error

sets and ‖ · ‖ωt on syndrome sets, respectively. We here

briefly report the proof for completeness.

Assume ‖E‖red
t ≤ t/2, and let Er be the output of the

qubit decode step. By construction, it has minimum t

closeness among the errors with syndrome S + Sr, which

belongs to the [(1/2), t] shadow of the code. In particular,

‖Er‖t ≤ (t/2). We recall that the + operation between two

error sets in Gq denotes the support of the product of the

two corresponding Pauli operators and, as such, it holds

that (see Appendix A 1)

E + Er ⊆ E ∪ Er.

By the property of the closeness weight function, this

entails

‖E + Er‖t ≤ ‖E ∪ Er‖t ≤ ‖E‖ + ‖Er‖t.

The linearity of the syndrome function σ(·) yields

σ(E + Er) = σ(E) + σ(Er) = Se + Sr.

Since Se is a possible solution of the syndrome-repair step

‖Sr‖ωt ≤ ‖Se‖ωt and so,

‖Se + Sr‖ωt ≤ ‖Se‖ωt + ‖Sr‖ωt

≤ 2‖Se‖ωt.

Combining this and the monotonicity of f gives

‖E + Er‖
red
t ≤ f (2‖Se‖ωt).

Lemma 5 tells us that the stochastic shadow decoder suc-

ceeds whenever the t closeness of the error is small enough.

Importantly then, if we are able to bound the probability

of the complement of this event, we could infer an upper

bound on the failure probability of our decoder. This is the

subject of the next section.

4. Percolation results and proof of Theorem 2

We consider error sets E on the qubit graph Gq and error

sets Se on the syndrome graph Gs and we assume that

the probability of observing a particular error is at most

exponential in its size. Formally, we use this error model.

Definition 10 (Local stochastic error). An error set E on a

graph G is local stochastic of parameter p if, for all set of

nodes G ⊆ G, the following holds:

P(G ⊆ E) ≤ p |G|.

We then use some results in percolation theory, Lemmas

7 and 8 below, to understand the probability that errors of

closeness linear in the patch size (i.e., ‖E‖β = αβ for some

0 < α ≤ 1) occur when the noise is local stochastic.
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Lemma 7 (Corollary 28 of Ref. [22]). Let G be a graph

with vertex degree upper bounded by z. Then the number

Nβ of connected components of size β (β patches) satisfies

Nβ ≤ |G|�β ,

where � = (z − 1)
(

1 + 1
z−2

)z−2
.

Lemma 8. Let G be a graph with vertex degree upper

bounded by z. Let t be a positive integer and 0 < α ≤ 1.

Then there exists pth > 0 such that, for local stochastic

errors E of parameter p < pth, we have

P(‖E‖t ≥ αt) ≤
|G|

1 − 2h(α)/αp

(

p

pth

)αt

, (A10)

where h(α) = α log2(1/α) + (1 − α) log2(1/1 − α) is the

binary entropy function.

The proof is a straightforward adaption of the proof of

Theorem 17 in Ref. [22]. By expanding the left-hand side

of Eq. (A10), we find

P(‖E‖t ≥ αt) = P(∃K t patch : |K ∩ E| ≥ αt)

≤
∑

K is a t patch

P(|K ∩ E| ≥ αt).

Observe that, for a t patch K ,

P(|K ∩ E| ≥ αt) ≤
∑

m≥αt

∑

K ′⊆K
|K ′|=m

P
(

K ∩ E = K ′
)

≤
∑

m≥αt

∑

K ′⊆K
|K ′|=m

P
(

K ′ ⊆ E
)

≤
∑

m≥αt

∑

K ′⊆K
|K ′|=m

pm

≤
∑

m≥αt

(

t

m

)

pm. (A11)

By Stirling’s approximation [68],

P (|K ∩ E| ≥ αt) ≤
(2h(α)/αp)αt

1 − 2h(α)/αp
. (A12)

Combining Eqs. (A11), (A12), and Lemma 7 yields

P (‖E‖t ≥ αt) ≤ Nt

(2h(α)/αp)αt

1 − 2h(α)/αp

≤
|G|

1 − 2h(α)/αp
·
(

�2h(α)pα
)t

By imposing the right-hand side to decrease with t, we find

p ≤

(

1

�2h(α)

)
1
α

:= pth.

And in conclusion,

P(‖E‖t ≥ αt) ≤
|G|

1 − 2h(α)/αp

(

p

pth

)αt

.

Finally, we are able to prove that there exists a thresh-

old under which the probability of local stochastic errors

to be noncorrectable via the stochastic shadow decoder

becomes exponentially small in the system size, provided

that the graphs Gs and Gq have bounded degree and linear

confinement.

By Lemma 6, the residual error left by the stochastic

shadow decoder on a (t, f )-confined code is kept under

control provided that

‖E‖t ≤
t

4
and f (2‖Se‖ωt) ≤

t

4
. (A13)

If the function f is linear, i.e., f (x) = κx for some κ >

0 ∈ Z, then conditions (A13) can be written as

‖E‖t ≤
t

4
and ‖Se‖ωt ≤

t

8κ
. (A14)

If the qubit error E is local stochastic of parameter p and

the syndrome error Se is local stochastic of parameter q,

thanks to Lemma 8, we obtain

P(‖E‖t ≥ t/4) ≤
|Gq|

1 − 24h( 1
4
)p

(

p

pth

)
t
4

:= Cq|Gq|

(

p

pth

)
t
4

and

P

(

‖Se‖ωt ≥
t

8κ

)

≤
|Gs|

1 − 28ωκh( 1
8ωκ

)q

(

q

qth

)
t

8ωκ

:= Cs|Gs|

(

q

qth

)
t

8ωκ

,

where

pth :=

(

1

�q2h( 1
4
)

)4

and qth :=

(

1

�s2
h( 1

8ωκ
)

)8ωκ

.

As a result, by Lemma 6, the residual error is correctable

except with probability at most

max

{

Cq|Gq|

(

p

pth

)
t
4

, Cs|Gs|

(

q

qth

)
t

8ωκ

}

.
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In other words, for local stochastic noise of intensity

p ≤ pth on the qubits and q ≤ qth on the syndrome, the

stochastic shadow decoder has a sustainable single-shot

threshold.

We conclude by noting that the assumption of linear

confinement is key in the proof of Theorem 2. However,

we speculate that the limitations of Theorem 2 are an arte-

fact of our proof and superlinear confinement is a sufficient

condition for a family of codes to exhibit a single-shot

threshold. In fact, the existence of a threshold pth and qth

relies on the bounds given in Lemma 8. There, it is fun-

damental that the relation between the chosen size of the

patch and the size of the overlap with the error is lin-

ear [see Eqs. (A11) and (A12)]. In other words, Lemma

8 states that, if we take β patches on the error graph and γ

patches on the syndrome graph, we are able to estimate the

probability that errors have closeness less than αβ and α̃γ ,

respectively. By Eq. (A13), in order to bound the closeness

of the residual error left by the stochastic shadow decoder,

we need

‖Se‖γ ≤
1

2
f −1(αβ).

As a consequence, combining this with the requirements

of Lemma 8, entails

γ = κ

(

1

2
f −1(αβ)

)

,

for some positive constant κ . In conclusion, building up

on the results of Lemma 8, we either need to prove that

confinement is preserved if we take on the syndrome graph

patches of size linear in f −1(αβ) or, using our Lemma 5

without modification, that the function is itself linear.

APPENDIX B: QUBIT PLACEMENT ON A 3D

LATTICE

Here we detail how to embed a 3D product code on a

cubic lattice, where qubits sit on edges, Z stabilizers on

vertices, X stabilizers on faces and metachecks on cells.

Let C0 and C1 be two vector spaces over F with

basis B0 = {e0
1, . . . , e0

n} and B1 = {e1
1, . . . , e1

m}, respec-

tively. Given a linear map from C0 into C1, it can be

represented as a m × n matrix δ over F such that its action

on the elements of the basis B0 is given by

δ : C0 −→ C1

e0
i �−→ δe0

i =

m
∑

α=1

δα,ie
1
α . (B1)

Expression (B1) allows us to write the support of vectors

in δ(B0) =
{

δe0
i

}

i
in a compact form. In fact, the support

of δe0
i is the subset of B1:

supp(δe0
i ) =

{

e1
α : δα,i �= 0

}

α
.

Since basis vectors are uniquely identified by their index,

we can compactly write Eq. (B1) as a relation ∗ on the set

of indices of the basis B0 and B1:

{1, . . . , n} −→ {1, . . . , m}

κ −→ κ∗, (B2)

where

κ∗ = {η : δη,κ �= 0}η.

Similarly, the transpose δT of the matrix δ induces a map

from C1 to C0, which is defined on B1 as

δT : C1 −→ C0

e1
α �−→ δTe1

α =

n
∑

i=1

δα,ie
0
i ,

yields the relation on indices

{1, . . . , m} −→ {1, . . . , n}

η −→ η∗, (B2 T)

where

η∗ = {κ : δη,κ �= 0}κ .

Referring to the chain complex (C′′′) described in Sec. IV,

we choose bases Bτ
ℓ =

{

eℓτ
ι

}

ι
of Cτ

ℓ for τ = 0, 1 and ℓ =
A, B, C. We accordingly fix matrix representations of the

maps δA, δB, and δC; with slight abuse of notation, we

indicate with the same symbol the mℓ × nℓ matrix repre-

sentation of a map and the map itself. We indicate with

i, j , k indices of B0
A,B0

B, and B0
C, respectively, and with

α, β, γ indices of B1
A,B1

A,B1
C. Since we deal with three-

fold tensor product spaces (e.g., C0
A⊗C0

B⊗C0
C) we consider

triplets (i, j , k) of valid indices; we indicate with (i∗, j , k)

the set of indices {(η, j , k) : η ∈ i∗}, and similarly for any

possible triplet combination of starred (ι∗) and nonstarred

(ι) indices.

As illustrated in Sec. IV, when defining a CSS code on

the chain complex (C′′′), the following relations hold:

1. basis elements of C0 are in one-to-one correspon-

dence with a generating set of Z stabilizers;

2. basis elements of the vector space C1 are in one-to-

one correspondence with the qubits;

3. basis elements of the vector space C2 are in one-

to-one correspondence with a generating set of X

stabilizers;

4. basis elements of C3 are in one-to-one correspon-

dence with a generating set of metachecks.
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TABLE IV. Notation and correspondences between objects of

the chain complex (C′′′).

Object Indexing Basis vector

Qubits

(α, j , k)

(i, β, k)

(i, j , γ )

(

e
A1
α ⊗e

B0
j ⊗e

C0
k , 0, 0

)

(

0, e
A0
i ⊗e

B1
β ⊗e

C0
k , 0

)

(

0, 0, e
A0
i ⊗e

B0
j ⊗e

C1
γ

)

X stabilizers

(α, β, k)

(α, j , γ )

(i, β, γ )

δT
2

(

e
A1
α ⊗e

B1
β ⊗e

C0
k , 0, 0

)

δT
2

(

0, e
A1
α ⊗e

B0
j ⊗e

C1
γ , 0

)

δT
2

(

0, 0, e
A0
i ⊗e

B1
β ⊗e

C1
γ

)

Z stabilizers (i, j , k) δ1(e
A0
i ⊗e

B0
j ⊗e

C0
k )

Metacheck (α, β, γ ) δT
3 (e

A1
α ⊗e

B1
β ⊗e

C1
γ )

Combining these with Eqs. (B2) and (B2 T), we obtain

the relations reported in Table IV. More precisely, we

choose as bases for the spaces C3, C2, C1, and C0 the product

bases obtained by combining B0
ℓ=A,B,C and B1

ℓ=A,B,C and we

index qubits, stabilizers, and metachecks on C(δA, δB, δC)

accordingly. Equivalently, basis vectors are labeled with

consecutive integers so as to preserve the ordering induced

by the bases.

We use the relations of Table IV to visualize the chain

complex (C′′′) on a 3D cubic lattice. In order to do so, we

first fix a coordinate system

O x

y

z

where O is the origin. Since basis vectors are labeled with

integers (the ith basis vector corresponds to the integer i,

and vice versa) we can build a 3D grid of points where

any point corresponds to a basis vector of C0, C1, C2, or C3.

More precisely we fix a set of valid coordinates for points

in the grid:

1. integer coordinates (z, y, x) = (i, j , k) for i = 1, . . . ,

na, j = 1, . . . , nb, and k = 1, . . . , nc;

2. half-integers coordinates (z, y, x) = (α + 0.5, β +
0.5, γ + 0.5) for α = 1, . . . , ma, β = 1, . . . , mb, and

γ = 1, . . . , mc;

3. the origin has coordinates O = (1, 1, 1).

In this way, any point with valid coordinates uniquely

identifies a basis vector (and therefore an object in the

chain complex, see Table IV). For example,

TABLE V. Correspondence between qubits in C1 and edges of

the lattice.

Qubit Edge

Transverse qubits Edges parallel to the z axis

(α, j , k) Middle point: (α + 0.5, j , k )

Vertical qubits Edges parallel to the y axis

(i, β, k) Middle point: (i, β + 0.5, k)

Horizontal qubits Edges parallel to the x axis

(i, j , γ ) Middle point: (i, j , γ + 0.5)

1. the point (1, 4, 2) corresponds to the basis vector

(e
A0
1 ⊗e

B0
4 ⊗e

C0
2 ) ∈ C0 (Z stabilizers);

2. the point (1.5, 4, 2) corresponds to the basis vector

(e
A1
1 ⊗e

B0
4 ⊗e

C0
2 , 0, 0) ∈ C1 (qubits);

3. the point (1.5, 4, 2.5) corresponds to the basis vector

(0, e
A1
1 ⊗e

B0
4 ⊗e

C1
2 , 0) ∈ C2 (X stabilizers);

4. the point (1.5, 4.5, 2.5) corresponds to the basis

vector (e
A1
1 ⊗e

B1
4 ⊗e

C1
2 ) ∈ C3 (metachecks).

We draw an edge for any qubit of the code defined on

(C′′′). Qubits are in one-to-one correspondence with basis

element of C1 and therefore are of three different types:

(v, 0, 0), (0, v, 0), and (0, 0, v). Accordingly, we draw

edges of three different types as detailed in Table V (see

also Fig. 6). In other words, any point with two integer

entries and one half-integer entry is the middle point of an

edge of unit length, which corresponds to a qubit. In this

way we obtain a cubic lattice with (possibly) some missing

edges.

Points with two half-integer and one integer entries

do not intersect any edge and sit in the center of a

(a) (b) (c)

(d)

FIG. 6. Graphical representation of the cubic lattice associated

to a 3D product code where the seed matrices δA, δB, δC have size

2 × 3, 4 × 6, and 6 × 7, respectively. In (a), (b), and (c) only

transversal, vertical, and horizontal edges are depicted. In (d) we

can see the complete lattice obtained by matching the origin O =
(1, 1, 1) of the three lattices of edges.
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(a) (b) (c)

FIG. 7. X stabilizers on the lattice described in Fig. 6. (a)

X stabilizer corresponding to the transversal-vertical square

indexed by (α, β, k) = (1, 2, 3); its support is contained in the

cross of transversal and vertical qubits (red edges) in the

y-z plane {x = 3}. The crossing has coordinates (z, y, x) =
(1.5, 2.5, 3) and sits in the center of the red square. (b) X stabi-

lizer corresponding to the transversal-horizontal square indexed

by (α, j , γ ) = (1, 6, 5); its support is contained in the cross of

transversal and vertical qubits (red edges) in the x-z plane {y =
6}. The crossing has coordinates (z, y, x) = (1.5, 6, 5.5) and sits

in the center of the red square. (c) X stabilizer corresponding to

the vertical-horizontal square indexed by (i, β, γ ) = (1, 4, 2); its

support is contained in the cross of transversal and vertical qubits

(red edges) in the x-y plane {z = 1}. The crossing has coordinates

(z, y, x) = (1, 2.5, 4.5) and sits in the center of the red square.

(possibly incomplete) square face. These points corre-

spond to X stabilizers, which we therefore identify with

faces. Given a triplet corresponding to one of such a

point, the associated X stabilizer has support contained

in the set of edges, which are parallel to the edges of

the square, forming a cross in a plane. X stabilizers,

like qubits, are of three different types, being in one-to-

one correspondence with basis elements of C2. Namely,

each X stabilizer in C2 has support in two out of three

types of qubits: transverse-vertical, transverse-horizontal,

or vertical-horizontal (see Table VI and Fig. 7).

Points with integer coordinates are associated to Z stabi-

lizers; these are points where endpoints of edges intersect.

FIG. 8. Z stabilizers on the lattice described in Fig. 6. (a) Z sta-

bilizer corresponding to the vertex indexed by (i, j , k) = (2, 4, 2);

its support is contained in the cross of qubits highlighted as red

edges in the picture. The crossing has coordinates (z, y, x) =
(2, 4, 2) (red circle). (b) Z stabilizer corresponding to the ver-

tex indexed by (i, j , k) = (3, 6, 2); its support is contained in

the cross of qubits highlighted as red edges in the picture. The

crossing has coordinates (z, y, x) = (3, 6, 2) (red circle).

The Z stabilizer corresponding to (i, j , k) has support on a

3D cross of edges and qubits centered in (z, y, x) = (i, j , k)

(see Table VI and Fig. 8).

Points with half-integer coordinates sit in the center of

a cube. To any such cube is associated a metacheck in C3.

Metachecks have support on a 3D cross of faces and X sta-

bilizers parallel to the faces of the cube they are associated

to (see Table VI).

1. On geometric locality

One interesting feature of the embedding of 3D product

codes on a cubic lattice is that it preserves some locality

properties of the seed matrices δA, δB, and δC. Thus, if we

were able to place qubits on a 3D cubic lattice we could

use the 3D homological product to build LDPC codes with

nearest-neighbor interactions.

Let δ be an m × n matrix with row and column indices

α ∈ {1, . . . , m} and i ∈ {1, . . . , n}, respectively, and let ν =
max{m, n}. We say that δ is geometrically ρ local on a

TABLE VI. Correspondence between operators of the chain complex (C′′′), their type as geometric objects on the lattice, and their

support. Note that the support of X and Z stabilizers is a set of qubits and edges while the support of metachecks is a set of X stabilizers

and faces.

Operator Type Support

X stabilizers Transverse-vertical square Transverse qubits: (α, β∗, k)

(α, β, k) Vertical qubits: (α∗, β, k)

Transverse-horizontal square Transverse qubits: (α, j , γ ∗)

(α, j , γ ) Horizontal qubits: (α∗, j , γ )

Vertical-horizontal square Vertical qubits: (i, β, γ ∗)

(i, β, γ ) Horizontal qubits: (i, β∗, γ )

Z stabilizers (i, j , k) Transverse qubits: (i∗, j , k)

Vertical qubits: (i, j ∗, k)

Horizontal qubits: (i, j , k∗)

Metachecks (α, β, γ ) Transverse-vertical faces: (α, β, γ ∗)

Transverse-horizontal faces: (α, β∗, γ )

Vertical-horizontal faces: (α∗, β, γ )
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torus if for any row and any column index

α∗ ⊆ Uρ, ν(α) and i∗ ⊆ Uρ, ν(i), (B3)

where Uρ, ν(ζ ) is any set of ρ consecutive integers mod-

ulo ν, which contains ζ . In particular, we require the αth

rows to have support on columns with index that is close to

the integer α, and similar for columns. The reason for this

choice will be clear when we prove Proposition 1. Briefly,

conditions (B3) say that δ is geometrically ρ local on a

torus if the following hold: (1) any of its rows has support

on a bounded box of ρ columns, and the box for row α + 1

is a right shift of the box for row α; (2) any of its columns

has support on a bounded box of ρ rows, and the box for

column i + 1 is a downward shift of the box for column i.

In particular, if we associate row and column indices with

integer points on a circle of ν points:

1

2

3ν − 1

ν

locality means that any set α∗/i∗ is contained in a closed

interval on the circle such that (i) it has length at most ρ and

(ii) it contains the point α/i. For instance, the degenerate

parity-check matrix of the repetition code:

⎛

⎜

⎜

⎜

⎝

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

⎞

⎟

⎟

⎟

⎠

is ρ local for ρ = 2.

A closely related notion of locality on a torus is geo-

metric locality in Euclidean space. We say that an m × n

matrix is geometrically ρ local in Euclidean space if for

any row and column index

α∗ ⊆ Uρ(α) and i∗ ⊆ Uρ(i), (B4)

where Uρ(ζ ) is any set of ρ consecutive integer in

[1, . . . , ν], ν = max{m, n}, which contains ζ . In this case

we can graphically picture locality by associating row and

column indices with integer points on a line of ν points:

1 2 3 ν − 1 ν

A matrix is local if any set α∗/i∗ is contained in a closed

interval on the line such that (i) it has length at most ρ

and (ii) it contains the point α/i. For example, the full-rank

parity-check matrix of the repetition code:

⎛

⎝

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

⎞

⎠

is 2 local.

Geometric locality also applies to codes other than the

repetition code. For instance, the matrix

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 1

1 0 1 0 1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

obtained via the edge augmentation procedure presented

in Ref. [56] is 7 local on a torus. We remark that geo-

metric locality is a property of matrices. For example,

the matrix with the same row as H but different ordering

{1, 2, 3, 4, 7, 5, 6}, is geometrically 5 local on a torus.

In general, geometric locality is a relaxation of the local-

ity property of the repetition code, which only allows for

interactions between pairs of nearest bits. Importantly, as

Proposition 1 states, it is preserved by the 3D product

construction. For this reason, geometrically local classical

codes, combined with the 3D product construction, could

be good candidates in the quest to quantum local codes

beyond the toric and the surface codes.

The remainder of this appendix is organized as fol-

lows. We first state Proposition 1 and prove that geometric

locality is preserved by the 3D product construction. We

conclude by observing how this proof provides an explicit

identification of the 3D toric and surface codes as 3D

product codes.

To ease the notation, in the following we shortly refer

to codes as geometrically local, dropping the specification

on a torus or in Euclidean space. When considering qubits

on a cubic lattice, the lattice would be on a torus or in

Euclidean space depending on the definition of locality that

applies to the seed matrices.

Proposition 1. Consider the 3D product code obtained

from three seed matrices geometrically ρ local. If its qubits

are displayed on the edges of a cubic lattice as detailed

in Appendix B, then it is geometrically ρ local in the

following sense:

1. any X -stabilizer generator has weight at most 2ρ

with support contained in a 2D box of size ρ × ρ;

2. any Z-stabilizer generator has weight at most

3ρ with support contained in a 3D box of size

ρ × ρ × ρ.
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We prove the condition on the Z stabilizers, the proof

for the X stabilizer being similar.

Let Sz be a Z-stabilizer generator. As reported in

Tables IV and VI, it is the image of a basis vector

(e
A0
i ⊗e

B0
j ⊗e

C0
k ) ∈ C0 via the map δ1 and it corresponds to

the point on the lattice of integers coordinates (i, j , k). By

exploiting the choice of the basis for the spaces C0 and C1

and some linear algebra:

δ1(e
A0
i ⊗e

B0
j ⊗e

C0
k ) =

∑

α∈i∗

(eA1
α ⊗e

B0
j ⊗e

C0
k , 0, 0)

+
∑

β∈j ∗

(0, e
A0
i ⊗e

B1
β ⊗e

C0
k , 0)

+
∑

γ∈k∗

(0, 0, e
A0
i ⊗e

B0
j ⊗eC1

γ ).

Again using Table IV, the set of indices, which corre-

sponds to this sum of basis vectors of C1, can be written as

indices(Sz) = {(α, j , k) : α ∈ i∗}

∪ {(i, β, k) : β ∈ j ∗}

∪ {(i, j , γ ) : γ ∈ k∗}.

Following the nomenclature of qubits as traversal, verti-

cal, and horizontal, we see that the three components of

the support of Sz given above respect this division and

therefore we can write

indices(Sz) = indices(Sz)t ∪ indices(Sz)v ∪ indices(Sz)h.

Using (B4) [or (B3)], we see that the sets indices(Sz)t,

indices(Sz)v , and indices(Sz)h correspond, respectively, to

the three sets of consecutive coordinates on the lattice:

�t = {(ī, j , k) : ī ∈ Uρ(i)},

�v = {(i, j̄ , k) : j̄ ∈ Uρ(j )},

�h = {(i, j , k̄) : k̄ ∈ Uρ(k)}.

Since we require ζ ∈ Uρ(ζ ) [or ζ ∈ Uρ,ν(ζ )], the three

sets of coordinates intersect on the point (z, y, x) = (i, j , k).

Moreover, all three intervals �t, �v , �h have length at

most ρ. Combining these, we find that the support of Sz

indexed by (i, j , k) is contained in in a ρ × ρ × ρ neigh-

borhood of the point (z, y, x) = (i, j , k) and has cardinality

at most 3ρ. In other words, we show that the support of Sz

is contained on a 3D cross of qubits with arms of length at

most ρ.

As previously said, the 3D toric and planar codes are

particular instances of the 3D product construction. Fur-

thermore, it is well known that they are local on a torus

and in the Euclidean space, respectively. To see how this

is the case, we remind the reader that the 3D toric code

is obtained by choosing as seed matrices the degenerate

parity-check matrix of the repetition code in the standard

basis. For matrix size L × L, it holds that

{1, . . . , L} ←→ {1, . . . , L}

i −→ {i, i + 1 mod L}

{α, α + 1 mod L} ←− α.

Therefore, stabilizers have support on pairs of consecutive

edges, and it is straightforward to see that they have the

usual shape:

1. Z stabilizers have support on edges incident to a

vertex;

2. X stabilizers have support on edges on the boundary

of a square face;

3. metachecks have support on the faces of a cube.

A similar argument holds for the 3D surface code, which

is local in Euclidean space.

APPENDIX C: ALL 3D PRODUCT CODES HAVE

X-CONFINEMENT

In this section we prove Theorem 1, which states that all

3D product codes have X confinement. Our proof follows

the proof of soundness for 4D codes given in Ref. [18]

with some minor adaptions and it is here reported for

completeness.

First, we show that an opportunely chosen length-2

chain complex has confined maps. Secondly, we explain

how to use this chain complex as a building block of the

length-3 chain complex (C′′′) described in Sec. IV. Lastly,

we prove that the confinement property is preserved and

thus 3D codes defined on (C′′′) as explained in Sec. IV have

X confinement.

Let δA : C0
A → C1

A and δB : C0
B → C1

B be two length-

1 chain complexes. We consider the length-2 product

complex C̃ defined as

C1

A ⊗ C1

B

C1

A ⊗ C0

B C0

A ⊗ C1

B

C0

A ⊗ C0

B

C̃2

C̃1

C̃0

δ̃1

δ̃0

where

δ̃0 =
(

δA⊗1 1⊗δB

)

,

δ̃1 =

(

1⊗δB

δA⊗1

)

.

We first show that the map δ̃0 has confinement.
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Lemma 9. δ̃0 has (t, f ) confinement where t = min{dA, dB}
and f (x) = x2/4.

In order to prove Lemma 9 we first introduce some

useful notation. When considering vectors v in a twofold

tensor product space Fn1⊗Fn2 it can be handy to consider

their reshaping, which is a n1 × n2 matrix on F. Namely,

fixed bases B1 = {a1, . . . , an1
} and B2 = {b1, . . . , bn2

} of

Fn1 and Fn2 , respectively, their product

B = {ai⊗bj } i=1,...,n1
j =1,...,n2

is a basis of Fn1⊗Fn2 . Therefore, we can write

v =
∑

ai⊗bj ∈B

vij ai⊗bj (C1)

for some vij ∈ F. We call the matrix V whose entries are

the coefficient vij the reshaping of v. Given matrices M

and N of size n1 × m1 and n2 × m2 associated to linear

maps from Fn1 and Fn2 , respectively, the map M⊗N from

Fn1⊗Fn2 to Fm1⊗Fm2 acts on the reshaping of v as

(M⊗N )V �−→ MVN T. (C2)

In the following we always indicate with lowercase sym-

bol vectors and with the corresponding uppercase symbols

their reshaping. We can now use this notation to prove

Lemma 9. Let v ∈ CA
0⊗CB

0 and let s = δ̃0(v). By reshaping,

S =

(

δAV

VδT
B

)

.

If we assume |v| = |v|red ≤ t = min{dA, dB} then V has no

column in ker δA and no row in ker δT
B so that

col(δAV) = col(V) and row(VδT
B) = row(V),

where col(V)/row(V) is the number of nonzero columns

and rows of the matrix V. Therefore, for the weight of S, it

holds that

|S| = |δAV| + |VδT
B| ≥ col(δAV) + row(VδT

B)

= col(V) + row(V).

Combining this with (a + b)2/4 ≥ ab for integers a, b

yields

|S|2/4 ≥ col(V) · row(V) ≥ |V|.

Corollary 1 below follows easily from Lemma 9.

Corollary 1. If δA or δB have (g, t) confinement with g

increasing and subadditive [69] then δ̃0 has (g, t) confine-

ment too.

Without loss of generality, we assume that δA has (t, g)

confinement (the proof for δB being symmetrical).

Consider the syndrome matrix

S =

(

δAV

VδT
B

)

=

(

S1

S2

)

,

where V is the reshaping of a vector v of reduced weight

less than t, i.e., |v| = |v|red ≤ t. Because δA has confine-

ment, for the column of V it holds that

|S
j

1| ≥ g(|Vj |).

Thus, we can use confinement columnwise and obtain

|S1| =
∑

j

|S
j

1| by definition of | · |

≥
∑

j

g(|Vj |) by confinement of δA

≥ g

(

∑

j

|Vj |

)

by subadditivity of g

≥ g(|V|) by definition of | · |.

Combining this and

|S| = |S1| + |S2| ≥ |S1|

yields |S| ≥ g(|V|).
Loosely, Corollary 1 states that the result of Lemma 9

can be improved whenever at least one of the seed matri-

ces δA and δB used to build the length-2 product complex

(C̃) shows linear confinement. However, this is not suf-

ficient to prove that the quantum code C(C1) associated

to (C̃) by equating HX = δ̃1, HZ = δ̃T
0 has confinement. In

fact, here we prove that the matrix H T
Z has confinement

and not that one of the syndrome matrices HZ or HX have

it. In other words, Corollary 1 it is not sufficient to infer

the construction of expander codes outlined in Ref. [20];

here confinement goes in the “wrong” direction, namely as

the transpose of the syndrome map. Even if not interest-

ingly on its own, Corollary 1 can be used to improve the

confinement function of the X -syndrome map of the code

C(δA, δB, δC).

More generally, we want to use Lemma 9 to infer that the

code C(δA, δB, δC) defined on the chain complex (C′′′) has

X confinement. To see how this is the case, we consider

an “asymmetrical” version of (C′′′) as the product of the

length-2 chain complex (C̃) and the length-1 chain com-

plex δC : CC
0 → CC

1 . The asymmetric product complex C̆ is

then
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C̃2 ⊗ C1

C

C̃1 ⊗ C1

C C̃2 ⊗ CC
0

C̃0 ⊗ C1

C C̃1 ⊗ CC
0

C̃0 ⊗ C0

C

C̆3

C̆2

C̆1

C̆0

δ̆2

δ̆1

δ̆0

where

δ̆0 =

(

1⊗δC

δ̃0⊗1

)

,

δ̆1 =

(

δ̃0⊗1 1⊗δC

0 δ̃1⊗1

)

,

δ̆2 =
(

δ̃1⊗1 1⊗δC

)

.

Claim 1. Let (v, w) ∈ C̆1 have weight less than t and s =
δ̆1(v, w) be its syndrome. If (V, W) is the reshaping of the

vector (v, w) then the following syndrome equation holds:

S =

(

S1

S2

)

=

(

δ̃0V + WδT
C

δ̃1W

)

, (SE)

where S is the reshaping of s.

Note that a stabilizer for the chain complex C̆0 → C̆1 →

C̆2 → C̆3 and the syndrome map δ̆1(·) has the form δ̆0(m)

for some m ∈ C̆0. By construction, we can add any stabi-

lizer to (v, w) without violating the syndrome Eq. (SE). In

particular,

1. |(v, w)| < t entails that its reshaping satisfies the

following properties:

(a) Both V and W have at most t nonzero rows. Thus

all their columns have weight at most t.

(b) Both V and W has at most t nonzero columns.

Thus all their rows have weight at most t.

2. Fix a row index i and a column index j . Let M be a

matrix in C̆0 with columns

M h =

{

Vj for hin supp(WδT
C)i = supp(Wiδ

T
C),

0 elsewhere.

Its image (MδT
C, δ̃0M ) through δ̆0 is a stabilizer.

Define V∗ and W∗ as

V∗ = V + MδT
C and W∗ = W + δ̃0M .

Observe that

(a) M is a matrix whose nonzero columns are equal

to a column of V. Therefore, M has row support

contained in the row support of V:

row(V∗) ⊆ row(V).

(b) M is a matrix whose column support is

supp(Wiδ
T
C) for some row Wi of W. Therefore,

M has column support contained in the column

support of W:

col(W∗) ⊆ col(W).

Lemma 10 (Inheritance of confinement). δ̆1 has (t, f )

confinement, where t = min{dA, dB, dC} and f (x) = x3/4.

Let (v, w) ∈ C̆1 be such that |(v, w)| = |(v, w)|red ≤ t

and s = δ̆1(v, w) be its syndrome. Reshaping vectors into

matrices [see Eqs. (C1) and (C2)] yields the following

syndrome equation:

S =

(

S1

S2

)

=

(

δ̃0V + WδT
C

δ̃1W.

)

(SE)

We transform the vector (V, W) by adding stabilizers to it

in order to change its column and row support. We do this

by iterating the following two steps.

Step 1: Let i, j be row and column indices such that

(a) (WδT
C)i �= 0 and (S1)i = 0;

(b) (δ̃0V)ij �= 0 and (WδT
C)ij = 1.

Build a matrix M as in Claim 1.

Transform V and W accordingly:

V �−→ V + MδT
C,

W �−→ W + δ̃0M .

Note that in this way we are able to delete row i of WδT
C.

Iterate this step until we obtain

row(WδT
C) ⊆ row(S1). (C3)

Step 2: Let i, j be row and column indices such that

(a) (WδT
C)j �= 0 and (S1)

j = 0; this entails (δ̃0V)j =
(WδT

C)j ;

(b) (δ̃0V)ij = (WδT
C)ij = 1.

Build a matrix M as in Claim 1.

Transform V and W accordingly:

V �−→ V + MδT
C,

W �−→ W + δ̃0M .

Note that in this way we are able to delete row i of WδT
C

and by repeatedly doing so we can delete any column j
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of W(δT
C), which does not belong to the column support of

S1.Iterate this step until we obtain

col(WδT
C) ⊆ col(S1). (C4)

Let M be the matrix formed by summing over all the matri-

ces M found during these two steps. Define V∗ and W∗

as

V∗ = V + MδT
C and W∗ = W + δ̃0M.

We now proceed to prove an upper bound for the weight of

W∗ first and then one for the weight of V∗. By combining

these two bounds we obtain the desired confinement rela-

tion between the weight of the syndrome and the weight of

the error.

BOUND ON THE WEIGHT OF W∗

1. By Claim 1, no row of W∗ has weight more than

t and therefore none of them belongs to ker δT
C so

that row(W∗δT
C) = row(W∗). Combining this with

Eq. (C3) yields

row(W∗) ⊆ row(S1). (C5)

2. By Claim 1, the column support of W∗ is contained

in the column support of W, which is equal to the

column support of S2, by assumption on its weight.

Summing these up,

col(W∗) ⊆ col(S2). (C6)

3. Combining Eqs. (C5) and (C6) yields

|S1||S2| ≥ |W∗|.

BOUND ON THE WEIGHT OF V∗.

1. By rearranging the syndrome Eq. (SE), we can

write δ̃0V∗ = S1 + W∗δT
C. Equations (C3) and (C4)

therefore entail

row(δ̃0V∗) ⊆ row(S1), (C7)

and

col(δ̃0V∗) ⊆ col(S1). (C8)

2. By Claim 1, the row support of V∗ is contained in the

row support of V, which has cardinality at most t. In

particular, all the columns of V∗ have weight at most

t and therefore we can use the confinement property

of the map δ̃0 columnwise (see Lemma 9). In other

words, for each column j of V∗, the following holds:

|(δ̃0V∗)j |

4

2

≥ |(V∗)j |.

Combining this with Eq. (C7) yields

|row(S1)|

4

2

≥ |(V∗)j |. (C9)

3. By Claim 1, no column of V∗ has weight more than t

and therefore none of them belongs to ker δ̃0 so that

col(V∗) = col(δ̃0V∗). By Eq. (C9) this entails

col(V∗) ⊆ col(S1).

In other words, V∗ has at most |col(S1)| nonzero

columns and combining this with Eq. (SE) yields

|row(S1)|

4

2

|col(S1)| ≥ |V∗|, (C10)

which entails
1

4
|S1|

3 ≥ |V∗|.

Since |S| = |S1| + |S2| and |(V, W)| = |V| + |W|, we can

add the bounds found for V∗ and W∗. Observing that

(a + b)3 ≥ (a3 + a2b + ab) for integer a, b, we obtain that

(v∗, w∗) is a vector equivalent to (v, w) [i.e., it satisfies the

syndrome Eq. (SE)] for which it holds

1

4
|s|3 ≥ |(v∗, w∗)|. (C11)

In conclusion, since |(v∗, w∗)| ≥ |(v, w)| = |(v, w)|red, we

prove that δ̆1 has confinement with respect to the function

f (x) = x3/4.

It is sometimes possible to find a better confinement

function f for the map δ̆1 when δ̃0 has (t, g) confinement,

for instance, as per Corollary 1. In fact, in such a case,

Eq. (C9) becomes

g(|δ̃0V∗j |) ≥ |(V∗)j |,

and combining this with Eq. (C7) yields

g(row(S1)) ≥ |(V∗)j |.

Thanks to Eq. (C10) we obtain

g(row(S1))|col(S1)| ≥ |V∗|,

which, for g increasing, entails

g(|S1|)|S1| ≥ |V∗|.
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Summing up,

|S1||S2| + g(|S1|)|S1| ≥ |V∗| + |W∗|. (C12)

In other words, depending on the confinement function g

for δ̃0, Eq. (C12) can be used to find better confinement

function f for δ̆1. For instance, if g(x) = αx is linear then

f (x) = α̂x2, for α̂ = max{α, 1} is a confinement function

for δ̆1. To sum up, whenever at least one of the seed matri-

ces δA, δB, δC has linear confinement, the associated 3D

product code has quadratic confinement.

We do not rule out the existence of a direct relationship

between the confinement function for the seed matrices

δA, δB, and δC and the confinement function for the cor-

responding δ̆1 map of their 3D product code. In fact, we do

believe that the cubic factor of Lemma 10 is an artefact of

our proof and not a tight bound. For instance, when con-

sidering the 3D toric or surface code we find a quadratic

relationship between the error size and syndrome size that

follows a surface area-perimeter law.

APPENDIX D: ON SOME PROPERTIES OF

EXAPANDER CODES

Here we prove that the family of expander codes consid-

ered in Ref. [20] has the three properties stated in the main

text, namely,

(i) they have full-rank parity-check matrices;

(ii) they have (t, 3x) confinement with t ∈ �(d);

(iii) for every small error |e| ≤ 3, σ(e) > 1.

Property (i) is true by assumption made by the authors in

Ref. [20]. In order to prove property (ii) we use Corollary 9

of Ref. [20], which states that the code family considered

has robustness. Robustness for a code is very similar to

confinement but uses a slightly different notion of reduced

weight, which, for an operator e, is defined as

|e|red
S

:= min{|e + s| : s is a stabilizer}.

Our definition of reduced weight instead minimizes over

all Pauli operators with the same syndrome and therefore

it considers both stabilizers and logical operators. Because

for the reduced weight we minimize over a bigger set, the

following holds:

|e|red
S

≥ |e|red. (D1)

Confinement follows combining the statement of Corollary

9 in Ref. [20] for errors such that |e|red
S

< d and Eq. (D1):

3|σ(e)| ≥ |e|red.

In order to prove property (iii) we need to make use of

the hypergraph product structure of the expander codes

in Ref. [20]. Briefly, the code family is defined by taking

the two-product of the length-1 chain complex δ : C0 −→
C1 with itself, where δ is an expander matrix (see also

Ref. [70]). More precisely, the expander codes in Ref. [20]

are CSS codes defined on the chain complex:

C0 ⊗ C1

C0 ⊗ C0 C1 ⊗ C1

C1 ⊗ C0

E2

E1

E0

HX

HZ

where

HZ =
(

δ⊗1 1⊗δT
)

,

HX =
(

1⊗δ δT⊗1
)

.

The matrix δ is chosen in a family of LDPC expander

matrices with full rank and constant column and row

weight wc and wr bigger than two.

We prove property (iii) for X errors e and the syndrome

map σ(e) = HZ ē, where ē is the binary vector represen-

tation of the Pauli operator e; the proof for Z errors and

syndrome map HX follows by duality with minor changes.

Let e be a weight-1 X operator and ē its representa-

tion as a unit vector. Then σ(e) = HZ ē is a column of the

matrix HZ , namely column j if ē has j th coordinate equal

to 1. Since the seed matrix δ has constant column and row

degree bigger than 2, so has the matrix HZ and therefore

|σ(e)| ≥ 2.

Consider now a weight-2 error operator e. By reshaping

of vectors into matrices we can write e as

(L, R)

for some binary matrices L of size n × n, R of size m ×
m, and such that |L| + |R| = 2, where δ has size m × n.

Following this notation, the syndrome S of E can be

written as

S = δL + Rδ.

We have three cases to be distinguished.

(a) |L| = 2. If the support of L is not contained in one

column, i.e., Li1,j1 = Li2,j2 = 1 and j1 �= j2, then for

the syndrome S = δL the following holds:

Sj1 = δi1 and Sj2 = δi2 ,

i.e., the syndrome matrix S has at least two nonzero

columns and therefore weight at least 2. If instead

the support of L is contained in one column, Li1,j =
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Li2,j �= 0 then the syndrome S is zero but for the j th

column:

Sj = δi1 + δi2 .

In this case, whenever δ has distance at least 3,

because it has constant column weight wc, the

following holds:

|δi1 + δi2 | = |δi1 | + |δi2 | − 2|δi1 ∧ δi2 |

≥ 2wc − 2(wc − 1)

≥ 2.

Where the second to last inequality holds because

if δ defines code of distance bigger than 3, then it

must have all distinct columns and different vec-

tors of constant weight wc overlap in at most wc − 1

positions.

(b) |L| = |R| = 1. Suppose Li1,j1 = Ri2,j2 = 1. The syn-

drome S has support contained in one column and

one row, in the shape of a cross as follows:

Sk,j1 = δk,i1, k �= i2

Si2,k = δj2,k, k �= j1

Si2,j1 = δi2,i1 + δj2,j1 ,

Sij = 0, otherwise.

It then follows for the weight of the syndrome S that

|S| ≥ wc + wr − 1,

which is bigger that 1 by assumption on the column

and row weight of δ.

(c) The case |R| = 2 can be proven as done in (a) for

|L| = 2 by exchanging the role of columns and rows.

To sum up, whenever |e| = 2, |σ(e)| > 2.

Last, consider a weight-3 error e. As done for weight-2

errors, we can write e as (L, R) for some binary matrices

L and R. Again, we need to distinguish between the possi-

ble weight combinations of |L| + |R| = 3. We now prove
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FIG. 9. Threshold fits for the 3D toric code using MWPM and BP+OSD to decode. In (a), we plot the logical error rate pfail as a

function of the phase-flip error rate p , for values of p close to the threshold. The colored lines show the fit given by Eq. (E1), with

parameters a0 = 0.547, a1 = 1.92, a2 = −4.04, μ = 1.04, and pth = 0.216 (dashed gray line). In (d), we show the same data using the

rescaled variable x = (p − pth)L
1/μ. Subfigures (b) and (e) show equivalent data for one round of single-shot error correction, with fit

parameters a0 = 0.119, a1 = 3.04, a2 = 22.9, μ = 1.01, and pth = 0.0289. Subfigures (c) and (f) show equivalent data for 16 rounds

of single-shot error correction, with fit parameters a0 = 0.873, a1 = 7.99, a2 = −130, μ = 1.10, and pth = 0.0291. The error bars

show the 95% confidence intervals pfail = p̂fail ± 1.96
√

pfail(1 − pfail)/η, where η ≥ 104 is the number of Monte Carlo trials.
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the case for |L| = 3 and support of L contained in one col-

umn. The other cases are either a dual argument of this one

(i.e., for |R| = 3 supported on one row) or follows easily

adapting the proof for |e| = 2.

Let e be a weight-3 error operator with reshaping (L, R)

such that |L| = 3 and Li1,j = Li2,j = Li3,j = 1, for some

column index j . In this case, the syndrome matrix S has

support contained in its j th column:

Sj = δi1 + δi2 + δi3 ,

and therefore,

|σ(e)| = |S| = |Sj | = |δi1 + δi2 + δi3 |.

In order to prove |σ(e)| = |Sj | > 2, we need to use the

expansion properties of δ and more specifically Lemma 3

of Ref. [20], (see also Ref. [70]). We first introduce some

notation. We refer to the rows of δ as checks and to

its columns as bits; we say that a bit j is in the sup-

port of the check i if and only if δij = 1. Given a set of

bits B ⊆ {1, . . . , n} we say that the check i ∈ {1, . . . , m}
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FIG. 10. Illustration of the fitting procedure for finding the coefficients describing the suppression of the logical error rate for phase-

flip error rates substantially below threshold. (a),(c) Data for code-capacity noise (no measurement errors), and (b),(d) show data for

eight rounds of single-shot error correction. In both cases, we first plot log pfail as a function of log(p/pth) for differing values of L,

observing trends that agree with the straight line prediction of Eq. (E3) [(a),(b)]. We note that for the single-shot case there is an

odd-even effect so we include only the data for odd L. We extract the gradients g(L) from the corresponding straight line fits in (a),(b)

(gray lines), and plot the logarithms of these values against log L [(c),(d)]. The data fit well to the linear ansatz given in Eq. (E5), which

allows us to estimate the parameters α and β, which control the suppression of the logical error rate as per Eq. (E2). For code-capacity

noise, we estimate α = 0.546(33) and β = 1.91(3), and for eight rounds of single-shot error correction, we estimate α = 0.610(37) and

β = 1.15(3). The error bars in (a),(b) show the 95% confidence intervals log pfail = log p̂fail ± 1.96
pfail

√

pfail(1 − pfail)/η, where η ≥ 104

is the number of Monte Carlo trials. We include data points with at least 25 failures. The error bars in (c),(d) show the 95% confidence

intervals given by the LINEARMODELFIT function of Mathematica.
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is a unique neighbor of B if and only if one and only

one bit in B belongs to the support of the check i. We

indicate with Ŵu(B) the set of unique neighbors of B.

Lemma 3 in Ref. [20] states that, for the considered class

of matrices δ:

|Ŵu(B)| ≥
2

3
wc|B|.

Combining this with the observation that |Ŵu({i1, i2, i3})| is

a lower bound on |Sj | and plugging in |B| = 3, we find

|Sj | ≥ |Ŵu({i1, i2, i3})| ≥ 2wc.

To sum up, whenever an error (L, R) of weight 3 has

support on either one column of L or one row of R, by

expansion its syndrome has weight strictly bigger than 1.

When instead a weight-3 error has support spread among

more than one column and row it is enough to use the

hypergraph product structure of the code family, as done

for weight-2 errors, to find that its syndrome need to have

weight at least 2.

APPENDIX E: FITTING DETAILS

To obtain our threshold estimates, we use the standard

critical exponent method [59]. Specifically, in the vicinity

of the threshold, we fit our data to the following ansatz:

a0 + a1x + a2x2, (E1)

where the rescaled variable x = (p − pth)L
1/μ. Examples

of this fit are shown in Fig. 9.

We use the fitting method described in Ref. [12] to

understand the behavior of the 3D toric code logical error

rate for error rates p significantly below threshold. Recall

from Sec. V that we use the following ansatz:

pfail(L) ∝ (p/pth)
αLβ

, (E2)

we take the logarithm of both sides to obtain

log pfail = log f (L) + αLβ log(p/pth). (E3)

For different values of L, we plot log pfail as a function of

log(p/pth) and fit to a straight line to obtain gradients

g(L) =
∂ log pfail

∂u
= αLβ , (E4)

where u = log(p/pth). Finally, take the logarithm of both

sides of the above to give

log g = log α + β log L. (E5)

We then plot log g as a function of log L and fit to a straight

line to get α and β. Figure 10 illustrates the above fitting

procedure for code-capacity noise (no measurement errors)

and for eight rounds of single-shot error correction.
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