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Vehicle Positioning with Deep Learning-Based

Direction-of-Arrival Estimation of Incoherently

Distributed Sources
Ye Tian, Member, IEEE, Shuai Liu, Member, IEEE, Wei Liu, Senior Member, IEEE,

Hua Chen, Member, IEEE, and Zhiyan Dong

Abstract—In this paper, a novel vehicle positioning system
architecture based on direction-of-arrival (DOA) estimation of
incoherently distributed (ID) sources is proposed employing
massive multiple-input multiple-output (MIMO) arrays. Such an
architecture with the associated signal model is more consistent
with the actual array application and multipath transmission
scenarios. First, an end-to-end two-dimensional (2-D) DOA
estimation of ID sources utilizing a dual one-dimensional (1-
D) convolutional neural network (D1D-CNN) under the deep
learning (DL) framework is performed, where the normalized
covariance matrix data is used for both offline training and online
estimation. Then, the received SNR information is exploited to
select a set of DOA estimates provided by multiple collaborative
BSs for positioning. Moreover, transfer learning and an attention
mechanism are employed to promote its generalization ability
and achieve robustness against array perturbations. Simulation
results are provided to show that the proposed method outper-
forms the state-of-the-art methods in terms of computational
complexity, positioning accuracy and robustness against array
perturbations.

Index Terms—Vehicle positioning, 2-D DOA estimation, inco-
herently distributed (ID) sources, deep learning (DL), transfer
learning, Internet of Vehicles (IoV).

I. INTRODUCTION

H IGH-performance vehicle positioning technology for In-

ternet of Vehicles (IoV) plays a crucial role for safe

driving [1]. In most IoV application scenarios, vehicle po-

sitioning based on the global positioning system (GPS) is

the most common and basic solution. However, the current

commercial GPS may fail to work in some covered areas,

such as tunnels and underground car park. Under such a

circumstance, exploiting cooperative positioning methods to
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improve vehicle positioning accuracy, continuity and stability

has become a key development direction of IoV.

Cooperative positioning methods usually depend on various

types of sensors, such as radar, lidar and camera, to achieve

vehicle positioning [2], which perform well in terms of latency

and reliability. According to the positioning mechanism, it can

be roughly divided into four categories. The first is based

on the received signal strength (RSS) [3] or differential RSS

(DRSS) [4], which can provide a simple way to achieve vehicle

localization. However, its performance is not guaranteed since

it depends on the prior information of fading characteristics,

which is not easily available in practice. The second and the

third categories are established on the time of arrival (TOA)

[5] and the time difference of arrival (TDOA) [6], respec-

tively. These two can provide good performance, provided

that the synchronization of clocks among all nodes/sensors

are perfect. Obviously, this is also difficult to achieve and

subject to existing technologies and device level. In contrast,

the fourth category, i.e., the direction of arrival (DOA) based

methods, provide a more robust and efficient way for vehicle

positioning, since their positioning performance only relies on

the accuracy of DOA estimation, and it is easier to obtain good

DOA estimates in comparison with the RSS/DRSS, TOA and

TDOA based methods [7].

DOA estimation has a long research history, and a plethora

of effective methods have been proposed in the past decades.

According to different types of wireless channels, these DOA

estimation methods can be roughly classified into three cat-

egories. The first one is built on the ideal channel without

considering multipath propagation, and the point source model

is employed [8]. Under this model, three interesting vehicle

positioning architectures that respectively applying perturbed

multiple signal classification (MUSIC) [9], sparse Bayesian

learning (SBL) [10] and deep SBL network [11] have been

investigated recently. However, such a channel and signal

model cannot perfectly match the actual IoV and wireless

communication environment, since the effect of multipath

propagation does exist and cannot be ignored.

Unlike the first category, the remaining two are established

on the multipath channel and a scattered/distributed source

model, which can characterize the propagation environment

of a realistic wireless communication process better [12].

Specifically, the second category is built on a slowly time-

varying channel and coherently distributed (CD) source model,

whereas the third one is established on rapidly time-varying
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channel and incoherently distributed (ID) source model. For

DOA estimation of CD sources, many methods have been

proposed, such as the modified MUSIC-like method [13], the

ESPRIT [14] or unitary ESPRIT methods [15], the parallel

factor (PARAFAC) analysis based method [16], and the sparse

signal reconstruction (SSR) based method [17], etc. However,

unfortunately these methods are not good choices for vehicle

positioning in actual IoV system either, since IoV is construct-

ed based on cellular mobile communication systems (CMCS)

and it is well known that the rapidly time-varying channels

are more representative of the realistic circumstances of the

CMCS. Consequently, vehicle positioning based on the ID

source model is more appropriate for practical applications.

However, in comparison with point sources and CD sources,

the DOA estimation problem of ID sources is more complicat-

ed since the signal component may span the whole observation

space. Nevertheless, several DOA estimation methods for

ID sources have been introduced, such as the covariance

matching estimation technique (COMET) [18], the maximum

likelihood (ML) method [19], the Capon method [20] and

the dispersed signal parametric estimation (DISPARE) method

[21]. However, it is well known that these methods are more

suitable for conventional/small-scale arrays, since they require

multi-dimensional search or iterative optimization. Therefore,

it may be extremely difficult if not impossible for them to well

balance the accuracy and real-time requirements of vehicle

positioning in an actual IoV system.

In the past ten years, with rapid development of 5G and

6G wireless communication technologies, massive multiple-

input multiple-output (MIMO) arrays or large-scale arrays

have been widely deployed at BS. Its high degrees of freedom

and large array aperture provide an easier way to improve

the DOA estimation accuracy without extra hardware. In

view of this, several DOA estimation methods exploiting

massive MIMO arrays were successively developed. Based on

the point source model, the quaternion non-circular MUSIC

(QNC-MUSIC) method [22] and the higher-order propagator

method (HOPM) [23] are presented; while based on the ID

source model, the estimating signal parameters via rotational

invariance technique (ESPRIT) [24] and the Beamspace-based

approach [25] are introduced for two-dimensional (2-D) DOA

estimation utilizing a massive uniform rectangle array (URA).

Since these two methods are established on the multipath prop-

agation environment, they are relatively consistent with the

application scenarios of vehicles in the IoV system. However,

two challenges still remain to further meet the positioning

accuracy and the real-time response of the system. Firstly,

these two methods mentioned above are established on an

approximate ID source model and an ideal array manifold,

which cannot accurately model the actual transmission and

reception environment. Therefore, the DOA estimation and

subsequent vehicle positioning accuracy may not be satisfacto-

ry, since various array uncertainties (such as mutual coupling

and gain-phase errors) always exist in practice. Secondly,

although these two methods can yield closed-form solutions,

they still involves the high-dimensional matrix inversion and

eigenvalue decomposition (EVD) operations. As indicated in

[26], these operations incur prohibitively high computational

cost for massive MIMO systems.

In order to tackle these challenges and at the same time

provide a new and effective strategy for vehicle positioning in

actual IoV scenarios, a deep learning (DL)-based approach

is proposed in this paper, whose key idea is to obtain an

efficient 2-D DOA estimation of ID sources utilizing a massive

MIMO array, and then achieve vehicle positioning with pre-

ferred DOA information provided by multiple BSs. The main

contributions of this paper are listed as follows:

1) As opposed to existing methods for DOA estimation

of ID sources in massive MIMO systems, a DL-based

approach that employs an unbiased ID system model

is proposed, which can achieve 2-D DOA estimation

without performing spectral search, parameter matching,

high-dimensional matrix inversion and EVD, and thus

computationally very attractive.

2) A dual 1-D convolutional neural network (D1D-CNN)

is constructed to realize an end-to-end performance,

and the real and imaginary parts of normalized array

covariance matrix are exploited to train their correspond-

ing sub-networks. Through this operation as well as

information fusion, robustness in both DOA estimation

and subsequent vehicle positioning is achieved.

3) Considering the influence of array perturbations present

in antenna array systems, it is proposed to employ

transfer learning and attention mechanism to promote

the generalization ability of the network trained with

a small amount of array perturbed data. As a result,

a satisfactory 2-D DOA estimation performance in the

presence of such perturbations is obtained.

4) Instead of using DOA estimates provided by multiple

collaborative BSs directly, the received signal-to-noise

ratio (SNR) information is exploited to select the best

set of DOA estimates, and use them to achieve robust

vehicle positioning.

The remainder of this paper is organized as follows. In

Section II, the vehicle positioning system architecture is pro-

vided for 2-D DOA estimation of ID sources with a massive

MIMO URA. In Section III, the proposed D1D-CNN based

approach is presented in detail. In Section IV, the problem of

how to exploit the received SNR information to select the set

of DOA estimates to obtain robust vehicle positioning result

is addressed. Simulation results are given in Section V, and

conclusions are drawn in Section VI.

Notations: Upper-case (lower-case) boldface letters denote

matrices (vectors). IM represents the M ×M identity matrix,

[·]m,n the (m,n)th element of a matrix, and [·]m the mth

element of a vector. Superscripts (·)∗, (·)T and (·)H represent

the conjugate, transpose and conjugate transpose operators,

respectively. ∥·∥, E{·} and Tr (·) stand for the Frobenius norm,

statistical expectation and trace of a matrix, respectively.

II. POSITIONING SYSTEM AND DATA MODEL

The architecture of the employed vehicle positioning system

is shown in Fig. 1(a), which mainly has three parts: 1)

vehicle terminal equipped with a wireless signal transmitter, 2)
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(a) (b)

Fig. 1. (a) Illustration of the vehicle positioning system utilizing multiple collaborative BSs. (b) Massive MIMO URA geometry adopted for 2-D DOA
estimation of ID sources.

fifth/sixth generation (5G/6G) BS equipped with a mssive MI-

MO URA, (3) the core network for information transmission

and the cloud platform for providing computing services. In

its operation, the vehicle first transmits a wireless positioning

signal via its transmitter, the BS receives this signal and

obtains the required DOA information, and then, the DOA

estimates provided by multiple BSs are uploaded to the cloud

platform via the core network; finally, high-accuracy vehicle

positioning is achieved by triangulation using a selected set of

DOA estimates.

The key to this architecture lies in robust and efficient

DOA estimation. Consider a massive MIMO URA as shown

in Fig. 1(b) with M = Mx × My antennas, where Mx and

My are the number of antennas in the x-direction and y-

direction, respectively. Taking into account the effect of rapidly

time-varying channels and multipath propagation, the received

signal at the antenna array can be expressed as [24]

x (t) =

K
∑

k=1

sk (t)

Lk
∑

l=1

γk,l (t)a (θk,l (t) , φk,l (t)) + n (t) , (1)

where K denotes the number of vehicles, sk (t) the complex-

valued signal transmitted by the kth vehicle, t = 1, 2, . . . , T
with T denoting the number of samples; Lk is the number

of multipaths of the kth vehicle, and γk,l the complex-valued

gain of the lth path from the kth vehicle; a (θk,l (t) , φk,l (t)) ∈
C

M×1 is the response of the array with θk,l (t) and φk,l (t)
representing the real-valued azimuth and elevation DOAs of

the lth path from the kth vehicle, respectively, with 0 ≤
θk,l (t) < π and 0 ≤ φk,l (t) < π/2; n (t) ∈ C

M×1 is the

complex-valued additive Gaussian white noise.

Taking the origin as the phase reference point, the mth

element of a (θk,l (t) , φk,l (t)) is given by [24]

[a(θk,l(t), φk,l(t))]m = exp(ju sin(φk,l(t))[(mx − 1)

× cos(θk,l(t)) + (my − 1) sin(θk,l(t))]),

m = (my − 1)Mx +mx,mx = 1, 2, . . . ,Mx,

my = 1, 2, . . . ,My, (2)

where u = 2πd/λ with d and λ respectively being the distance

of two adjacent antennas and the wavelength of the carrier.

According to the scattering characteristics [27], the azimuth

and elevation DOAs of the lth ray at time instant t can be

expressed as

θk,l(t) = θk + θ̃k,l(t), (3)

φk,l(t) = φk + φ̃k,l(t), (4)

where θk and φk are the nominal azimuth and elevation DOAs

for the kth vehicle, respectively, and θ̃k,l (t) and φ̃k,l (t) are

their corresponding random angular deviations with zero mean

and standard deviations σθk and σφk
.

For simplicity and also for comparison in later simulations,

the same assumptions as in [24] and [25] are adopted here.

Subsequently, the array covariance matrix R is given by

R = E
{

x (t)xH (t)
}

= Rs + σ2
nIM . (5)

It should be emphasized here that detailed expressions of R

and Rs are not given, since this paper attempts to establish

a generalized approach for DOA estimation of ID sources

without knowing the specific expressions of R and Rs. Nev-

ertheless, R and Rs contain all the required information about

the vehicle, including 2-D nominal DOA, angular spreads,

signal power emitted by the vehicle, etc. In what follows,

we will demonstrate how to obtain a satisfactory 2-D DOA

estimation performance efficiently with R and further achieve

an improved vehicle positioning result.

III. THE PROPOSED METHOD

ESPRIT [24] and Beamspace [25] are two representative

approaches for 2-D DOA estimation of ID sources with mas-

sive MIMO arrays, which respectively employ approximate

covariance matrix RE = AΛsA
H + σ2

nIM and dimension-

reduced covariance matrix RB = WAΛsA
H
W

H +σ2
nIPMy

for DOA estimation. These two approaches can yield good

performance, provided that the angular spreads are sufficiently

small and there are no array perturbation or model errors.
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Fig. 2. Dual one-dimensional (1-D) convolutional neural network (D1D-CNN) structure for DOA estimation.

However, such conditions may not be satisfied in practice, and

as a result, their performance will degrade. In the following, a

D1D-CNN based approach is presented to tackle these issues.

A. Basic Configuration of D1D-CNN

CNN is a special type of deep learning model. By using

local connections and shared weights, it can reduce the number

of neural network parameters. CNN usually consists of con-

volution, pooling, activation function, and batch normalization

layers. A deep CNN architecture is built by stacking several

convolution layers. Given the capability of high level feature

learning, a dual one-dimensional (1-D) convolutional neural

network (D1D-CNN) as shown in Fig. 2 is constructed, which

consists of an input module, a real component CNN feature

learning branch, an imaginary component CNN feature learn-

ing branch, and a real-imaginary component feature fusion

module. Each feature learning branch uses four convolution

(Conv) layers, two batch normalization (BN) layers, four

activation function layers and four max pooling (MP) layers.

Note that such a configuration is decided through extensive

simulations to reach a good balance between accuracy and

complexity.

Different from the existing DL-based methods studied in

[28] and [29], the array covariance elements are used as the

input of the D1D-CNN, which have a fixed dimension in

comparison with the time-domain data, and provide a partic-

ularly efficient representation of the data when a sufficient

number of samples are available. In the process of DOA

estimation, the covariance matrix elements are first normalized

and transformed into one-dimensional vector, which is then

divided into real and imaginary parts. The real part contains

the noise variance components, while the imaginary part does

not. Subsequently, discriminative real and imaginary features

are extracted and fused. Finally, the fused features are fed into

the fully connected layers to achieve 2-D DOA estimation. The

output of D1D-CNN is the real-valued azimuth and elevation

DOAs α(θ, φ). Let xr and xi indicate the input real and

imaginary components of R, respectively. Then the output of

the D1D-CNN is given by

α(θ, φ) = f(xr,xi, w) = f (n−1)(f (n−2)(. . . f1(xr,xi))),
(6)

where f(·) represents the output of the model, n and w are the

number of layers and the weights of D1D-CNN, respectively.

In particular, when the input value of rectified linear unit

(ReLU) is negative, the output as well as its first derivative

is always zero, which directly yields that the neuron cannot

update the parameters any more. To avoid this problem, the

Leaky ReLU is used to keep a small gradient value when the

input is less than zero [30]. The function of the Leaky ReLU

is given by

LeakyReLU(x) = max(0, x) + γmin(0, x), (7)

where γ is a very small constant. The network adopts the BN

layer to normalize the data and MP layer to reduce the number

of parameters and simultaneously facilitate convergence of the

model. For the fully connected layers, we apply a dropout

technique to randomly drop units from the neural network

during training, which can effectively prevent the overfitting

issue. For the fully connected output layer, the Sigmoid

function is selected as the activation function of the processing

layer to realize classification and obtain azimuth and elevation

angle estimation.

B. Real and Imaginary Component Features Fusion

Let Rr and Ri denote the learned features for the real and

imaginary component CNNs, respectively. In order to balance

these two features efficiently and effectively, the summation

and maximization strategy is applied. The summation fusion
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Algorithm 1: D1D-CNN Training

Input: {R, θ, φ}, training epochs
Output: All trainable parameters in each layer
1: Initialize all weights
2: While epoch<epochs do

Stage 1:
Train the real and imaginary component CNNs; sample minibatch
of {R, θ, φ} from training set, where the parameter matrices Wr ,
Wi associated with real CNN and imaginary CNN are all learned
by minimizing the following loss function:

Loss = 1

KN

∑N
i=1

∑K
k=1

{

∥

∥

∥
θk,i − θ̂k,i

∥

∥

∥

2

+
∥

∥

∥
φk,i − φ̂k,i

∥

∥

∥

2
}

.

3: End while

4: While epoch<epochs do

Stage 2:
Merge the separated trained models, freeze the weights of real and
imaginary CNNs and fine-tune fully connected layers, where the
parameter matrix Wf is learned by minimizing the loss function:

Loss = 1

KN

∑N
i=1

∑K
k=1

{

∥

∥

∥
θk,i − θ̂k,i

∥

∥

∥

2

+
∥

∥

∥
φk,i − φ̂k,i

∥

∥

∥

2
}

.

5: End while

aims at performing an element-wise sum of the two feature

representations, i.e.,

Fsum = Rr +Ri, (8)

while the maximization fusion computes the element-wise

maximum value, i.e.,

Fmax = max (Rr +Ri) . (9)

The whole fusion layer is formulated as

Ffusion = λ1Fsum + λ2Fmax, (10)

where λ1 and λ2 are in the range [0,1] with λ1 + λ2 = 1.

C. Network Training

After establishing the DOA estimation framework, an offline

learning scheme is adopted to train the D1D-CNN. The pa-

rameters of the model are randomly initialized and trained by

an error back propagation algorithm. It is difficult to optimize

the parameters in the D1D-CNN branch. In the experiment,

the real and imaginary component CNNs are first trained using

real and imaginary data individually. Then, a fine-tune strategy

is employed, which loads the weights from pre-trained two

branches to greatly reduce the time of numerical calculation.

As described in the D1D-CNN model, two different feature

learning components are first trained on real and imaginary

data sets with a large learning rate. Then, the two pre-

trained models extract the corresponding features from real

and imaginary training data pairs. When the two component

branches are merged, the fusion features will be fine-tuned

with a smaller learning rate.

For obtaining accurate estimates of θk and φk, the mean

square error (MSE) based loss function is used, which can be

formulated as

Loss =
1

KN

N
∑

i=1

K
∑

k=1

{

∥

∥

∥
θk,i − θ̂k,i

∥

∥

∥

2

+
∥

∥

∥
φk,i − φ̂k,i

∥

∥

∥

2
}

,

(11)

where N is the number of samples in second-order statistics

domain, θ̂k,i and φ̂k,i are the estimated values in the training

process. The Adaptive moment estimation (Adam) optimizer

with a batch size of 100 is employed [31].

Once the network is trained, it can be used directly to

estimate θ and φ. In the procedure, online deployment is

conducted by feeding the raw pair data into the model without

requiring iterations and parameter pairing. The stages of D1D-

CNN training are illustrated in Algorithm 1.

D. Enhanced D1D-CNN for DOA Estimation with Array Per-

turbations

To the best of our knowledge, all the existing DOA esti-

mation methods for ID sources are based on the ideal array

manifold without considering array perturbations, such as

mutual coupling, gain-phase errors and array position uncer-

tainties. It has been demonstrated that such array perturbations

can degrade the estimator’s performance substantially [32].

Although there have been some array calibration methods

available, such as the eigenstructure-based method [33], the

active calibration method [34], and the covariance difference

based method [35], most of them are based on the point source

model, uniform linear array and subspace theory, and it is very

difficult to extend them to deal with the scenario considered in

this work. Fortunately, based on the characteristics of DL, this

issue can be tackled by enhancing the constructed D1D-CNN

in the following two aspects:

i) Transfer learning (TL) is used to promote the generaliza-

tion ability of already trained D1D-CNN with a small amount

of perturbed array data, which aims to align the features across

array perturbations and reduce the distribution divergence.

Instead of using the fine-tuning strategy mentioned above, a

more suitable and effective TL approach is exploited here.

Let Di and Dp represent the feature of data with ideal array

manifold and that with array perturbations, respectively. Then

the learning tasks are represented as Li = {αi, P (αi|ri)}
and Lp = {αp, P (αp|rp)}, respectively, where α denotes

the DOA information, and r the normalized array covariance

matrix vector. For DOA estimation, it is important to match the

conditional probability distributions P (αi|ri) and P (αp|rp)
across array perturbations, since the conditional distributions

reflect the difference information. Thus the TL can be regarded

as learning a feature space to align different distributions.

Based on the statistics, the posterior probability distribu-

tion P (α|r) can be replaced by the conditional distribution

P (r|α), since the posterior distribution is quite complicated.

The objective function to measure the divergences of the

conditional distributions across data with array perturbations

can be defined as below

J = min
∑

∥

∥

∥

∥

∥

∥

1

Nα
i

∑

xi∈Dα
i

F (xi)−
1

Nα
p

∑

xp∈Dα
p

F (xp)

∥

∥

∥

∥

∥

∥

, (12)

where F (·) stands for the CNN mapping function to project

data into the common feature subspace, Nα
i and Nα

p denote

the same DOA number of the source domain and the target

domain, respectively. The function is optimized to obtain the

mapping function, and thus the conditional distributions of

features across ideal and perturbation arrays are aligned.
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Fig. 3. The adopted plug and play attention module.

ii) Attention mechanism is exploited to increase the robust-

ness of the D1D-CNN against array perturbations. Specifically,

we design plug and play attention module to add soft weights

on feature maps from the feature learning module, as shown

in Fig. 3. After processing by the real and imaginary com-

ponent CNNs, the resulting real and imaginary features have

redundant information. The real component attention aims to

refine the features of real component features, which model

the relationships between each channel of the feature map

to learn a real component weight, and then multiply it to

the real component features. Given real data, 1-D CNN will

produce a feature map F ∈ R
D×C , where D and C denote

the dimension of the feature map. By performing a matrix

multiplication operation, the real component feature weight

map X is obtained through a softmax operation:

xji =
exp(Fi · Fj)

∑C
i=1 exp(Fi · Fj)

, (13)

where xji is used to calculate the ith channel’s impact on

the jth channel. After that, F and the real component feature

weight map X are multiplied together. Here, an element-wise

sum operation with F is performed to obtain the final real

component feature map F real, i.e.,

Fj
real =

C
∑

i=1

(xjiFi) + Fj . (14)

The imaginary component attention module is designed

in the same way. Finally, we obtain the final imaginary

component feature map F imag.

IV. VEHICLE POSITIONING BASED ON DOA ESTIMATION

Once the 2-D nominal DOAs have been estimated by

multiple collaborative BSs, the location of the vehicle can then

be obtained. Let (Px,m̄, Py,m̄, Pz,m̄) and (Xk, Yk, Zk) denote

the known position of the m̄th BS and the unknown position of

the kth vehicle, respectively. Then the following relationships

hold,

tan θk,m̄ =
Py,m̄ − Yk

Px,m̄ −Xk
, tanφk,m̄ =

Py,m̄ − Yk

Pz,m̄ − Zk
. (15)

According to the localization method of triangulation and

the widely used average operation, the coordinates of the

kth vehicle can be calculated by equations at the bottom

of this page, where M̄ denotes the number of available

BSs, m̄, m̃ ∈ [1, M̄ ], (θk,m̄, φk,m̄) and (θk,m̃, φk,m̃) are 2-

D nominal DOA estimates provided by the m̄th BS and the

m̃th BS, respectively.

However, due to influence of the vehicle location and wire-

less transmission environment in the actual IoV system, not

all DOA information provided by the BSs is reliable. Under

this situation, exploiting some auxiliary/prior information to

select the best set of DOA estimates for vehicle positioning

holds the key for a final satisfactory result. In this paper, the

received signal-to-noise ratio (SNR) at the BS is used to select

DOA estimates, since it is well known that the DOA estimation

accuracy increases with the received SNR.

For simplicity, a priori knowledge of the noise variance σ2
n

is assumed. For the case with unknown σ2
n, one can estimate

it first according to [36]. Since the 2-D nominal DOAs have

been estimated, Λs under the approximated model can be

reconstructed as

Λ̂s = Â
†(R− σ̂2

nIM )(ÂH)†, (16)

where Â is the estimate of A. Consequently, the received SNR

corresponding the kth vehicle is given by

SNRk = 10× log10

(

Λ̂s(k, k)/σ
2
n

)

, k ∈ [1,K]. (17)

The proposed vehicle positioning method is summarized in

Algorithm 2.

Several Remarks:

Xk =
2

M̄(M̄ − 1)

M̄
∑

m̄=1

M̄
∑

m̃=1
m̄ ̸=m̃

Py,m̄ − Py,m̃ + Px,m̃ tan θk,m̃ − Px,m̄ tan θk,m̄
tan θk,m̃ − tan θk,m̄

,

Yk =
2

M̄(M̄ − 1)

M̄
∑

m̄=1

M̄
∑

m̃=1
m̄ ̸=m̃

(Px,m̄ − Px,m̃) tan θk,m̃ tan θk,m̄ + Py,m̃ tan θk,m̄ − Py,m̄ tan θk,m̃
tan θk,m̄ − tan θk,m̃

,

Zk =
2

M̄(M̄ − 1)

M̄
∑

m̄=1

M̄
∑

m̃=1
m̄ ̸=m̃

Py,m̄ − Py,m̃ + Pz,m̃ tanφk,m̃ − Pz,m̄ tanφk,m̄

tanφk,m̃ − tanφk,m̄
.
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Algorithm 2: The Proposed Vehicle Positioning Method

Input: D1D-CNN, covariance matrix R, K, M̄
Output: (Xk, Yk, Zk), k = 1, . . . ,K
1: Load the D1D-CNN which has been trained thoroughly.

2: Utilize R to update the output (θk,m̄, φk,m̄), k ∈ [1,K], m̄ ∈ [1, M̄ ].
3: Perform EVD on R to obtain eigenvalues and eigenvectors.
4: Estimate the array perturbation based on the orthogonality between the

signal and noise subspaces.
5: Calculate the received SNR according to (17) after compensating for

this array perturbation.
6: Select the DOA estimates provided by BSs with a large

received SNR.
7: Obtain the vehicle location with selected DOA estimates.
8: return: (Xk, Yk, Zk), k = 1, . . . ,K.

• In practical applications, if the difference of the received

SNR among different BSs is small, a simple average

operation is used to realize vehicle positioning. Other-

wise, if the received SNR is very different, only M̌ ≥ 2
DOAs provided by the BSs with a large received SNR are

chosen. This strategy can yield an improved positioning

accuracy and robustness on vehicle positioning.

• When there are array perturbations, one can exploit some

approach to estimate it first with the estimated 2-D DOAs,

such as the approach in [35], and then obtain the received

SNR after compensating for such array perturbations.

• Estimation of the received SNR (17) is based on the

approximated model, which only holds when the angular

spreads are sufficiently small. In case of large angular

spreads, (17) is invalid, and there have been no reports

for estimating the received SNR under this circumstance.

Through our analysis, it may be feasible to accomplish

this through a DL-based approach, but further research is

needed to solve the problem.

• The proposed method can achieve 2-D DOA estimation

with a computational complexity of O(M2T + M2K).
As a comparison, the complexities of ESPRIT [24] and

Beamspace [25] are (O(M2T + M3 + M2K)) and

(O((PMx)
3 + (PMy)

2N + PMxN + PMyK
2)), re-

spectively. Fig. 4 provides an intuitive comparison on

complexities in logarithm scale for different algorithms

with Mx = My =
√
M , P = Mx − 2,K = 2, N = 200,

from which we can clearly see that the computational

complexity of the proposed one is lower than those of

the other two methods when M > 100, making it well

suited for massive MIMO systems.

V. SIMULATION RESULTS

In this section, numerical simulations are carried out to

demonstrate the effectiveness of the proposed vehicle posi-

tioning method. Firstly, the 2-D nominal DOA estimation

performance of the proposed D1D-CNN based method is

evaluated and compared with that of the ESPRIT [24], the

Beamspace [25] based approaches and the Cramér-Rao bound

(CRB) [24]. Secondly, the vehicle positioning performance of

the proposed algorithm with 2-D DOA estimates is shown.

Each BS in the positioning system is equipped with a massive

URA, which consists of M = Mx × My antennas, and the

distance between adjacent sensors is d = λ/2. All the wireless
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Fig. 4. Computational complexities versus number of BS antennas.

positioning signals transmitted by the vehicle are BPSK-

modulated. Without loss of generality, a Long Term Evolution

(LTE) uplink system is considered here, which operates at 2

GHz, with a channel bandwidth of 2.5 MHz, and the sampling

rate is 3.84MHz. The training samples of the D1D-CNN are

fromed by the direction information {θk,i, φk,i}, where θk,i
and φk,i are randomly distributed in the range [0, π) and

[0, π/2), respectively. In addition, the training set comprises

50000 examples in the simulation, while a validation set with

4000 samples for each SNR.

A. Performance of DOA Estimation without Perturbations

1) RMSE versus the Average Received SNR: In the first

simulation, the performance of the proposed D1D-CNN based

method versus the average received SNR is tested with an

ideal array manifold, whose root mean square error (RMSE)

curves are shown in Fig. 5 with two sources located at {θ1 =
10◦, φ1 = 30◦} and {θ2 = 50◦, φ2 = 40◦}. The number of

multipaths is Lk = 50, the ray gain variance, the azimuth

angular spreads and the elevation angular spreads are σ2
γk

=
1, σθk = 1◦, σφk

= 1◦, respectively, k = 1, 2. Mx = My =
10, the number of samples is fixed at 500, and SNR varies

from -5 dB to 10 dB. From the result, it can be seen that the

proposed method yields a better result than the ESPRIT and

the Beamspace based algorithms. However, there is a clear gap

between the estimation performance of the proposed method

and the CRB, which indicates that there is still much room

for improvement in the adopted network model and training

set, which can be a topic of our further research.

2) RMSE versus the Number of Samples: In the second sim-

ulation, we evaluate the impact of the number of samples on

DOA estimation performance of different algorithms, whose

RMSE curves are illustrated in Fig. 6. SNR=10 dB and the

number of samples is varied from 100 to 600, and the other

conditions are the same as in the first simulation. It can be seen

from Fig. 6 that the performance of all algorithms improves

monotonically with the number of samples. In particular, the

proposed method still performs better than the other two

algorithms in the whole sample region.
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Fig. 5. RMSEs of 2-D nominal DOA estimation versus the average received SNR without considering array perturbations, M = 100, N = 500. (a)
Estimation of θ. (b) Estimation of φ.
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Fig. 6. RMSEs of 2-D nominal DOA estimation versus the number of samples without considering array perturbations, M = 100, average received SNR=10
dB. (a) Estimation of θ. (b) Estimation of φ.

3) RMSE versus the Number of BS Antennas: In the third

simulation, the performance is examined with different number

of BS antennas. The simulation conditions are also the same

as in the first simulation, except that SNR is fixed at 10 dB,

and the number of BS antennas M varies from 36 to 196,

with
√
M = Mx = My . The result is shown in Fig. 7, from

which we can observe that the RMSEs of the proposed method

decrease rapidly as M increases and are also lower than the

other two compared algorithms. On the other hand, it can

also be clearly seen that the performance of the other two

algorithms is influenced by M significantly more, and their

performance is far worse when M < 100, which is consistent

with the simulation results in [24] and [25]. As explained in

[24], the signal subspace Ês and A might not be in the same

subspace in cases of small M , which directly yields that their

related performance is not satisfactory. Since the proposed

solution is not established under the subspace framework, it

avoids this mismatch problem effectively.

4) RMSE versus the Number of Multipaths: In the fourth

simulation, the performance of the proposed method with

different number of multipaths is investigated. The simulation

parameters are the same as those in the third simulation,

except that M is fixed at 100, and Lk is varied from 20 to

60 in steps of 10. As can be seen in Fig. 8, the RMSE of

the proposed method is almost invariant with the number of

multipaths, which effectively validates the robustness of the

proposed method in a multipath scenario. Note that the number

of multipaths is normally time-varying, especially in an urban

environment, and therefore, this robust performance will play

an important role for safe and reliable autonomous driving.

B. Performance of DOA Estimation with Mutual Coupling

1) RMSE versus the Average Received SNR: In the fifth

simulation, the performance of the proposed method in the
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Fig. 7. RMSEs of 2-D nominal DOA estimation versus the number of BS antennas without considering array perturbations, N = 500, average received
SNR=10 dB. (a) Estimation of θ. (b) Estimation of φ.
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Fig. 8. RMSEs of 2-D nominal DOA estimation versus the number of multipaths without considering array perturbations, M = 100, N = 500, average
received SNR=10 dB. (a) Estimation of θ. (b) Estimation of φ.

presence of array perturbations is studied, where the array

mutual coupling is taken into account as an example. The

mutual coupling coefficients between two adjacent sensors

with distance λ/2 and λ are c1 = 0.7e−jπ/4 and c2 =
0.3ejπ/10, respectively, while the mutual coupling coefficient

between other antennas are assumed to be relatively small. TL

and attention mechanism are utilized to enhance the trained

D1D-CNN. Except for the mutual coupling configuration, the

remaining simulation conditions are the same as in the first

simulation. It should be noted that the ESPRIT and Beamspace

based methods are established on an ideal array model without

considering mutual coupling. Due to the model mismatch

problem, it can be seen from Fig. 9 that their performance

drops sharply, and barely improves as the SNR increases, in

the presence of mutual coupling. In contrast, the proposed

D1D-CNN based method can still reach a satisfactory DOA

estimation result, which effectively validates the robustness

of the proposed solution. Note that mutual coupling always

exists and cannot be ignored or perfectly calibrated in practical

applications of massive MIMO arrays, which implies that the

proposed solution would be a better choice in practice.

2) RMSE versus the Number of Samples: In the sixth

simulation, the average received SNR is set to 10 dB, and the

number of samples is varied from 100 to 600. The simulation

result is illustrated in Fig. 10, and again it shows that the

proposed D1D-CNN based method can achieve lower RMSE

than the other two, and exhibits great robustness against array

perturbations.

C. Performance of Vehicle Positioning Utilizing Three Collab-

orative BSs without Array Perturbation

In this part, the vehicle positioning performance is s-

tudied, where three collaborative BSs with their loca-

tion coordinates #1(200m, 0m, 50m), #2(0m,−20m, 50m),
#3(100m, 100m, 50m) are considered. The coordinate of the

vehicle is (−30m,−40m, 0m), and its position is assumed to

be fixed within a time interval of 600 samples. Notice that the
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Fig. 9. RMSEs of 2-D nominal DOA estimation versus the average received SNR with array mutual coupling, M = 100, N = 500. (a) Estimation of θ.
(b) Estimation of φ.
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Fig. 10. RMSEs of 2-D nominal DOA estimation versus the number of samples with array mutual coupling, M = 100, average received SNR=10 dB. (a)
Estimation of θ. (b) Estimation of φ.

delay caused by 600 samples is about 600/3.84M ≈ 1.56 ×
10−4s, and the speed of vehicle is usually limited to less than

100 m/s, and therefore, the change of nominal DOA caused

by 600 samples is 100× 1.56× 10−4/103/π× 180 < 0.001◦,

which means that the assumption about a fixed vehicle position

is reasonable. Two different scenarios are considered. Scenario

1: The received SNR at each BS is the same and equals

10 dB, which is consistent with the assumptions in [9]-[11].

Scenario 2: The received SNRs at different BSs are different.

For simplicity, the received SNR obtained by the BS closest

to the vehicle is assumed to be 10 dB, and the received SNR

obtained by the lth BS (l = 1, 2, 3) is [10−2Dd] dB, where Dd

(unit: km) denotes the distance difference between the vehicle

to the nearest BS and the lth BS. Note that it is difficult to

guarantee the attenuation of actual wireless signals arriving at

different BSs to be the same, and hence Scenario 2 is more

representative of the actual situation. The positioning results

are shown in Tables I and II, respectively, and it can be seen

that the proposed method performs much better than the com-

pared algorithms, and its corresponding positioning accuracy

can reach sub-meter level, which provides reliable information

for assisted driving. Particularly, when the received SNRs of

different BSs are different, the proposed one can still maintain

a satisfactory performance, whereas the performance of the

compared algorithms gets much worse.

D. Performance of Vehicle Positioning Utilizing Three BSs

with Mutual Coupling

In the last simulation, vehicle positioning performance of

different algorithms in the presence of array mutual coupling

is further examined. The array mutual coupling at all BSs is set

to c1 = 0.7e−jπ/4, and c2 = 0.3ejπ/10. The other simulation

conditions are the same as in the previous simulation. It can

be seen from Tables III and IV that the proposed method
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TABLE I
VEHICLE POSITIONING RESULTS FOR THE SAME RECEIVED SNR

WITHOUT ARRAY PERTURBATIONS: SCENARIO 1

Number of Samples
Absolute error (m)

ESPRIT [24] Beamspace [25] Proposed

200 1.09 3.43 0.79
300 0.99 3.14 0.70
400 0.93 2.86 0.63
500 0.86 2.67 0.59
600 0.82 2.54 0.55

TABLE II
VEHICLE POSITIONING RESULTS FOR DIFFERENT RECEIVED SNRS

WITHOUT ARRAY PERTURBATIONS: SCENARIO 2

Number of Samples
Absolute error (m)

ESPRIT [24] Beamspace [25] Proposed

200 1.91 5.46 0.94
300 1.75 5.03 0.83
400 1.63 4.60 0.74
500 1.50 4.27 0.69
600 1.40 3.99 0.61

can provide a satisfactory positioning result, which can better

meet the requirements of vehicles in IoV environment with a

positioning accuracy reaching the sub-meter level, whereas the

error of the compared algorithms is larger than four meters.

VI. CONCLUSION

In this paper, a novel vehicle positioning method based

on efficient 2-D DOA estimation of ID sources employing

massive MIMO arrays has been proposed, which is more

suitable for the actual IoV or vehicle application environments.

A D1D-CNN was constructed first under the DL framework

for 2-D DOA estimation, and it was enhanced further by

adding transfer learning and an attention mechanism. As

a result, it can avoid the process of parameters matching

and simultaneously provide an improved estimation result,

especially in the presence of array perturbations. Based on the

collaborative BSs and the proposed DOA estimation method,

a way to select the set of DOA estimation results for effective

vehicle positioning using information of the received SNR was

then developed. As demonstrated by extensive computer sim-

ulations, the proposed vehicle positioning method can achieve

increased accuracy and robustness against array perturbations

in comparison with two other state-of-the-art algorithms.
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