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Abstract—Clutter suppression plays an important role in a synthetic 
aperture radar (SAR) system. The conventional SAR imaging methods are 
useful for distinguishing the echo signal and noise, but cannot separate the 
target signal from background clutter. Inspired by the signal separation 
ability of morphological component analysis (MCA), a novel SAR imaging 
method based on MCA is proposed to suppress the strong background 
clutter. In the new model, the SAR echo is considered as a linear 
superposition of target signal, clutter signal, and noise. According to 
different characteristics of morphological components, clutter dictionary 
and target dictionary are constructed to sparsely represent the clutter 
component and target component, respectively. Then, the MCA method 
based on the sparse representation and morphological diversity of signals is employed to decompose the SAR echo 
into the target signal, clutter signal, and noise. Finally, the separated target signal is processed to obtain the ultimate 
SAR image. Experimental results from simulated and real SAR data are provided to demonstrate the effectiveness of 
the proposed method.  

 
Index Terms—SAR imaging, Clutter suppression, Morphological component analysis.  

 

I. INTRODUCTION 

YNTHETIC aperture radar (SAR) has been widely used in 

defense and civilian applications [1]. It actively transmits 

electromagnetic waves to the observed scene, receives its 

scattering echo and performs SAR imaging to obtain the 

corresponding images. 

In addition to the target signal, the SAR echo also includes 

clutter signal and noise. Any signal other than the scattering 

echo reflected from the observed scene is considered as noise, 

such as the thermal noise generated by the radar system [2]. 

Clutter signal is a concept relative to the target signal of interest 

[3], which can be defined as the echo signal in a scene that the 

observer is not interested in [4], such as echo generated by land, 

ocean, and other backgrounds. In the applications of SAR 

images, noise and clutter will affect the imaging performance, 

and especially strong clutter will mask weak targets, and affect 

the following target detection, classification, and recognition 

results [5]. Since the conventional SAR imaging methods apply 

the same processing to the clutter signal and target signal, they 

are enhanced simultaneously by the algorithm and it may 

become difficult to separate clutter and target in the resultant 

SAR image; as a result, the weak target may be degraded when 

suppressing the clutter directly in the SAR image domain. One 

possible solution to this problem is to perform clutter 

suppression in the imaging process before obtaining the final 

SAR images. 

The existing SAR imaging methods can be classified into 

two types: matched filtering based and parameter estimation 

based. The first type includes the back-projection (BP) 

algorithm [6], the range-Doppler algorithm (RDA) [7], the 

chirp-scaling algorithm (CSA) [8], and the Omega-K algorithm 

(𝜔KA) [9], etc. The BP algorithm obtains the SAR image by 

range compression, spatial domain interpolation, and azimuth 

coherent addition [10]. The other algorithms, known as the 

frequency-domain approach, usually consist of the following 

main operations: range compression, range migration 

correction, and azimuth compression. Different 

implementations of range migration correction distinguish 

these different imaging algorithms. Matched filtering is applied 

in range compression and azimuth compression [11], and it is 

derived from the maximum signal-to-noise ratio (SNR) 

criterion. When SAR echo passes through a suitable matched 

filter, the signal, including target signal and clutter signal, is 

concentrated to the peak, and the noise is suppressed.  

Spectrum estimation [12] and compressed sensing (CS) 

based SAR imaging [13] are representatives of the second type. 

A well-known example for spectrum estimation is the multiple 

signal classification (MUSIC) algorithm [14], which 

decomposes the covariance matrix of the measurement data into 

signal subspace and noise subspace.  Orthogonality of the two 

subspaces is used to construct the spatial spectrum function, and 

the signal can be detected from the MUSIC spectrum by peak 
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search while noise is suppressed. The CS-based SAR imaging 

(CS-SAR) method can reconstruct the signal with less 

measurement  data  than  that  required by the Nyquist sampling 

theorem, which solves the problem of high data rate caused by 

increasing resolution and swath [15] [16]. In [17], a one-

dimensional CS-SAR method was proposed, which applies the 

CS method to the azimuth data after range compression. A 

feasible CS-SAR method from the raw data domain was 

proposed in [18], which uses the geometric relationship 

between radar platform and observed scene to construct the 

observation matrix and exactly recover the scattered field to 

obtain the SAR image. A fast CS-SAR method was introduced 

in [19] by taking the inverse of focusing procedures as the 

observation matrix. To achieve noise suppression and 

reconstruct the signal, these CS-SAR methods use the 

difference in sparse characteristics between the signal and 

noise, i.e., both the target signal and clutter signal can be 

reconstructed according to the observation matrix, whereas the 

noise cannot. 

As can be seen, both types of SAR imaging algorithms work 

by dividing the echo into two parts, signal and noise, and then 

suppressing noise in the imaging process. Since the clutter 

signal is modeled as part of the signal, these imaging algorithms 

perform the same processing on clutter signal and target signal, 

and as a result, cannot suppress the background clutter during 

imaging. Therefore, it may be beneficial to find a new imaging 

method that can suppress clutter in the imaging process. 

Morphological component analysis (MCA) is a signal 

separation method based on sparse representation, which has 

been extensively applied in the image domain. The work in [20] 

and [21], although not involving the imaging process, shows the 

ability of MCA to separate target and clutter in ultrasound and 

radar images. Motivated by the advantages of MCA in signal 

decomposition, in this work, MCA is introduced in the SAR 

echo domain, and a novel SAR imaging method is proposed, 

which suppresses clutter signal and noise and improves imaging 

quality by extracting the target signal from SAR echo during 

imaging, denoted as MCA-SAR. First, a new SAR echo model 

is established, which divides the SAR echo into three parts: 

target signal, clutter signal, and noise. Then, the target 

dictionary and clutter dictionary are constructed, and the MCA 

method is used to separate the three components. Finally, the 

separated target signal is processed in a normal way by existing 

imaging algorithms. It is shown by experimental results that the 

proposed MCA-SAR method can effectively suppress noise and 

clutter while keeping the target information. 

The remainder of this paper is organized as follows. In 

Section II, the fundamentals of the CS-SAR and MCA are 

introduced. The proposed MCA-SAR method is presented in 

Section III. In Section IV, results based on simulated and real 

SAR echo data are provided, and Section V concludes the 

paper. 

II. CS-BASED SAR IMAGING AND MORPHOLOGICAL 

COMPONENT ANALYSIS  

A. CS-based SAR Imaging 

In SAR imaging, the received echo 𝑠(𝜏, 𝑎) can be considered 

as the convolution of the transmitted pulse ℎ(𝜏, 𝑎) of SAR and 

the scene reflectivity function 𝜎(𝜏, 𝑎), corrupted by the noise 𝑛(𝜏, 𝑎) [7]: 
 𝑠(𝜏, 𝑎) = ℎ(𝜏, 𝑎) ∗ 𝜎(𝜏, 𝑎) + 𝑛(𝜏, 𝑎) (1) 

where 𝜏 and 𝑎 are range time and azimuth time, respectively. 

The convolution operation can be represented in a general 

matrix form as: 

 𝐬 = 𝐇𝝈 + 𝐧 (2) 

where 𝐬 = vec(𝐒) ∈ 𝐶𝑀×1 ,  𝐒 ∈ 𝐶𝑁𝑎×𝑁𝑟  is SAR echo,  𝑀 =𝑁𝑎 × 𝑁𝑟, vec(∙) stands for matrix vectorization, 𝑁𝑟 and 𝑁𝑎 are 

the range and azimuth sampling number, respectively.  𝛔 ∈𝐶𝑁×1  is the scattering coefficient vector of the observed 

scene, 𝑁 denotes the number of coefficients, and 𝐧 ∈ 𝐶𝑀×1 is 

the additive noise vector. 𝐇 ∈ 𝐶𝑀×𝑁 is the observation matrix. 

In the CS-SAR model [22], the echo data 𝐬 is sampled and 

compressed with a random down-sampling matrix 𝚯 ∈ C𝐹×𝑀, 𝐹 ≪ 𝑁, and (2) can be rewritten as： 

 𝐬𝒔 = 𝚯𝐇𝝈 + 𝐧  (3) 

where 𝐬𝒔  is down-sampled echo datum. When 𝝈  is sparse 

enough, i.e., most of the entries are zeros, and the sensing 

matrix 𝚿 = 𝚯𝐇  satisfies some conditions such as restricted 

isometry property (RIP) [23], 𝝈 can be exactly recovered from 

the ill-posed linear system 𝐬𝒔 = 𝚿𝝈 + 𝐧. In detail, 𝝈 can be 

reconstructed by the following constrained 𝐿1 norm 

minimization problem: 

 𝝈 = arg min𝝈 ‖𝝈‖1 s. t.   𝐬𝒔 = 𝚿𝝈  (4) 

There are several algorithms available to solve (4), such as 

the matching pursuit (MP) [24], the iterative thresholding 

algorithm (ITA) [25], and the orthogonal matching pursuit 

(OMP) [26] techniques.  

Since SAR imaging can be regarded as a linear process, the 

scattering coefficient 𝝈 can be recovered by the echo 𝐬𝒔 and the 

sensing matrix 𝚿. 

B. Morphological Component Analysis 

MCA is a signal decomposition method based on sparse 

representation, which uses different dictionaries to decompose 

the signal into different components containing different types 

of information [27].  

The MCA method assumes the signal 𝐘  is a linear 

superposition of 𝑊 morphological components: 

 𝐘 = 𝐲1 + 𝐲2 + ⋯ + 𝐲𝑖 + ⋯ + 𝐲𝑊 (5) 

where 𝐲𝑖  is the 𝑖th morphological component of the signal 𝐘. 

Assuming that each component 𝐲𝑖 can be sparsely represented 

by dictionary 𝚽𝑖 ,  𝐲𝑖  can be rewritten as: 

 𝐲𝑖 = 𝚽𝑖𝜶𝑖 𝑖 = 1,2, ⋯ , 𝑊 (6) 

where 𝜶𝑖  is the sparse coefficient vector. To successfully 

separate signal 𝐘 into different components,  𝐲𝑖  can only be 

sparsely represented by dictionary 𝚽𝑖  but not other dictionaries 𝚽𝑙 , 𝑙 ≠ 𝑖 . The dictionary 𝚽𝑖  plays an important role in the 

separation and discrimination between different morphological 

component signals. 

Based on the above assumptions, the sparse representation of 

the signal  𝐘  can be obtained by solving the following 

optimization problem: {𝜶1   ⋯  𝜶𝑊} = arg min{𝜶1  ⋯  𝜶𝑊} ∑‖𝜶𝑖‖0𝑊
𝑖=1    s. t.   𝐘 = ∑ 𝚽𝑖𝜶𝑖𝑊

𝑖=1  

  (7) 
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By basis pursuit (BP) [28], (7) is usually converted to the 

following form by replacing the  𝐿0 norm with the 𝐿1 norm.            {𝜶1   ⋯  𝜶𝑊} = arg min{𝜶1  ⋯  𝜶𝑊} ∑‖𝜶𝑖‖1𝑊
𝑖=1  

                                   +𝛽‖𝐘 − ∑ 𝚽𝑖𝜶𝑖𝑊𝑖=1 ‖22 (8) 

In (8),  𝛽 is the regularization parameter. Each component of 

the signal can be reconstructed according to the sparse 

coefficients and the corresponding dictionary. 

III. SAR IMAGING METHOD BASED ON MCA 

In this section, a novel SAR imaging method based on MCA 

is proposed, followed by details of its implementation.  

A. The Proposed MCA-SAR Imaging Method 

First, a new echo model is established by dividing the SAR 

echo into three parts: target signal, clutter signal, and noise; 

then, the sparse dictionaries for target scattering coefficient and 

clutter scattering coefficient are respectively constructed with 

their individual characteristics; by applying the MCA method 

the three components are recovered from the SAR echo; finally, 

only the target signal component is processed for imaging to 

achieve noise and clutter suppression. 

1) The New Echo Model: Traditionally, the SAR echo is 

considered as the superposition of signal and noise. Since the 

clutter signal and target signal are treated in the same way, the 

clutter signal is enhanced together with the target signal during 

the imaging process, making it difficult to suppress the clutter 

in the SAR image. In this work, the SAR echo is decomposed 

into three components: target signal 𝐓, clutter signal 𝐂, and 

noise 𝐧, as follows:  

 𝐬 = 𝐓 + 𝐂 + 𝐧 = 𝐇(𝐭 + 𝐜) + 𝐧 (9) 

where 𝐭 and 𝐜 are the scattering coefficient of the target and 

clutter, respectively. When the spatial distribution of the 

scattering coefficient of the observed scene is sparse, the scene 

can be directly restored according to the observation matrix 𝐇. 

However, for scenes with complex spatial distribution of 

scattering coefficient, it is necessary to find a dictionary that 

can sparsely represent a morphological component and only 

this component is recovered through the corresponding sparse 

reconstruction process. With dictionary 𝚽𝑡  for sparse 

representation of 𝐭 and 𝚽𝑐  for sparse representation of 𝐜, (9) 

can be rewritten as: 

 𝐬 = 𝐇(𝚽𝑡𝜶𝑡 + 𝚽𝑐𝜶𝑐) + 𝐧 = 𝐀𝑡𝜶𝑡 + 𝐀𝑐𝜶𝑐 + 𝐧 (10) 

where 𝜶𝑡  and 𝜶𝑐  are the sparse coefficients of 𝐭 and 𝐜 in the 

dictionary 𝚽𝑡  and 𝚽𝑐 , respectively. In (10), 𝐀𝑡 = 𝐇𝚽𝑡 , 𝐀𝑐 =𝐇𝚽𝑐 , the observation matrix 𝐇 is defined in the same way as 

that in CS-SAR, and please refer to [17], [19] for its 

construction in detail. 

In practice, when 𝐭 is sparse in the spatial domain, the target 

dictionary 𝚽𝑡  can be replaced by the identity matrix 𝐼, and (10) 

becomes: 𝐬 = 𝐇(𝐼𝜶𝑡 + 𝚽𝑐𝜶𝑐) + 𝐧 = 𝐇𝜶𝑡 + 𝐀𝑐𝜶𝑐 + 𝐧 (11) 

2) Construction of Dictionaries: An appropriate dictionary 

can increase the sparseness of coefficients and improve the 

accuracy of sparse reconstruction. Therefore, construction of 

the dictionary is very important for the MCA-SAR method. It 

can take two main forms, fixed dictionary and learned 

dictionary. The fixed one is based on specific mathematical 

transformations, such as wavelets [29], curvelets [30], and 

discrete cosine transform (DCT) [31]. These fixed dictionaries 

have a simple structure and low complexity, but poor 

adaptability to complex scenes. 

The learned dictionary is constructed by the dictionary 

learning method and training data, whose atoms can directly 

capture features of the signals. The purpose of dictionary 

learning methods is to create a learned dictionary that provides 

the sparsest reconstruction for the training data [32]. Dictionary 

learning methods have been widely used in SAR signal 

processing, including the algorithm of optimal directions 

(MOD) [33], the online dictionary learning (ODL) algorithm 

[34], and the K-singular value decomposition (K-SVD) 

algorithm [35]. These learned dictionaries have strong 

adaptability, but with relatively high computational complexity. 

Since different dictionaries can represent different local 

features or global information, a well-chosen dictionary can 

lead to a sparse representation of the target or clutter and 

highlight their corresponding features. 

3) Separation of Target and Clutter: MCA has been 

successful in decomposing signal into distinct components [36] 

[37]. After obtaining the target dictionary 𝚽𝑡  and clutter 

dictionary  𝚽𝑐 , the target and clutter components can be 

separated by MCA. The sparse coefficients 𝜶𝑡 and 𝜶𝑐 in (10) 

can be solved by (8) as: {𝜶𝑡 , 𝜶𝑐} = arg min{𝜶𝑡,𝜶𝑐}‖𝜶𝑡‖1 + ‖𝜶𝑐‖1 

                + 𝛽‖𝐬 − 𝐀𝑡𝜶𝑡 − 𝐀𝑐𝜶𝑐‖2 2  (12) 

The sparse coefficients 𝜶𝑡 and 𝜶𝑐  can be converted into the 

target component 𝐓  and clutter component 𝐂 . The obtained 

optimization problem becomes: {𝐓, 𝐂} = arg min{𝐓,𝐂}‖𝐀𝑡+𝐓‖1 + ‖𝐀𝑐+𝐂‖1 + 𝛽‖𝐬 − 𝐓 − 𝐂‖2 2  (13) 

where 𝐀𝑡+  and 𝐀𝑐+  are the pseudoinverse of 𝐀𝑡  and 𝐀𝐶 , 

respectively. The separation of the target signal and clutter 

signal based on MCA can be achieved by solving (13). 

4) Target Signal Imaging: After recovering the target signal 

from the SAR echo, existing imaging algorithms can be 

employed to form the SAR image of the target:  

 𝐈𝑡 = M(𝐓2D) (14) 

where M(∙)  represents the SAR imaging process, 𝐓2D  is the 

two-dimensional target signal, whose vector form is the signal 

component 𝐓, with 𝐓 = vec(𝐓2D), and 𝐈𝑡 is the SAR imaging 

result. Due to linearity of most imaging algorithms, M(∙) can be 

written in the form of a matrix 𝐌 . Equation (14) can be 

expressed as: 

 �̃� = 𝐌𝐓 (15) 

So, �̃� = vec(𝐈𝑡)  can be regarded as the reconstruction of 

scattering coefficient 𝐭. 

B. Implementation of MCA-SAR 

The implementation procedure for the proposed MCA-SAR 

method is shown in Fig. 1. The main processing steps include 

observation matrix construction, dictionary construction, SAR 

echo sparse decomposition, and target signal imaging. The 

observation matrix can be constructed by referring to the CS-

SAR method; the curvelet dictionary and the DCT dictionary 
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are used to construct the target dictionary and the initial clutter 

dictionary, respectively; the MCA method is used to recover the 

target signal and clutter signal from the SAR echo; finally, 

according  to  the  stop  criterion, determine  whether  or  not  to 

continue the update of the clutter dictionary using the K-SVD 

algorithm. 
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Fig. 1.  Flowchart of the proposed MCA-SAR method.  

 

1) Constructing the Observation Matrix: According to (10), 

a suitable observation matrix 𝐇 needs to be constructed first. 

Due to high computational cost of the time-domain construction 

method, an approximate observation method in fast CS-SAR 

[19] is used here. It considers the well-focused image as an 

estimation of the true scattering coefficient. 𝐇  can be 

approximated as the simulation operator 𝐔 which is the inverse 

imaging process. So, 

 𝐇 ≈ 𝐔 (16) 

The RDA is a basic and popular imaging algorithm used in 

SAR data processing. Taking it as an example, the imaging 

function M(∙), operated on the two-dimensional array, can be 

expressed as 

 𝐈 = M(𝐒) = 𝐅𝑎𝐻{𝐏𝑎 ∘ ℂ〈𝐅𝑎[𝐏𝜏 ∘ (𝐒𝐅𝜏)]𝐅𝜏𝐻〉} (17) 

where  𝐈  is SAR image, ∘  represents the Hadamard product, 𝐅𝑎  and 𝐅𝜏 represent the discrete Fourier transform (DFT) matrix 

of the azimuth and range direction respectively, 𝐅𝑎𝐻  and 𝐅𝜏𝐻 

represent the inverse DFT matrix of the azimuth and range 

direction respectively, ℂ〈∙〉  is the range cell migration 

correction (RCMC) interpolation operator, and 𝐏𝑎  and 𝐏𝜏  are 

respectively the matched filter matrices in the azimuth and 

range direction. 

The inverse imaging procedure U(∙)  of the RDA can be 

expressed as: 𝐒 = U(𝐈) = {𝐏𝜏∗ ∘ [𝐅𝑎𝐻ℂ−1〈𝐏𝑎∗ ∘ (𝐅𝑎𝐈)〉]𝐅𝜏}𝐅𝜏𝐻  (18) 

where  𝐏𝑎∗ , 𝐏𝜏∗  are conjugates of 𝐏𝑎  and 𝐏𝜏 , respectively, and ℂ−1〈∙〉 is the inverse process of RCMC. Both M(∙) and U(∙) are 

linear operators, which can also be transformed into a matrix 

form. More specifically, 𝐌 and 𝐔 can be described as: 

 𝐌 = �̂�𝑎𝐻�̂�𝑎�̂��̂�𝑎�̂�𝜏𝐻�̂�𝜏�̂�𝜏 (19) 

 𝐔 = �̂�𝜏𝐻�̂�𝜏∗�̂�𝜏�̂�𝑎𝐻�̂��̂�𝑎∗�̂�𝑎 (20) 

where 

 �̂�𝑎 = 𝐼𝑁𝑟⨂𝐅𝑎 , �̂�𝜏 = 𝐅𝜏𝑇⨂𝐼𝑁𝑎  (21) 

 �̂�𝑎 = 𝑑𝑖𝑎𝑔(vec(𝐏𝑎)), �̂�𝜏 = 𝑑𝑖𝑎𝑔(vec(𝐏𝜏)) (22) �̂� and �̂� are the matrix forms of RCMC operator and inverse 

RCMC operator, respectively. 

2) Dictionary Construction: In practice, due to complexity of 

the observed scene, the clutter may be non-sparse in the spatial 

domain, so it is necessary to construct a corresponding 

dictionary in which the clutter becomes sparse. Different 

dictionaries have different sparse representation competencies 

for clutter. The better the sparsity of the clutter under the 

dictionary, the better the clutter reconstruction quality, and the 

more conducive to clutter separation. Considering variation of 

the background clutter, the fixed dictionary approach is not 

suitable for constructing the clutter dictionary, so the dictionary 

learning method is employed to find the clutter dictionary 

adaptively. 

The MOD and K-SVD are two well-known dictionary 

learning methods [38]. Their main difference is that the MOD 

updates the dictionary by global least squares fit, while the K-

SVD relies on singular value decomposition [39]. Compared 

with the MOD, the K-SVD has higher computational 

efficiency, so it is used in our work to create the clutter 

dictionary.  

The K-SVD algorithm strives to minimize the signal 

reconstruction error by decomposing the error terms in the 

iteration process, which solves the following optimization 

problem [40]: 〈𝐙, 𝐗〉 = arg min𝐙,𝐗 {‖𝐙 − 𝐃𝐗‖𝐹2 } = min𝐙,𝐗 ∑{‖𝐳𝑖 − 𝐃𝐱𝑖‖𝐹2 }𝐿
𝑖=1  

 s. t.       ∀𝑖, ‖𝐱𝑖‖0 ≤ 𝑇0  (23) 

where 𝐙 = {𝐳𝑖}𝑖=1𝐿  denotes a set of training signals, each 

column 𝐳𝑖  is a sample of data 𝐙 , 𝐃 = {𝐝𝑗}𝑗=1𝐾
 is the over-

complete dictionary,  𝐾 is the number of dictionary atom 𝐝𝑗 , 

and 𝐗 = {𝐱𝑖}𝑖=1𝐿 is the sparse coefficients. 𝑇0 is the sparsity 

constraint, ensuring that each sparse representation coefficient 

vector 𝐱𝑖 contains no more than 𝑇0 non-zero entries. 

The K-SVD dictionary training algorithm can be divided into 

two stages: sparse coding and dictionary-update. Table I details 

the process. 

 
TABLE I 

THE K-SVD ALGORITHM 

Initialization: the training signals 𝐙 , the initial dictionary 𝐃0 , and the 

number of dictionary atoms 𝐾. Set 𝐽 = 1. 

Loop: Repeat until convergence 

1. Sparse Coding Stage: Set 𝐃(𝐽−1)  fixed to compute the corresponding 

sparse coefficients  𝐗  of training signals 𝐙 = {𝐳𝑖}𝑖=1𝐿 , by solving: 𝐗(𝐽) = arg min𝐗 {‖𝐙 − 𝐃(𝐽−1)𝐗‖𝐹2 } s. t. ∀𝑖, ‖𝐱𝑖‖0 ≤ 𝑇0 

2. Dictionary-Update Stage:  update each dictionary atom. 

For 𝑘 = 1 to 𝐾 

(1) Define the group of example signals: 𝜔𝑘 = {𝑖|1 ≤ 𝑖 ≤ 𝐿, 𝐗(𝐽)[𝑘, 𝑖] ≠ 0} 

(2) Compute the error matrix: 𝐄𝑘 = 𝐙 − ∑ 𝐝𝑗𝐱𝑇𝑗𝑗≠𝑘  ,where 𝐱𝑇𝑗  is the 𝑗 th 

rows of matrix 𝐗(𝐽). 
(4) Acquire 𝐄𝑘𝑅 by selecting the column of 𝐄𝑘 that only corresponds to 𝜔𝑘. 

Decompose the restricted matrix 𝐄𝑘𝑅 with SVD: 𝐄𝑘𝑅 = 𝐆∆𝐕𝑇 

(5) Update the dictionary atom �̃�𝑘 = 𝐠1 and the coefficient vector �̃�𝑇𝑘 =∆[1,1] ∙ 𝐯1, where, 𝐠1 and 𝐯1 are the first column of 𝐆 and 𝐕, respectively. 

End  
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Update: 𝐽 = 𝐽 + 1. 

In the MCA-SAR method, the DCT dictionary is used to 

initialize the clutter dictionary, and the clutter separated by the 

MCA method is employed as training samples of the K-SVD 

algorithm. For different scenes, the separated clutter component 

corresponds to their respective backgrounds, making the 

resultant clutter dictionary more adaptable. 

 Considering that most targets have edge or linear features, 

and strong point targets are easy to be detected, the target 

dictionary can be focused on linear features. Therefore, the 

curvelet transform, which can capture edge and linear 

information accurately and has lower computational 

complexity than the K-SVD algorithm, is used as the target 

dictionary here. 

3) SAR Echo Sparse Decomposition: For the SAR echo 

decomposition, a two-step process is employed, including the 

MCA separation stage and the dictionary update stage. Let the 

target component and clutter component be 𝒔𝑡  and 𝒔𝑐 

respectively, and use the SAR echo as the initial value, i.e. 𝒔𝑡 =𝒔𝑐 = 𝒔 . Set the number of MCA iterations as 𝑁𝑖𝑡𝑒𝑟  and the 

number of dictionary training times as 𝐿𝑚𝑎𝑥 . 

Step 1. MCA separation 

The MCA method is applied to sparsely decompose the SAR 

echo into target signal, clutter signal and noise, by using a 

successive iteration method with a varying threshold to find 

each component [21]. 

Since the MCA is an iterative coarse-to-fine process, the 

main information of each component can be extracted at each 

iteration by the threshold [41]. The threshold linearly decreases 

to the minimum during iteration. 

For the 𝑘th MCA iteration, the threshold 𝜆𝑘 is set as [42]:  𝜆𝑘 = 𝜆1 − (𝑘 − 1) (𝜆1−𝜆𝑚𝑖𝑛)(𝑁𝑖𝑡𝑒𝑟−1) 1 ≤ 𝑘 ≤ 𝑁𝑖𝑡𝑒𝑟  (24) 

where,  𝜆1 denotes the initial threshold and can be set to a large 

enough value  𝜆1 = min{‖𝚽𝑡+𝐌𝐬‖∞, ‖𝚽𝑐+𝐌𝐬‖∞}, and 𝜆𝑚𝑖𝑛  is 

the stopping threshold. 

Target separation: Keep the clutter component fixed, using 

the OMP algorithm [26] to calculate the sparse coefficients 𝜶𝑡 = 𝚽𝑡+𝐌𝐬𝑡 . Since the sparse coefficients of the target 

component is larger than the other components in the target 

dictionary, the hard thresholding method is used to process the 

coefficients: 𝜶𝑡∗ = 𝛿𝜆𝑘(𝜶𝑡) , where 𝜶𝑡∗  represents the sparse 

coefficients larger than the threshold. In the hard thresholding 

process [43], if |𝑢| > 𝜆, 𝛿𝜆(𝑢) = 𝑢; otherwise, 𝛿𝜆(𝑢) = 0. 

Reconstruct the target component: 𝐓 = 𝐇𝚽𝑡𝜶𝑡∗. 

Clutter separation: Keep the target component fixed, use the 

OMP algorithm to calculate the sparse coefficients of clutter 

signal: 𝜶𝑐 = 𝚽𝑐+𝐌𝐬𝑐 , update clutter coefficients by hard 

thresholding: 𝜶𝑐∗ = 𝛿𝜆𝑘(𝜶𝑐) , and then reconstruct the clutter 

component: 𝐂 = 𝐇𝚽𝑐𝜶𝑐∗. 

After separation, compute the residuals 𝐑 = 𝐬 − 𝐓 − 𝐂. In 

addition to noise, the residuals are likely to contain salient 

information of clutter or target components. By alternating the 

process for different components, the estimates of 𝐓 and 𝐂 are 

progressively refined.  

So, if 𝑘 ≤ 𝑁𝑖𝑡𝑒𝑟, calculate the threshold 𝜆𝑘, update 𝐬𝑡 = 𝐓 +𝐑, 𝐬𝑐 = 𝐂 + 𝐑, and return to “Target separation” and continue. 

Otherwise, output the separated clutter signal 𝐂 and target 

signal 𝐓, and perform Step 2. 

Step 2. Clutter dictionary update 

Considering the complexity of background clutter and the 

adaptability of clutter dictionary, after recovering the target 

signal 𝐓 and clutter signal 𝐂, the K-SVD dictionary training 

algorithm is applied to update the clutter dictionary according 

to the newly recovered clutter component.  

When the clutter dictionary is updated, return to Step 1, using 

the updated clutter dictionary to perform MCA separation on 

the SAR echo.  

Since the target signal tends to reach a stable value after a 

finite number of clutter dictionary updates, the reconstructed 

target signal error ∆𝐓 is used as an iteration stop condition for 

clutter dictionary updates. For the 𝑤 th dictionary training 

iteration, the stopping criterion is 

 ∆𝐓 = ‖𝐓𝑤‖22 − ‖𝐓𝑤−1‖22 ≤ 𝛿  (25) 

where 𝛿 denotes the termination threshold. 

Dictionary update is performed until the number of iterations 

reaches the maximum number 𝐿𝑚𝑎𝑥  or the target signal error is 

below the termination threshold 𝛿. 

4) SAR imaging of target component: The spatial geometric 

relationship between the radar and the observation target 

remains unchanged after the MCA separation process, so any 

existing imaging algorithm can be applied to the final recovered 

target signal. As an example, here the RDA in [7] is used to 

perform SAR imaging. 

IV. EXPERIMENTAL RESULTS 

In this section, experimental results based on simulated and 

real SAR echo data are provided to demonstrate the 

performance of the proposed method. Traditional RDA [7] and 

approximate observation-based CS-SAR [19] are employed as 

imaging methods to compare with the proposed one. The CS-

SAR method is solved by ITA, and its specific principle and 

implementation can be found in [19]. Since clutter suppression 

in SAR images can be achieved by adaptive spatial-domain 

filters [44], the widely used Lee [45] and Frost filters [46] are 

employed to filter the image generated by RDA. 

 To show the importance of dictionary selection in the 

proposed MCA-SAR method in an intuitive way, two pairs of 

dictionaries are introduced. One is to use the DCT dictionary 

for the clutter and the curvelet dictionary for the target, denoted 

as MCA-SAR-DCT. The other is to use the K-SVD dictionary 

training algorithm to construct the clutter dictionary, while 

using the curvelet dictionary for the target, denoted as MCA-

SAR-KSVD. Two commonly used performance indexes, 

signal-to-clutter ratio (SCR) and the background suppression 

factor (BSF) are adopted for quantitatively evaluating the 

performance of all SAR images. 

A. Results with Simulated Data 

The SAR echo is simulated for two observed scenes: the sea 

surface with ship wake and the grassland parked with several 

vehicles. The main parameters are listed in Table II. After 

determining the scene scattering coefficient based on an 
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existing real SAR image, the side-looking strip map SAR echo 

signal is generated with the method in [47]. The RDA, CS-SAR, 

MCA-SAR-DCT, and MCA-SAR-KSVD are used to image the 

two sets of simulated echoes. The observation matrix 

construction method in CS-SAR and MCA-SAR has been 

described in Section III. The parameters involved in the MCA-

SAR methods are selected empirically [48]. In the sea surface 

scene, the free parameters of the MCA-SAR-DCT method are 

set as follows: the number of MCA iterations 𝑁𝑖𝑡𝑒𝑟 =4, the stop 

threshold 𝜆𝑚𝑖𝑛 =20, and the total number of scale layers for the 

curvelet transform 𝛾 =8; for the MCA-SAR-KSVD method, 

the K-SVD dictionary training iteration number 𝐿𝑚𝑎𝑥 =10, and 

the other parameters are consistent with those in MCA-SAR-

DCT. The free parameters of the grassland scene are set as 𝑁𝑖𝑡𝑒𝑟 =4, 𝜆𝑚𝑖𝑛 =2, 𝛾 =8 in the MCA-SAR-DCT method, and 𝐿𝑚𝑎𝑥 = 10 for the MCA-SAR-KSVD method. The imaging 

results for the two scenes are shown in Fig. 2(a), (b), (e), (f) and 

Fig. 3(a), (b), (e), (f), respectively. The Lee and Frost filters are 

used to process the RDA imaging result shown in Fig. 2(a) and 

Fig. 3(a), and the filtering results are shown in Fig. 2(c)-(d) and 

Fig. 3(c)-(d). 

 
TABLE II 

PARAMETERS OF SAR SYSTEM 
Pulse repetition 

frequency 
500HZ 

Slant range of 

scene center 
14.6km 

Pulse duration 2μs Velocity 200m/s 

Center frequency 10GHZ Sampling Rate 240MHz 

Range FM rate 100MHz/μs Beam squint angle 0 rad 

 

It can be seen from Fig. 2 that all SAR images can show the 

main structure of ship wakes. However, there is a lot of clutter 

on the sea surface of Fig. 2(a). The clutter is relatively strong 

which will affect the detection of ship wakes. In Fig. 2(b), the 

clutter is still not suppressed enough, and some details of ship 

wakes are buried.  For the filtered results in Fig. 2(c) and Fig.  

 

2(d), the SAR image pixels are averaged, and in low-contrast or 

edge areas, the distinction at the boundary between the target 

and clutter is not clear. In the MCA-SAR results shown in Fig. 

2(e) and Fig. 2(f), the clutter and noise of sea surface are 

significantly suppressed, and the ship wakes can be seen more 

clearly.  

By comparing Fig. 2(e) with Fig. 2(f), it can be found that the 

ship wakes of MCA-SAR-KSVD are clearer than those of 

MCA-SAR-DCT, because the K-SVD algorithm adopted in 

MCA-SAR-KSVD can help find a more suitable clutter 

dictionary, which can sparsely represent the clutter better than 

the fixed DCT dictionary in MCA-SAR-DCT. 

Fig. 3 shows the results of grassland. For the RDA result in 

Fig. 3(a), the clutter is so strong that the SAR image is rough. 

In Fig. 3(b), most of the background clutter still exists in the 

image produced by CS-SAR, which affects the small paths. In 

Fig. 3(c) and Fig. 3(d), it can be observed that the Lee and Frost 

filters can effectively filter out the background clutter, but they 

are not able to preserve those delicate parts of the target, such 

as the edge of the point target and roads.  

In Fig. 3(e) and Fig. 3(f), it is shown that the MCA-SAR 

methods can effectively suppress the clutter and noise, and 

smooth grassland surface while roads with linear characteristics 

are enhanced and easier to detect. Although the curvelet 

dictionary is used to represent the target component in the 

MCA-SAR methods, the point targets are still obvious in Fig. 

3(e) and Fig. 3(f). Comparing the two different clutter 

dictionaries, MCA-SAR-KSVD achieves a better clutter and 

noise suppression effect than MCA-SAR-DCT, which means 

that K-SVD has provided a better clutter dictionary through the 

adopted iterative training process.

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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Fig. 2.  Imaging results of sea surface. (a) RDA. (b) CS-SAR. (c) RDA + Lee filter. (d) RDA + Frost filter. (e) MCA-SAR-DCT. (f) MCA-SAR-KSVD. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3.  Imaging results of grassland. (a) RDA. (b) CS-SAR. (c) RDA + Lee filter. (d) RDA + Frost filter. (e) MCA-SAR-DCT. (f) MCA-SAR-KSVD. 

 

To illustrate the clutter and noise suppression performance in 

a quantitative way, the SCR and BSF are used to evaluate the 

imaging results, and they are defined as follows  [49] [50]: 

 SCR = 20 log (𝜇𝑡−𝜇𝑐𝜎𝑐 ) (26) 

 BSF = 𝜎𝑖𝑛𝜎𝑐  (27) 

where, 𝜇𝑡  and 𝜇𝑐 denote the average gray value of the target 

and non-target areas, respectively, 𝜎𝑐 is the standard deviation 

of gray values in non-target areas, and 𝜎𝑖𝑛 represents that of the 

non-target areas in the image obtained by RDA. As it is difficult 

to distinguish noise from the background clutter, the 

suppression ability for clutter and noise is evaluated together. 

The target and non-target areas are marked by the red and green 

rectangles respectively in the images of each scene. The results 

are shown in Table III. 

In Table III, the SCR values of RDA for the sea surface and 

grassland are 4.23 dB and 13.41 dB, respectively, while for CS-

SAR, they are 4.24 dB and 13.88 dB, a little better than RDA. 

The difference of SCR between the Lee and Frost filters in the 

two scenes is very small, and they are 13.49 dB and 13.45 dB, 

17.63 dB and 17.72 dB, respectively. For MCA-SAR-DCT, the 

SCR values in the two scenes are 13.83 dB and 18.61 dB, 

respectively. For the MCA-SAR-KSVD method, they are 14.31 

dB and 20.04 dB respectively. Comparing the SCR values of 

different methods, it can be seen that the SCR value of MCA-

SAR-KSVD is the highest. Although Lee and Frost filters can 

achieve effective clutter suppression and obtain better 

evaluation results, it can be seen from Fig. 2(c), (d) and Fig. 

3(c), (d) that they also blur the target, so a visually degraded 

target is presented.  

Table III also shows that, in the image reconstructed by CS-

SAR, the BSF value is usually very low. The MCA-SAR 

methods can improve BSF more significantly than the other 

methods, and the BSF of MCA-SAR-KSVD is better than 

MCA-SAR-DCT. The results of both SCR and BSF show that 

the proposed MCA-SAR methods can reduce the effect of 

clutter and noise significantly, and the performance of MCA-

SAR-KSVD is better than MCA-SAR-DCT. The main 

advantage of the MCA-SAR-KSVD method is that it can 

operate properly in an unknown clutter environment since it 

does not require prior information before imaging and can 

perform dictionary learning based on the clutter separated by 

the MCA method.  

 
TABLE III 

SCR, BSF, AND RUNNING TIME OF SIMULATED RESULTS  

Methods 
Sea scene  Grassland scene 

SCR (dB) BSF Running time (s)  SCR (dB) BSF Running time (s) 

RDA 4.23 1.00 0.13  13.41 1.00 0.11 

CS-SAR 4.24 1.03 0.61  13.88 1.05 1.04 

Lee filter 13.49 1.89 8.81  17.63 1.24 6.18 

Frost filter 13.45 1.80 7.31  17.72 1.26 5.15 

MCA-SAR-DCT 13.83 2.33 51.43  18.61 2.06 70.23 
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MCA-SAR-KSVD 14.31 2.50 211.37  20.04 2.27 282.01 

A computer with an Intel CPU E5-2680 processor and 

192GB main memory is used in the experiments. The running 

time of the five methods is also listed in Table III. It is shown 

that the MCA-SAR methods take more time than the other 

methods because the MCA-SAR methods require dictionary 

construction and sparse representation in the MCA iterative 

process, which is more complex and time-consuming. The 

MCA-SAR-KSVD method exhibits a significant increase in 

running time over the MCA-SAR-DCT method because it uses 

an iterative process for dictionary update and the K-SVD 

dictionary training algorithm requires a large amount of 

computation. 

B. Real Data Experiment 

The experiment data was collected by RADARSAT-1 in 

Vancouver on June 16, 2002 [7]. The RDA, CS-SAR, and the 

proposed MCA-SAR methods are used to process the 

RADARSAT-1 echo data. The Lee and Frost filters are applied 

to suppress clutter in the images obtained by the RDA. Two 

scenes are selected: the sea surface with strong clutter and the 

ground with a large amount of clutter. Table Ⅳ lists the primary 

SAR parameters of RADARSAT-1. 
 

TABLE Ⅳ 

PARAMETERS OF RADARSAT-1 

Pulse repetition 

frequency 
1256.98HZ 

Slant range of 

scene center 
1016.7km 

Pulse duration 41.74μs Velocity 7062m/s 

Center frequency 5.30GHZ Sampling Rate 32.317MHz 

Range FM rate 0.72MHz/μs Beam squint angle 0.06 rad 

 

The imaging results of the sea surface are shown in Fig. 4 

and those of the ground scene are shown in Fig. 5. For the 

MCA-SAR-DCT method, the free parameters of the two scenes 

are set as 𝑁𝑖𝑡𝑒𝑟 =8, 𝜆𝑚𝑖𝑛 =22, 𝛾 = 8 and 𝑁𝑖𝑡𝑒𝑟 = 5, 𝜆𝑚𝑖𝑛 =2, 𝛾 = 4, respectively. For the MCA-SAR-KSVD method, the 

additional K-SVD dictionary training parameter for the two 

scenes is 𝐿𝑚𝑎𝑥 =8.  

Fig. 4(a) is the imaging result by the RDA method, Fig. 4(b) 

is the reconstruction result of the CS-SAR method. Fig. 4(c) and 

Fig. 4(d) are the filtering results of Lee and Frost filters for Fig. 

4(a). Fig. 4(e) and Fig. 4(f) are the results of the proposed 

MCA-SAR methods, with Fig. 4(e) for the MCA-SAR-DCT 

method and Fig. 4(f) for the MCA-SAR-KSVD method. In Fig. 

4(a), it can be seen that the imaging result of RDA is extremely 

noisy, with a lot of clutter. In Fig. 4(b), the clutter suppression 

effect of the CS-SAR method is modest and some clutter is 

preserved to a certain extent. The resultant filtered images of 

Fig. 4(c) and Fig. 4(d) are milder than the original image, but at 

a cost of degraded target discrimination. From Fig. 4(e) and Fig. 

4(f), results of MCA-SAR methods, it can be seen that the linear 

target is reconstructed well from the curvelet dictionary, and sea 

clutter and noise have been better suppressed than the other 

methods. The choice of clutter dictionary affects the result of 

clutter suppression to a degree. By comparing Fig. 4(e) and Fig. 

4(f), the SAR image of MCA-SAR-KSVD contains less 

background clutter visually than that of MCA-SAR-DCT.  

To examine the results in more detail, the enlarged results for 

the white rectangular area in Fig. 4 are shown in Fig. 6 for the 

six considered methods. As can be seen, the target is surrounded 

by strong clutter in the RDA result and some clutter remains in 

the  image  obtained  by  CS-SAR;  the Lee and Frost filters  can 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4.  RADARSAT-1 imaging results of the sea surface. (a) RDA. (b) CS-SAR. (c) RDA + Lee filter. (d) RDA + Frost filter. (e) MCA-SAR-DCT.  
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(f) MCA-SAR-KSVD. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5.  RADARSAT-1 imaging results of the ground. (a) RDA. (b) CS-SAR. (c) RDA + Lee filter. (d) RDA + Frost filter.  (e) MCA-SAR-DCT. (f) 
MCA-SAR-KSVD. 

 

smooth the image sufficiently, but they also reduce the 

sharpness of the target region; in contrast, the two MCA-SAR 

methods can give a much clearer result, highlighting the linear 

contour features of the target area and suppressing noise and 

clutter. 

The MCA-SAR methods using the curvelet transform as the 

target dictionary can also enhance the point target, but the 

enhancement is less than the linear target. For example, it is 

difficult to visually capture the two ships in the lower-left 

corner of Fig. 4 in the MCA-SAR results. Although the 

intensity of the point target is increased relative to the 

surrounding clutter, image quantization causes visual 

attenuation of the ship targets due to stronger enhancement of 

the linear target (bridge). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 6. Detailed comparison on the selected area at an enlarged scale. 
(a) RDA. (b) CS-SAR. (c) RDA + Lee filter. (d) RDA + Frost filter. (e) 

MCA-SAR-DCT. (f) MCA-SAR-KSVD. 
 

Fig. 5(a) shows the RDA imaging result of the ground region 

which is composed of a target and strong clutter. For the CS-

SAR result in Fig. 5(b), there is still obvious clutter in the 

background, and the contrast between the target and clutter is 

barely increased. In Fig. 5(c) and Fig. 5(d), the Lee and Frost 

filters have reduced the background clutter effectively, but the 

edges and fine details are also blurred compared to the original 

one. In Fig. 5(e) and Fig. 5(f), the MCA-SAR methods have 

produced a stronger target than the other competing methods, 

making the distinction between the target area and other areas 

more clearly by enhancing the target region while removing the 

clutter and noise. Although the clutter suppression effect of the 

MCA-SAR-KSVD method is visually almost indistinguishable 

from that of MCA-SAR-DCT, the evaluation indicators SCR 

and BSF can prove the superior performance of the MCA-SAR-

KSVD method. The high-quality imaging results by the MCA-

SAR-KSVD method benefit from the iterative decomposition 

of SAR echoes and the update of clutter dictionary, at a cost of 

reduced efficiency, as shown in Table Ⅴ. 

The SCR and BSF values of all methods are also presented 

in Table Ⅴ. It can be seen that both MCA-SAR methods have 

achieved better results than the others, e.g., for the sea surface, 

the SCR value of the MCA-SAR methods is at least 5.45 dB 

larger than those of other methods, and the BSF value of the 

MCA-SAR methods is at least 0.27 larger. It indicates that the 

MCA-SAR methods can effectively distinguish useful target 

components from clutter and noise, increase the contrast 

between the target and the clutter, and significantly suppress the 

clutter and noise. 

For the ground scene, the SCR and BSF values of MCA-

SAR-DCT and MCA-SAR-KSVD are 17.47 dB and 2.45, 17.59 
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dB and 2.49, respectively, which are higher than the other 

methods. But compared with the sea surface case, the value of 

both MCA-SAR methods is relatively close. This is consistent 

with the fact that the target in the ground scene cannot be 

completely expressed by linear features so that it is difficult to 

fully detect the target using the curvelet dictionary, and the 

pertinence of the dictionary learning is weakened. In addition, 

when the observed scene contains various types of clutter 

simultaneously, the sparse representation competence of the 

learned clutter dictionary will inevitably decrease, so the clutter 

cannot be completely separated from the SAR echo, which will 

affect the clutter suppression ability of the proposed method to 

a certain extent. 

But overall, a similar conclusion can be drawn as in the 

simulated data, i.e., the proposed MCA-SAR methods are 

superior to the other considered methods in the imaging results. 

Among all the methods, MCA-SAR-KSVD provides the best 

result, which indicates that applying the K-SVD dictionary 

training algorithm to construct the clutter dictionary can better 

represent the clutter and then suppress it in the following MCA 

operation. Consequently, the resultant image by MCA-SAR-

KSVD has a high target and clutter contrast and fine details. 
 

TABLE Ⅴ 

SCR, BSF, AND RUNNING TIME OF REAL DATA RESULTS  

Methods 
Sea scene  Ground scene 

SCR (dB) BSF Running time (s)  SCR (dB) BSF Running time (s) 

RDA 6.59 1.00 0.21  7.67 1.00 0.04 

CS-SAR 13.28 1.31 0.98  7.81 0.99 0.28 

Lee filter 18.76 3.78 14.85  16.03 2.41 2.18 

Frost filter 14.84 2.54 12.88  16.02 2.34 1.91 

MCA-SAR-DCT 24.21 4.05 1865.64  17.47 2.45 20.44 

MCA-SAR-KSVD 27.05 5.15 13152.38  17.59 2.49 354.03 

 

V. CONCLUSION 

A novel SAR imaging method based on MCA has been 

proposed for effective clutter suppression. The SAR echo is 

modeled as a linear combination of the target signal, clutter 

signal, and noise. By sparsely representing the target and clutter 

with different dictionaries, the MCA method is used to 

decompose the overall SAR echo into three parts corresponding 

to target signal, clutter signal, and noise, respectively; to 

suppress clutter and noise, only the separated target signal is 

processed to give the final imaging result. Two different ways 

to construct the clutter dictionary were provided: one is based 

on a fixed dictionary, and one is adaptive and learned through 

the recovered clutter in an iterative way using the K-SVD 

algorithm. As demonstrated by results based on both simulated 

and real data, the proposed MCA-SAR method can suppress 

clutter and noise effectively, while as expected the one based 

on adaptive dictionary has provided the best result. As a fine 

imaging method with a high computational complexity, when 

the proposed MCA-SAR method is applied to large-scale SAR 

imaging, its adaptive parallel block processing needs to be 

investigated in the future work. 
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