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A B S T R A C T   

Schemas modulate memory performance for schema-congruent and -incongruent information. However, it is 
assumed they do not influence behaviour for information irrelevant to themselves. We assessed memory and 
generalisation behaviour for information related to an underlying pattern, where a schema could be extracted 
(schema-relevant), and information that was unrelated and therefore irrelevant to the extracted schema (schema- 
irrelevant). Using precision measures of long-term memory, where participants learnt associations between 
words and locations around a circle, we assessed memory and generalisation for schema-relevant and -irrelevant 
information. Words belonged to two semantic categories: human-made and natural. For one category, word- 
locations were clustered around one point on the circle (clustered condition), while the other category had 
word-locations randomly distributed (non-clustered condition). The presence of an underlying pattern in the 
clustered condition allows for the extraction of a schema that can support both memory and generalisation. At 
test, participants were presented with old (memory) and new (generalisation) words, requiring them to identify a 
remembered location or make a best guess. The presence of the clustered pattern modulated memory and 
generalisation. In the clustered condition, participants placed old and new words in locations consistent with the 
underlying pattern. In contrast, for the non-clustered condition, participants were less likely to place old and new 
non-clustered words in locations consistent with the clustered condition. Therefore, we provide evidence that the 
presence of schematic information modulates memory and generalisation for schema-relevant and -irrelevant 
information. Our results highlight the need to carefully construct appropriate schema-irrelevant control condi-
tions such that behaviour in these conditions is not modulated by the presence of a schema. Theoretically, models 
of schema processing need to account for how the presence of schematic information can have consequences for 
information that is irrelevant to itself.   

1. Introduction 

Schemas are mental representations that alter our memory of the 
past, perception of the present, and predictions of the future. Schemas 
are thought to be formed when we experience multiple related events 
that have a common structure (Anderson, 1984; Bartlett, 1932; Head & 
Holmes, 1911; Piaget, 1926; Posner & Keele, 1968). In this way, sche-
mas may capture the general structure of events that have occurred, 
abstracting away from the specific content of individual events. 

Schemas can relate to the locations of items in the real world. When 
entering someone’s home, semantically related items are typically 
grouped spatially. If you know where the soap and toilet paper are 

located, you can use this information to predict where a towel will be 
located. However, this schematic information will be of little use when 
predicting the location of items from an unrelated category. For 
example, house plants can be placed anywhere in a home, and as such, 
the presence of a “bathroom” schema should be irrelevant to where a 
house plant is located, or where you predict one might be. In this 
example, the towel could be located in the bathroom with other 
bathroom-related items (schema-congruent) or in the living room 
(schema-incongruent). Whereas the location of the towel could either be 
schema-congruent or -incongruent, the location of a specific house plant 
is schema-irrelevant, as it should not be included as part of the “bath-
room” schema. 
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The presence of a schema affects the encoding and retention of 
related events. Typically, schemas improve memory performance for 
congruent and, in some situations, incongruent information, relative to 
schema-irrelevant information (Frank, Montaldi, Wittmann, & Talmi, 
2018; Greve, Cooper, Tibon, & Henson, 2019). However, less is known 
about the effects of a schema on irrelevant information. If we experience 
multiple related events that are intermixed with unrelated events, does 
the extraction of a schema for the related events also affect performance 
for the unrelated, irrelevant events? For example, does the presence of a 
“bathroom” schema affect our memory of where the house plant was 
located? Current theories do not make clear predictions about schema- 
irrelevant information (Henson & Gagnepain, 2010; McClelland, 
McNaughton, & O’Reilly, 1995; van Kesteren, Ruiter, Fernández, & 
Henson, 2012), though most would assume that such events should be 
unaffected by the presence of a schema. If information is unrelated to a 
schema, then the schema should not modulate its encoding or retention. 
Here we asked whether memory and generalisation behaviour for both 
schema-relevant and -irrelevant information is modulated by the pres-
ence of schematic information. 

1.1. Schemas and memory 

Information that is either congruent (Atienza, Crespo-Garcia, & 
Cantero, 2011; Brewer & Treyens, 1981; Mandler & Johnson, 1977; van 
Kesteren, Fernández, Norris, & Hermans, 2010) or incongruent (Frank 
et al., 2018; Hunt & Worthen, 2006; Tulving & Kroll, 1995) with sche-
matic information is often better remembered than information unre-
lated to a schema. Brewer and Treyens (1981) had participants recall 
items present in an office they were asked to wait in for 35 s. Items in the 
office were either congruent (i.e., items expected given the context), 
such as a desk, or incongruent (i.e., items that would be unusual given 
the context), such as a picnic basket. In our bathroom example, this 
would equate to finding a towel in the bathroom (schema-congruent) 
versus finding a microwave in the bathroom (schema-incongruent). It 
was found that schema-congruent items were better recalled than 
incongruent items. 

Although memory performance for schema-congruent information is 
typically greater than for schema-incongruent information, research 
also suggests that schemas can boost memory performance for schema- 
incongruent information relative to unrelated information. Frank et al. 
(2018) had participants learn A-B, B-C, C-D, D-A pairings, with the first 
A-B pairing providing schematic context and the second B-C pairing 
including schema-congruent or -incongruent information (the final D 
element was also schema-congruent). For example, the A-B pairing 
could be Farm-Tractor, with C then being congruent (e.g., Farmer) or 
incongruent (e.g., Lawyer). These two conditions were compared to a 
control condition where all item pairings were unrelated (e.g., Torch- 
Professor, Professor-Lego). Consistent with Brewer and Treyens 
(1981), memory performance was greater in the schema-congruent 
relative to -incongruent condition. However, they also saw (in some 
circumstances) greater memory performance in the schema-incongruent 
relative to the unrelated control condition. Consequently, schemas may 
benefit the encoding and retention of congruent and incongruent in-
formation under specific conditions. 

Though a facilitation effect for both schema-congruent and -incon-
gruent information is relatively well established (see Rojahn & Petti-
grew, 1992, for a meta-analysis), what drives this facilitation is still a 
matter of debate (Quent, Henson, & Greve, 2021; Sakamoto & Love, 
2004; van Kesteren et al., 2012). Recent theoretical and experimental 
work has attempted to explain why schemas benefit both congruent and 
incongruent information. The schema-linked interactions between 
medial prefrontal and medial temporal regions (SLIMMs) model (van 
Kesteren et al., 2012), an extension of the PIMMS model (Henson & 
Gagnepain, 2010), predicts that schema-incongruent information results 
in high prediction error and that this potentiates encoding of the event in 
medial temporal regions. Conversely, schema-congruent information is 

detected by the medial prefrontal cortex (mPFC) and this region 
strengthens pre-existing neocortical associations between the relevant 
elements. As a result, memory can be positively affected when infor-
mation is congruent or incongruent with a relevant schema, relative to 
when information is schema-irrelevant or of “neutral” congruence. 

Greve et al. (2019) tested this prediction by having participants learn 
the value of a set of objects through trial-and-error learning where 
certain objects were of higher value (e.g., umbrella compared to shoes). 
During test, participants were presented with both old and new displays 
that contained new combinations of the same objects. Participants had 
to decide if it was an old or new display and which set of objects was 
more valuable based on previous learning. Critically, the value of the 
items either remained the same across learning (congruent), changed on 
the final trial (incongruent) or changed on every trial (unrelated). Across 
four experiments, they found that recognition was better for congruent 
and incongruent information compared to unrelated information. More 
specifically, there was an advantage for first-encountered episodes in the 
congruent trials despite there being no distinguishing characteristics 
from the other trials at this point. This suggests schema congruency 
benefited these trials through post-encoding processes by potentially 
prioritising these memories for consolidation. In contrast, memory for 
the final trial, where the trial switched values in the incongruent con-
dition, was greater in the incongruent than the unrelated condition 
suggesting the memory benefit for these trials was driven by prediction 
error. The findings demonstrate how the congruency and incongruency 
benefit may result from dissociable processes allowing for memory 
enhancement in both circumstances. 

1.2. Schemas and generalisation 

Schemas are also thought to be critical to our ability to generalise to 
novel, but related, events. Sweegers and Talamini (2014) examined how 
the presence of an association between certain facial characteristics (e. 
g., wearing a hat, face shape) and a location in hexagonal space could be 
learned and used to make inferences for novel faces. Along with 
benefiting later recall of old items, the presence of face-location asso-
ciations could also be used to make novel inferences about the location 
for unseen faces. This was observed shortly after studying the material. 
In another domain, Mirković and Gaskell (2016) had participants learn 
new vocabulary using a word-picture matching task. When tested on 
their ability to generalise suffixes, participants showed they had 
extracted the suffix rules and were able to use these rules to generalise to 
novel word-picture pairs. Studies such as these are plentiful, using tasks 
such as inferential reasoning (e.g., Zeithamova, Dominick, & Preston, 
2012), associative weather prediction (e.g., Kumaran, Summerfield, 
Hassabis, & Maguire, 2009) and novel affix completion (e.g., Tamminen, 
Davis, Merkx, & Rastle, 2012). Across these studies, it has been shown 
that schematic representations based on relational information can be 
used to make generalisations about novel stimuli. In this way, schemas 
do not simply function to benefit memory encoding and recall, but also 
help guide our behaviour for future instances. 

1.3. Models of schema processing 

The extraction of schematic representations is often linked to systems 
consolidation (Dudai, 2012). Perhaps the most influential model of 
systems consolidation is the Complementary Learning Systems account 
(CLS; McClelland et al., 1995). CLS proposes two distinct learning sys-
tems – a fast encoding system in the hippocampus that stores pattern 
separated representations of events, and a slower learning system in the 
neocortex that extracts higher-order meaning. The more abstract rep-
resentations in the neocortex are thought to be schematic and support 
generalisation. Critically, CLS predicts that schema formation should be 
relatively slow (potentially requiring periods of offline consolidation 
during sleep; Born & Wilhelm, 2012; Davis & Gaskell, 2009; McClelland 
et al., 1995; Zola-Morgan & Squire, 1990). Once formed, schemas are 
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believed to be independent of the individual event representations that 
supported their formation. Given that this class of model requires 
learning a latent schematic representation prior to retrieval, we refer to 
them as “encoding-based” mechanisms. These mechanisms are concep-
tually related to prototype models of categorisation that propose sepa-
rate ‘prototypical’ or ‘average’ representations that are used to assess 
category membership of novel exemplars (Rosch, 1973; Smith & Minda, 
2000). 

Alternatively, generalisation behaviour consistent with the presence 
of a schema may be supported by the retrieval of individual event rep-
resentations (Kumaran & McClelland, 2012; Schapiro, Turk-Browne, 
Botvinick, & Norman, 2017), conceptually similar to exemplar models 
of categorisation (Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky, 
1986). These models allow for generalisation “on the fly” at the point of 
retrieval (and we therefore refer to them as “retrieval-based” models). 
As retrieval-based models do not rely on the process of systems 
consolidation, the ability to generalise can occur more rapidly (relative 
to encoding-based models). However, generalisation is contingent on 
the retrieval of individual events and, as such, forgetting of these events 
will result in decreased generalisation performance. The key difference 
between encoding-based and retrieval-based models is how memories 
are used. For encoding-based models, schematic representations are 
relied upon when generalising. In contrast, retrieval-based models argue 
that there is no need to form an independent schematic representation; 
instead, we generalise based on sampling individual events. 

More recent neurocognitive models propose both rapid retrieval- 
based and slower encoding-based mechanisms. For example, Schapiro 
et al. (2017) have shown that different pathways in the hippocampus 
could theoretically support both encoding-based and retrieval-based 
mechanisms simultaneously. Similarly, the REMERGE (Kumaran & 
McClelland, 2012) model builds on the CLS model, proposing that the 
hippocampus can initially support generalisation before systems 
consolidation has occurred via retrieval-based mechanisms. If this 
retrieval-based mechanism was combined with the original encoding- 
based mechanism of CLS, such a hybrid model could accommodate 
findings that neocortical reorganisation can take days, weeks, months or 
years (Born & Wilhelm, 2012; Davis & Gaskell, 2009; McClelland et al., 
1995; Zola-Morgan & Squire, 1990), with recent research suggesting 
that schema effects can be observed immediately following learning (e. 
g., Sweegers & Talamini, 2014; Tompary & Thompson-Schill, 2021). 
Therefore, both encoding- and retrieval-based mechanisms could oper-
ate at different time scales and under different conditions. Though we do 
not directly test the assumptions of these models in the present study, 
our findings relate to this broader theoretical debate (see Section 7). 

1.4. Precision measures of schema processing 

Most studies related to schema-processing rely on binary decisions 
related to both memory and generalisation behaviour. Though this 
provides insight into whether retrieval or generalisation can occur, it is 
less informative about patterns of responses across trials. For example, if 
an underlying pattern (or schema) across trials is present, do partici-
pants recreate that pattern when generalising to novel events? Using an 
approach that assesses the pattern of responses across trials would allow 
us to more clearly identify biases in behaviour for both schema-relevant 
and -irrelevant information. 

Precision (or continuous) memory measures provide a non-binary 
output that allows us to look at patterns of responses across trials. 
Used extensively to study working memory (Bays, Catalao, & Husain, 
2009; Luck & Vogel, 2013; Peich, Husain, & Bays, 2013; Sun et al., 2017; 
Zhang & Luck, 2008) and long-term memory (Berens, Richards, & 
Horner, 2020; Harlow & Donaldson, 2013; Korkki, Richter, Jeyar-
athnarajah, & Simons, 2020; Nilakantan, Bridge, VanHaerents, & Voss, 
2018; Richter, Bays, Jeyarathnarajah, & Simons, 2019; Tompary, Zhou, 
& Davachi, 2020), precision memory experiments associate a stimulus 
(e.g., a word or object) with a continuous property (e.g., colour or 

location around a circle). At test, participants are required to retrieve the 
associated property of the stimulus. In the case of a location around a 
circle, performance is measured as the degree of error (real location vs. 
retrieved location). With a continuous measure like this, we can assess 
the distribution of retrieved locations across trials. For example, we can 
compare the distribution of memory trials for a set of stimuli whose 
locations were dictated by an underlying pattern to see if the retrieved 
distribution matches the encoded distribution. 

More recently, precision measures have been used to assess schema 
processing. The idea here is that an underlying pattern can dictate the 
associated properties of a set of stimuli. For example, when learning 
word-location associations, the locations can conform to a von Mises 
(circular Gaussian) distribution, such that they are clustered in a specific 
location around the circle (see Richards et al., 2014 for a conceptually 
similar approach in rodents). Brady, Schacter, and Alvarez (2018) 
associated objects with colours (on a colour wheel), where the colours of 
exemplars of a category (e.g., lamps) were clustered. They showed that 
participants were systematically biased towards the average of the 
colour category when retrieving the colour of previously presented ob-
jects. Further, using object-location associations, Richter et al. (2019) 
showed that learning of new associations was modulated by the 
congruence of the new object-locations with the underlying pattern, but 
only following a period of sleep, consistent with the slow extraction of 
schematic representations predicted by CLS. 

The effect of an underlying pattern on forgetting has also been 
assessed. Berens et al. (2020) required participants to learn word- 
location associations around a circle. Words came from one of two se-
mantic categories (i.e., human-made and natural), with one category 
having locations clustered (i.e., locations were more likely to appear in 
one area of the circle) while the other was non-clustered (i.e., no rela-
tionship between word meanings and locations). Using this paradigm, 
measures of memory accessibility (i.e., proportion of word-locations 
retrieved) and precision (i.e., degree of location accuracy given suc-
cessful word-location retrieval) were assessed. They found that the 
presence of a pattern differentially influenced memory accessibility and 
precision. Specifically, accessibility was higher, but precision was lower, 
in the clustered relative to the non-clustered condition. Consequently, 
schematic information affects distinct memory components differently – 

benefiting overall accessibility at the cost of precision. 
The above precision memory studies focused on how an underlying 

pattern modulates retrieval performance and new learning. Using both 
previously presented and novel (semantically related) stimuli, Tompary 
et al. (2020) investigated how these underlying patterns modulate 
memory (old stimuli) and generalisation (novel stimuli) behaviour. 
Participants learned to associate objects with locations around a circle. 
The locations of images were drawn from two cosine distributions, with 
the means of these distributions on opposite sides of the circle (separated 
by 180◦). They found that schema use, relative to the use of episodic 
memory, increased with time, but interestingly, schema memory also 
showed evidence of decay. This is in line with evidence elsewhere 
showing that schema benefits on memory performance can decrease 
with time (Antony et al., 2021; Berens et al., 2020). Therefore, precision 
measures have been used to assess memory and generalisation behav-
iour in the presence of a schema. However, they have not been used to 
assess behaviour for schema-irrelevant information. 

1.5. Schemas and irrelevant information 

Across the studies discussed above, many consider information that 
is either congruent or incongruent with pre-existing knowledge. Most do 
not study how schematic information influences memory and general-
isation behaviour for schema-irrelevant information. Irrelevant here 
relates to information not in the same semantic category as the sche-
matic items. In our earlier example, the presence of a “bathroom” 

schema should have little impact on where you predict the house plant 
will be located. Whereas a schema-incongruent item (e.g., a towel in the 
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living room) conflicts with an existing schema and therefore can change 
or update the schema, a schema-irrelevant item (e.g., a house plant) is 
neither congruent nor incongruent with the schema. Our ability to 
remember where a house plant is located, or predict where a house plant 
would be located, should therefore be unaffected by the presence or 
absence of schematic information related to bathroom items. In the case 
of the Berens et al. (2020) study, one semantic category (e.g., human- 
made – the experimental equivalent to bathroom items in our 
example) was associated with an underlying pattern (the clustered 
condition), whereas the other semantic category (i.e., natural – the 
experimental equivalent to house plants in our example) was not (the 
non-clustered condition). The location of words in the non-clustered 
condition are not relevant to the “human-made” pattern in this case, 
so we define these items as “schema-irrelevant”. 

Though evidence suggests that schemas can bias memory by 
increasing false alarms (Neuschatz, Lampinen, Preston, Hawkins, & 
Toglia, 2002) and increasing the number of false memories (Kleider, 
Pezdek, Goldinger, & Kirk, 2008), it is not often considered how sche-
mas influence information that is not relevant to themselves. Though 
some studies have included irrelevant information in their paradigm (e. 
g., Frank et al., 2018; Greve et al., 2019), this was used as a control 
condition to compare performance relative to congruent and incon-
gruent information, as opposed to examining how the presence of 
schematic information could bias behaviour for this irrelevant infor-
mation. Indeed, our schema-irrelevant (non-clustered) condition was 
first created as a control condition before we focussed our attention on 
behavioural biases specifically in this condition. 

Returning to precision measures of memory and generalisation, 
Tompary et al. (2020) did not include a control condition where loca-
tions for one semantic group were randomly distributed. Instead, they 
used two clustered distributions that were separated by 180◦, and as 
such, it is difficult to disentangle the effects of one cluster against 
another. In the present experiments, we used the clustered and non- 
clustered conditions introduced in Berens et al. (2020) and introduced 
novel semantically related items (as in Tompary et al., 2020). This 
allowed us to focus on behaviour in the non-clustered condition, where 
the words are from a separate semantic category to the clustered con-
dition, and the locations of these words are randomly distributed. As 
such, word-locations in the non-clustered condition are technically 
irrelevant to extracting the underlying pattern (or schema) in the clus-
tered condition. 

Critical to the present studies is the use of an underlying pattern 
across a set of word-location associations to provide insight into schema 
processing. Ghosh and Gilboa (2014) recently proposed specific features 
that define a schema: (1) an associative network structure that repre-
sents units of information and their interrelations, (2) are based on 
multiple episodic events, (3) lack specificity in unit details, and (4) have 
a degree of adaptability. Concerning the present experiment, a partici-
pant may rely on a schema that maps the associations between words 
and locations. For instance, a schema that captures how certain 
semantically related words are clustered to a particular area of the cir-
cle. Here we have a set of related word-location associations (related 
semantically and by location), conforming to the first criteria. Partici-
pants are encoding multiple related word-location associations, con-
forming to the second criteria. If a pattern is extracted (e.g., the average 
word-location association for a given semantic category), this conforms 
to the third criteria. Finally, although we do not assess “adaptability” per 
se (i.e., the extent to which an existing schema can be flexibly updated), 
we assess behaviour shortly after encoding. Therefore, if behaviour is 
consistent with schema processing, schematic representations must have 
developed rapidly (i.e., during encoding). Consequently, our paradigm 
conforms to the stringent criteria outlined by Ghosh and Gilboa (2014) 
and readily fits with less stringent definitions of schemas (see Preston & 
Eichenbaum, 2013; van Kesteren et al., 2012). We return to whether 
schemas are being extracted and used in our paradigm in the General 
Discussion. 

1.6. Overview of experiments 

We explored how the presence of a pattern influences memory and 
generalisation when one condition possesses a pattern and the other 
does not. We used an experimental design similar to Berens et al. (2020), 
but with novel items at test. Participants learned word-location associ-
ations around a circle. Word stimuli came from two semantic categories: 
human-made (e.g., chair, computer) and natural (e.g., leaf, giraffe). The 
locations associated with these words were either clustered or non- 
clustered. By including the non-clustered condition, we explored how 
memory and generalisation behaviour for semantically related infor-
mation (i.e., words belonging to the clustered category) and semanti-
cally unrelated (i.e., words belonging to the non-clustered category) was 
modulated by the presence of an underlying pattern. Specifically, par-
ticipants may form a ‘schematic’ representation for the semantic cate-
gory associated with the clustered condition, allowing them to make 
predictions about the possible locations of novel words belonging to the 
same category. In contrast, for the semantic category associated with the 
non-clustered condition, there was no underlying pattern; this allowed 
us to observe how the presence of a pattern in the clustered condition 
influences memory and generalisation behaviour for ‘schema-irrelevant’ 
words. Across four experiments, we manipulated delay between Study 
and Test, and whether we collected data in person (in the lab) or online, 
providing evidence that schematic information can bias memory and 
generalisation behaviour in the schema-irrelevant (non-clustered) 
condition. 

2. Experiment 1 

In Experiment 1, we asked two questions: (1) does the presence of a 
pattern increase memory performance in the clustered relative to non- 
clustered condition, and (2) can participants generalise, such that they 
place novel words in locations similar to the pattern in the clustered 
relative to the non-clustered condition? To answer these questions, we 
had two pre-registered hypotheses: (1) participants’ overall memory 
performance will be greater in the clustered relative to non-clustered 
condition (as measured by ‘Total Information’, see Methods), and (2) 
the distribution of locations for novel words will be more similar to the 
underlying pattern (von Mises distribution) in the clustered relative to 
non-clustered condition (whereas the distribution in non-clustered 
condition will be more uniform; as measured by Kullback-Leibler 
divergence). The preregistration for Experiment 1 is available at: htt 
ps://osf.io/h6wba/. 

2.1. Methods 

2.1.1. Participants 

2.1.1.1. Power analysis. Two power calculations were conducted to 
estimate the required sample size to explore the pre-registered hypoth-
eses. First, to estimate the required sample size for the effect of clus-
tering on total information, G*Power (3.1.9.2; Faul, Erdfelder, Lang, & 
Buchner, 2007) was used to perform an a priori power analysis. A power 
analysis was computed for a paired samples t-test comparing total in-
formation in the clustered and non-clustered conditions. The effect size 
for the analysis was estimated from a pilot investigation reported in 
Berens et al. (2020); this pilot study estimated an effect of d = 0.33, with 
the clustered condition showing significantly greater total information 
than the non-clustered. This effect size estimate, along with an α (one- 
tailed) = 0.05 and power = 0.80 were used. A suggested sample size of 
N = 59 usable datasets was estimated. 

Second, data simulations were conducted to estimate the required 
sample size to compare the distribution of locations for clustered and 
non-clustered novel words to the experimental distributions. Data sim-
ulations were run to identify: (1) the minimum number of responses 
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required to get a reliable estimate of Kullback-Leibler divergence (DKL), 
and (2) to determine the required sample size to gain 80% power. The 
number of participants and words varied on each iteration of 100 sim-
ulations. The simulation assumed that each participant reproduced the 
spatial distribution of clustered and non-clustered locations with vary-
ing accuracy. Specifically, the reproduced distributions took the form of 
a von Mises probability density with a mean parameter drawn from a 
von Mises (μ = 0, κ = 5.5). The concentration parameter for each dis-
tribution was then sampled independently from a gamma distribution 
with a mean of 2 (i.e., the true concentration) and a standard deviation 
of 2. These hyperparameters were estimated from a previous pilot study 
by Berens et al. (2020). Non-parametric density functions were then 
estimated from the simulated responses in both conditions separately. 
Using DKL, the probability density across circular locations was then 
compared to the experimentally imposed von Mises distribution (μ =

0 and κ = 2). A generalised linear mixed-effects (GLME) model, using the 
same parameters as described below (see Section 2.1.4), was fit to the 
DKL measures of both clustered and non-clustered responses with vary-
ing intercepts based on each ‘participant’. No random slopes were 
computed for these simulations. It was found that a minimum of 11 
words and 9 participants were required. Given the above, a final sample 
of 60 usable datasets was pre-registered. 

2.1.1.2. Final sample. Sixty-nine participants (63 female) were 
recruited for the study. The mean age was 19.59 years (SD = 2.22 years). 
The mixture model failed to converge for 6 participants, meaning the 
final sample consisted of 63 participants (58 female) with a mean age of 
19.63 years (SD = 2.30 years). The over-recruitment resulted from a 
minor coding error leading to incorrect rejection of valid model fits for 
three participants. Participants were fluent English-speakers with 
normal or corrected-to-normal vision and were recruited from the Uni-
versity of York student population and took part in exchange for course 
credit. Notably, for Experiments 1 and 2, there are few participants 
identifying as male that make up the sample. However, this is not the 
case for Experiments 3 and 4 where there is a relatively equal number of 
males and females. Given the results in Experiments 3 and 4 replicate 
those in Experiments 1 and 2, we do not believe the gender imbalance 
affects our conclusions. Ethical approval for all experiments was granted 
by the Department of Psychology Ethics Committee at the University of 
York. Exclusion criteria for the data are detailed below (see Section 
2.1.4.4). 

2.1.2. Materials 

2.1.2.1. Word lists. Eight stimulus sets were generated consisting of a 
list of 240 English nouns (https://osf.io/a8536/). These words belonged 
to one of two semantic categories: human-made object nouns (120 
words) and natural object nouns (120 words). Each group of 120 words 
was split into four sets of 30, ensuring the semantic properties across sets 
were reasonably equated. For each participant, one of these sets was 
assigned to the “new word” (generalisation) condition, and the 
remaining three sets (90 words) were placed into the “old word” 

(memory) condition. The assignment of the 4 sets to the novel word 
condition was counterbalanced across participants. 

To develop the word lists and ensure sufficient semantic distance 
between categories, semantic representations of 324 words were 
extracted from a pre-trained word2vec model (Mikolov, Sutskever, 
Chen, Corrado, & Dean, 2013). This pre-trained model of numerical 
word representations contained over 3 million English words based on 
the Google News dataset. The semantic similarity between word repre-
sentations was then estimated via Euclidean distance. Simulations were 
run to ensure a small semantic distance between words of the same 
category (e.g., natural), whilst ensuring a large semantic distance be-
tween cross-category pairs. To meet these criteria, simulations were run 
using 10,000 iterations to identify a word list containing a total of 240 

(120 human-made and 120 natural) words. The final list had a mean 
semantic distance of 4.24 (SD = 0.47) within and 4.44 (SD = 0.42) 
between categories, suggesting the two lists were sufficiently distinct in 
terms of semantic grouping. The distributions of semantic distances 
within each group were comparable as compared using the 
Kolmogorov-Smirnov test (D = 0.01). After generating the lists, we 
ensured word length and frequency of use in natural language, as 
quantified using the Zipf-scale of the SUBTLEX-UK database (van 
Heuven, Mandera, Keuleers, & Brysbaert, 2014), were comparable 
across lists. Finally, to split the two lists into eight sets of 30, a further 
10,000 iterations were run. Sub-lists were generated by controlling for 
the mean and variance in Euclidean distance, the difference in distri-
butions using the Kolmogorov–Smirnov test, word frequency and word 
length. The relevant scripts can be found here: https://osf.io/bxru4/. 

Though there is some degree of semantic overlap between the two 
categories, it is important to note evidence for distinct superordinate 
categories from neuropsychological studies (Damasio, Grabowski, Tra-
nel, Hichwa, & Damasio, 1996; Warrington & Shallice, 1984). In this 
study, word2vec was used as a tool to ensure selection of words within 
vs. across lists minimised semantic distance within-category and maxi-
mised semantic distance across-categories. Notably, a linear support 
vector machine was able classify items as either human-made or natural 
with a high degree of accuracy (98%), showing that the categories were 
highly separable. The code for this can be found here: https://osf. 
io/y7jum/. 

2.1.3. Procedure 

2.1.3.1. Study phase. Participants learned associations between 
different locations around a circle and a specific word displayed on each 
trial. During the study phase, 180 words were presented. One of the 
semantic categories was assigned to the clustered condition (counter-
balanced across participants). Word-locations in this condition were 
clustered by sampling from a von Mises distribution with a fixed width 
(κ = 2.0) and a fixed mean (randomly selected for each participant). The 
other semantic category was assigned to the non-clustered condition. 
Word-locations in this condition were randomly distributed around the 
circle by sampling from a uniform distribution. Participants were not 
informed about the presence of the semantic categories or the clustering 
manipulation. They were only told that they would need to remember 
each individual word-location association. 

All stimuli were presented using MATLAB (2019) and the COGENT 
2000 toolbox (www.vislab.ucl.ac.uk/cogent/index.html) on a desktop 
PC. Participants sat approximately 50 cm away from the screen so that 
the circle subtended ~16 visual degrees. Each study trial (shown in 
Fig. 1) started with a fixation cross (1 s), followed by a location marker 
(2 s). The location marker and circle were then removed and the study 
word displayed (4 s). Subsequently, with the word still present, the circle 
and marker, the latter of which was redrawn at a random location 
around the circle, were presented. Participants were asked to reposition 
the cursor at the cued location using a mouse; this response window 
lasted 6 s. Repositioning the marker during study ensured participants 
deliberately attended to the word-location association as opposed to 
passively viewing. If participants did not respond within the 6 s time 
window, or selected an area >10◦ from the presented location, the trial 
was repeated, with a red fixation cross at the beginning of the trial to 
alert them to this repetition. The average number of repetitions across 
all experiments was 0.17 trials (SD = 0.45, Proportion = 0.002) and 0.15 
trials (SD = 0.43, Proportion = 0.002) for the non-clustered and clus-
tered conditions, respectively. 

Before starting the study phase, participants were given practise 
trials to ensure they understood the task and knew how to make re-
sponses. The practise trials used similar parameters as described above, 
but with abstract nouns (e.g., beauty, jealousy, integrity) that held no 
semantic clustering and no relation to words within the study lists. There 
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was a total of 10 practise trials. Following Study, participants took part 
in an immediate Test phase. 

2.1.3.2. Test phase. At test, participants were required to recall the 180 
previously presented word-location associations and to select locations 
for novel words (60 words). These novel words came from the same 
semantic groupings as above. The old and new words were intermixed, 
and presentation order was randomised. 

On each test trial (Fig. 1), a fixation cross appeared (1 s), followed by 
the word (2 s) and then the circle and marker appeared, with the marker 
being presented at a random location around the circle. Participants had 
a 10s response window to move the marker (via the mouse) back to the 
remembered location, or to make a best guess if they had forgotten. 
Participants were not told about the presence of novel words at test, with 
the trial structure being identical. Participants were told to make a best 
guess for any words they had forgotten the location for. 

2.1.3.3. Introspection questionnaire. Following test, participants 
completed an Introspection Questionnaire. The questionnaire addressed 
their perceptions on task difficulty, asked them to report their strategies 
for words they had forgotten, whether they noticed any words presented 
at Test that were not presented at Study, their strategies for these words 
and whether they felt a pattern was present in the presentation of word- 
location associations. The questionnaire is located here: https://osf. 
io/7fgzm/. 

2.1.4. Data handling 

2.1.4.1. Mixture model estimation. Using mixture modelling, we esti-
mated accessibility (i.e., word-location retrieval probability) and pre-
cision (i.e., how precisely are locations remembered given they are 
accessible) for individual participants. We calculated the replacement 
error for each response (i.e., the angular difference between the correct 
location and remembered location). These angular errors are assumed to 
come from one of two distributions: (1) a circular uniform distribution 
representing guesses, and (2) a von Mises distribution representing 
accessible word-location associations, whose variance represents the 
‘precision’ that locations are remembered. These two distributions have 
associated prior probabilities, which are statistics reflecting the overall 
proportion of responses belonging to either distribution. For the von 
Mises distribution, the prior (p) represents retrieval probability (i.e., 
accessibility). This distribution also has two other parameters: mean (μ) 

and concentration (κ). The value of μ was fixed at zero, assuming the 
average error of responses was zero. The value of κ represents the 
variance, or precision, in responses. Higher κ values indicate a narrower 
distribution (higher precision), lower κ values indicate a wider distri-
bution (lower precision). 

Mixture modelling was conducted using the HoopStats toolbox 
developed in Berens et al. (2020), which can be found here: https://osf. 
io/8mzyc/. First, an Expectation Maximisation (EM) algorithm was used 
to estimate p and κ, for each participant and the clustered and non- 
clustered items, separately. The overall fit of this model was compared 
to a reduced model where all angular errors are assumed to be from a 
uniform distribution (i.e., no mnemonic information is present). This 
comparison was conducted using the Bayesian Information Criterion 
(BIC). If the BIC was less than −10 (i.e., evidence in favour of the two- 
distribution model), the parameters returned from the EM were 
accepted. If, however, the BIC was greater than −10, representing a 
poorly fit model, an alternative fitting procedure was implemented. This 
failure to meet criterion often occurs when low accessibility is present in 
the data (p ≾ 0.2). For this alternative model, the p value was system-
atically varied over several steps, with κ being estimated from the cor-
responding responses with the smallest angular error. Using this 
method, valid model fits could be found that were otherwise missed by 
the EM algorithm. If this alternate model produced a better fit than the 
single uniform distribution, again using the BIC < −10 criterion, these 
parameters were accepted. If BIC > −10, or the estimates of κ were 
modelled on fewer than 8 trials, the participant’s entire dataset was 
excluded. Note that this alternative fitting procedure was not used in all 
cases, as it only involves searching regions of the parameter space that 
correspond to low levels of memory accessibility (where the original 
mixture model was likely to fail). 

2.1.4.1.1. Conversion to entropy measures. Once both the p and κ 

parameters were estimated for clustered and non-clustered trials, they 
were converted into information entropy measures Ip and Iκ. Small 
values of Ip indicate lower levels of accessibility. Similarly, small values 
of Iκ indicate poor precision. Conversion of p and κ to Ip and Iκ allows for 
a more direct comparison between the two, as they describe perfor-
mance using the same metric: information gain (in nats) relative to 
random responses. Additionally, we computed a combined measure of 
memory performance, “Total Information” (It), which is directly pro-
portional to both Ip and Iκ (It = Ip*Ik

log(2π)). It reflects the total amount of 
mnemonic information present at the point of retrieval, which is a 
function of both the proportion of word-location pairs that were 

Fig. 1. Experimental Design. (A) Clustering: Locations were selected to follow either a von Mises distribution (clustered condition) or a uniform distribution (non- 
clustered condition) around the circle. The polar plot shows an example of distributed locations for one participant. The clustered and non-clustered conditions were 
associated with either the human-made or natural word category (counterbalanced across participants) and the centre of the clustered distribution was randomised 
for each participant. Numbers on the polar plot show the number of words located in that area of the circle. (B) Study Phase: Participants were presented with a 
fixation cross (1 s), followed by the location (2 s), then the word alone (4 s), and then presented with the word, the circle, and a randomly placed marker to make a 
response (6 s). Participants moved the marker from the start location back to the location just presented. (C) Test Phase: Participants were first presented with a 
fixation cross (1 s), the word alone (2 s) and then asked to replace the marker from the randomly generated start position back to the remembered location (memory 
trials) or make an inference based on experience (generalisation trials, 10s). In the example above, natural words were assigned to the clustered condition, and the 
blue shading in the generalisation trial shows the area of the circle they are likely to generalise to in the clustered condition. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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accessible and the precision of these accessible word locations. Hy-
pothesis 1 uses this measure of Total Information to assess overall 
memory performance between the clustered and non-clustered 
conditions. 

2.1.4.2. Kernel density estimation. Kernel density estimates were 
computed to characterise the distribution of location responses; this was 
identical to Berens et al. (2020). The primary purpose of the kernel 
density estimates was to compute the DKL between participant’s re-
sponses and the pattern of studied locations. They were also used to: (1) 
plot the distribution of angular errors for memory trials and (2) plot the 
distribution of responses relative to the experimentally imposed von 
Mises distribution for memory and generalisation trials. To do this, a von 
Mises probability density function, with a concentration of κ = 2, was 
centred around each response. This distribution acted as a smoothing 
kernel that spread a small portion of the overall density around the local 
area. As such, the density estimates at a given angle were taken as the 
mean probability density value across all these distributions. The re-
sponses were either angular errors for each condition (for memory trials) 
or angular differences between the responses and the centre of the 
experimentally imposed cluster (for memory and generalisation trials). 

2.1.4.3. Kullback-Leibler divergence. Once the spatial distribution of 
responses was estimated through the kernel density function, DKL was 
computed to assess the similarity between specific distributions. DKL 
measures divergence between two distributions, with higher values 
representing greater divergence (i.e., less similarity) between the two; 
this was computed via numerical integration, as in Berens et al. (2020), 
rather than by using a discrete approximation. First, we assessed how 
divergent the distributions for clustered and non-clustered novel words 
(i.e., generalisation trials) were to the reference distribution (i.e., the 
experimentally imposed von Mises distribution associated with the 
clustered condition). The distribution of clustered novel words was 
predicted to be less divergent to the underlying von Mises pattern 
relative to the non-clustered condition (Hypothesis 2). Second, we 
assessed how divergent the distributions for clustered and non-clustered 
novel words were to a uniform distribution (i.e., no pattern). The dis-
tribution of non-clustered novel words was predicted to be less divergent 
from a uniform distribution relative to the clustered condition (Hy-
pothesis 2). 

2.1.4.4. Exclusion criteria. All exclusion criteria were pre-registered. If 
an additional exclusion was included that was not pre-registered, this is 
explicitly identified throughout the report. 

At Study, participants repeated trials where they were > 10◦ away 
from the location presented. If a single trial was repeated 5 times or 
more it was removed from later statistical analyses to ensure that the 
extra encoding of these word-location pairs did not impact retrieval. 
This cut-off was selected based on an observation made during the in-lab 
piloting for Berens et al. (2020), where very few participants needed to 
repeat a trial on more than five occasions, with only ~10% of partici-
pants requiring >5 repetitions on a given trial before they would place 
the marker within 5◦ of the presented location. For all four experiments 
in this manuscript, only 13 trials across participants and experiments 
were repeated >5 times showing few trials were removed for this 
reason. Along with this, if no response was given at Test, the trial was 
excluded from later analyses to ensure only trials where participants 
gave an explicit response were included. Across all experiments re-
ported, on average, participants did not respond to 1.75 trials (SD =
4.23). 

Datasets would only be included for analysis when the following 
criteria were met: (1) both the study and test trials were complete, (2) 
the number of old words with no response did not exceed 20 trials for the 
clustered and non-clustered separately, (3) the number of novel words 
not responded to did not exceed 15 trials for the clustered and non- 

clustered separately, (4) the dataset was not corrupted, and (5) the 
mixture model could be fit adequately to the data (see: Section 2.1.4.1, 
above). 

2.1.5. Statistical analysis 
All statistical analyses reported in the main results sections of all 

experiments were preregistered. Where exploratory analyses were run, 
these are clearly labelled as such. We computed three separate GLME 
models. The models were used to predict (1) Total Information (It), (2) 
DKL in comparison to the experimentally imposed von Mises distribu-
tion, and (3) DKL in comparison to a uniform distribution. The first 
model relates to Hypothesis 1, assessing whether overall memory per-
formance differs between the clustered and non-clustered conditions. 
The second and third models relate to Hypothesis 2, testing whether 
participants can position novel words from the same semantic category 
according to the underlying pattern. 

For each model, we compared the clustered and non-clustered con-
ditions for each measure of interest. All models were fit to the data using 
a log link function, a gamma distribution to model the spread of the data, 
and were estimated using the maximum likelihood fitting procedure in 
the MATLAB (2019) Statistics and Machine Learning Toolbox. The 
models included the independent variable of clustering (0 = Non--
Clustered; 1 = Clustered). In addition to this fixed effect, a set of random 
effect parameters (2 per participant) were included. One random effect 
allowed the intercepts to vary based on participant, the other allowed 
the effect of clustering to vary by participant. All elements of the asso-
ciated random effects covariance matrix were estimated from the data. 
For the DKL model that assessed the uniformity of clustered and 
non-clustered responses, the model did not converge. As a result, the 
random slopes for clustering were removed for this comparison across 
experiments using this analysis. 

All mean values represent the mean estimate of the population 
derived from the GLME. Further, the Cohen’s d values reported were 
calculated as reported in Berens et al. (2020) and estimated only on the 
fixed factors. All analyses use two-tailed tests unless otherwise specified. 
For all results, Bayes Factors were computed. We pre-registered that 
Bayes Factors would only be reported for non-significant results to aid in 
interpreting the outcome of these tests by assessing whether there was 
greater support for the null relative to the alternative hypothesis. 
However, we feel these can be informative for both significant and non- 
significant results. A further deviation from the pre-registration was how 
Bayes Factors were computed. Previously we specified Bayes Factors 
would be computed in JASP. However, to increase reproducibility, the 
computation used in Berens et al. (2020) was implemented for all Bayes 
Factors reported. For these analyses, a prior Cauchy distribution of r =
0.707 centred at 0 was used; these parameters were identical to the pre- 
registration. 

2.2. Results 

2.2.1. Memory 
Fig. 2 shows the Total Information metric for Experiments 1–4, as 

well as the probability density estimates for angular error. The angular 
error plots demonstrate differences, across the delay periods, in the 
degrees of error around the circle. These plots demonstrate possible 
differences between conditions based on accessibility and precision. 
Specifically, the higher peaks in the clustered condition suggest greater 
accessibility, whilst the narrower distributions for the non-clustered 
condition suggest greater memory precision. An analysis of these met-
rics is presented in the Exploratory Analysis: Across-Experiment Com-
parisons section 6. 

Hypothesis 1 related to whether clustering benefits overall memory 
performance. Consistent with this, in Experiment 1, total information 
was significantly greater in the clustered relative to the non-clustered 
condition, t(124) = 1.99, p = .049, d = 0.35, BF01 = 0.87. Though sig-
nificant, the Bayes Factor was inconclusive. 
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2.2.2. Generalisation 
Fig. 3 shows generalisation behaviour for the novel words for Ex-

periments 1–4. Hypothesis 2 was that the distribution of selected loca-
tions for clustered generalisation trials would be more similar to (less 
divergent from) the experimentally imposed von Mises distribution than 
the distribution of locations for non-clustered generalisation trials. 
Consistent with this, the clustered responses were significantly less 
divergent from the von Mises distribution than the non-clustered 

responses, t(124) = 4.26, p < .001, d = 0.76, BF01 = 0.001. This suggests 
participants were able to make reasonable guesses or predictions about 
where novel words would be located based on the learnt locations from 
the same semantic category. Specifically, participants placed novel 
words in the clustered category in similar locations to the old clustered 
items relative to novel words in the non-clustered category. 

We also predicted that the distribution of locations for non-clustered 
novel words would be more similar to (less divergent from) a uniform 

Fig. 2. Memory performance across Experiments 1–4. A-D: Mean Total Information (It) across Experiments 1–4 as a function of clustering (clustered and non- 
clustered). Individual data points represent participant scores. E-G: Spatial distribution of angular errors across Experiments 1–4, 0 here represents 0 degrees of 
error. Error bars represent 95% confidence intervals around the mean for all plots. *p < .05. CL = Clustered. NC = Non-Clustered. 

Fig. 3. Generalisation behaviour across Experiments 1–4. A-D: Mean divergence (DKL) from the experimentally imposed von Mises distribution across Experi-
ments 1–4 as a function of clustering (clustered and non-clustered). Individual data points represent participant scores. E-G: Spatial distribution of locations selected 
for novel words, centred to the experimentally imposed von Mises distribution, for Experiments 1–4. Error bars represent 95% confidence intervals around the mean 
for all plots. ***p ≤ .001. CL = Clustered. NC = Non-Clustered. 
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distribution relative to the distribution for clustered words. In other 
words, we expected that the uniformity (or ‘entropy’) of responses 
should be greater in the non-clustered relative to the clustered condi-
tion. Inconsistent with this prediction, no difference in DKL was seen 
between the clustered and non-clustered conditions relative to a uniform 
distribution, t(124) = 0.08, p = .933, d = 0.02, BF01 = 5.24. Indeed, the 
Bayes Factors indicated there was five times more evidence in favour of 
the null, suggesting the clustered and non-clustered condition diverged 
equally from the uniform distribution. Interestingly, the kernel density 
estimates at the centre of the experimentally imposed distribution (θ =

0) show an increase for clustered responses, but a decrease for non- 
clustered responses (Fig. 3E). Thus, despite the two conditions having 
equally diverged from the uniform distribution, they may have diverged 
in a qualitatively distinct manner. We return to this unexpected finding 
following Experiment 2. 

2.3. Discussion 

Experiment 1 assessed how the presence of an underlying pattern (or 
schema) modulated memory and generalisation behaviour. Memory 
performance was higher for the clustered relative to the non-clustered 
condition (Hypothesis 1). Additionally, when presented with novel 
words, participants reproduced the pattern of locations presented for the 
clustered items, meaning they showed an ability to generalise their 
mnemonic information to novel, semantically related, words (Hypoth-
esis 2). However, both conditions were equally divergent from the 
uniform distribution, which was not in line with expectations. 

The finding that memory was benefited by the presence of a pattern 
is consistent with previous studies (Atienza et al., 2011; Brewer & 
Treyens, 1981; Greve et al., 2019). However, we note that Berens et al. 
(2020) did not find a difference in total information between the clus-
tered and non-clustered conditions. They did see differences in terms of 
accessibility and precision, a finding we return to later (see Section 11 
for analyses of accessibility and precision across Experiments 1–4). 

Generalisation of the clustered items was found to be more similar to 
the experimentally imposed pattern than for the non-clustered items. 
These findings are consistent with recent evidence showing generalisa-
tion to novel instances can occur rapidly without the need for an 
extended period of consolidation (e.g., Sweegers & Talamini, 2014; 
Zeithamova et al., 2012). 

Interestingly, the distribution of locations for clustered and non- 
clustered novel words diverged equally from a uniform distribution. 
Inspection of Fig. 3E suggests participants may have been less likely to 
place novel words in the non-clustered condition near the centre of the 
clustered distribution; a possible “avoidance” effect. This may suggest 
that the presence of a pattern (i.e., schema) in one condition influences 
schema-irrelevant information in the non-clustered condition. We return 
to this following Experiment 2. 

An open question was whether generalisation behaviour would be 
modulated by delay. Theories of systems consolidation suggest that the 
extraction of schemas across a set of related experiences may take time 
to emerge (Kumaran & McClelland, 2012; McClelland et al., 1995), and 
sleep may play a critical role in this process (Inostroza & Born, 2013). 
Behavioural (Tompary et al., 2020) and neuroimaging (Kroes & 
Fernández, 2012; Wagner et al., 2015) work also suggests a time- 
dependent effect either in terms of the use or establishment of a 
schema. However, there is evidence suggesting behaviour consistent 
with use of a schema can remain constant (Sweegers & Talamini, 2014) 
or can decrease (Antony et al., 2021; Tompary et al., 2020) over time. 
Given that there are theoretical predictions to suggest a potential in-
crease in generalisation over time, and that the evidence-base is mixed, a 
delay between Study and Test was implemented in Experiment 2. 
Therefore, Experiment 2 sought to replicate Experiment 1 with one 
change – the addition of a delay between Study and Test. 

3. Experiment 2 

Experiment 2 was identical to Experiment 1 with one exception – we 
increased the delay between Study and Test to approximately 24 h. The 
same preregistered hypotheses from Experiment 1 were tested. The 
preregistration for Experiment 2 is available here: https://osf.io/nbt 
m3/. 

3.1. Methods 

3.1.1. Participants 

3.1.1.1. Power analysis. To determine the required sample size, the 
lowest effect size of interest for the pre-registered hypotheses was used; 
this was derived from the Berens et al. (2020) pilot investigation and 
concerned the effect of clustering on total information following a 24-h 
delay between Study and Test. As before, G*Power (3.1.9.2; Faul et al., 
2007) was used to perform an a priori power analysis for a paired sam-
ples t-test comparing total information in the clustered and non- 
clustered conditions. The effect size for the analysis was estimated 
from the pilot investigation by Berens et al. (2020), which derived an 
effect size of d = 0.31. This effect size estimate, along with an α (one- 
tailed) = 0.05 and power = 0.80 were used. A suggested sample size of 
N = 66 was required. 

3.1.1.2. Final sample. Eighty-six participants (77 female) were 
recruited for the study. The mean age was 20.63 years (SD = 2.01 years). 
Three participants did not return for the second session and 8 datasets 
did not converge during the mixture model and so were excluded. The 
final sample was 75 participants (67 female) with a mean age of 20.55 
years (SD = 1.99 years). Similar to Experiment 1, when first analysed a 
lower number (66 participants) of usable datasets were present. How-
ever, when a coding issue was fixed, a sample of 75 usable datasets was 
obtained (hence the over-recruitment). Participants were fluent English- 
speakers with normal or corrected-to-normal vision and were recruited 
from the University of York student population and took part in ex-
change for course credit or cash payment. 

3.1.2. Materials and procedure 
The same materials and procedure were followed from Experiment 1; 

however, participants completed the Test phase approximately 24-h 
post Study, with the average delay between study and test being 
23.93 h (SD = 0.39 h). 

3.1.3. Data handling and statistical analysis 
The same exclusion criteria and statistical analyses were used as in 

Experiment 1. 

3.2. Results 

3.2.1. Memory 
When assessing memory performance, unlike Experiment 1, total 

information did not significantly differ between the two conditions, t 
(148) = 0.67, p = .502, d = 0.11, BF01 = 4.63 (Fig. 2B; Hypothesis 1). 
The Bayes Factor indicates four times more support in favour of the null 
model, suggesting no difference between conditions was present. 

3.2.2. Generalisation 
Fig. 3 suggests a similar pattern of results to Experiment 1. The 

clustered condition was significantly less divergent from the von Mises 
distribution than the non-clustered condition, t(148) = 3.29, p = .001, d 
= 0.54, BF01 = 0.04. In comparison to the uniform distribution, neither 
condition was significantly more divergent than the other, t(148) =
0.44, p = .663, d = 0.07, BF01 = 5.22. These results replicate Experiment 
1. 
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3.2.3. Exploratory analyses: Comparing experiments 1 and 2 

3.2.3.1. Change in generalisation. Previous work suggests that schemas 
may take time to develop, with a period of sleep being an important 
contributor to this development (Inostroza & Born, 2013). As such, we 
wished to assess whether generalisation behaviour for the clustered 
novel items changed following a delay period. We predicted that 
generalisation may be greater (represented by lower DKL values) 
following a delay period. Fig. 3A and B show the mean divergence for 
both conditions across experiments. 

To assess a change over time, we generated a GLME using the same 
general parameters described above. However, instead of the effect of 
clustering, we assessed whether there was an effect of Delay (0 = Im-
mediate Test, 1 = Delayed Test) on the divergence between the exper-
imentally imposed von Mises distribution and responses to clustered 
novel words. No random slopes were present in the model. It was found 
that there was no significant evidence of a change over time, t(136) =
1.08, p = .280, d = 0.19, BF01 = 3.20. This suggests that following a 
period of sleep, participants adherence to the von Mises distribution for 
clustered novel items did not change. 

3.2.3.2. Avoidance behaviour. In Fig. 3E and F, there was possible evi-
dence for a lack of uniformity in the distribution of locations for novel 
words in the non-clustered condition. Participants appear to show 
avoidance of the centre of the cluster for novel non-clustered words 
(though visual inspection suggests this effect is perhaps greater in 
Experiment 1 than 2). To assess this possible avoidance more formally, 
we compared non-clustered kernel density estimates at the centre of the 
cluster to the density expected if the responses were uniformly distrib-
uted (2π−1). If participants were actively avoiding the centre of the 
cluster, their kernel density for non-clustered items at this location will 
be significantly lower than the uniform value. A GLME was computed 
using the same parameters as previously described, but without the 
clustering variable. Instead, a fixed effect of Delay (0 = Immediate Test, 
1 = Delayed Test) was added, with random intercepts for each partici-
pant. No random slopes were specified in the model. 

The kernel density plots for all experiments are shown in Fig. 4. For 
the analysis, we first compared immediate test and delayed test to the 
uniform value, separately. At immediate test, there was significantly 
reduced probability density compared to the uniform value, t(136) =
4.06, p < .001, d = 0.35, BF01 = 0.003; this suggests participants actively 
avoided locations at the centre of the cluster for novel non-clustered 
items. In contrast, there was no significant reduction in probability 

density during Delayed Test, t(136) = 1.38, p = .169, d = 0.10, BF01 =
4.65. Along with this, a significant effect of delay was observed, t(136) 
= 2.06, p = .041, d = 0.35, BF01 = 0.78. Here, there was a decrease in the 
avoidance effect in Experiment 2 relative to Experiment 1 (i.e., distri-
butions of novel words were more uniform following a delay). However, 
the Bayes Factor was anecdotal. 

3.3. Discussion 

Experiment 2 replicated the key generalisation finding from Exper-
iment 1 – participants’ distributions of locations were more similar to 
the underlying pattern in the clustered condition compared to the non- 
clustered condition (Hypothesis 2). However, we did not replicate the 
difference in overall memory performance (Hypothesis 1). The lack of 
difference in total information instead agrees with the results of a pre-
vious registered report using a similar paradigm (Berens et al., 2020). 
Additionally, we found that, following a delay period, participants 
adherence to the underlying pattern did not change for clustered items. 
This is contrary to some lines of evidence suggesting schematic extrac-
tion may take time to develop and therefore an increased capacity to 
generalise should be observed (e.g., Inostroza & Born, 2013; Kumaran & 
McClelland, 2012; McClelland et al., 1995). However, this finding is in 
line with other studies reporting generalisation based on an underlying 
pattern remains relatively stable over time (Sweegers & Talamini, 
2014). 

We also saw an “avoidance effect” in the non-clustered condition, 
where participants avoided placing novel words in the non-clustered 
condition at the centre of the cluster. Despite old non-clustered words 
being drawn from a uniform distribution, and being from a separate 
semantic category to the clustered words, participants were biased away 
from the clustered location. This avoidance effect was present in 
Experiment 1 and decreased in Experiment 2 where it was no longer 
present. Thus, this avoidance effect appears immediately but possibly 
decreases over a 24 delay (though see results of Experiments 3–4). Given 
this avoidance effect was not predicted, we performed two further ex-
periments with pre-registered analyses to replicate this effect. 

4. Experiment 3 

Experiment 3 aimed to replicate Experiment 1 with the Test phase 
immediately following the Study phase. Experiment 4 aimed to replicate 
Experiment 2, with a 24-h delay between Study and Test. Both experi-
ments were run online, rather than in person, due to coronavirus 

Fig. 4. Kernel density estimates for the non-clustered condition, centred to the experimentally imposed cluster, across experiments. Experiments 1, 3 and 4 
all show evidence of an avoidance effect, with significantly lower kernel density at the centre of the cluster. Error bars are 95% confidence intervals around the mean 
estimate. Individual data points represent participant scores. The dashed line represents the uniform probability value (0.159). *p < .050, ***p < .001. 
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restrictions. The hypotheses from Experiments 1 and 2 were repeated in 
Experiments 3 and 4, with the exclusion of the comparison of the 
generalisation trial distributions with a uniform distribution (given this 
comparison was not informative in Experiments 1–2). Critically an 
additional preregistered analysis was included concerning the avoid-
ance effect in the non-clustered generalisation condition; this was the 
same as the exploratory analysis of Experiments 1 and 2 (see Section 
4.1.4.2, below). We predicted that participants would show a significant 
reduction in probability density for non-clustered novel words at the 
centre of the cluster (relative to a uniform distribution, as in Experiment 
1). The preregistration for Experiment 3 is available here: https://osf. 
io/2wsn8/. 

4.1. Methods 

4.1.1. Participants 

4.1.1.1. Power analysis. To determine the required sample, we assessed 
the range of effect sizes from Experiment 1 (d = 0.35–0.77) and set a 
minimum effect size of theoretical interest (i.e., Hypothesis 3, d = 0.35). 
Using G*Power (3.1.9, Faul et al., 2007) and estimating the sample size 
required for a one-sample t-test with this effect size, α = 0.05 and power 
= 0.80. A sample size of 52 usable datasets was needed. However, given 
this estimate, and the power analysis previously conducted for Experi-
ment 1, a final sample size of 60 usable datasets was set. 

4.1.1.2. Final sample. Eighty-nine participants (35 female) with a mean 
age of 24.91 years (SD = 4.99 years) were recruited for the experiment. 
Three participants left before the study phase, 10 were excluded during 
Study and 3 were excluded at Test due to inattention. One did not 
complete the test phase despite completing the study phase. Two 
attempted the study phase twice and so were excluded. This left 70 
participants that passed the initial checks. Of those, 4 did not provide a 
response on 20 or more memory trials and 3 datasets did not converge 
during the mixture model. Therefore, the final sample was 63 partici-
pants (25 female) with a mean age of 25.27 years (SD = 4.99 years). All 
participants were fluent English-speakers with normal or corrected-to- 
normal vision and were recruited through Prolific.co and received 
monetary compensation for their time. 

4.1.2. Materials 
The same word lists and Introspection Questionnaire were used from 

Experiments 1 and 2. However, rather than using four sub-lists for each 
category (i.e., human-made and natural) as in Experiments 1–2, 30 
words from each category were randomly selected for each participant 
and assigned to the generalisation condition. The remaining 90 words 
were assigned to the memory condition. This was done due to practical 
constraints when coding the online experiment. 

4.1.3. Procedure 
The same general procedure was followed as in Experiment 1, but 

through the online platform Prolific. Participants recruited from Prolific 
were directed to a secure website hosting the online experiment. Par-
ticipants were only able to use a laptop or desktop computer to run the 
task, with handheld devices (e.g., smartphone, tablet) being excluded. 
Before the start of the Study Phase, participants watched a short intro-
ductory video about how the session progressed and how to respond. A 
PDF document of written instructions was also provided (https://osf. 
io/qxfuj/). The instructions emphasised the need to visualise the ob-
ject related to the cue word appearing at the cued location before 
responding on each study trial and how participants were to be asked to 
recall these locations at test. The video instructions replaced the practise 
trials used in-lab, as using instructions in this format online produced 
similar results for memory trials (Berens et al., 2020). 

4.1.3.1. Study phase. The Study Phase was identical to Experiments 1 
and 2. Once completed, participants moved immediately onto the Test 
Phase. 

4.1.3.2. Test phase. One minor change was made to the Test phase. In 
Experiments 1 and 2, participants were presented with a fixation cross 
(1 s) followed by the word alone (2 s) and then the opportunity to 
reposition the marker to the remembered or generalised location (10s). 
In Experiments 3–4, the word was not shown alone for 2 s. In-lab, par-
ticipants provided a response on average within 2.38 s of being able to 
replace the marker, with almost all responses collected within 7.23 s. As 
such, the additional 2 s of the word alone was removed given the 10s 
time window for responding. Following Test, participants were asked to 
complete the Introspection Questionnaire. 

4.1.3.3. Introspection questionnaire. The same questions as Experiments 
1 and 2 were used online. We also included an additional question about 
whether the participant had help completing the task; this was to be 
used as an exclusion criterion (though not pre-registered) had partici-
pants reported they did have help completing the task. No such report 
was given. 

4.1.4. Data handling and statistical analysis 

4.1.4.1. Exclusion criteria. All exclusions from Experiments 1 and 2 
were used in Experiments 3 and 4. However, participants could also be 
excluded during Study or Test for not following task instructions; this 
was quantified as having reaction times of <2 s across a total of 70 trials. 
Specifically, participants would receive a warning message through 
their browser should the number of trials with reaction times <2 s hit 10, 
30, 45 and 60 trials. This message asked participants to either: slow 
down and ensure they imagined the object appearing at each location 
(Study Phase) or encouraged them to try to remember the location for 
each word (Test Phase). This was an exclusion that was not pre- 
registered, but used previously (see Berens et al., 2020) as a way of 
maximising participant performance when conducting the experiment 
online. 

4.1.4.2. Statistical analysis. The same statistical analyses were used for 
Hypotheses 1 (Total Information) and 2 (DKL von Mises). For Hypothesis 
3, we compared the probability density estimates at the centre of par-
ticipants experimentally imposed cluster for non-clustered novel words 
to the density for a uniform distribution. If participants were actively 
avoiding the centre of the cluster, then they will not be distributing lo-
cations randomly (or uniformly) and so their kernel density at this 
location should be significantly below that of a uniform value. To test 
this, a GLME was fit using a log link function and a gamma distribution 
to model the spread of the data, estimated using the maximum likeli-
hood fitting method within the MATLAB Statistics and Machine 
Learning Toolbox. This was an intercept only model with random in-
tercepts for each participant. The derived model was then used to 
conduct a one-sample t-test comparing the beta of the intercept model to 
the log of the uniform kernel density value. A one-tailed test was used for 
this analysis as a directional effect was predicted. Note, this analysis was 
almost identical to the exploratory analysis performed across Experi-
ments 1 and 2, but without the inclusion of any fixed effects. Cohen’s 
d and Bayes Factors are reported and use the same parameters as 
described previously. 

4.2. Results 

4.2.1. Memory 
Total Information was not significantly different between the clus-

tered and non-clustered conditions, t(124) = 0.73, p = .466, d = 0.13, 
BF01 = 4.13 (Fig. 2C). There was four times more evidence in favour of 
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the null model, suggesting that an underlying pattern does not benefit 
overall memory performance. This result is consistent with Experiment 
2, and Berens et al. (2020), but contrary to Experiment 1. 

4.2.2. Generalisation 
As in Experiment 1, participants showed an ability to generalise, 

with the clustered condition being significantly less divergent from the 
von Mises distribution than the non-clustered, t(124) = 5.00, p < .001, d 
= 0.89, BF01 = 4.66 × 10−5 (Fig. 3C). These results replicate Experi-
ments 1 and 2, showing participants can generalise from old words to 
novel words in the same semantic category. 

4.2.3. Avoidance 
The next analysis tested whether the avoidance effect observed in 

Experiment 1 would replicate. As shown in Fig. 3G, participants do show 
some evidence of avoidance behaviour in their location selection. This 
was confirmed by a significant reduction in the probability density for 
non-clustered items at the centre of the cluster, t(62) = 3.35, p = .001 
(one-tailed), d = 0.42, BF01 = 0.03 (Fig. 4C). This replicates the avoid-
ance effect found in Experiment 1. Specifically, participants actively 
avoid placing the locations of novel non-clustered words at the centre of 
the cluster. 

4.3. Discussion 

The aim of Experiment 3 was to replicate the findings of Experiment 
1, particularly the evidence of an avoidance effect. First, there was no 
significant benefit to overall mnemonic information available in the 
clustered compared to the non-clustered condition (as in Experiment 2, 
but not 1). Second, we replicated the generalisation behaviour seen in 
Experiment 1. The distribution of locations for novel clustered words 
was more similar to the underlying von Mises distribution than for novel 
non-clustered words (Hypothesis 2). Finally, we replicated the explor-
atory analysis of Experiment 1, showing that participants were less 
likely to position novel non-clustered words in the centre of the cluster 
(Hypothesis 3). Experiment 4 aimed to replicate the lack of avoidance 
following a delay period, as in Experiment 2. 

5. Experiment 4 

Experiment 4 was identical to Experiment 3, apart from the inclusion 
of a 24-h delay between Study and Test (as in Experiment 2). We had the 
same three key hypotheses as in Experiment 3. The preregistration for 
Experiment 4 is available here: https://osf.io/fjze8/. 

5.1. Methods 

5.1.1. Participants 

5.1.1.1. Power analysis. As before, the required sample size was deter-
mined based on the smallest effect size of interest. The minimum effect 
size of interest (taken across all previous experiments) was d = 0.43 for 
the total information effect. Using G*Power (3.1.9, Faul et al., 2007) 
estimating the sample size for a paired-samples t-test that for this effect 
size, α = 0.05 and power = 0.80, a sample size of 45 usable datasets was 
required. However, to ensure similar power to previous experiments, a 
final sample size of 60 usable datasets was set. 

5.1.1.2. Final sample. A total of 79 participants (32 female) with a mean 
age of 24.15 years (SD = 4.54 years) were recruited for the study. Of 
those, 3 participants failed attentional checks during Study, 3 failed to 
return for the Test phase, 5 did not provide a sufficient number of re-
sponses, and 8 datasets failed to converge during mixture modelling. 
The final sample was 60 participants (25 female) with a mean age of 
24.07 years (SD = 4.43 years). All participants were fluent English- 

speakers with normal or corrected-to-normal vision, were recruited 
through Prolific.co, and received monetary compensation for their time. 

5.1.2. Materials and procedure 
The experiment was identical to Experiment 3, except for two fea-

tures. First, a delay between Study and Test was introduced, similar to 
Experiment 2. Participants completed the Study Phase and then 24-h 
later completed the Test Phase. The average delay was 23.74 h (SD =
0.25 h). Additionally, participants watched two separate instruction 
videos, one at the beginning of the Study Phase and another at the 
beginning of the Test Phase. Written instructions were also provided (htt 
ps://osf.io/bxru4/). 

5.1.3. Data handling and statistical analysis 
Data handling, exclusion, and statistical analyses were identical to 

Experiment 3. 

5.2. Results 

5.2.1. Memory 
There was no difference between the clustered and non-clustered 

conditions in terms of total information, t(118) = 1.04, p = .299, d =
0.19, BF01 = 3.15 (Fig. 2D). As in Experiments 2 and 3, support for the 
null hypothesis was found. 

5.2.2. Generalisation 
Fig. 3H shows the pattern of locations selected by participants for 

novel items in this experiment. It was found that clustered items were 
significantly less divergent from the von Mises distribution than the non- 
clustered items, t(118) = 3.85, p < .001, d = 0.70, BF01 = 0.01. These 
results replicate all previous experiments. 

5.2.3. Avoidance 
Participant’s non-clustered kernel density estimates at the centre of 

the cluster were compared to a uniform distribution. We found signifi-
cant evidence of an avoidance effect, t(59) = 2.00, p = .025 (one-tailed), 
d = 0.26, BF01 = 1.07. This replicates the findings of Experiments 1 and 
3, but not Experiment 2 (where no avoidance effect was present 
following a 24-h delay). We return to the possible effect of delay on this 
avoidance effect in the across-experiment exploratory analyses below. 

5.3. Discussion 

Experiment 4 replicated previous experiments. We found no evi-
dence for a difference in total information between the clustered and 
non-clustered conditions (as seen in Experiments 2 and 3, but not 1). We 
showed that the distribution of novel clustered words was more similar 
to the underlying distribution than for novel non-clustered words (as in 
Experiments 1–3). Further, we found evidence that participants were 
less likely to place novel words in the non-clustered condition near the 
centre of the cluster (as in Experiments 1 and 3). This was contrary to 
predictions given the finding of Experiment 2, which found the avoid-
ance effect was no longer apparent following a delay period. To assess 
this further, we performed an exploratory analysis of the change in 
avoidance behaviour as a function of time. 

6. Exploratory analysis: Across-experiment comparisons 

Across four experiments we provide evidence for (1) no difference in 
overall memory performance (total information) for old words in the 
clustered relative to the non-clustered condition, (2) less divergence 
between the experimentally imposed pattern (von Mises distribution) 
and the novel word responses in the clustered condition relative to the 
non-clustered condition, and (3) avoidance of the centre of the clustered 
pattern for non-clustered novel words. We next carried out a set of 
across-experiment analyses to compare these effects across (1) delay and 
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(2) setting, to ensure the effects are robust to these changes. Further, we 
present new analyses assessing: (1) the components making up total 
information (accessibility and precision), (2) an avoidance effect for 
non-clustered old words (i.e., memory trials) and (3) evidence for 
greater density of locations for clustered novel words (i.e., generalisa-
tion trials) at the cluster centre. 

Each analysis used a similar GLME structure, assessing whether the 
metric of interest was affected by clustering (0 = Non-Clustered, 1 =
Clustered), delay (0 = Immediate Test or 1 = Delay Test) or setting (0 =
In-lab, 1 = Online) along with their interactions. All models, unless 
otherwise specified, had two random effects per participant. The first 
was random intercepts per subject, and the other was random slopes for 
the effect of clustering (if the effect of clustering was included). When no 
effect of clustering was included, no random slopes were present in the 
model. 

For old words (memory trials), we assessed (1) total information, 
accessibility and precision for the clustered relative to non-clustered 
condition. Given the evidence for avoidance for non-clustered novel 
words, we also assessed (2) evidence for avoidance behaviour for old 
non-clustered words. For new words (generalisation trials), we assessed 
(1) DKL (relative to the experimentally imposed von Mises distribution) 
for clustered relative to non-clustered new words, and (2) probability 
density estimates at the centre of the von Mises distribution for non- 
clustered new words. We also assessed the (3) probability density esti-
mates for clustered new words to further assess generalisation behaviour 
across experiments. 

6.1. Memory 

6.1.1. Total information 
For total information, there was a main effect of delay, F(1,514) =

48.63, p < .001, d = 0.39, BF01 = 5.66 × 10−10, with total information 
decreasing across time. All other main effects and interactions were non- 
significant (p ≥ .114, d ≤ 0.12, BF01 ≥ 3.50). To explore the lack of total 
information effect further, we analysed the metrics that make up total 
information: accessibility and precision. 

6.1.2. Accessibility 
Fig. 5 shows the effect of clustering on accessibility, with greater 

accessibility in the clustered relative to the non-clustered condition. This 
was confirmed statistically with a main effect of clustering, F(1,514) =
14.24, p < .001, d = 0.16, BF01 = 0.02. Participants showed greater 
accessibility in the clustered relative to the non-clustered condition. 
There was also a main effect of delay, F(1,514) = 32.50, p < .001, d =
0.33, BF01 = 1.63 × 10−6. Here, accessibility decreased from immediate 
(M = 0.61, SE = 0.03) to delayed (M = 0.46, SE = 0.03) test. No other 
significant effects were observed (p ≥ .217, d ≤ 0.08, BF01 ≥ 6.57). 

6.1.3. Precision 
For precision, there was a significant effect of clustering, F(1,514) =

6.76, p = .010, d = 0.11, BF01 = 0.73. As shown in Fig. 5, precision was 
greater in the non-clustered compared to the clustered condition. A main 
effect of delay was also present, F(1,514) = 34.20, p < .001, d = 0.27, 
BF01 = 8.28 × 10−7, with precision decreasing from immediate (M =
1.40, SE = 0.02) to delayed (M = 1.14, SE = 0.02) test. A significant 

Fig. 5. Across experiment analyses. A final summary of the overall results reported within the paper. All plots show the effect of clustering collapsed across delay 
and setting. (A-C) Memory Metrics: The effect of clustering on each memory metric: (A) total information, (B) accessibility, and (C) precision. (D) DKL von Mises 
Generalisation: The effect of clustering on generalisation to the von Mises distribution. (E-F) Probability Density at Cluster Centre: Plotting both (E) memory and (F) 
generalisation densities at the cluster’s centre to assess differences from a uniform density. Though not tested, for completeness the clustered memory data is also 
plotted. Individual data points represent participant scores. The dashed line represents the uniform probability value (0.159). Error bars represent 95% confidence 
intervals around the mean for all plots. **p < .01, ***p < .001. 
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interaction between clustering and setting was also observed, F(1,514) 
= 7.35, p = .007, d = 0.20, BF01 = 0.33. Post-hoc comparisons revealed 
that the clustering effect was more apparent when the study was con-
ducted online compared to in-lab. To control for familywise error, the 
Bonferroni-Holm correction was applied and reported as pBH. There was 
significantly greater precision in the non-clustered condition when 
tested online (M = 1.40, SE = 0.03) compared to the clustered conditions 
both in-lab (M = 1.24, SE = 0.03; pBH = .031, d = 0.13, BF01 = 0.52) and 
online (M = 1.18, SE = 0.04; pBH = .002, d = 0.17, BF01 = 0.03). 
Additionally, the non-clustered condition showed significantly greater 
precision when performed online than in-lab (M = 1.23, SE = 0.03; pBH 
= .024, d = 0.18, BF01 = 0.28). All other post-hoc tests were not sig-
nificant (p ≥ .362, d ≤ 0.04, BF01 ≥ 12.32). No other main effects and 
interactions were significant (p ≥ .215, d ≤ 0.06, BF01 ≥ 9.33). 

6.1.4. Avoidance 
One question we asked was whether a similar avoidance effect (as 

seen for non-clustered new words) was also present for non-clustered old 
words. In short, is memory for schema-irrelevant information also 
biased? We compared the probability density of old non-clustered 
words, relative to a uniform distribution. Two main effects were 
modelled: delay and setting, with no random slopes. Fig. 5 shows the 
probability density of locations selected for both clustered and non- 
clustered memory trials when centred to the cluster. We found that 
the probability density for non-clustered old words was lower than 
predicted by a uniform distribution, F(1,257) = 8.18, p = .005, d = 0.09, 
BF01 = 0.48, suggesting similar avoidance behaviour for non-clustered 
old words was present in our data. No effect of delay (F(1,257) =
0.01, p = .911, d = 0.01, BF01 = 9.74) or setting (F(1,257) = 0.37, p =
.542, d = 0.05, BF01 = 8.38) was observed. However, there was an 
interaction between the two, F(1,257) = 4.03, p = .046, d = 0.30, BF01 =
0.96. Exploration of the post-hoc effects found no significant effects even 
before correction (p ≥ .069, d ≤ 0.23, BF01 ≥ 1.52). Notably, the Bayes 
Factor for the interaction was anecdotal. Based on these exploratory 
results, we performed a pre-registered secondary analysis on the data 
from Berens et al. (2020), where a similar avoidance effect in the non- 
clustered condition for memory trials was seen (see Supplementary 
Material). We therefore provide evidence that schematic information 
affects memory behaviour for schema-irrelevant information. 

6.2. Generalisation 

6.2.1. DKL von Mises 
Next, we wished to assess whether the effects of clustering, delay or 

setting influenced DKL values for the distribution of locations for new 
words relative to the experimentally imposed von Mises distribution. For 
this model, we found that only clustering was significant, F(1,514) =
65.20, p < .001, d = 0.34, BF01 = 1.80 × 10−13. Specifically, the dis-
tribution of clustered new words was less divergent from the von Mises 
than the distribution for non-clustered new words. All other main effects 
and interactions were non-significant (p ≥ .051, d ≤ 0.09, BF01 ≥ 2.88). 
Generalisation behaviour was therefore consistent over delay and 
setting. 

6.2.2. Kernel density 
Examination of the probability density estimates at the centre of the 

cluster was then undertaken for both the clustered and non-clustered 
conditions, separately. In both instances, no random slopes were 
included in the model. For the non-clustered condition, there was sig-
nificant evidence of avoidance with reduced kernel density at the cluster 
centre, F(1,257) = 28.94, p < .001, d = 0.17, BF01 = 1.53 × 10−5. No 
main effects of delay, setting, or an interaction were observed (p ≥ .066, 
d ≤ 0.17, BF01 ≥ 1.87). The avoidance effect of non-clustered new words 
was therefore consistent across delay and setting. 

Finally, we assessed the probability density at the centre of the 
cluster for clustered novel responses. There was significantly greater 

density relative to a uniform distribution, F(1,257) = 28.29, p < .001, d 
= 0.17, BF01 = 2.12 × 10−5. No main effect of delay, setting, or an 
interaction were observed (p ≥ .209, d ≤ 0.12, BF01 ≥ 4.58). Therefore, 
participants were more likely to place new clustered words near the 
centre of the cluster, and this was not modulated by delay or setting. 

7. General discussion 

We assessed whether participants use patterns (schematic informa-
tion) to guide memory and generalisation behaviour using a precision 
long-term memory paradigm. Across four experiments and a secondary 
analysis of published data (Berens et al., 2020), we found that schematic 
information modulated both memory and generalisation behaviour. 
Critically, we found schematic information in one condition (the clus-
tered condition) modulated memory and generalisation behaviour for 
an unrelated condition (the non-clustered condition). Participants were 
less likely to place both old (memory trials) and new (generalisation 
trials) words in the non-clustered condition near the centre of the clus-
tered pattern. 

This avoidance behaviour was seen for both studied words (memory 
trials) and semantically-related unstudied words (generalisation trials) 
in exploratory analyses in Experiment 1, preregistered analyses in 
Experiment 3–4, and a secondary analysis of the data from Berens et al. 
(2020). Further, we found no evidence for an effect of delay (though we 
note the Bayesian analyses were inconclusive). Therefore, we find 
consistent evidence that schematic information influences memory and 
generalisation behaviour for schema-irrelevant information. We first 
focus on this key finding before discussing the memory and general-
isation results and their implications for schema theory. 

7.1. Schema-irrelevant information and avoidance 

We saw clear evidence that the presence of a pattern influenced 
memory and generalisation behaviour in the non-clustered condition. 
Participants avoided placing non-clustered items at the location of the 
cluster for both memory and generalisation trials. Therefore, the pres-
ence of schematic information biases memory and generalisation 
behaviour for schema-irrelevant information. 

Previous work has shown that schemas can negatively bias recall of 
information (Lew & Howe, 2017; Roediger & McDermott, 1995; Warren, 
Jones, Duff, & Tranel, 2014). For example, Bartlett (1932) demonstrated 
that retrieval for events in a narrative were biased by a participant’s 
existing knowledge of the world. Warren et al. (2014) showed that, 
while healthy controls display relatively high levels of false recall in the 
presence of a schema, patients with vmPFC damage show relatively 
fewer errors. The Deese-Roediger-McDermott (DRM) false memory ef-
fect can also be interpreted as a memory bias (increase in false alarms) in 
the presence of a schema (Cann, McRae, & Katz, 2011). These studies 
have predominantly focussed on binary measures of memory, demon-
strating increased false alarms or errors in the presence of a schema. 
Here our focus was on information irrelevant to the schematic infor-
mation being learnt, rather than false memory or biases for schema- 
related information. 

Studies have used schema-irrelevant information as a control con-
dition to compare to schema-congruent and incongruent conditions (e. 
g., Frank et al., 2018; Greve et al., 2019). These studies show that 
memory performance is enhanced for schema-congruent and -incon-
gruent information relative to schema-irrelevant information. The pre-
sent experiments suggest that the presence of schematic information can 
bias memory for these irrelevant items. Changes in performance for 
schema-irrelevant information may have been previously missed due to 
a lack of appropriate control comparison. For example, in Greve et al. 
(2019), retrieval of schema-irrelevant items may have been reduced by 
the presence of schematic information, resulting in what appears to be a 
schema benefit. Instead, the results may be caused by the presence of a 
schema biasing (i.e., hindering) the retrieval of less relevant 
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information. As we compared behaviour in our non-clustered condition 
to that expected of a uniform distribution (representing the distribution 
of locations expected if no biases were present), we demonstrated biases 
for schema-irrelevant information that may have been missed in previ-
ous studies. Therefore, future studies should be aware that a schema- 
irrelevant control condition may not be an appropriate baseline given 
our results. 

Concerning previous precision long-term memory studies, results 
such as those from Tompary et al. (2020) may have masked this 
avoidance effect. Tompary et al. (2020) used two clustered conditions on 
opposite sides of a circle (180◦ apart), meaning the effects on schema- 
relevant information will have overshadowed any effects of schema- 
irrelevant information. It was only with the inclusion of a non- 
clustered condition, where word-locations were drawn from a uniform 
distribution, that we revealed an effect of the clustered pattern on the 
semantically distinct non-clustered words. 

What produces the avoidance behaviour in the non-clustered con-
dition? One possibility is that the avoidance effect is driven by a “mutual 
exclusivity” bias (Clark, 1988; Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 
1992). This bias is often studied in language learning and refers to the 
tendency to assign only one label to an object. For example, if children 
are presented with two objects, one familiar and one novel, and asked to 
identify what object is being referred to when a novel word is presented, 
they typically select the novel object (Markman & Wachtel, 1988). This 
suggests they are less willing to assign more than one label to a given 
object, even though several labels may encompass the same object (e.g., 
a cat is both a mammal and an animal). Though much of the work on 
mutual exclusivity has focused on children, recent work examining adult 
word learning has suggested that the bias helps with generalising to 
novel words (Lake, Linzen, & Baroni, 2019). 

Though this bias is often thought to help guide language develop-
ment, a similar bias could drive our avoidance effect. As participants 
identified that semantically related words (e.g., natural words) were 
associated with a general location (e.g., top-right quadrant), they might 
have been more inclined to group words from the other category (e.g., 
human-made) on the opposite side of the circle. In short, they attributed 
the top-right quadrant of the circle as “natural only”, despite human- 
made words also appearing in this area. The simplest version of a 
mutual exclusivity bias might be an explicit process at retrieval where, 
when a non-clustered word is presented, participants actively retrieve a 
schema related to the clustered condition and use an “if not in the clus-
tered category, place on the opposite side of the circle to the schema” strat-
egy. Although possible, analysis of the post-retrieval debrief suggests 
very few participants were using explicit strategies such as these. 
However, a mutual exclusivity bias could explain the avoidance effect 
either explicitly or implicitly, under the assumption that participants are 
either explicitly or implicitly categorising the words at the level of 
“human-made” and “natural”. Although we cannot rule out implicit 
categorisation at this superordinate level, the debrief suggested that few 
participants (4 of 261) spontaneously referred to these semantic groups. 
Instead, participants were more likely to (explicitly) categorise words 
into subordinate categories (e.g., “household objects, animals and fruit”, 
“fruit and vegetables, household items, mammals”, “fruit, technology… 

cars… exotic animals, weather”, “planets, animals, food”). 
If a mutual exclusivity bias were driving the avoidance effect, one 

critical question is what is driving this bias? One explanation would be 
that the non-clustered condition is unlike most groupings found in the 
real world. Returning to the earlier example, if you have a “bathroom” 

schema, it is probably less likely that you will find non-bathroom related 
items in this location relative to elsewhere in the house. In short, the 
“bathroom” schema does not tell you where the microwave will be, but 
it likely provides information about where it is unlikely to be. Although 
real-world examples of more uniformly distributed items may exist, for 
example, house plants throughout a home, they may be rare, meaning 
we have little experience with them. Participants may apply this real- 
world sampling to the present experiments, presuming non-clustered 

words are less likely to be located in the clustered area of the circle. 
Another possible explanation for the avoidance effect in the non- 

clustered condition is that participants’ behaviour was guided by rela-
tive probabilities representing the likelihood of having studied a 
particular type of word at each location. This contrasts with making 
location responses based on absolute probabilities representing the 
overall ‘density’ of different types of words at each location. Non- 
clustered word locations were drawn from a uniform distribution, 
such that the absolute probability of encountering a non-clustered word 
was close to uniform around the circle. However, the relative probability 
of encountering a non-clustered relative to clustered word differed 
around the circle – the relative probability was lower in the clustered 
area of the circle relative to the other side of the circle. If participants’ 

location responses were influenced by assessing the relative probability 
of having studied a word-location association from a given semantic 
category, we would expect to observe an avoidance effect in the non- 
clustered condition. 

This base-rate neglect proposal (ignoring the absolute density of 
words in a given location) is a well-documented bias in the literature 
(Hawkins, Hayes, Donkin, Pasqualino, & Newell, 2015; Welsh & Nav-
arro, 2012; Wolfe, 2007). It could potentially drive the avoidance effect 
if either implicit or explicit categorisation of the words were occurring 
(as would be necessary for the mutual exclusivity bias) or if participants 
were not categorising but were sensitive to the semantic distances be-
tween individual words. As such, it could explain the avoidance effect 
without categorisation at the superordinate level (i.e., human-made and 
natural). Given that research has suggested that base-rate neglect is 
driven by explicit processes (Lovett & Schunn, 1999; c.f. Bohil & 
Wismer, 2015; Wismer & Bohil, 2017), it is likely that the effect seen 
here (if base-rate neglect is the correct explanation) would be sensitive 
to whether participants are learning word-location associations under 
conditions that preclude explicit awareness. 

A further alternative is that the avoidance effect could be driven by 
proactive or retroactive interference (at encoding or retrieval) between 
word-location associations (Anderson & Neely, 1996; Baddeley & Hitch, 
1977; Barnes & Underwood, 1959; Jenkins & Dallenbach, 1924; Kliegl, 
Pastötter, & Bäuml, 2015; Sadeh, Ozubko, Winocur, & Moscovitch, 
2016; Underwood, 1957; Wixted, 2004). Specifically, dense clustering of 
word-location associations in one part of the circle may interfere with 
those specific associations (location-based interference). This interfer-
ence would apply irrespective of semantic category, resulting in worse 
memory performance for word-location associations in the clustered 
area relative to locations on the other side of the circle. This explains our 
avoidance effect for non-clustered memory trials – participants were 
poorer at remembering locations near the cluster, decreasing the prob-
ability of placing old words in this area of the circle. 

For the clustered condition, interference would also apply. However, 
there are more words located in that area of the circle belonging to the 
clustered condition, and all those items are tested at retrieval. Therefore, 
there is a sampling bias at retrieval in the clustered condition. This 
sampling bias may outweigh any potential interference effect, such that 
no avoidance behaviour is found. One way to assess this in the future 
would be to only test a subset of clustered items at retrieval such that the 
true locations of those items were distributed uniformly. 

Performance for generalisation trials should follow that seen in the 
memory trials. Irrespective of whether generalisation in the paradigm is 
driven by an encoding-based or retrieval-based model of schema pro-
cessing (see below), any schematic representation is likely to be built on 
the word-location associations that are strongly encoded and/or more 
easily retrieved. This would naturally produce an avoidance effect for 
the non-clustered new words, given that the memory bias is already 
present for non-clustered old words. 

Although our word lists came from two superordinate semantic 
categories and were therefore categorically distinct, there is some se-
mantic overlap between lists (as seen in the word2vec semantic distance 
measure we used to select the words). While the proposed mechanisms 
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above do not rely on semantic overlap between the two categories, such 
overlap may modulate the extent of avoidance in the non-clustered 
condition. Indeed, the proposed mechanisms are primarily driven by a 
lack of similarity between the two categories. In the case of the mutual 
exclusivity bias and base rate neglect account, these rely on semantic 
distance, rather than overlap, between the two categories. Evidence 
suggests that the mutual exclusivity bias works under a wide range of 
circumstances, even when the items themselves show little semantic 
overlap (Markman, Wasow, & Hansen, 2003). In the case of location- 
based interference, we stated this would occur regardless of semantic 
category, so overlap is again not a necessary precondition for this 
explanation. Further experiments directly manipulating overlap would 
clarify this possible relationship. We would predict that separating the 
words further may lead to exacerbating the avoidance effect as classi-
fication of items would become easier for participants. 

Finally, two exploratory analyses of the data were conducted to 
potentially delineate between the above proposals (see Supplementary 
Materials). The first analysis attempted to better understand the shape of 
the distribution for the avoidance effect. Specifically, whether avoid-
ance appeared as a separate cluster on the opposite side of the circle (as 
might be predicted by the mutual exclusivity proposal) or as a relatively 
uniform distribution with a reduction in density just around the clus-
tered area (as might be predicted by interference or base rate neglect). 
This analysis found that the latter pattern provided a better fit for 
participant data, which provides tentative support either the interfer-
ence or base rate neglect proposal, but not mutual exclusivity. Addi-
tionally, an analysis of possible proactive and retroactive interference 
was undertaken. Specifically, an examination of how avoidance changed 
over the course of testing was undertaken by splitting data into three 
sections: beginning, middle and end. Trials were then ordered based on 
the order items were presented at study or at test. It was found that 
avoidance was relatively consistent regardless of when the items 
appeared at Study or Test, though only strong evidence for avoidance 
was seen for items presented at the middle or end of the study and tests 
phases. These two analyses perhaps provide more support for the base 
rate neglect and interference proposals than the mutual exclusivity 
proposal. Nonetheless, formal modelling is required to better under-
stand the shape of the distribution and possible mechanisms that may 
drive this behaviour. 

In sum, the avoidance effect may be driven by (1) a mutual exclu-
sivity bias, (2) a base-rate neglect bias, and (3) location-based interfer-
ence. We return to these three accounts following a discussion of the 
broader generalisation and memory results. 

7.2. Generalisation 

Across experiments, participants could use the underlying pattern to 
make informed decisions about where to locate novel semantically- 
related words. Distributions across new words in the clustered condi-
tion were more similar to the underlying pattern (von Mises distribu-
tion) than new words in the non-clustered condition (as measured by 
DKL). We also saw evidence for greater peak kernel density at the centre 
of the pattern for clustered new words relative to a uniform distribution. 
This finding suggests that participants were more likely to place new 
words in the clustered condition towards the centre of the pattern than if 
the words had been placed randomly. 

The evidence for generalisation presented here, both immediately 
and following a delay, is in line with previous research (Berens & Bird, 
2021; Djonlagic et al., 2009; Durrant, Taylor, Cairney, & Lewis, 2011; 
Ellenbogen, Hu, Payne, Titone, & Walker, 2007; Graves, Antony, & 
Turk-Browne, 2020; Mirković, Vinals, & Gaskell, 2019;Sweegers & 
Talamini, 2014; Tompary et al., 2020). Though, there is conflicting 
evidence concerning whether generalisation performance increases, 
decreases, or remains constant over longer delays (Sweegers & Talamini, 
2014; Tompary et al., 2020). We saw no clear evidence for a change in 
generalisation behaviour over a 24-h delay, suggesting relative stability 

over 1 day (which included one night of sleep). Longer delays using a 
similar experimental approach would be needed to draw definitive 
conclusions about generalisation behaviour over extended timescales. 

The finding of immediate generalisation performance, if such 
behaviour is based on a schematic representation, is at odds with stan-
dard models of systems consolidation (e.g., McClelland et al., 1995). 
Here, new schematic representations are thought to be formed as a 
function of hippocampal to neocortical transfer over (at a minimum) 
several hours, and sleep is thought to play a crucial role in this systems 
consolidation process (see Rasch & Born, 2013). Although novel infor-
mation can be rapidly integrated into an existing schema (Fernández & 
Morris, 2018; Kumaran, Hassabis, & McClelland, 2016; van Buuren 
et al., 2014), this rapid transfer is not thought to occur when establishing 
new schemas as is the case here, where no location-based schema for a 
semantic grouping of words should exist before the experiment. 

Updated models that incorporate a retrieval-based generalisation 
mechanism, such as the REMERGE model (Kumaran & McClelland, 
2012), more readily accommodate our findings of immediate general-
isation. During immediate generalisation, where systems consolidation 
would not have had chance to take place, participants will rely more on 
retrieval-based mechanisms. Over time, as systems consolidation occurs, 
there will be a move to more encoding-based mechanisms supported by 
a generalised neocortical-based schema. 

It is plausible that there is a shift from retrieval-based to encoding- 
based generalisation over time in our experiments, but that both 
mechanisms support similar generalisation behaviour. However, recent 
research suggests generalisation behaviour might decrease over time 
when using the precision long-term memory paradigm, which would be 
inconsistent with the extraction of a stable schematic representation. In 
their study, Tompary et al. (2020) showed that schematic representa-
tions may decline over time alongside memory for individual word- 
location associations. Antony et al. (2021) found a similar pattern of 
results using a spatial navigation object-location task. As participants’ 

memory performance declined for individual object-location associa-
tions over time, so did their adherence to the pattern of locations. 
Finally, although they did not assess generalisation to new words, 
Berens et al. (2020) showed that the distribution of remembered word 
locations decreased in similarity to the underlying pattern over 4 days 
and this decrease correlated with memory accessibility (i.e., the pro-
portion of word-location associations retrieved). Given generalisation 
behaviour is seen immediately following encoding, and that it appears to 
decline over time as memory for individual item-locations declines, 
generalisation in these paradigms may be more driven by retrieval- 
based mechanisms rather than be supported by stable schematic repre-
sentations. Whether more stable long-term schematic representations 
emerge over longer timescales, with multiple encoding sessions, in these 
paradigms (as has been shown in rodents; Richards et al., 2014) remains 
an open question. 

7.3. Memory 

The presence of schematic information in the clustered condition 
modulated memory-guided behaviour in both the clustered and non- 
clustered conditions. First, in an exploratory analysis, we replicated 
the results of Berens et al. (2020), showing the presence of a pattern 
increased accessibility (proportion remembered) but decreased preci-
sion (the angle of error for word-location associations that were 
remembered). Our pre-registered analyses comparing Total Information 
(the product of accessibility and precision, divided by a constant) in the 
clustered relative to non-clustered condition showed no overall boost in 
memory performance between conditions (though a small but signifi-
cant difference was seen in Experiment 1). This lack of an increase in 
overall memory performance again replicates the results of Berens et al. 
(2020). 

Previous studies have shown an overall benefit to memory for 
schematic vs non-schematic information (Atienza et al., 2011; Brewer & 
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Treyens, 1981; Frank et al., 2018; Greve et al., 2019). The present 
findings might appear to contradict these studies. However, most pre-
vious analyses have used binary measures of memory (correct vs 
incorrect) that are conceptually similar to the accessibility measure used 
in the present studies. Thus, our increase in accessibility in the clustered 
relative to non-clustered condition is consistent with previous findings. 

Importantly, our ability to assess accessibility and precision suggests 
this increase in accessibility comes at a cost – a corresponding decrease 
in precision. This lack of precision is similar to previous findings sug-
gesting that the presence of a schema leads to the loss of more fine- 
grained detail information but enhanced memory for face-location as-
sociations that had a schematic element (Sweegers, Coleman, van Pop-
pel, Cox, & Talamini, 2015). Other studies have reported similar 
memory biases as a consequence of schematic information (Berens et al., 
2020; Mäntylä & Bäckman, 1992; Pezdek, Whetstone, Reynolds, Askari, 
& Dougherty, 1989; Richter et al., 2019; Tompary et al., 2020; Tompary 
& Thompson-Schill, 2021; Zeng, Tompary, Schapiro, & Thompson- 
Schill, 2021), as well as increases in false positives to novel items that 
are related to an underlying schema (Neuschatz et al., 2002). Therefore, 
our results are consistent with previous studies that schematic infor-
mation can increase performance on certain memory measures but 
decrease performance on others. 

Further, our findings concerning accessibility and precision suggest 
the increase in “information” in terms of accessibility is equivalent to the 
decrease in terms of precision (hence the lack of difference in Total In-
formation), such that schematic information in this paradigm does not 
increase overall memory performance. Although we cannot yet gener-
alise beyond the present experimental approach, one possibility is that 
this accessibility versus precision trade-off (or the trade-off between hits 
and false-alarms in other experiments) might result in no net memory 
benefit in the presence of a schema. In short, schematic information 
alters memory behaviour, but our results question whether it benefits 
overall memory performance. 

7.4. Conclusion 

Across four experiments, we provide evidence for memory and 
generalisation effects for both schema-relevant and -irrelevant infor-
mation. Critically, we have shown that memory and generalisation 
behaviour is biased away from a schematic location for schema- 
irrelevant information. These effects appear immediately after encod-
ing and appear relatively stable over a 24-h period. We have outlined 
three broad explanations for this behaviour: (1) a mutual exclusivity 
bias account, (2) a base-rate neglect account and (3) a location-based 
interference account. Whereas the mutual exclusivity bias account 
would likely require implicit or explicit categorisation of the words as 
human-made or natural, the latter two accounts may not require such 
categorisation. 

Given that these effects emerge immediately after encoding, with 
evidence of decline over longer delays in other experiments (e.g., Ant-
ony et al., 2021; Berens et al., 2020; Tompary et al., 2020), the gener-
alisation behaviour is likely driven by a retrieval-based mechanism that 
relies on memory for the individual episodes to infer a location for novel 
items by relying on close semantic neighbours. In this way, catego-
risation at the superordinate level is unnecessary so long as the partic-
ipant is sensitive to the semantic relatedness among individual items. 
Using either the base rate neglect or interference mechanism (regardless 
of semantic category), both of which may rely on a retrieval-based 
approach, could explain our effects in a parsimonious manner without 
the need for explicit strategies or semantic categorisation of the words. 

Formal modelling is likely to provide further theoretical insight. For 
example, accessibility and precision measures have recently been sug-
gested to emerge from a single d-prime measure in a signal detection 
framework (Schurgin, Wixted, & Brady, 2020). Careful analysis of the 
shapes of the distributions produced by these models compared to our 
experimental data may help delineate between models. Incorporating 

both location-based interference and semantic relatedness in such a 
framework may be able to accommodate our findings without the need 
for schematic representations or semantic categorisation. Indeed, the 
presence of both location- and semantic-based interference may explain 
our generalisation effects and memory effects seen in the current study 
and Berens et al. (2020); for example, the differences in accessibility and 
precision between the clustered and non-clustered condition. 

Regardless of the exact mechanism, our results highlight that the 
presence of schematic information can affect memory and generalisation 
behaviour for schema-relevant and -irrelevant information. Experi-
mentally, these results have implications for future studies that use 
schema-irrelevant information as a control condition, where behaviour 
is assumed not to be affected by the presence of a schema. Theoretically, 
the results provide insight into schema processing. They suggest that 
schematic information affects memory and generalisation behaviour 
immediately after encoding for both schema-relevant and -irrelevant 
information in a manner that is not clearly predicted by existing schema 
theories. 
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