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Abstract 

The concentration of iron in drinking water at the customer’s tap is a key measure of both 

water quality and network performance. The reasons and factors that contribute to this are 

complex and interact. It is important that water companies understand these so that 

constrained resources can be best targeted to minimise the risks of non-compliance and 

avoid associated financial and reputational penalties. Understanding of iron behaviour in 

water distribution networks is reported and discussed here based on the application of 

artificial intelligence techniques. This enabled the mining of over a decade of companywide, 

messy and incomplete data, linking across different data types: discrete sample data, asset 

data and customer contacts. The qualitative understanding derived, such as lack of influence 

of local pipe material and association with heterotrophic plate count data, were then 

captured in numerical predictions. A form of ensemble decision trees was found to provide 

robust results, giving ‘S’ curve rankings at district metered area (DMA) level that clearly 

highlighted areas of highest risk. These rankings have been used to target flushing 

interventions. 
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1. Introduction 

The UK regulatory standard for iron in potable water is 200 µgL-1. This level is set for 

aesthetic rather than health reasons, with elevated levels of iron associated with customer 

contacts for discoloured water. Like many UK water companies, Yorkshire Water Services 

(YWS) undertakes a targeted programme of mains flushing to address both iron compliance 

and discoloured water. This is important to deliver good service and ensure that YWS meets 

the specific Performance Commitments relating to elevated levels of iron: Water Quality 

Compliance (CRI) and Drinking Water Contacts (Ofwat, 2019). A prioritisation process 

identifying areas of highest risk is needed to ensure that flushing programmes direct 

resources efficiently and deliver the best return for investment. The work presented here 

delivers a development to the current prioritisation process used within YWS.  



2. Background 

2.1 Iron behaviour within drinking water distribution networks 

The source of iron within drinking water distribution systems can be carry over, generally at 

low concentrations, from water treatment works and/or corrosion of iron fittings and fixtures 

within drinking water distribution systems. The subsequent behaviour within the network is 

complex with many factors known to contribute and be influential, in particular where and 

how iron accumulates and where and when iron may be mobilised or released. The chemical 

dominated processes of corrosion are important, as highlighted by Sarin et. al. (2004) linking 

water quality degradation due to iron release, in soluble or particulate form, from corroding 

pipes to the bulk water. Seth et. al. (2003) showed iron together with manganese to be the 

dominant metal constituent of discoloration flushing samples, irrespective of pipe material. 

Sly et. al. (1990) also noted the co-deposition of iron and manganese, observing it to be 

microbial mediated. The physical conditions of hydraulic pipe operation can also be 

important. Beckett et. al. (1998) found stagnant zones to influence higher metal 

concentrations, although Li et. al. (2020) found that no flow conditions limited corrosion 

processes, associating this with a lack of supply of dissolved oxygen. This brief review 

highlights that the processes leading to risks of elevated iron concentration are complex and 

cannot be readily derived by simple analysis or interpretation.  

2.2 Digital water 

Digital water, the exploitation of digital technologies to provide and exploit data, improve 

business processes, create markets and entirely new products and services, has been 

widely recognised as an important opportunity for the water sector, such as IWA (2019). An 

important subset of this is the application of artificial intelligence (AI) or machine learning 

(ML) techniques to extract or mine understanding from the data historically and currently 

collected by water companies, but which is often used for siloed, specific purposes. 

2.2.1 Self-Organising Maps  

Self-Organising Maps (SOM) are a type of Artificial Neural Network (ANN) that is trained 

using unsupervised learning; this means that when the inputs are presented to the ANN, it 

forms its own clustering of the training data thus allowing the potential to derive information 

from data without any previous knowledge. This feature eliminates the need to specify 

relationships prior to the data analysis, a critical attribute for the analysis and data explored 

here. A further important attribute of SOM is their resilience to missing and incomplete data, 

important when considering the data available for this analysis. The Kohonen self-organising 

feature map (Kohonen 1990), generally referred to as the SOM, is an ANN model which 

resembles the way biological brain maps spatially order their responses by modelling the 

self-organising and adaptive learning features of the brain. SOM enables the visualisation of 

high-dimensional input data in a low (usually two) dimensional output space. The outputs are 

qualitative, but provide evidence-based understanding of the interactions and influences of 

different parameters on a given outcome, in this case elevated iron concentrations. SOM 

have been applied to a variety of disciplines, including economics, genetics, climatology, 

engineering, and water applications such as resources (Kaltech et al 2008) and drinking 

water quality (Speight et al 2019). 

2.2.2 Risk ranking  

Supervised ML techniques can map input parameters to an output parameter, such as 

elevated iron concentrations. In a supervised learning method, in contrast to unsupervised 

learning approaches like SOM, input and output parameters are defined, thus when the 



model is trained, using a set of input data, it will be possible to ‘predict’ the corresponding 

output parameter. Different ML algorithms were explored here, Classification-based Random 

Forests (CRF) (Breiman, 2001), Support Vector Machines (Hastie et al., 2008), and Boosted 

Tree learning algorithms based on Random Undersampling Boosting (RUSBoost) (Seiffert et 

al., 2008). Mounce et al (2017) previously employed boosted trees effectively to categorise 

risk of iron failure, finding that “the paucity of target data, iron fails, was overcome with the 

results from multiple ‘weak’ decision trees melded into one high-quality ensemble predictor 

using the RUSBoost algorithm”. 

3. Method 

The rare event nature of elevated iron concentrations (in 2019, just 0.53% of regulatory iron 

samples collected by YWS exceeded the compliance standard) is challenging for 

understanding the causes and for estimating future risk (probability). This rare nature is 

compounded by the vast size, complexity and age of drinking water distribution system 

infrastructure. While very significant time and effort are invested in sampling to confirm water 

quality at the customer’s tap, the discrete sample data derived gives only single point values 

in time and space that underrepresents the entire system. 

The rare event nature of elevated iron concentrations means that it is essential that the 

method adopted takes advantage of all possibly relevant data, and is at significant spatial 

and temporal scale. The analysis was hence conducted at company wide scale and for data 

collected over a decade. The approach consisted of two phases as set out in Figure 1. The 

first is termed knowledge discovery, although it might also be called prior expectation 

exploration. In this phase SOM were used to explore the complex, messy data set, testing 

prior assumptions and looking for multi-parameter correlations. The second phase was to 

provide insight into which district metered areas (DMAs) have the highest risk (relative 

probability) of elevated iron concentrations. Different methods were assessed for provision of 

DMA-scale, year-ahead prediction of elevated iron concentrations and ultimately DMA risk 

ranking based on relative probabilities of this. 

 



Figure 1. Schematic representation of approach 

3.1 Data preparation 

Various data that may pertain to elevated iron concentration are collected by water 

companies, for different purposes and functions. The data is typically stored in different 

systems and ranges from static asset to discrete water sample to connectivity data. Prior to 

attempting knowledge discovery, this data must be checked, linked or associated and made 

accessible. This was done making use of unique YWS-specific reference numbers and 

geospatial searches, such as associating tap samples to their nearest water distribution 

main but ignoring pipes not flagged as live, and to associate pipes and samples to DMAs. 

This required a time-consuming understanding of the data structure and systems used to 

ensure that the data are correctly associated. Once done and checked it provides a source 

that can be explored for a range of different questions and challenges, but only elevated iron 

concentrations are reported here. Following data preparation there were 134,803 records for 

regulatory samples at customer taps, 816,703 pipe records and 62,695 discolouration 

customer contacts, representing a decade of pre-covid data. 

3.1 Knowledge discovering using self-organising maps 

SOM were used for the identification of potential multi-parameter correlations among water 

quality, pipe and customer contact data. SOM were generated using Matlab2019b and the 

SOM Toolbox2.1 (Kohonen, 2014). There are a vast number of permutations and 

combinations of parameters and subdivisions of the data sets that can be explored. The act 

and process of posing questions, investigating these with the SOM and discussing and 

interpreting the results is a rewarding and beneficial process. This was undertaken by an 

expert group across practitioners and academia. Only a snapshot of the SOM produced is 

included here to capture some of the deeper understanding gained as well as key 

parameters that were taken forwards to the predictive ranking.  

3.1.1 Analogous description of SOM 

Fill a football field with people, ask the people to question each other about some selected 

parameters (hair colour, height, job, whatever is of interest) and to form groups (clusters) of 

similar attributes (values) across the parameters based on the answers. Give a long time to 

question and form groups. Now give each group a set of coloured cards and ask them to 

hold up the colour that represents their group in response to a question about the 

parameters. This is, sort of, a human SOM. Importantly computers don’t get bored like 

people and will keep asking the same questions to form groups, so computer groupings 

should be more reliable. 

3.2 Risk ranking 

The second phase was to provide quantitative insight into which DMAs have the highest risk 

(relative probability) of elevated iron concentrations. Candidate input parameters were 

identified by SOM with the output a categorical parameter consisting of two classes of 

‘elevated (E)’ and ‘non-elevated (N)’ based on a threshold (150 and 200 μgL-1 were both 

tested). If there was at least one iron concentration elevated above the threshold in a DMA in 

a year, then the DMA-year sample was classified as elevated ‘E’.  Models were trained with 

prior data and then employed to ‘predict’ elevated iron concentration at individual DMAs in a 

certain year and calculate the probability of the predicted elevated concentration. 

The elevated iron concentration data is highly biased; the number of elevated iron 

concentrations is rare compared to non-elevated. The total number of DMA yearly iron data 

used in this analysis was 21,307. When a threshold of 200 μgL-1 is applied, only 154 of the 



samples belong to class ‘E’, a non-elevated to elevated ratio of 137. This ratio is 69 when a 

threshold of 150 μgL-1 is used. The machine learning models, even the RUSBoost algorithm, 

which is specifically designed for imbalanced data, were not able to handle this imbalance. 

Therefore, two methods were explored to address this; generation of synthetic elevated 

concentrations created using the Adaptive Synthetic Model (ADASYN) in MATLAB 2021a, 

and random down sampling (random removal of data points) of the non-elevated data. 

Modelling, using 90% data to train and 10% to test, then comparing to a year ahead to 

assess accuracy, showed promise. Overall accuracy of 0.9 was achieved with the 

generation of synthetic data. However, there was concern that the synthetically created data 

might have distorted the true underlying relationships within the data, as it is based on linear 

interpolation between existing minority classes. Therefore, random down sampling of the 

non-elevated data with different levels of bias reduction (‘E’ to ‘N’ ratios of 1/69 to 1/1) were 

explored with the different machine learning algorithms. It was found that the CRF model 

showed the best performance (accuracy ~ 0.7); and that the ‘E’ to ‘N’ ratios below 1/5 

provided an acceptable balance. 

While the number of possible input parameters was reduced by the SOM, the number of 

combinations and permutations possible was still vast. A range and variety of these were 

explored, informed by the expert user group. Overall performance assessment is complex, 

with simple ‘goodness of fit’ insufficient to capture, for example, if a model that predicts all 

real events but also a high number of false events is better than a model that has low false 

positives but misses some real events.  Similarly, it is informative to know if increasing model 

complexity (i.e. one that uses more parameter or has more branches – decisions – in the 

tree) is yielding sufficiently improved predictions for the additional complexity. A number of 

different measures capturing such aspects where used to enable selection of the overall 

preferred model. These included confusion matrices (capturing the performance in terms of 

true and false positives and true and false negatives), observation of the reduction in out-of-

bag classification error as a function of number of trees grown (capturing model complexity), 

and quantification of predictor importance estimation via curvature tests (informing on the 

value obtained from the number and combinations of parameters used). 

The selected model, trained on all prior years, was employed to predict relative probability of 

elevated iron concentration of individual DMAs in a year using the DMA yearly averaged 

quantities in the prior year. The predicted probability was used to rank DMAs from worst to 

best based on their likelihood of elevated iron concentrations.  

 

4. Results 

4.1 Knowledge discovery 

The SOM produced are heavily dependent on the parameters included and any subdivisions 

of the data (for example chlorine versus chloramine residual was explored). Credence 

should be given to correlations and associations that manifest across multiple SOM. The 

SOM presented here provide examples of correlations that were robustly seen across the 

many analyses performed. The colour ranges of each component plane of the SOM have 

been set to cover 5 to 95% of the data range for each parameter in each SOM, they are not 

consistent between figures. Non-numerical parameters such as pipe material were 

considered by post labelling the SOM, i.e. had no part in deriving the clusters formed. The U-

matrix plane gives a measure of the strength and difference of the clusters formed. 



Figure 2 shows an example of what became something of a ‘base-line’ SOM. It shows strong 

correlation between iron, manganese and turbidity down the right-hand side of the 

component planes. This confirms the complementary chemical behaviour of iron and 

manganese, as well as their easier assessment via measurement of turbidity. The figure also 

shows strong inverse correlation between chlorine and heterotrophic plate counts data 

(‘Colonies 3 days 22 C’), top to bottom of the component planes. Of note is that the higher 

concentrations of iron (and manganese and turbidity) are towards the bottom right, 

suggesting that increased biological activity in some instances increases iron risk. SOM 

segregated by disinfection type, free chlorine or chloramine, showed this correlation more 

strongly for the chlorine data (SOM not shown). Two clusters of high iron became visible, 

one associated with manganese and hence suggesting chemical processes and the other 

with elevated heterotrophic plate counts, suggesting more biologically mediated processes. 

Although other clusters of elevated plate counts were also evident such that increased 

biological activity is not necessarily always an indicator of increased iron concentrations. 

Contrary to prior expectations, post labelling the SOM by pipe material, for the pipe nearest 

to the sample, did not yield a strong correlation. While there are perhaps visually more green 

cells (indicating cast iron) to the right-hand side, this is tentative and more a product of 

greater red cells (indicating no dominant pipe material) to the centre and left.  

 

Figure 2. SOM using key regulatory samples, post labelled with water mains 

material  
(Green: Cast Iron. Purple: Plastic. Cyan: Ductile Iron. Dark Green: Asbestos cement. 

Red: No dominant pipe material. Yellow: no connection) 

The role of pipe material was further investigated. Figure 3 shows an example of this, 

including pipe material as a numerical value such that it does influence the clustering. This 

was done by assigning the percentage of plastic and iron pipes within each DMA to each 



sample. The final two component planes show the expected inverse relationship of these 

two parameters. Clustering is lost in all other parameters, suggesting that the percentage of 

pipe material does not correlate with risk of elevated iron concentration, or with chlorine 

decay or bacterial activity. This lack of importance of pipe material was further explored and 

confirmed in several other SOMs.  

 

Figure 3. SOM using key regulatory sample data and pipe material as a 

percentage per DMA (CI: cast iron. P: plastic) 

Figure 4 shows how a company specific measure was usefully incorporated into the 

analysis. YWS have an internal system based on expert judgement that enables 

classification and count of the number of ‘high priority dead-ends’ in a DMA. From Figure 4 it 

can be seen that these high priority dead-ends cluster at the bottom right of this SOM, 

correlating with medium to high clusters of iron. While the usual corresponding clusters of 

turbidity and manganese are present, they are less clearly defined. Surprisingly there is no 

correlation or even pattern to the chlorine or heterotrophic plate count data, which might 

have been expected due to the often low turnover and high residence times associated with 

dead ends. This is perhaps due to the unique company specific measure that define high 

priority as opposed to dead-ends more generally. From Figure 4 it can be seen that high 

numbers of dead-ends in general cluster to the bottom left and do not correlate with iron, or 

anything else.  

 



 

Figure 4. SOM using key regulatory samples, and dead-ends data per DMA 

 

4.2 Ranking 

Predictive modelling was conducted with combinations of up to 10 different input variables 

identified from the SOM analysis. Ultimately a model that used only iron, turbidity, 3-day 

heterotrophic plate counts and high priority dead-ends was selected as the preferred model 

as it gave only a small reduction in overall performance compared to more complex models. 

Four applications of the best model were compared to confirm robustness; predictions for 

two different latest years and for analysis at elevated iron concentrations of 150 and 200 

μgL-1. Results across these, such as 24 out of 30 (top 1%) highest ranked DMAs being 

common, were deemed to indicate robust results. 

Figure 5 shows spatially the results of DMA ranking based on the predicted relative 

probabilities of elevated iron concentration. It does not show any spatial correlation or 

clustering, suggesting that there is limited influence of source or treated water quality. It also 

highlights that risk-ranking at water supply zone level is not possible. It is not possible to 

predict relative probability of elevated iron concentration for DMAs with no measured data in 

the prior year, so these are blank (white) in Figure 5. The missing data was always iron; the 

model would be improved if at least one iron sample is collected from each DMA each year 

in future. 



 

Figure 5. Map of relative probability prediction rankings for elevated iron 

concentration of 200 μgL-1. Note DMAs are white where there was no iron data 

for the previous year 

Figure 6 shows the same predicted relative probabilities of elevated iron concentration as 

figure 5, but rank ordered. It shows that over 90% of DMAs were found to have a relative 

probability of elevated iron concentration of less than 50%. The steep climb in probability of 

elevated iron concentration within the last few percentage of the DMAs suggests that 

targeting interventions such as flushing to the top few percent with higher predicted 

probabilities should be effective at managing risk of elevated iron concentration.  

 

 

 

Figure 6. Relative elevated iron concentration probability ranking for 200 μgL-1  



5. Discussion 

The SOM confirm the importance of chemical processes for iron behaviour within drinking 

water distribution systems, in particular the association with manganese (seen via the 

relationship between manganese and turbidity). There is also some evidence of iron 

correlating with biological activity. This is likely through the role of biofilms, following the 

growing association of biofilms with discolouration processes of material accumulation and 

subsequent mobilisation by hydraulic events, Husband et. al. (2016). The partial nature of 

the correlation with biological activity is consistent with this, the discrete samples that the 

data are derived from will capture the bulk water organisms, not those attached as biofilm. 

Additionally, they will only capture that which can be cultured by heterotrophic methods. 

The lack of correlation between iron and pipe material found in the SOM analysis is 

unexpected. The lack of association with the pipe closest to the sample could be explained 

by the fact that discrete samples under normal operating conditions are more likely to 

capture cumulative effects between water treatment works to the sampling point. The lack of 

correlation with DMA percentages of pipe material is not due to lack of variation in mix of 

pipe materials between DMA, there are DMAs with ~15 to 90% cast iron and ~5 to 60% 

plastic visible in the SOM (Figure 3). An interpretation of this could be that while corrosion of 

iron pipes and fittings is widely recognised as a source of material, this is perhaps not the 

limiting factor in elevated iron concentration when assessed at DMA-level. 

The correlation with high-priority dead-ends was a valuable finding from the SOM knowledge 

discovery, identifying a parameter that was important in the predictive modelling. It is 

perhaps surprising that it was the YWS-specific and proprietary classification of high priority 

that was important, the simpler count of all dead-ends in a DMA was not correlated. A SOM 

that explored diameter and all dead-ends was tried, but this was also insufficient to reveal 

any correlations. This shows a strength of this type of analysis, readily enabling the 

incorporation and exploration of different data and ideas.  

The analysis conducted had the defined aim of ranking at DMA scale. Even so some of the 

understanding explored was to pipe level, such as lack of association with the nearest pipe 

material and association with the high priority dead-ends. It is likely that if further pipe-

specific data could be incorporated deeper insight and finer resolution of ranking and hence 

prioritisation would be possible. A likely valuable source of information would be from 

hydraulic models, providing information such as peak velocities and water age that impacts 

water quality behaviour, Machell and Boxall (2014).  

Most of the performance of the predictive modelling could be obtained with only four input 

parameters.  It was notable, but perhaps unsurprising, that previous iron data was key 

amongst these. Comparison to a model that was based on only iron and turbidity data 

provided significantly reduced performance and different rankings, confirming that the other 

parameters were providing value. This was also confirmed by the curvature values, which 

rated high priority dead ends as most important, closely followed by iron, then turbidity and 

then a drop to 3-day heterotrophic plate counts having a small contribution. Interpreting 

across the results it appears the predictive contribution of manganese was covered by the 

turbidity data. This should not be confused as meaning that the co-behaviour of iron and 

manganese is not important, rather that this effect can be captured from the turbidity data. 

The results from the predictive modelling have been incorporated into YWS’s prioritisation of 

DMAs for routine flushing. This will help ensure that the programme is efficient by ensuring 

that high-risk DMAs are targeted. Of particular value is the finding that less than 10% of 

DMAs were found to have a relative probability of elevated iron concentration greater than 



50%. This is a relatively small number of DMAs, and the manageable scale of this means 

that the worst-performing DMAs can receive the greatest level of focus for both routine 

flushing, and potentially other future capital interventions.  

 

6. Conclusions 

The research reported here shows the potential to derive value from data collected by water 

companies. This was achieved by breaking the silos of data storage, creating associations 

and linkages between data architectures. Once linked, tools such as self-organising maps 

(SOM) can be applied to explore the multidimensional dataset created. While commonly 

termed knowledge discovery, this is perhaps better described as knowledge exploration. 

Testing different ideas and concepts to see if these are supported or not by multi-parameter 

correlations between the various data. Key observations here included the expected, such 

as strong association between iron, manganese and turbidity, and the unexpected such as 

the lack of association with the material of the pipe closest to the sampling point. The 

understanding gained through SOM is qualitative, and requires expert input to guide the 

processes. This can then be complemented by tools such as decision trees, a quantitative 

‘white box’ process. Here ensemble classification trees were used to provide year ahead 

predictions of probability of elevated iron concentration at DMA-scale. These were used to 

provide a relative ranking. These showed no spatial correlation, but did categorise the very 

highest probabilities as associated with only the top 1 or 2% of DMAs. This suggests that 

targeting these for interventions should reduce the probability component of risk of elevated 

iron concentrations.  
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