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Consumption of magic states promotes the stabilizer model of computation to universal quantum com-

putation. Here, we propose three different classical algorithms for simulating such universal quantum

circuits, and characterize them by establishing precise connections with a family of magic monotones.

Our first simulator introduces a new class of quasiprobability distributions and connects its runtime to

a generalized notion of negativity. We prove that this algorithm has significantly improved exponen-

tial scaling compared to all prior quasiprobability simulators for qubits. Our second simulator is a new

variant of the stabilizer-rank simulation algorithm, extended to work with mixed states and with signif-

icantly improved runtime bounds. Our third simulator trades precision for speed by discarding negative

quasiprobabilities. We connect each algorithm’s performance to a corresponding magic monotone and,

by comprehensively characterizing the monotones, we obtain a precise understanding of the simulation

runtime and error bounds. Our analysis reveals a deep connection between all three seemingly unrelated

simulation techniques and their associated monotones. For tensor products of single-qubit states, we prove

that our monotones are all equal to each other, multiplicative and efficiently computable, allowing us to

make clear-cut comparisons of the simulators’ performance scaling. Furthermore, our monotones estab-

lish several asymptotic and nonasymptotic bounds on state interconversion and distillation rates. Beyond

the theory of magic states, our classical simulators can be adapted to other resource theories under certain

axioms, which we demonstrate through an explicit application to the theory of quantum coherence.

DOI: 10.1103/PRXQuantum.2.010345

I. INTRODUCTION

Classical simulation of quantum systems has a long and

fruitful history. Insurmountable obstructions to the classi-

cal simulation of quantum systems gave birth to the field of

quantum computation [1] and the search for quantum com-

putational resources. Despite the computational limitations
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of classical simulation, surprisingly powerful classical

simulators have since been discovered including simula-

tors of stabilizer circuits [2,3], fermionic linear optics and

matchgates [4–7], and others [8–13]. Improvement and

characterization of classical simulation algorithms helps

benchmark the computational speedups that quantum com-

puters can provide and also provides tools useful in their

own right [14–16].

Stabilizer circuits are initialized in so-called stabilizer

states and evolved by stabilizer operations, such that the

system stays in a stabilizer state throughout the whole

computation. These circuits are important in fault-tolerant

quantum computation and can be efficiently classically

simulated by virtue of the Gottesman-Knill theorem [2].

An elegant extension of stabilizer circuits enables them to

perform universal computation by allowing the input states

2691-3399/21/2(1)/010345(42) 010345-1 Published by the American Physical Society
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to include so-called magic states [17,18]. Aaronson and

Gottesman [3] showed how to classically simulate such

circuits with a runtime that scales exponentially with the

number of input magic state qubits, yet still scales effi-

ciently with respect to the number of stabilizer-state qubits.

Consequently, we can perform an efficient classical simu-

lation for any class of circuits that is nearly stabilizer in the

sense that they use only logarithmically many input magic

state qubits. Subsequent developments showed that the dif-

ficulty of simulating a quantum circuit depends not only on

the number of magic state inputs, but also on the type of

magic that these states possess.

In the pursuit of faster classical simulation of nearly

stabilizer circuits, two leading approaches have emerged:

quasiprobability [15,19–22] and stabilizer rank–based

[23–26] simulators. These simulators all have their run-

time determined by a function called a magic monotone

that quantifies how far the magic states deviate from the

set of stabilizer states. With these modern simulators, even

a very large number of magic state inputs is classically

tractable, provided the magic states are close enough to

stabilizer states, as quantified by the relevant magic mono-

tone. However, different simulators come with their own

magic monotone and therefore different runtime scalings.

So far, no overarching study has precisely compared the

runtimes and monotones for different stabilizer simula-

tors. The difficulty of comparison is exacerbated since

some monotones are not easily calculated. We next review

these simulation methods, before stating our main results

that further sharpen the performance of modern simulators

and reveal a cohesive picture of a previously fragmented

landscape of simulators.

A. Review of prior art

Quasiprobability simulators work by representing the

target quantum state by an operator probabilistically cho-

sen from a discrete set known as a frame [20,27]. Examples

of relevant frames include the set of density operators cor-

responding to pure stabilizer states [21], the set of Pauli

operators [28], and the set of phase-point operators [20]

used in the construction of the discrete Wigner function

[29,30]. Importantly, given a choice of a classically simu-

lable frame, any input state, which is a convex combination

of frame elements admits an efficient classical simulation

algorithm [31]. In Ref. [20], Pashayan et al. showed that

when the input state is a nonconvex linear combination

of frame elements, the only source of inefficiency in the

runtime of quasiprobabilistic algorithms is given by the

negativity of the state—a frame-dependent quantity, which

measures the degree of departure from convex mixtures of

frame elements.

Quantum systems consisting of odd-dimensional sub-

systems (qudits) [32–34] admit an especially natural

choice of frame. Here, the frame can be fixed to a set of

phase-point operators for which the convex combinations

of frame elements are the states with a positive discrete

Wigner function [29,30]. All qudit stabilizer states have a

positive Wigner function, which leads to efficient, classical

simulation of qudit stabilizer circuits [31]. The negativ-

ity under this choice of frame was shown in Ref. [20] to

correspond to the mana M(·)—a magic monotone intro-

duced in Ref. [35]. Notably, the mana has the convenient

property that it is multiplicative [36], i.e., M(ρ ⊗ σ) =
M(ρ)M(σ ). Computations of the mana in large dimen-

sions are generally extremely difficult, but, due to multi-

plicativity, they are significantly simplified for products of

states on smaller systems. Multiplicativity of operationally

meaningful monotones allows for an easy evaluation of

related quantities, such as a simulator’s runtime or bounds

on asymptotic rates of state conversion.

Curiously, for the fundamentally important case of

qubits, phase-point operator frames do not possess many

of the aforementioned desirable properties. A straightfor-

ward application of techniques that work for qudits yields

a Wigner function that can be negative for some pure

stabilizer states. Although alternative ways of defining a

well-behaved Wigner function for qubits are possible, they

always [37] suffer from drawbacks such as the free opera-

tions and states being restricted to a subclass of the usual

free operations [38,39]; or the monotones being super-

multiplicative and the set of positively represented states

not being closed under tensor product [40]. Quasiprobabil-

ity simulators based on qubit phase-point operator frames

inherit these limitations, prompting alternative approaches.

In Ref. [21] Howard and Campbell presented a

quasiprobability simulator for qubits using a frame com-

posed of projectors onto pure stabilizer states. They

showed that this gives rise to a classical simulation

algorithm with a runtime linked to a magic monotone

called the robustness of magic. It is a qubit-based sim-

ulator that permits and utilizes the simulation of noisy

inputs and operations, and possesses many desirable traits.

However, presently, quasiprobability simulators are slower

than stabilizer-rank simulators; additionally, the robustness

of magic is nonmultiplicative and extremely difficult to

compute, even in the asymptotic regime for products of

relevant single-qubit states [17,41].

A seemingly independent line of work on classical sim-

ulation was introduced in Ref. [23] with the stabilizer

rank–based simulators [23,25,42–44]. These simulators

achieve a stronger notion of simulation [45] by approxi-

mately sampling from the output distribution of the quan-

tum circuit. However, they can only simulate pure states

and operations and have not previously been generalized

to noisy quantum circuits. Stabilizer-rank simulators rep-

resent the initial quantum-state vector as a superposition

of stabilizer states, and the only source of inefficiency

in runtime is introduced by the exponential number of

terms required to represent states in this way—the minimal
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QUANTIFYING QUANTUM SPEEDUPS... PRX QUANTUM 2, 010345 (2021)

number of such terms being precisely the stabilizer rank.

The original algorithm had a runtime quadratic in the

stabilizer rank, but this was later improved by the develop-

ment of fast norm estimation [24] that provides a runtime

linear in stabilizer rank. This has resulted in a sizable

runtime advantage for stabilizer-rank simulators, and it is

currently unclear if a similar improvement in quasiproba-

bilistic methods is possible. To circumvent the difficulty

in computing the stabilizer rank as well as its nonmul-

tiplicative behavior, Ref. [24] also introduced the notion

of approximate stabilizer rank, which was later related to

a monotone called the stabilizer extent [25]. While the

extent is in general not multiplicative [46], it is multiplica-

tive on any tensor product of one-, two-, and three-qubit

states [25]. Unfortunately, these concepts only apply to

pure states, and no mixed-state simulation method based

on the stabilizer rank has been devised thus far.

B. Summary of results

In this paper, we present three new classical simula-

tion algorithms (overviewed in Table I), which we call

the dyadic frame, the density-operator stabilizer rank and

the constrained path simulators. The algorithms allow

classical simulation of general noisy stabilizer circuits

with mixed magic state inputs, providing a significant

extension of the capabilities of previous approaches, and

revealing connections between stabilizer rank–based and

quasiprobability-based simulation. The dyadic frame and

constrained path simulators produce additive precision

estimates of Born-rule probabilities and Pauli observ-

ables, while the density-operator stabilizer-rank simulator

approximately samples from the quantum circuit’s mea-

surement outcome distribution. Our first two simulators

trade-off quantum computational resources for additional

runtime of classical simulation. The constrained path sim-

ulator, on the other hand, is always efficient in runtime,

instead reducing in accuracy as the simulated quantum

circuits increase in magic.

Our dyadic frame simulator is a new state-of-the-art

quasiprobability simulator for qubits. Instead of sampling

from stabilizer states or phase-point operators, we sample

from objects we call stabilizer dyads. We show the corre-

sponding resource monotone is smaller than the robustness

of magic, leading to faster simulation runtimes. This can

lead to a significantly improved exponent in the exponen-

tial scaling of the simulator’s performance: for instance,

for n copies of a T state the dyadic simulator has a runtime

O(40.228443n), whereas for simulators based on the robust-

ness of magic [21,22] the runtime is lower bounded by

�(40.271553n).

Our stabilizer-rank simulator is a new state-of-the-art

simulator for sampling from qubit-based quantum circuits

TABLE I. A summary of the properties of our three classical simulation algorithms and their connections with magic monotones.

Here, pfail denotes the failure probability of the associated algorithm.
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with three key technical contributions. First, our work

generalizes the stabilizer-rank simulator of Refs. [24,25]

from pure states to general mixed states. This allows our

classical simulator to operate in and be directly compa-

rable to more experimentally relevant regimes, where the

input magic states are noisy. The natural generalization

to mixed states produces a simulator with a probabilistic

runtime. Second, we show this runtime can be made deter-

ministic for an important subset of magic states. Third,

we substantially improve runtimes by exploiting tighter

proof techniques available in the density operator picture.

Remarkably, this density operator technique is applicable

and advantageous even when simulating pure states.

We show that each of our simulators—the dyadic frame,

the density-operator stabilizer rank, and the constrained

path simulator—is associated with a particular magic

monotone, which we call the dyadic negativity, the mixed-

state extent, and the generalized robustness, respectively.

Specifically, we show that the runtime (in the case of the

dyadic frame and density-operator stabilizer-rank simu-

lators) or the precision (in the case of the constrained

path simulator) of the algorithms directly relates to the

corresponding magic monotone. This identifies the expo-

nential growth of magic as the only source of inefficiency

in these simulators. Crucially, we completely characterize

these monotones for single-qubit states and tensor products

thereof, where we prove the unexpectedly strong result that

these monotones are all equal and act multiplicatively. The

multiplicativity of the monotones is the first result of this

type for general qubit magic monotones, and the equality

between all three monotones reveals a deep and precisely

quantified connection between the runtimes of stabilizer-

rank and quasiprobability simulators. To the best of our

knowledge, no previous work has established a quanti-

tative connection between these, a priori very different,

classes of simulators. All of the monotones reduce to the

stabilizer extent for pure states, and so they can all be con-

sidered as generalizations of the extent to mixed states. In

addition to serving as an important contribution to magic

theory and tightly characterizing the resource consumption

of our simulators, we use the monotones to introduce com-

putable bounds on the asymptotic and nonasymptotic rates

for magic state distillation. For some example distillation

tasks, we compare our bounds to other recent results [47]

and find they are much tighter across a wide parameter

regime.

Classical simulation of quantum systems has been stud-

ied within various contexts other than magic theory [6,20,

31,48,49], but to our knowledge none of these approaches

have been adapted to the umbrella of quantum resource

theories [50]. We provide a comprehensive recipe to apply

our methodology to general quantum resources. We thus

establish connections between a family of resource mono-

tones and simulation tasks, shedding light on classical

simulation algorithms in broader settings. For instance,

in the resource theory of quantum coherence [51,52], the

ℓ1 norm of coherence is a fundamental quantifier of this

resource but lacks an operational meaning. Our results

fill this gap by showing that the ℓ1 norm of coherence

quantifies the runtime of classical simulation within this

theory.

This paper is structured as follows. In Sec. II we intro-

duce the setting of magic theory and our family of mono-

tones. Section II also discusses how the monotones connect

with our simulation algorithms, providing a statement of

our main theorems. In Sec. III we present a complete pic-

ture of how our monotones compare for single-qubit states

by showing that they are all equal. The equality between

monotones is then extended in Sec. IV to tensor-product

states, where we show that the monotones are strongly

multiplicative. In Sec. V we compare our new monotones

with the robustness of magic and show that they can be

exponentially smaller in magnitude. In Sec. VI, we discuss

how the monotones can be used to bound the performance

of magic state distillation protocols. Section VII contains

a complete discussion of our simulation algorithms—we

focus on providing an intuitive picture through illustrative

examples and sketches of the main proof ideas, with the

full technical details deferred to the appendix. We conclude

in Sec. VIII with a discussion of our underlying assump-

tions and the extension of our results to resource theories

beyond magic.

II. PRELIMINARIES

A. The stabilizer formalism

Here, we briefly review the stabilizer formalism. The

single-qubit Pauli group P1 contains the identity matrix

1, the Pauli spin matrices X , Y, and Z, as well as their

products with ±i1. We say a pure, single-qubit state is a

stabilizer state if there exists a Pauli operator P ∈ P1, such

that P|ψ〉 = |ψ〉 and P �= 1. There are six such states:

Z|0〉 = |0〉,
(−Z)|1〉 = |1〉,
±X |±〉 = |±〉 := (|0〉 ± |1〉)/

√
2,

±Y|±i〉 = |±i〉 := (|0〉 ± i|1〉)/
√

2.

(1)

The n-qubit Pauli group Pn is the group generated by ten-

sor products of n Pauli operators. We say a pure, n-qubit

state is a stabilizer state if there exists an Abelian subgroup

of the Pauli group S ⊂ Pn containing 2n elements such that

S|ψ〉 = |ψ〉 for all S ∈ S . The group S is called the stabi-

lizer group of the state |ψ〉, and that S can be described

using O(n2) bits, underpinning the efficient classical sim-

ulation results of the Gottesman-Knill theorem. We use Sn

to denote the set of pure n-qubit stabilizer states. The set

of mixed stabilizer states S̄n is then formed by all states,
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which can be decomposed as a mixture of pure stabilizers,

that is, S̄n = conv{|φ〉〈φ| : |φ〉 ∈ Sn}.
An n-qubit unitary C is Clifford if for every Pauli P ∈

Pn, it follows that CPC† ∈ Pn. We see that stabilizer states

are mapped to stabilizer states under Clifford unitaries, and

furthermore this update can be tracked efficiently. In addi-

tion, measurements of Pauli operators on stabilizer states

can also be efficiently simulated by appropriately updating

the stabilizer group.

We refer to the stabilizer operations as any sequence

of the following: preparation of stabilizer states, Clifford

unitaries, Pauli measurements, and adaptive feedforward

depending on previous measurement outcomes or random

coin tosses. From the perspective of complexity theory, a

small caveat is required that adaptive feedforward deci-

sions are computed using only a small (constant size)

classical computer.

A quantum channel E is said to be stabilizer preserving

if it maps every mixed stabilizer state ρ ∈ S̄n to another

mixed stabilizer state, so E(ρ) ∈ S̄n. Although meaningful

when acting on the whole system in consideration, such

maps can exhibit undesirable properties when acting on a

part of a larger system [22]. We thus consider a relevant

class of free operations defined as follows.

Definition 1. We define the set of free operations On

as the set of channels E that are (i) completely posi-

tive; (ii) trace preserving, so that Tr[E(ρ)] = Tr[ρ]; (iii)

completely stabilizer preserving, in the sense that

[E ⊗ 1](ρ) ∈ S̄2n ∀ρ ∈ S̄2n. (2)

This set can equivalently be defined via the Choi-

Jamiołkowski isomorphism as was shown in Ref. [22,

Theorem 3.1].

While it is clear that the stabilizer operations are con-

tained in On, it is not known whether all elements of

On can be realized by the standard stabilizer operations

without postselection. The Gottesman-Knill theorem has

long been known to show that stabilizer operations can

be efficiently classically simulated, but only recently was

it shown that the more general class On also admits effi-

cient simulation algorithms [22]. Furthermore, it is known

that certain stabilizer-preserving but non-trace-preserving

maps, such as postselection on the outcome of a Pauli mea-

surement, can also be efficiently simulated. For technical

reasons we do not consider these as elements of the con-

vex set of free operations On in our resource theory, but we

exploit their simulability in Sec. VII.

While the stabilizer operations (or the free operations

On) are not universal for quantum computation, they can

be promoted to universality given an unlimited supply of a

suitable nonstabilizer operation. For instance, adding the T

gate (also called the π/8 phase gate)

T =
(

eiπ/8 0

0 e−iπ/8

)
, (3)

promotes the stabilizer operations to full quantum uni-

versality [53]. Alternatively, one can add a supply of

nonstabilizer states such as the so-called magic states:

|H 〉〈H | = (1/2)
[
1+ (X + Z)/

√
2
]

, (4)

|T〉〈T| = (1/2)
[
1+ (X + Y)/

√
2
]

, (5)

|F〉〈F| = (1/2)
[
1+ (X + Y + Z)/

√
3
]

, (6)

which we use throughout. Given a single copy of the

Hadamard eigenstate |H 〉 or the Clifford equivalent T state

|T〉, we can perform a deterministic T gate using state

injection [17]. Therefore, full university can be achieved

given stabilizer operations and a supply of magic states.

This is an important paradigm as it is the route most

commonly used in the design of fault-tolerant quantum

computers.

However, stabilizer operations with access to a restricted

number of magic states do not lead to universal quantum

computation. Rather, the computational power depends on

the type and quantity of magic states provided. It is pre-

cisely this question of computational power that we quan-

tify by studying the complexity of simulating computations

with a limited resource of magic states.

B. Magic monotone definitions

We now introduce several magic monotones of interest,

borrowing some results from the general resource-theory

literature. Although in our discussion we specialize to the

theory of magic states, the basic considerations below can

also be applied to more general resources in which the

set of free states is defined by convex combinations of

free pure states, which includes important examples such

as coherence and entanglement. We elaborate on this in

Sec. VIII.

For pure states, we define the following.

Definition 2 ([25]). The pure-state extent ξ is the quantity

ξ(
) := min{‖c‖2
1 : |
〉 =

∑

j

cj |φj 〉; |φj 〉 ∈ Sn}. (7)

In magic theory, ξ is the stabilizer extent [25]. A related

quantity appears in other resource theories such as entan-

glement, where it admits an analytical formula as the
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squared sum of the Schmidt coefficients of a state [54], or

in coherence theory, where it is the square of the ℓ1 norm

of coherence [51]. It is well known [25,55] that this can be

recast as a dual optimization problem

ξ(
) := max
{
|〈ω|
〉|2 : |〈ω|φ〉| ≤ 1 ∀|φ〉 ∈ Sn

}
. (8)

Here, we define an ω witness to be any feasible solution to

the optimization problem in Eq. (8).

We now consider four monotones, of which three can

be regarded as mixed-state extensions of ξ . First, one can

extend the extent to mixed states using a convex roof

extension [56].

Definition 3. The mixed-state extent � is the quantity

�(ρ) := min

⎧
⎨
⎩
∑

j

pj ξ(
j ) : ρ =
∑

j

pj |
j 〉〈
j |

⎫
⎬
⎭ ,

where every |
j 〉 is a pure state and pj are non-negative

coefficients such that
∑

j pj = 1. Furthermore, if the min-

imum can be achieved with a decomposition where all

ξ(
j ) are equal, then we say the state admits an equimag-

ical decomposition.

We also consider quasiprobability distributions over free

states as follows.

Definition 4 ([21]). The robustness R is the quantity

R(ρ) := min

⎧
⎨
⎩‖q‖1 : ρ =

∑

j

qj |φj 〉〈φj |; |φj 〉 ∈ Sn

⎫
⎬
⎭ ,

where qj are real coefficients.

In magic theory, R is called the robustness of magic

[21,41], inspired by the (standard) robustness of entangle-

ment [57]. This quantity is precisely the negativity with

respect to the frame defined by the set of pure-state stabi-

lizer projectors. In particular, the robustness uses decom-

positions where the rank-one ket-bra terms are Hermitian.

Relaxing this, we have the following definition.

Definition 5. The dyadic negativity 
 is the quantity


(ρ) := min

⎧
⎨
⎩‖α‖1 : ρ =

∑

j

αj |Lj 〉〈Rj |; |Lj 〉, |Rj 〉 ∈ Sn

⎫
⎬
⎭,

where the coefficients αj are complex numbers.

The name reflects the fact that each |Lj 〉〈Rj | comprises

of a pair of vectors, and so is a dyad. Within the resource

theory of entanglement, a related quantity called the pro-

jective tensor norm was considered [54,58], and in the

resource theory of coherence the dyadic negativity cor-

responds to the ℓ1 norm of coherence [51]. Viewing this

quantity as the primal solution of a convex optimization

problem, it is useful to state the equivalent dual formula-

tion [55] in terms of witness operators. We define the set

of W witnesses, denoted W , to be the Hermitian operators

such that

W := {W : |〈L|W|R〉| ≤ 1 ∀ |L〉, |R〉 ∈ Sn}, (9)

which by strong duality leads to


(ρ) = max{Tr[Wρ] : W ∈ W}. (10)

This brings us to our last monotone of interest.

Definition 6. The generalized robustness 
+ is the quan-

tity


+(ρ) = max{Tr[Wρ] : W ∈ W ; W ≥ 0}, (11)

where W is the set of W witnesses.

A corresponding quantity to 
+ was first defined in

entanglement theory [57,59] and appears in many resource

theories.

Notice that this is similar to the dual formulation given

in Eq. (10) except we further restrict to witnesses that are

also positive semidefinite operators. We define a W+ wit-

ness to be any feasible solution to the optimization problem

in Eq. (11). Since W+ witnesses are positive semidefinite,

the condition |〈L|W|R〉| ≤ 1 simplifies to 〈ψ |W|ψ〉 ≤ 1 for

all |ψ〉 ∈ Sn.

Furthermore, the primal form of this monotone is


+(ρ) = min{λ : ρ ≤ λσ , σ ∈ S̄n} (12)

= min

{
λ ≥ 1 :

ρ + (λ − 1)ρ ′

λ
∈ S̄n

}
, (13)

where the optimization in the second line is over all density

matrices ρ ′. This form motivates the name of generalized

robustness: rearranging Definition 4, the robustness R can

be similarly expressed as

R(ρ) + 1

2
= min

{
λ ≥ 1 :

ρ + (λ − 1)σ

λ
∈ S̄n, σ ∈ S̄n

}
,

(14)

where now the states in the optimization are restricted to

free states in S̄n.
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We stress that both 
 and 
+ are computable, in the

sense that their evaluation corresponds to convex opti-

mization problems—a second-order cone program for 
,

and a semidefinite program for 
+—which can be eval-

uated using numerical solvers [60]. In practice, we are

able to compute 
+ up to n = 4 and 
 up to n = 3, but

one can certainly hope to make further progress in com-

puting the quantities for states obeying some symmetry,

just as in the case of R [41]. The evaluation of convex

roof–based quantities such as � is notoriously hard in

general [61], although one could again use symmetry to

facilitate it in special cases [62]. Our results in Secs. III–IV

further simplify the computation of all of the monotones

for the practically important case of tensor products of

single-qubit states.

The monotones have been considered from the per-

spective of general resource theories [55], and in partic-

ular they have been shown to satisfy a number of useful

properties:

1. faithfulness: M(ρ) = 1 if and only if ρ ∈ S̄n;

2. monotonicity: M(ρ) ≥ M[O(ρ)] for any free oper-

ation O ∈ On;

3. strong monotonicity (monotonicity on average

under selective free measurements):

M(ρ) ≥
∑

i

piM

(
KiρK

†
i

pi

)
, (15)

where {Ki}i are the Kraus operators of a quan-

tum channel such that each Ki is stabilizer pre-

serving, i.e., Ki|φ〉 ∝ |φ′〉 ∈ Sn ∀ |φ〉 ∈ Sn, and pi =
Tr(KiρK

†
i );

4. convexity: M(
∑

j pj ρj ) ≤ ∑
j pjM(ρj );

5. submultiplicativity: M(⊗j ρj ) ≤ ∏
j M(ρj ).

We remark that, although R and 
+ are monotones in

any convex resource theory, the fact that 
 and � obey

monotonicity under all completely stabilizer-preserving

operations On is a consequence of two properties: the

strong monotonicity of the measures [55] coupled with

the fact that any operation O ∈ On can be expressed in

terms of Kraus operators {Ki}i, which preserve the set of

stabilizer states [22]. If we instead work with logarithmic

monotones, Mlog(ρ) = log[M(ρ)] then multiplicativity

becomes additivity, faithfulness instead has a Mlog(ρ) = 0

condition, and due to concavity of the logarithm Mlog is no

longer a convex function but still obeys strong monotonic-

ity [63]. Here we find it convenient to work without the

logarithm in most cases.

Next, we present some general relations between these

monotones that are reminiscent of known results in general

resource theories [55].

Lemma 1 ([55]). For any pure state


+(|
〉〈
|) = 
(|
〉〈
|) = �(|
〉〈
|) = ξ(
). (16)

Therefore, our monotones can be interpreted as mixed-

state extensions of ξ . We also observe the following.

Theorem 2. For any state ρ we have


+(ρ) ≤ 
(ρ) ≤ �(ρ). (17)

For completeness, we provide alternative proofs of these

results in Appendix A1. Since 
+ is often easier to eval-

uate than 
 and 
+ ≤ 
, in practical settings, one can

approximate 
 by evaluating 
+.

C. Connecting monotones with simulation

To further motivate our investigation of the magic

monotones that follows in the subsequent sections, we

summarize our main results and show how the properties

of the monotones will be vital to the understanding of sev-

eral classes of classical simulation algorithms. Our first

simulation algorithm is a quasiprobability-based approach,

which introduces several novel modifications to standard

Monte Carlo techniques, notably the use of dyadic frames.

Theorem 14 (informal). Consider an n-qubit initial state

with known decomposition into dyads ρ = ∑
j αj |Lj 〉〈Rj |

where ‖α‖1 = 
(ρ). Let E be a sequence of T stabilizer-

preserving operations, each acting on a few qubits. Then,

given a stabilizer projector �, we can estimate the Born-

rule probability μ = Tr(�E[ρ]) with probability 1 − pfail

and additive error ǫ within a runtime


(ρ)2

ǫ2
log(p−1

fail)Tpoly(n). (18)

Hence, the dyadic negativity 
 exactly characterizes our

algorithm’s runtime. To understand how the performance

scales when more copies of the input state ρ are provided,

it is then necessary to understand the multiplicativity of 
.

We solve this question completely with the following.

Theorem 10. Let σj be single-qubit states. Then


(⊗j σj ) = �(⊗j σj ) = 
+(⊗j σj ) =
∏

j


+(σj ). (19)

This not only reveals a connection between three mono-

tones introduced previously—allowing, for instance, for

the evaluation of the generally hard-to-compute quanti-

fier �—but also shows them to be strictly multiplicative

for qubit states. Consequently, when we plot these quanti-

ties on a log scale, we get a straight line, as shown with

the example in Fig. 1. Although a common occurrence
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FIG. 1. The scaling of magic monotones for many copies of

a noisy single-qubit magic state ρ, highlighting several of our

results. Our new monotones, 
+(ρ⊗n), 
(ρ⊗n), and �(ρ⊗n)

are proved to be equal with multiplicative scaling leading to a

straight line (gray) on this logarithmic scale (due to Theorem 10).

We contrast this with a previously studied monotone, the robust-

ness of magic R, for which we can numerically compute the

value up to n = 5 (shown as purple data points). For n > 5, the

shaded purple region shows the possible values of R as enforced

by upper bounds (due to sub-multiplicativity) and two lower

bounds (Lemma 11 and Theorem 12). The robustness of magic

has a wide range of possible values, but even the lower bound

grows exponentially faster than the value of our new monotones,

entailing that classical simulation algorithms based on the new

monotones offer an improvement in the exponential scaling of

their runtime.

in the structurally simpler theory of qudit magic states

[35,64], multiplicativity has not been shown before for any

mixed-state monotone in qubit magic theory.

Theorem 10 lets us avoid the main problem, which

hinders an understanding of the performance of previ-

ous quasiprobability simulation algorithms such as the

Howard-Campbell simulator based on the robustness R,

namely the inability to efficiently compute R(ρ⊗n) for

large n [21,41]. In addition, we can use the multiplicativ-

ity result to show an exponential separation between our

monotones and the robustness of magic.

Theorem 12. Given any single-qubit nonstabilizer state ρ,

there exists positive real constants α and β where α > β

and so that

2αn ≤ R(ρ⊗n), (20)

2βn = 
(ρ⊗n) = 
+(ρ⊗n) = �(ρ⊗n). (21)

This establishes the simulation algorithm of Theorem

14 as polynomially faster than previous quasiprobability

simulators, as illustrated by the example in Fig. 1.

Our second simulation algorithm is based on the stabi-

lizer rank, which allows it to be used for both Born-rule

probability estimation and for approximately sampling

from the output distribution of a quantum circuit. Impor-

tantly, existing stabilizer-rank simulation algorithms only

applied to pure states [23,25]. We extend this to mixed

states through the monotone � as follows.

Theorem 19 (informal). Let ρ be a state with known

mixed-state extent decomposition. Then there is a classical

algorithm that approximately samples from the probability

distribution associated with a sequence of Pauli measure-

ments on ρ. Our samples come from a distribution that

is δ-close in ℓ1 norm to the actual distribution, and each

sample has an expected runtime

E(T) = O[�(ρ)/δ3] (22)

as long as δ is not too small. Furthermore, if ρ is a product

of single-qubit states, there is no variance in the runtime.

There are two notable technical advances here: one is a

factor 1/δ improvement in runtime over previous simula-

tors of this type [25], even when applied to pure states; the

other improvement is the rather surprising result that sam-

pling can often be performed without any variance in the

runtime.

The last of our simulation algorithms is the constrained

path simulator, which enjoys an efficient runtime, but

instead sacrifices the accuracy of the simulation depending

on how resourceful the input state is. The precision has an

inverse polynomial dependence on the generalized robust-

ness 
+, again directly connecting a magic monotone with

classical simulation.

We thus see that the tightness of our simulators’ run-

times and our ability to sharply characterize them is inher-

ited from the properties and characterization of the mono-

tones introduced earlier. We overview the connections

between the monotones and our simulation algorithms in

Table I. The detailed derivation of the theorems, as well

as additional results—including connecting the monotones

with magic distillation rates—all follow in the remainder

of the paper.

III. SINGLE-QUBIT MAGIC STATES

In this section, we present a complete description of our

magic monotones for single-qubit states. Recalling from

Theorem 2 that the monotones in general obey the relation

�(ρ) ≥ 
(ρ) ≥ 
+(ρ), the key question is then whether

the inequalities can be tight, thus unifying the different

approaches to the quantification of magic. We answer this

in the affirmative.

Theorem 3. For any single-qubit state ρ, we have


+(ρ) = 
(ρ) = �(ρ), (23)

and furthermore ρ admits an equimagical decomposition

(recall Definition 3).
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We see in the following section that this equivalence

persists for tensor products of single-qubit states.

However, equality does not extend to general n-qubit states

for n ≥ 2, as numerically we find that 
+(ρ) < 
(ρ) for

most random two-qubit density matrices ρ. The proof of

Theorem 3 rests on a trio of lemmata. First, we have the

following.

Lemma 4 (The monotone equality lemma). For any ω wit-

ness |ω〉, we define the set Bω to be the convex hull of all

pure states 
 for which |〈ω|
〉|2 = ξ(
). It follows that

for all ρ ∈ Bω we have


+(ρ) = 
(ρ) = �(ρ) = 〈ω|ρ|ω〉. (24)

Proof of Lemma 4. If ρ ∈ Bω, we can find a convex

decomposition

ρ =
∑

j

pj |
j 〉〈
j |, (25)

where |〈ω|
j 〉|2 = ξ(
j ) for all j . We can use this decom-

position to obtain an upper bound on the mixed-state extent

as follows:

�(ρ) ≤
∑

j

pj ξ(
j )

=
∑

j

pj 〈ω|
j 〉〈
j |ω〉

= 〈ω|ρ|ω〉. (26)

On the other hand, W = |ω〉〈ω| ∈ W+ and so can be used

to lower bound the generalized robustness to show

〈ω|ρ|ω〉 ≤ 
+(ρ). (27)

Combining Eqs. (26) and (27) with Theorem 2, we have

〈ω|ρ|ω〉 ≤ 
+(ρ) ≤ 
(ρ) ≤ �(ρ) ≤ 〈ω|ρ|ω〉. (28)

Therefore, these inequalities all collapse to equalities. �

Making use of Lemma 4 requires us to first understand

the structure of optimal ω witnesses, which we discuss

soon. However, first it is useful to define some different

subsets of the Bloch sphere.

Definition 7. The positive octant is the set

P := {ρ : 〈X 〉, 〈Y〉, 〈Z〉 ≥ 0}. (29)

We further subdivide the positive octant as follows:

z

x

y

|0

|+

|+i

|H

mixed
stabilizer states

|F

q = 2/3
q > 2/3

FIG. 2. The region PY, which is a third of the positive octant.

The dotted lines show the pure states at boundaries PY ∩ PX , and

PY ∩ PZ . For these boundary states, we know (by Lemma 6) that

the optimal ω witness is given by Eq. (32) with the parame-

ter set to q = √
2/3. For other pure states in PY, the ω witness

still has the form given by Eq. (32) but the parameter q may be

greater than
√

2/3. However, interestingly, the majority of pure

states in PY have an optimal ω witness with q = √
2/3 and these

are shown in yellow in this plot. On the geodesic through |0〉,
|H 〉, and |+〉, we have that q = 1. Between this geodesic and the

yellow region, q varies continuously from 1 to
√

2/3 and this

intermediate region is shown in green.

PX := {ρ : ρ ∈ P, 〈X 〉 ≤ 〈Y〉, 〈X 〉 ≤ 〈Z〉},
PY := {ρ : ρ ∈ P, 〈Y〉 ≤ 〈X 〉, 〈Y〉 ≤ 〈Z〉},
PZ := {ρ : ρ ∈ P, 〈Z〉 ≤ 〈X 〉, 〈Z〉 ≤ 〈Y〉},

(30)

where we use the shorthand 〈M 〉 := Tr[ρM ]. See Fig. 2

for an illustration of PY.

The sets PX , PY, and PZ further divide the positive octant

into thirds and it is easy to verify that P = PX ∪ PY ∪ PZ .

These sets are not quite disjoint because of the following

proposition.

Proposition 5. From Definition 7, we have the following:

PZ ∩ PY = {ρ : ρ ∈ P, 〈Z〉 = 〈Y〉 ≤ 〈X 〉},
PX ∩ PZ = {ρ : ρ ∈ P, 〈X 〉 = 〈Z〉 ≤ 〈Y〉},
PX ∩ PY = {ρ : ρ ∈ P, 〈X 〉 = 〈Y〉 ≤ 〈Z〉}.

This is straightforward to prove. For example, in PZ the

smallest expectation value is for Z and for PY the smallest

expectation value is for Y. Therefore, in the intersection

these two expectation values must be equal. We note that

any state is Clifford equivalent to a state in the positive
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octant P. Furthermore, the Clifford

F := 1√
2

(
1 −i

1 i

)
, (31)

satisfies FXF† = Y, FYF† = Z, and FZF† = X . There-

fore, the sets PX , PY, and PZ are Clifford equivalent and

therefore every state is Clifford equivalent to some ρ ∈ PY.

Now we are ready to characterize optimal ω witnesses.

Lemma 6. Let |
〉 be any pure, single-qubit nonstabilizer

state in the set PY. Then the ω witness |ω〉 that achieves

|〈
|ω〉|2 = ξ(
) has an operator representation of the

form

|ω〉〈ω| = 1+ qH +
√

1 − q2Y

1 + q/
√

2
, (32)

where
√

2/3 ≤ q ≤ 1 and H = (X + Z)/
√

2. Further-

more, if |
〉 is in the set PY ∩ PX or PY ∩ PZ then q =√
2/3 and the ω witness takes the form

|ω〉〈ω| = 1+ (X + Y + Z)/
√

3

1 + 1/
√

3
. (33)

The actual value of the variable q is easy to numerically

compute, but is analytically complicated and not instruc-

tive to present. Rather, in Fig. 2, we illustrate the region PY

and highlight where q = √
2/3 and q >

√
2/3.

Proof of Lemma 6. We begin by observing that for any

|
〉 there exists a decomposition into stabilizer states such

that |
〉 = ∑
j cj |φj 〉 and ξ(
) =

(∑
j |cj |

)2

. Given an

optimal ω witness we have

ξ(
) = |〈ω|
〉|2 =
∣∣∣
∑

j

cj 〈ω|φj 〉
∣∣∣
2

. (34)

Therefore,

⎛
⎝∑

j

|cj |

⎞
⎠

2

=
∣∣∣
∑

j

cj 〈ω|φj 〉
∣∣∣
2

. (35)

Given that |〈ω|φj 〉| ≤ 1, the above equality can only hold

if |〈ω|φj 〉| = 1 for every j with |cj | > 0. In particular, if


 is a nonstabilizer state it must have at least two nonzero

cj terms, and there must exist at least two stabilizer states

such that |〈ω|φj 〉| = 1. We return to use this fact shortly.

Using the set of Pauli matrices as a basis

|ω〉〈ω| = λ(1+ qxX + qyY + qzZ), (36)

where the coefficients qx, qy , and qz are real. Since |ω〉〈ω|
is a rank-1 operator we know

q2
x + q2

y + q2
z = 1, (37)

and since |ω〉〈ω| is a positive operator we have λ > 0.

Given a valid ω witness, we can always obtain another

valid ω witness by permuting any of {qx, qy , qz} or chang-

ing the signs. Therefore, the optimal ω witness for a state

in the set PY has qx ≥ qy and qz ≥ qy , since this order-

ing maximizes |〈
|ω〉|2. This means that the two stabilizer

states with the largest overlap with |
〉 are |+〉 and |0〉.
We show earlier there must be at least two stabilizer

states for which |〈ω|φj 〉| = 1, so we conclude |〈ω|+〉| = 1

and |〈ω|0〉| = 1. It follows that qx = qz and we define

q :=
√

2qx =
√

2qz. Condition Eq. (37) implies that qy =√
1 − q2 so we show that the optimal ω witness has the

form

|ω〉〈ω| = λ

(
1+ q

X + Z√
2

+
√

1 − q2Y

)
. (38)

Furthermore, |〈ω|+〉| = 1 implies that

λ = (1 + q/
√

2)−1. (39)

Lastly, we note that the condition |〈ω|+i〉| ≤ 1 entails that

q ≥ √
2/3. Therefore, we know the form of the ω witness

in the set PY and prove that
√

2/3 ≤ q ≤ 1. Next, consider

the special case when the state is at an intersection, such as

PY ∩ PZ . Then, the optimal ω witness has the above form

determined for the region PY. However, the region PZ only

differs by an F rotation, so the optimal ω witness must have

a similar form but with the Pauli operators permuted, so

that

|ω〉〈ω| =

(
1+ p Y+X√

2
+
√

1 − p2Z
)

2(1 + p/
√

2)
. (40)

The only way Eqs. (32) and (40) can both be true, is if

q = p = √
2/3. A similar argument holds for PY ∩ PX and

this proves Lemma 6. �

Our third lemma shows that every mixed state is con-

tained in an appropriate convex set.

Lemma 7. For any single-qubit nonstabilizer state ρ,

there exists a ω witness |ω〉 such that ρ ∈ Bω (as defined

in Lemma 4).
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This implies that for single-qubit states we can leverage

Lemmas 4 and 6 to prove Theorem 3.

Proof of Lemma 7. We consider individual slices of the

Bloch sphere such that Tr[ρσF ] = f where σF = (X +
Y + Z)/

√
3 and f is equal to the inner product between the

Bloch vectors representing ρ and σF . A particular f value

specifies a slice through the Bloch sphere. Let us denote Sf

as the set of all states inside this slice. For every nonstabi-

lizer state in the positive octant we have 1/
√

3 ≤ f , and

for all normalized states we have f ≤ 1. Within this slice

there are three special, pure states, which are

|
X
f 〉〈
X

f | := 1

2
(1+ aY + aZ +

√
1 − 2a2X ),

|
Y
f 〉〈
Y

f | := 1

2
(1+ aX + aZ +

√
1 − 2a2Y),

|
Z
f 〉〈
Z

f | := 1

2
(1+ aY + aX +

√
1 − 2a2Z),

(41)

where a obeys

√
3f = 2a +

√
1 − 2a2. (42)

For 1/
√

3 ≤ f ≤ 1, there is a unique a such that a ∈
[0, 1/

√
3] and

√
1 − 2a2 ∈ [1/

√
3, 1]. Crucially, these

states are the unique pure states of the following set

intersections.

|
X
f 〉〈
X

f | ∈ Sf ∩ PY ∩ PZ ,

|
Y
f 〉〈
Y

f | ∈ Sf ∩ PX ∩ PZ ,

|
Z
f 〉〈
Z

f | ∈ Sf ∩ PX ∩ PY.

(43)

Referring back to Proposition 5, it is clear that these states

must have the form given in Eq. (41).

Notice that these special states are Clifford rotations of

each other. By Lemma 6 these three special states all have

the same optimal ω witness given by Eq. (33). Since they

share their optimal ω witness, Lemma 4 applies to all con-

vex combinations of states {
X
f , 
Y

f , 
Z
f } as illustrated in

Fig. 3. Note that {
X
f , 
Y

f , 
Z
f } all have the same value for

the extent, since

ξ(
X
f ) = ξ(
Y

f ) = ξ(
Z
f ) = 1 + f

1 + 1/
√

3
. (44)

Therefore, for these states, a mixture of states with the

same amount of magic achieves the optimal convex-roof

extension. That is, each of these states admit an equimagi-

cal decompositions.

Next, we consider mixed states outside the convex

hull of {
X
f , 
Y

f , 
Z
f } and inside PY ∩ Sf as illustrated in

FIG. 3. A slice Sf through the positive octant. States are

parameterized by the coordinates {rA, rB, rF} as defined in

Eq. (46). For the slice Sf we have rF = f for some constant

f . The axes for the {rA, rB} coordinates are shown in red. The

slice is divided into thirds corresponding to the sets defined

in Definition 7 with the intersections of these sets shown with

dashed lines. Where these intersections meet the pure states we

label the pure states {
X
f , 
Y

f , 
Z
f } defined in Eq. (43), and the

purple triangle denotes the convex hull of the set {
X
f , 
Y

f , 
Z
f }.

States outside this convex set are considered as a mixture of two

pure states |�±
ρ 〉, defined in Eq. (49) and shown with green dots.

Fig. 3. We define a set of linearly independent, Hermitian

operators

σA = X + Z − 2Y√
6

, σB = X − Z√
2

, (45)

and σF as defined earlier. The set {σA, σB, σF} is unitarily

equivalent to {X , Y, Z}, so every state can be decomposed

as

ρ = (1+ rAσA + rBσB + rFσF) /2, (46)

where inside the slice Sf we have rF = f . The variables

rA and rB are used for the coordinate system in Fig. 3.

Given a mixed state ρ, we can define a pair of pure states

�+
ρ and �−

ρ , such that

〈�±
ρ |σA|�±

ρ 〉 = Tr[σAρ] = rA,

〈�±
ρ |σF |�±

ρ 〉 = Tr[σFρ] = f ,
(47)

and the states are pure, so that

〈�±
ρ |σA|�±

ρ 〉2 + 〈�±
ρ |σB|�±

ρ 〉2 + 〈�±
ρ |σF |�±

ρ 〉2 = 1.

(48)

There are two possible solutions for 〈�±
ρ |σB|�±

ρ 〉, which

leads to

|�±
ρ 〉〈�±

ρ | = 1

2

(
1+ rAσA ±

√
1 − r2

A − f 2σB + f σF

)
.

(49)
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By construction, ρ is a convex combination of �+
ρ and

�−
ρ . The geometry is illustrated in Fig. 3, where the pair

of purified states are shown as green dots with ρ located

on the line between them. To deploy Lemma 4, it remains

to prove that �±
ρ share an optimal ω witness.

The states �±
ρ are both in the region PY, which can be

seen from the geometry on Fig. 3 though we also give an

algebraic proof in Appendix B. Due to �±
ρ ∈ PY, we can

use Lemma 6 to determine the form of their optimal ω wit-

nesses. In Lemma 6, the witness ω(q) had a free parameter

q that we had to maximize over. Since 〈ω(q)|σB|ω(q)〉 = 0

for any q value, we have

〈ω(q)|ρ|ω(q)〉 = |〈�+
ρ |ω(q)〉|2 = |〈�−

ρ |ω(q)〉|2. (50)

Performing the maximization over q, the optimal q value

is the same for �+
ρ and �−

ρ due to Eq. (50). Therefore, �±
ρ

share exactly the same optimal ω witness. This completes

the proof of Lemma 7 and thus also of Theorem 3. �

IV. MULTIPLICATIVITY

We now study the behavior of the monotones �, 
, and


+ for tensor products of states. It was found by Bravyi

et al. [25] that ω witnesses of small dimension are closed

under tensor products, formalized as follows.

Theorem 8 ([25]). Let |ωj 〉 be vectors from a one-, two-,

or three-qubit Hilbert space such that each ωj is an ω

witness. Then |�〉 := ⊗j |ωj 〉 is an ω witness.

This is a rewording of Corollary 1 and Corollary 3 of

Ref. [25]. From the above result, Ref. [25] further showed

that the extent is multiplicative for such tensor products.

Theorem 9 ([25]). Let |ψj 〉 be one-, two-, or three-qubit

states. Then

ξ(⊗j |ψj 〉) =
∏

j

ξ(|ψj 〉). (51)

Here, we give a related multiplicativity result for several

mixed-state monotones.

Theorem 10. Let σj be single-qubit states. Then


(⊗j σj ) = �(⊗j σj ) = 
+(⊗j σj ) =
∏

j


+(σj ), (52)

and furthermore ⊗j σj admits an equimagical decomposi-

tion (recall Definition 3).

Prior to this work, there were no known strict multiplica-

tivity results for resource monotones for mixed states in

qubit magic theory. For instance, Howard and Campbell

[21] found that the robustness of magic can be strictly

submultiplicative, R(ρ ⊗ ρ) < R(ρ)2 for all nonstabilizer

ρ considered, and we discuss this later in this section.

There does exist a multiplicative lower bound on the

robustness of magic, proved using the so-called stabi-

lizer norm [21]. However, the lower bounds and upper

bounds appear to always be loose and so we have no

strict multiplicativity results. Additionally, Raussendorf

et al. [40] introduced a qubit-based phase-space robustness

RPS that can behave strictly supermultiplicatively, so that

RPS(ρ ⊗ ρ) > RPS(ρ)2 for some ρ. It is natural to wonder

if Theorem 9 or Theorem 10 could extend to a tensor prod-

uct of states with arbitrary dimension. However, in the final

stages of completing this work, it was proved that this can-

not hold in full generality [46]. It remains an open question

whether the monotones satisfy multiplicativity for states

composed of a low number of qubits, mirroring the multi-

plicativity of the extent; indeed, numerical results suggest

that 
+ is also multiplicative for mixed two-qubit states.

Proof of Theorem 10. From the definition of � we see

that it is manifestly submultiplicative. Combining this

observation with Theorem 3 we have that

�(⊗j σj ) ≤
∏

j

�(σj ) =
∏

j


+(σj ) (53)

holds for all products of single-qubit states. Strengthen-

ing this to strict equality requires us to find a matching

lower bound. The proof of Theorem 3 establishes that for

every single-qubit state the optimal W+ witness has the

form |ωj 〉〈ωj | where ωj is an ω witness. By Theorem

8, |�〉 = ⊗|ωj 〉 is also an ω witness, and consequently

|�〉〈�| = ⊗|ωj 〉〈ωj | is a W+ witness that can be used to

lower bound 
+ as follows:

∏

j


+(σj ) = 〈�| ⊗j σj |�〉 ≤ 
+(⊗j σj ). (54)

Combining Eq. (53), Eq. (54), and Theorem 2 we obtain

∏

j


+(σj ) ≤ 
+(⊗j σj )

≤ 
(⊗j σj ) ≤ �(⊗j σj ) ≤
∏

j


+(σj ). (55)

Since the left- and rightmost quantities are the same, all

these inequalities must collapse to equalities.

It remains to show that these product states admit

equimagical decompositions. This is easily verified by tak-

ing an equimagical decomposition for each single qubit

state (existence ensured by Theorem 3) and using this to

construct the natural decomposition for the product state.

It then follows immediately from Theorem 9 that each pure

term has equal extent and by the above argument that this

is optimal with respect to the � monotone. �
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V. COMPARISON WITH ROBUSTNESS

Here we discuss how our new monotones scale com-

pared to the robustness of magic (recall Definition 4).

While 
+, 
, and � are often equal, the robustness of

magic is typically much larger, as formalized in the fol-

lowing result.

Lemma 11. For any density matrix ρ we have

R(ρ) ≥ 2
+(ρ) − 1. (56)

Furthermore, if ρ is a single-qubit state this tightens to

R(ρ) ≥ (1 +
√

2)
+(ρ) −
√

2. (57)

We remark that a similar result to Eq. (56) for 
 is

claimed in Refs. [55,58], but the proof contains an error.

However, because the robustness of magic is not multi-

plicative, Lemma 11 does not tell us much about how the

different monotones scale. For this, we observe that the gap

can scale exponentially.

Theorem 12. Given any single-qubit nonstabilizer state ρ,

there exists positive real constants α and β where α > β

and

2αn ≤ R(ρ⊗n), (58)

2βn = 
(ρ⊗n) = 
+(ρ⊗n) = �(ρ⊗n). (59)

For example, for the Hadamard |H 〉 state we show that this

holds with α = 0.271 553 and β = 0.228 443.

Proof of Lemma 11. The dual formulation of the robust-

ness of magic tells us that R(ρ) ≥ Tr[Rρ] for any R such

that |〈φ|R|φ〉| ≤ 1 for all |φ〉 that are stabilizer states. We

call such an operator an R witness. Note that an R witness is

not necessarily positive. Let W denote the W+ witness such

that 
+(ρ) = Tr[Wρ]. Now, we consider the operator

R = 2

1 − s
W − 1 + s

1 − s
1, (60)

where

s = minφ∈Sn〈φ|W|φ〉. (61)

Next, we show R is indeed an R witness. For any |φ〉 ∈ Sn,

〈φ|R|φ〉 = 2

1 − s
〈φ|W|φ〉 − 1 + s

1 − s

≤ 2

1 − s
− 1 + s

1 − s
= 1, (62)

where we use 〈φ|W|φ〉 ≤ 1. Using 〈φ|W|φ〉 ≥ s, we simi-

larly obtain

φR|φ〉 ≥ 2s

1 − s
− 1 + s

1 − s
= −1. (63)

Therefore, R is indeed an R witness and we can lower

bound the robustness as follows:

R(ρ) ≥ Tr[Rρ] = 2

1 − s

+(ρ) − 1 + s

1 − s

= [2
+(ρ) − 1] − s

1 − s
, (64)

Since 
+(ρ) ≥ 1, the right-hand side is monotonically

increasing with s on the relevant range s ∈ [0, 1). This

prompts the question whether we can lower bound s. By

definition s ≥ 0 for any W+ witness and so Eq. (56) holds

in general. In the special case of single-qubit states, and

assuming for brevity that ρ ∈ PY, we know the optimal

witness has the form W = |ω〉〈ω| given by Lemma 6. Since

|0〉 has the largest possible overlap with |ω〉, it follows that

|1〉 must have the smallest possible overlap and one finds

that

〈1|W|1〉 = s = (1 − q/
√

2)/(1 + q/
√

2). (65)

Over the allowed range q ∈ [
√

2/3, 1], we have

s ≥ (1 − 1/
√

2)/(1 + 1/
√

2), (66)

for every optimal single-qubit W+ witness. Substituting

this into Eq. (64) gives Eq. (57). �

Proof of Theorem 12. The stab norm D has been shown to

provide a lower bound on the robustness of magic (see the

Supplemental Material of Ref. [21] and also Ref. [65]), so

that for any single-qubit nonstabilizer state ρ we have

D(ρ)n = D(ρ⊗n) ≤ D(ρ)n − 1
2n

1 − 1
2n

≤ R(ρ⊗n), (67)

where the stab norm of a single-qubit state is

D(ρ) = 1

2
(1 + |〈X 〉| + |〈Y〉| + |〈Z〉|). (68)

Defining α = log2(D(ρ)), we obtain Eq. (58). For instance

D(|H 〉〈H |) = 1.207 and so α = 0.271 553 for Hadamard

states.

Similarly, Eq. (59) holds due to Theorem 10 and set-

ting β := log2[
(ρ)]. For instance, β = 0.228 443 for

Hadamard states. To show α > β in general, we need to
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show that D(ρ) > 
(ρ) for all nonstabilizer, single-qubit

states. We note that for a single-qubit we have

R(ρ) = |〈X 〉| + |〈Y〉| + |〈Z〉| (69)

for any nonstabilizer state. This can be shown by using

Eq. (67) to obtain a lower bound on R(ρ), with the corre-

sponding upper bound following from a simple quasiprob-

ability decomposition into stabilizer states. Therefore,

R(ρ) = 2D(ρ) − 1 and combining this with Lemma 11,

we get

D(ρ) ≥ 1 +
√

2

2

+(ρ) −

(√
2 − 1

2

)
. (70)

This reveals that D(ρ) > 
+(ρ) whenever 
+(ρ) >

1. �

We further remark that the robustness of magic is not

multiplicative and the known upper bounds on R(ρ⊗n)

are loose compared to the lower bound in Eq. (58). For

instance, Heinrich and Gross [41] showed that for the

Hadamard state (or the equivalent T state) R(|H 〉〈H |⊗n) =
O(20.368 601n) and this is the best known upper bound.

VI. DISTILLATION AND ASYMPTOTIC RATES

We now consider the scenario of distillation—that is,

consuming many copies of an input resource state ρ to

prepare copies of some target state—and show how the

quantifiers we introduce characterize this task. Firstly, it is

easy to see using the multiplicativity of the magic mono-

tones 
, 
+, and � for single-qubit systems together with

their monotonicity that, whenever there exists a stabilizer

operation taking ρ⊗k → σ⊗m for some single-qubit ρ and

σ , we must have

k

m
≥ log 
(σ)

log 
(ρ)
, (71)

and analogously for the other magic monotones. This

already allows one to obtain insightful no-go results on the

transformations between stabilizer states and gate synthe-

sis, along the lines considered in Ref. [21] but without the

need to perform the difficult computation of the monotones

for many copies of a state.

However, in practical settings it is often desirable to

go beyond such exact transformations and consider pro-

tocols that allow for imperfect conversion. Our quantifiers

can yield bounds for the efficiency of more general distil-

lation protocols and their asymptotic rates. We focus on

the magic monotone 
+ as it is the most efficiently com-

putable out of the three and gives us the tightest bounds. A

useful property of 
+ is its monotonicity on average under

general probabilistic protocols: specifically, we have [55]


+(ρ) ≥
∑

i

pi

+
[

Oi(ρ)

pi

]
, (72)

where each Oi is a stabilizer-preserving quantum operation

that need not preserve trace [i.e., Oi(σ ) ∝ ω ∈ S̄n ∀σ ∈
S̄n], the overall quantum operation

∑
i Oi preserves trace,

and pi = Tr[Oi(ρ)] denotes the probability that the input

state ρ is transformed to the output Oi(ρ).

The most general representation of a distillation protocol

is then an operation, which takes k copies of a given input

ρ to m copies of some desired pure output state ψ , up to

error ε in fidelity, and succeeding with probability p . All

such protocols are limited as follows.

Theorem 13. Let ρ be any n-qubit quantum state, and ψ

a pure state of at most three qubits. If there exists a proba-

bilistic (that is, not necessarily trace-preserving) stabilizer

operation taking ρ⊗k → pτ , where τ is a state such that

〈ψ⊗m|τ |ψ⊗m〉 ≥ 1 − ε, then it necessarily holds that

k ≥ log p + log(1 − ε) + m log F(ψ)−1

log 
+(ρ)
(73)

and

k ≥ p

[
log(1 − ε) + m log F(ψ)−1

log 
+(ρ)

]
, (74)

where F(ψ) = max|φ〉∈Sn |〈ψ |φ〉|2 denotes the stabilizer

fidelity [25].

The above establishes two bounds on the least number

of copies of ρ necessary to perform the distillation of ψ

up to the desired accuracy, characterizing the dependence

on the resources contained in both ρ (as quantified by 
+)

and in ψ (as quantified by stabilizer fidelity F). Note that

either of the two bounds can perform better, depending on

the values of the parameters (see Fig. 4).

Proof. By submultiplicativity of 
+ we have 
+(ρ)k ≥

+(ρ⊗k). By monotonicity black under probabilistic

protocols [see Eq. (72)] we have 
+(ρ⊗k) ≥ p
+(τ ).

Because |ψ〉〈ψ |⊗m/F(ψ⊗m) is a W+ witness and hence a

feasible solution to the dual form of 
+, we arrive at


+(ρ)k ≥ p Tr

[
τ

|ψ〉〈ψ |⊗m

F(ψ⊗m)

]

≥ p
1 − ε

F(ψ⊗m)
. (75)

If ψ is any single-qubit, two-qubit, or three-qubit pure

state, then F(ψ⊗m) = F(ψ)m (see Ref. [25] or Theorem
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FIG. 4. Comparison of the lower bounds for the number of copies k of the state ρ = α|H 〉〈H | + (1 − α)1/2 necessary to distill

m copies of |H 〉 with success probability p = 0.9 and output infidelity ε. In (a), we fix α = 0.75 and demonstrate that the bounds in

this paper can characterize distillation well in a range of physical error regimes even for a small number of target copies (m = 4),

providing a better bound than Ref. [47] down to ε ≈ 10−21. In (b), we show that the bounds substantially improve when m increases.

This suggests in particular that, even though the bound of Ref. [47] gets increasingly better as ǫ → 0 by construction, in practical

regimes its performance can be exceeded by considering a larger number of copies of the distillation target. We show this in (c) by

varying the input error parameter α with a fixed small output error of ε = 10−20 and 24 target copies m. Our bounds perform better

even in the regime of α close to 1, and their performance can be improved further by considering larger m. Note that our bounds apply

also to the pure-state case (α = 1), while the bound of Ref. [47] explicitly applies only to full-rank inputs.

8), and so


+(ρ)k ≥ p
1 − ε

F(ψ⊗m)
. (76)

Taking the logarithm, we get

k ≥ log
+(ρ)

[
p(1 − ε)F(ψ)−m

]
, (77)

which is precisely Eq. (73). Alternatively, if we use log 
+

instead of 
+ in the above derivation (noting that log 
+

also decreases on average under stabilizer protocols due

to concavity of the logarithm), we obtain the bound in

Eq. (74). �

Another bound of this kind, which also explicitly

depends on 
+(ρ) and F(ψ) but exhibits a different scal-

ing with respect to ε, was recently obtained in Ref. [47].

We compare the performance of the bounds in Fig. 4.

When p = 1, Eq. (76) recovers a related recent bound of

Ref. [66]. When ε = 0, we obtain a benchmark on the per-

formance of all distillation protocols that distill the target

exactly, but can fail with a certain probability:

k

mp
≥ log F(ψ)−1

log 
+(ρ)
. (78)

This was considered for odd-dimensional qudits in

Refs. [35,64] as the “distillation efficiency.”

Additionally, the ultimate constraints on the convert-

ibility between two states are often characterized in the

asymptotic limit, where we are interested in the best

achievable rate R(ρ → ψ) at which k copies of ρ can

be approximately converted to kR(ρ → ψ) copies of ψ ,

with the error ε of this conversion vanishing in the limit

k → ∞. Using Eq. (74) with p = 1, any such rate must

satisfy

R(ρ → ψ) ≤ log 
+(ρ)

log F(ψ)−1
, (79)

which gives a semidefinite programming upper bound on

the asymptotic rate of transformation between any state ρ

and a pure state ψ of at most three qubits.

States of interest in magic state distillation include |H 〉
and |F〉 [17]. These states obey a Clifford symmetry in the

following sense; we say a state |ψ〉 is Clifford symmet-

ric if there exists an Abelian subgroup Cψ of the Clifford

group such that (i) C|ψ〉 = |ψ〉 for all C ∈ Cψ ; and (ii) |ψ〉
is the unique state with this property up to a global phase.

Crucially, any such state has extent equal to the inverse

of its stabilizer fidelity [25], so ξ(ψ) = F(ψ)−1. When we

already know the value of the extent ξ(ψ), we need only

to evaluate 
+(ρ) to determine the bounds in Theorem 13

and in Eq. (79). For instance, for the rate of transformation

from any state to a Clifford symmetric state of up to three

qubits, we get R(ρ → ψ) ≤ log 
+(ρ)

log 
+(ψ)
. Asymptotic distil-

lation rates of the magic states |H 〉 and |F〉 are bounded

by

R(ρ → |H 〉〈H |) ≤ log 
+(ρ)

log(4 − 2
√

2)
, (80)

R(ρ → |F〉〈F|) ≤ log 
+(ρ)

log(3 −
√

3)
, (81)

where we use the known values of ξ(|H 〉) and ξ(|F〉)
[25,67].
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The above can be compared with the recent bounds

obtained in Ref. [64] for qudit magic state theory, as

our approach similarly yields computable upper bounds

on the rates of distillation, although applicable to the

fundamentally important case of qubit systems.

We can alternatively show these asymptotic results

by using the regularized relative entropy of magic

[35] to bound the achievable rates of transformations

between states using any stabilizer protocol. Specifi-

cally, define r∞(ρ) = limn→∞(1/n)r(ρ⊗n) where r(ρ) =
minσ∈S̄n

D(ρ‖σ) black and D(ρ‖σ) = Tr(ρ log ρ) − Tr

(ρ log σ) is the quantum relative entropy. Then the ratio

r∞(ρ)/r∞(σ ) provides a general upper bound on the rate

R(ρ → σ) of the transformation from ρ to σ using sta-

bilizer protocols [35]. This upper bound is achievable

whenever the states can be reversibly interconverted [35]

or when the set of stabilizer protocols is relaxed to the

class of operations that asymptotically preserve the set of

stabilizer states [68]. Using the bounds r(ρ) ≤ log 
+(ρ)

for arbitrary states [69] and r(ψ) ≥ − log F(ψ) for pure

states [69], we similarly obtain Eq. (79). Notice also that

r(ψ) = log 
+(ψ) for any Clifford symmetric state, and

r∞(ψ) = log 
+(ψ) for a Clifford symmetric state of at

most three qubits.

Finally, we remark that the best known magic state

distillation protocols perform many orders of magnitude

worse than our best bounds. It remains a considerable

challenge to close this gap.

VII. CLASSICAL SIMULATION ALGORITHMS

In this section we introduce three simulation techniques,

each associated to one of the magic monotones defined ear-

lier. In Sec. VII A, we generalize quasiprobability-based

methods [15,20,21] for estimating Born-rule probabilities

or expectation values of bounded observables up to addi-

tive error. We use a novel choice of frame consisting

of the set of stabilizer dyads and extend quasiprobabilis-

tic techniques to accommodate this choice. By doing so,

we are able to reduce the sampling overhead compared

to previous qubit quasiprobability simulators [15,21,22],

resulting in a runtime proportional to the dyadic negativity

squared, 
(ρ)2. In Sec. VII B we describe a simula-

tor, which extends stabilizer-rank methods [24,25], previ-

ously only defined for pure states, to arbitrary mixed-state

inputs. The algorithm simulates the sampling of bit strings

from a quantum circuit (i.e., by measurement of a sub-

set of qubits in the computational basis). We show that

the classical distribution we sample from is δ-close in ℓ1

norm to the quantum distribution, and that under mod-

est assumptions each string is sampled in average time

O[�(ρ)/δ−3], where � is the mixed-state extent. When

an equimagical decomposition is known (recall Definition

3), this becomes the worst-case runtime. This reduces the

runtime by a factor of δ−1 compared to the results of

Ref. [25].

Finally, in Sec. VII C, we introduce the constrained path

simulation technique, which efficiently estimates Pauli

expectation values or Born-rule probabilities up to addi-

tive error on E(ρ) for stabilizer channel E and nonstabilizer

state ρ. The technique approximates the magic state ρ with

the stabilizer part of a feasible solution to the generalized

robustness problem, Eq. (12). Whereas the dyadic frame

simulator outputs estimates to arbitrarily high precision but

with runtime that grows with 
(ρ), here the estimate is

efficiently computed, but with unavoidable additive error

lower bounded as O[
+(ρ)], where 
+ is the generalized

robustness.

A. Dyadic frame simulator

1. Quasiprobability simulators

Before describing our first algorithm, we briefly review

the principles of classical simulation using quasiprobabil-

ities. A very general notion of quasiprobability simulation

was introduced by Pashayan et al. [20]. A specific instance

of this type of simulator is defined by fixing a frame, a

finite set of operators that forms a basis for the space

of Hermitian operators acting on a Hilbert space. This

basis need not be orthonormal and can in general be

over-complete. For concreteness we consider the algorithm

introduced by Howard and Campbell [21], where the frame

is the set of pure stabilizer state projectors. We can define

the n-qubit stabilizer frame as

Gn = {|φ〉〈φ| : |φ〉 ∈ Sn}, (82)

so that the convex hull of Gn is precisely S̄n, the set of

mixed stabilizer states. Indeed, Gn forms an overcomplete

basis for the Hermitian operators on C2n
. It follows that

any n-qubit density ρ matrix has at least one decomposi-

tion of the form:

ρ =
∑

j

qj |φj 〉〈φj |, |φj 〉〈φj | ∈ Gn,
∑

j

qj = 1, (83)

with qj real. Consider the simulation task of estimating

the Born-rule probability μ = Tr[�E(ρ)], where � is a

stabilizer projector and E is an efficiently simulable chan-

nel, but ρ is a general mixed magic state. Given a known

quasiprobability decomposition as per Eq. (83), we can

rewrite

μ =
∑

j

qj Tr[�E(|φj 〉〈φj |)] =
∑

j

|qj |
‖q‖1

Ej , (84)

where Ej = ‖q‖1sign(qj )Tr[�E(|φj 〉〈φj |)]. Now |qj |/
‖q‖1 are non-negative and sum to unity, so form a proper

probability distribution. The Howard and Campbell [21]
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algorithm goes as follows. First fix a total number of

samples M . Then, perform the below.

1. For each integer k from 1 to M , sample index jk from

the distribution {|qj |/‖q‖1}.
2. Compute each Êk = Ejk .

3. Output μ̂ = (1/M )
∑

k Êk.

It is clear that since Tr[�E(|φj 〉〈φj |)] amounts to eval-

uating a stabilizer circuit, each Êk can be efficiently

computed using the standard Gottesman-Knill tableaux

method [2,3]. Moreover, one can easily check that E(μ̂) =∑
j (|qj |/‖q‖1)Ej = μ, so the algorithm gives an unbiased

estimator for the Born-rule probability. However, due to

the renormalization of the distribution, each estimate Êk

takes a value in the range [−‖q‖1, +‖q‖1], increasing the

variance of the estimator. From Hoeffding’s inequalities

[70], the probability that μ̂ is far from the expected value

μ is bounded as

Pr{|μ̂ − μ| ≥ ǫ} ≤ 2 exp

(
− Mǫ2

2‖q‖1
2

)
. (85)

It follows that to estimate the value within additive error

at most ǫ with probability at least 1 − pfail, we must set

the number of samples so that M ≥ 2‖q‖1
2ǫ−2 log(2p−1

fail).

Recall from Definition 4 that robustness of magic R(ρ) is

defined as the minimal ‖q‖1, so the worst-case runtime for

the Howard and Campbell algorithm scales with (at least)

R(ρ)2.

Whereas in the simulation model described above, the

frame is comprised of stabilizer projectors |φ〉〈φ|, in our

dyadic frame simulator we extend the frame to include

dyads |L〉〈R| where |L〉 and |R〉 may be different stabilizer

states. An operator is now considered free if it is in the con-

vex hull of the dyads eiθ |L〉〈R|. black Importantly, a density

matrix σ can be written in this form if and only if σ ∈ S̄n.

Nonfree density matrices are then expressed as generalized

quasiprobability distributions over the set of n-qubit dyads,

where the “quasiprobabilities” are now complex valued.

As we shall see, the associated dyadic negativity quantifies

the classical simulation overhead for estimating Born-rule

probabilities on a nonfree state. In the next subsection we

illustrate our new algorithm by giving a simplified ver-

sion where the stabilizer circuit elements are restricted

to be probabilistic mixtures of Clifford gates. We subse-

quently generalize the algorithm to cover all completely

stabilizer-preserving circuits with magic state inputs.

2. Dyadic frame simulator

We assume the following restricted simulation set-

ting. The input to the algorithm will consist of (i) a

known dyadic decomposition of a mixed magic state ρ =∑
j αj |Lj 〉〈Rj |; (ii) a circuit description comprised of a

list of T quantum operations {O(1), . . . , O(T)}; and (iii)

a stabilizer projector � representing the outcome of a

Pauli measurement. We stipulate that each O(t) must be

a convex mixture of unitary Clifford channels, O(t) =∑
k p

(t)
k Uk(·)U†

k , and we assume this decomposition is

known and can be efficiently sampled from. The output

of the algorithm is again an estimate for the Born-rule

probability μ = Tr[�E(ρ)], where E = O(T) ◦ . . . ◦ O(1).

Note that the above restriction on O(T) means that we can

write the whole circuit as an ensemble over unitary Clifford

gates:

E(·) =
∑

�k
p�kU�k(·)U

†

�k , (86)

where �k = (k1, k2, . . . , kT) is a vector that represents a Clif-

ford trajectory through the circuit U�k = UkT
· · · Uk2

Uk1
,

and p�k is a product distribution and so can be efficiently

sampled from. The algorithm proceeds by sampling ele-

ments from the initial distribution, computing an estimate,

repeating many times, and averaging. The procedure for

generating one sample is as follows.

1. Randomly select index j with probability |αj |/‖α‖1.

2. Randomly select trajectory �k with probability p�k.

3. Compute final dyad:

e
iθ ′

j ,�k |L′
j ,�k〉〈R

′
j ,�k| = eiθj U�k|Lj 〉〈Rj |U†

�k . (87)

4. Compute sample Ê = ‖α‖1Re{eiθ ′
j ,�k 〈R′

j ,�k|�|L′
j ,�k〉}.

In step 3, eiθ ′
is a final global phase taking into account

the initial phase eiθj = αj /|αj | and the action of the sam-

pled unitary circuit on |Lj 〉 and |Rj 〉, respectively. Whereas

the Howard and Campbell algorithm dealt with projectors

|φ〉〈φ|, so that any global phase on |φ〉 is unimportant,

here |Lj 〉 and |Rj 〉 can represent different stabilizer states

and the combined phase can affect both the magnitude

and sign of the real-valued sample Ê. While the origi-

nal tableaux method used in the Gottesman-Knill theorem

does not track this global phase, subsequent extensions of

the method show that the update can be efficiently com-

puted, including the phase [23–25]. We can also efficiently

compute the complex inner product 〈L|R〉 for any pair of

stabilizer states [23–25]. Thus steps 3 and 4 are efficient.

Note that the two parts of the dyad U�k|Lj 〉 and 〈Rj |U†

�k =
(U�k|Rj 〉)† are updated independently.

The algorithm is completed by repeating steps 1–4 M

times. We can check that the method gives an unbiased

estimator for the target Born-rule probability:

E(Ê) =
∑

j ,�k

|αj |
‖α‖1

p�k

(
‖α‖1Re{eiθ ′

j ,�k 〈R′
j ,�k|�|L′

j ,�k〉}
)

(88)
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= Re

⎧
⎨
⎩
∑

j ,�k
eiθj |αj |p�kTr[�U�k|Lj 〉〈Rj |U†

�k]

⎫
⎬
⎭ (89)

= Re

⎧
⎨
⎩Tr

⎡
⎣�

∑

�k
p�kU�k

⎛
⎝∑

j

αj |Lj 〉〈Rj |

⎞
⎠U

†

�k

⎤
⎦
⎫
⎬
⎭ (90)

= Tr[�E(ρ)]. (91)

We can therefore apply Hoeffding’s inequality in the

same way as for the standard quasiprobability tech-

nique, and using the fact that each Ê is in the range

[−‖α‖1, +‖α‖1], we find that the total number of samples

needed to achieve additive error ǫ and success probability

1 − ppfail is

M ≥ 2‖α‖1
2ǫ−2 log(2p−1

fail). (92)

When the decomposition of ρ is optimal with respect

to dyadic negativity as per Definition 5, we have that

‖α‖1 = 
(ρ). When this holds, the worst-case runtime of

the algorithm will be O[
(ρ)2].

This simplified algorithm can be used only in the case

where the stabilizer circuit is a convex mixture of unitary

Clifford operations, so channels are restricted to be unital.

Our main goal, however, is to admit more general stabi-

lizer channels. In particular, extending to adaptive Clifford

circuits with mixed magic state inputs allows for universal

quantum computation [17]. We now sketch how the dyadic

frame simulator can be extended to admit all completely

stabilizer-preserving channels. Full pseudocode and tech-

nical proofs of validity and performance are given in

Appendix C.

The simplicity of the restricted simulator derives from

the fact that unitary operations preserve the norm of the

state vector. This means that when each circuit element O(t)

can be decomposed as a convex mixture of unitary gates,

the probability of choosing a particular trajectory �k through

the circuit depends only on the coefficients p
(t)
k and is inde-

pendent of initial state. Conversely, Kraus decompositions

of nonunital channels always include nonunitary opera-

tors. When these channels appear in a circuit, transition

probabilities for selecting one of the nonunitary operators

must be computed on the fly as we step through the circuit.

These transition probabilities depend not only on the ini-

tial state, but on the Kraus operators selected in previous

steps, so they cannot be precomputed. Note that in general

a channel may be decomposed as a mixture of NU unitary

and NK nonunitary Kraus operators:

O(·) =
NU∑

k

pkUk(·)U†

k +
NK∑

k′
qk′Kk′(·)K†

k′ . (93)

The probability of picking one of the NU operators Uk can

simply be read off from the coefficients pk. We can infer the

total probability 1 − ∑
k pk that the trajectory chosen will

be from among the NK nonunitary operators, but individ-

ual transition probabilities for each Kk′ must be computed

based on the initial state. In Appendix C we show how

appropriate transition probabilities can be computed effi-

ciently even when the input operator is not a state but a

dyad, provided that we restrict to channel decompositions

where NU, NK ≤ poly(n). We call such a decomposition

simulable. This leads to the following theorem.

Theorem 14. Let ρ = ∑
j αj |Lj 〉〈Rj |, be a known dyadic

decomposition of an initial n-qubit state, where α ∈ C and

the probability distribution {|αj |/‖α‖1} can be efficiently

sampled. Let E = O(T) ◦ . . . ◦ O(1), where each O(t) ∈ On

is a completely stabilizer-preserving channel. Suppose that

every O(t) has a known simulable decomposition. Then,

given a stabilizer projector �, we can estimate the Born-

rule probability μ = Tr(�E[ρ]) within additive error ǫ,

with success probability at least 1 − pfail and worst-case

runtime

‖α‖2
1

ǫ2
log(p−1

fail)Tpoly(n). (94)

Furthermore, if the dyadic decomposition of ρ is optimal

then ‖α‖1 can be replaced by 
(ρ).

By exploiting a dyadic frame, the negativity of the

quasiprobability distribution and algorithm runtime is

greatly reduced compared to previous work [21], with

an improved exponential scaling of the runtime (recall

Theorem 12).

B. The density-operator stabilizer-rank simulator

1. Prior art: the BBCCGH simulator

Here we briefly review a previous stabilizer rank–based

simulation method, which we refer to as BBCCGH in what

follows (after the authors’ initials [25]). BBCCGH simu-

lates sampling length w bit strings �x from measurements

on pure magic states |ψ〉 with runtime linear in pure-

state extent ξ(ψ), and represents the prior state of the art

in stabilizer-rank techniques. In subsequent sections we

improve on this algorithm and generalize to mixed states.

BBCCGH can be decomposed into two main subroutines:

SPARSIFY, which generates a sparse approximation of the

target state, and FASTNORM, which estimates Born-rule

probabilities ‖�|ψ〉‖2 up to multiplicative error. By call-

ing FASTNORM O(w) times, one estimates a chain of

conditional probabilities so as to successively sample the

outcome for each bit of �x in turn. It is crucial that the error

is multiplicative, as this ensures that the output distribu-

tion of the classical algorithm is close in ℓ1 norm to the

quantum distribution P(�x) = |〈�x|ψ〉|2.

In general, stabilizer-rank simulators exploit the fact that

any pure quantum state |ψ〉 can be expressed as a linear
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combination of stabilizer states,

|ψ〉 =
k∑

j =1

cj |φj 〉, (95)

where |φj 〉 are stabilizer states and cj are complex. The

exact stabilizer rank χ(|ψ〉) is the smallest number of

terms k needed for a given state |ψ〉 [23–25]. Compu-

tations can be performed in poly(n, k) time by treating

each stabilizer term in turn (albeit k can grow exponen-

tially with n). In particular Bravyi et al. [25] showed that

FASTNORM can estimate ‖ψ‖2 up to multiplicative error by

repeatedly generating a random number ηA = 2n|〈φA|ψ〉|2,

where |φA〉 is randomly drawn from a subset of stabilizer

states known as equatorial states. Evaluating ηA amounts to

computing k stabilizer inner products (one for each term of

ψ), which can be done efficiently by exploiting a canonical

representation of stabilizer states known as CH form [25].

We summarize this result of Bravyi et al. in the following

theorem.

Theorem 15 ([25]). Given an unnormalized n-qubit vector

|ψ〉 = ∑χ

j =1 cj |φj 〉 with χ stabilizer terms in its decompo-

sition, there exists a classical algorithm FASTNORM that

outputs a random variable η such that

(1 − ǫ)‖ψ‖2 ≤ η ≤ (1 + ǫ)‖ψ‖2 (96)

with probability greater than 1 − pfail in worst-case run-

time O[χn3ǫ−2 log(p−1
fail)].

By applying this algorithm to projected vectors �|ψ〉,
where � is a stabilizer projector, one can estimate Born-

rule probabilities ‖�|ψ〉‖2.

If one was to apply FASTNORM directly to the ideal state

|ψ〉, the runtime would be O[χ(ψ)], where χ is the exact

stabilizer rank. However, computing the exact stabilizer

rank is intractable for many-qubit states. Instead the strat-

egy of BBCCGH is to approximate |ψ〉 with a sparsified

k-term vector |�〉 of smaller stabilizer rank, using the sub-

routine SPARSIFY (Fig. 5). Bravyi et al. [25, Lemma 6]

showed that for any pure state |ψ〉 and any integer k > 0,

one can use SPARSIFY to generate random (unnormalized)

states |�〉 with k stabilizer terms such that

E(‖|ψ〉 − |�〉‖2) ≤ ‖c‖2
1

k
. (97)

In Appendix D we present a simple corollary of Ref. [25,

Lemma 6], which implies that

E(‖|ψ〉〈ψ | − |�〉〈�|‖1) ≤ 2
‖c‖1√

k
+ ‖c‖2

1

k
≈ 2

‖c‖1√
k

.

(98)

For any target precision δS > 0, choosing k so that

k ≥ 4‖c‖2
1

δ2
S

, (99)

we get

E(‖|ψ〉〈ψ | − |�〉〈�|‖1) ≤ δS + O(δ2
S). (100)

Recall from Sec. II that the minimal value of ‖c‖2
1 is pre-

cisely the pure-state extent. We call Eq. (100) combined

with the lower bound on k in Eq. (99) the BBCCGH

sparsification lemma [25].Thus, with high probability and

subject to some technical caveats discussed in Appendix E,

by combining the two subroutines BBCCGH simulates

sampling from the quantum distribution P(�x) = |〈�x|ψ〉|2
up to an error δS in runtime ‖c‖2

1δ
−4
S poly(n, w). Assum-

ing an optimal decomposition [ξ(ψ) = ‖c‖2
1], the runtime

therefore scales linearly with pure-state extent.

Below we improve on this algorithm in three main

respects: (i) we extend the simulator from pure to mixed

magic state inputs, so that the average-case runtime is pro-

portional to the mixed-state extent � defined in Sec. II;

(ii) we show that important cases admit decompositions

such that � quantifies the worst-case runtime; and (iii) we

derive a new sparsification lemma that improves the run-

time over that implied by Eq. (100) by a factor of 1/δS with

minor caveats. Our new sparsification lemma also avoids

some technical difficulties that arise when applying the

FIG. 5. The SPARSIFY procedure introduced by Bravyi et al.

[25]. The exact state |ψ〉 is approximated by an unnormalized

random vector |�〉 with k stabilizer terms that is, on average,

δ2
S-close in the Euclidean norm, where δS = ‖c‖1

2/k.
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BBCCGH sparsification lemma in a practical algorithm.

The runtime improvements originate from working in the

density-operator picture even when the input magic state is

pure.

We first discuss the proof of our new lemma, before

applying it to classically simulate bit-string sampling.

While our ideas naturally apply to estimating Born prob-

abilities, and can be extended to propagate an initial state

through a noisy stabilizer circuit prior to measurement, we

omit this for brevity.

2. Sparsification lemma

The input to the subroutine SPARSIFY is an integer

k and pure state |ψ〉 with known stabilizer decomposi-

tion, Eq. (95), with coefficient vector c. The output is a

randomly chosen k-term sparsification of |ψ〉,

|�〉 = ‖c‖1

k

k∑

α=1

|ωα〉, (101)

where each |ωα〉 is an independent and identically dis-

tributed (i.i.d.) sampled stabilizer state (cj /|cj |)|φj 〉 for

some j (see Fig. 5), so that we have [25]

E(|ωα〉) = |ψ〉
‖c‖1

⇒ E(|�〉) = |ψ〉. (102)

Since the output |�〉 of SPARSIFY is a random superposi-

tion of nonorthogonal terms, it need not have unit norm. In

Ref. [25], after obtaining a state |�〉 from SPARSIFY, one

estimates its Euclidean norm, and discards the state if its

norm is not close to 1. A state postselected in this way

will be close to the target state with high probability. See

Appendix E for a discussion of why this postselection is

necessary.

Here, we instead consider a sampling strategy that

avoids postselecting |�〉. After SPARSIFY gives a random

|�〉, we renormalize so that it has unit norm. Furthermore,

instead of bounding the error between an individual sample

and the target state |ψ〉, we bound the error between |ψ〉
and the whole ensemble as captured by the density matrix

ρ1 := E

[ |�〉〈�|
〈�|�〉

]
=
∑

�

Pr(�)
|�〉〈�|
〈�|�〉 . (103)

Intuitively, this is advantageous because coherent errors

in each sample smooth out to a less harmful stochas-

tic error. Similarly, randomizing coherent errors improves

error bounds in the setting of circuit compilation [71–74].

Our refinement to the BBCCGH sparsification lemma is

summarized in the following theorem.

Theorem 16. Let ρ1 be the mixed state in Eq. (103). Let

|ψ〉 be an input state with known decomposition |ψ〉 =

∑
j cj |φj 〉, where |φj 〉 are stabilizer states, and let c be the

vector whose elements are the coefficients cj and

Cψ ,c = ‖c‖1

∑

j

|cj ||〈ψ |φj 〉|2. (104)

Then there is a critical precision δc = 8(Cψ ,c − 1)/‖c‖2
1

such that for every target precision δS for which δS ≥ δc,

we can sample pure states from an ensemble ρ1, where

every pure state drawn from ρ1 has stabilizer rank at most

⌈4‖c‖2
1/δS⌉ and

‖ρ1 − |ψ〉〈ψ |‖1 ≤ δS + O(δ2
S). (105)

When |ψ〉 is a Clifford magic state (recall Sec. VI), the

critical precision becomes δc = 0, and sampled pure states

in ρ1 have stabilizer rank at most ⌈(2 +
√

2)‖c‖2
1/δS⌉.

Notice that the theorem sets a critical precision δc above

which we can achieve the promised 1/δS improvement in

the runtime over BBCCGH [25]. At higher precision, our

runtime has the same leading-order δS scaling as BBC-

CGH but with a much smaller constant prefactor, so still

yields improved performance. Furthermore, for the impor-

tant case of noisy T states, they are Clifford magic states so

the improvement holds across all δ.

The proof of Theorem 16 follows from two lemmata.

Here we sketch the proof strategy, deferring full technical

proofs to Appendices F and G. The first lemma captures

the idea that the ensemble, Eq. (103), can be made close in

the trace norm to the target state |ψ〉〈ψ | by choosing suf-

ficiently large k, up to a term that depends on the variance

of 〈�|�〉. The second lemma then bounds this variance in

terms of Cψ ,c, ‖c‖1, and k.

Lemma 17 (Ensemble sampling lemma). Given a state

|ψ〉 = ∑
j cj |φj 〉 where φj are stabilizer states, we can

sample from an ensemble ρ1 such that every sampled pure

state has stabilizer rank ≤ k and

‖ρ1 − |ψ〉〈ψ |‖1 ≤ 2‖c‖2
1

k
+
√

Var[〈�|�〉], (106)

where |�〉 is the random sparsified vector defined in

Eq. (101).

The first step in proving Lemma 17 is to note that we

can use the triangle inequality to split the problem into two

parts:

‖ρ1 − |ψ〉〈ψ |‖1 ≤ ‖ρ1 − ρ2‖1 + ‖ρ2 − |ψ〉〈ψ |‖1,

(107)

where ρ2 = E(|�〉〈�|)/E(〈�|�〉). The first term is upper

bounded by Var[〈�|�〉]. The second term can then be eval-

uated in terms of |ω〉, and turns out to be upper bounded by
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2‖c‖1
2/k. Full technical details are given in Appendix F. It

remains to bound the variance of 〈�|�〉.

Lemma 18 (Sparsification variance bound). Using the

notation of Lemma 17 the variance of 〈�|�〉 satisfies the

bound

Var[〈�|�〉] ≤ 4(C − 1)

k
+ 2‖c‖4

1

k2
+ O

(
C

k3

)
, (108)

where C = Cψ ,c is as given in Eq. (104). When |ψ〉 is a

Clifford magic state as defined in Ref. [25],

Var[〈�|�〉] ≤ 2‖c‖4
1

k2
+ O

(
1

k3

)
. (109)

In Appendix G, we prove Lemma 18 by expand-

ing Var[〈�|�〉] as a series of terms of the form

E(〈ωα|ωβ〉〈ωλ|ωμ〉), treating the cases where the indices

α, β, λ, and μ are all distinct (and therefore correspond to

i.i.d. random variables), where α = β, but (α, λ, μ) are all

distinct and so on.

By combining Lemmas 17 and 18 we can now prove

Theorem 16. Substituting k = 4‖c‖2
1/δS and δS ≥ 8(C −

1)/‖c‖2
1 into Eq. (108), we obtain

Var[〈�|�〉] ≤ δ2
S

4

[
1 + O

(
δS

‖c‖1
4

)]
, (110)

and hence, using
√

1 + x ≤ 1 + x for x ≥ 0:

√
Var[〈�|�〉] ≤ δS

2
+ O(δ2

S). (111)

Using Eq. (111) with the expression for k and Lemma 17,

we have

‖ρ1 − |ψ〉〈ψ |‖1 ≤ δS + O(δ2
S). (112)

This proves the main result of Theorem 16. When |ψ〉 is a

Clifford magic state, Eq. (109) combined with Lemma 17

gives

‖ρ1 − |ψ〉〈ψ |‖1 ≤ (2 +
√

2)‖c‖1
2

k
+ O

(
1

k2

)
. (113)

This allows us to obtain Eq. (105) by setting k = ⌈(2 +√
2)‖c‖2

1/δS⌉, completing the proof.

We showed that whenever the constraint on the target

precision δS is greater than a critical precision, one can

sample from an ensemble of sparsified states ρ1 that is δS-

close in the trace norm to 〈ψ |ψ〉, where the number of sta-

bilizer terms is k = 4‖c‖1
2/δS. Compared to the BBCCGH

[25] sparsification lemma where k = 4‖c‖1
2/δ2

S , we see a

factor 1/δS improvement. If the target precision is smaller
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FIG. 6. For the target state |ψ〉 = [cos(θ)|0〉 + sin(θ)|1〉]⊗100

with two choices of θ , we plot the trace norm error δS when

using a sparsification with k terms. Exact bound (EB) refers

to Eq. (106) and is valid for all δS , with the variance exactly

bounded by Eq. (G33). Leading order (LO) refers to our

Theorem 16 expression k = 4‖c‖2
1/δS , and is valid provided

δS ≥ δc with δc highlighted by a vertical line. Note θ = π/8 cor-

responds to the Clifford magic state |H 〉, for which δc = 0. Prior

art (PA) shows the cost of Ref. [25]. The exact stabilizer rank is

χ (see Theorem 2 of Ref. [25]) and this is an upper bound on

PA. When C �= 1 and δS < δc, then EB shows that there is still a

large saving even though LO is not valid in this regime. To better

understand the deviations of EB from LO, we refer the reader to

Appendix G and in particular Fig. 8, and to the discussion at the

end of Sec. VII B.

than the critical precision, one can compute C and obtain a

sharp bound on the trace-norm error by using Lemmas 17

and 18 directly. In this case, the δ−2
S scaling of k is recov-

ered, but with a prefactor often much smaller than in the

original BBCCGH sparsification lemma. This is because

one typically finds that (C − 1)/‖c‖1
2 ≪ 1 for many-qubit

magic states. We illustrate this in Fig. 6, where we compare

the sharpened trace-norm bound of our lemmata with that

of Ref. [25] for states of the form |ψN 〉 = |ψ〉⊗N , where

|ψ〉 are single-qubit magic states, and N = 100. While

δS ≥ 8(C − 1)/‖c‖1
2 we have a quadratic improvement

over Eq. (98), but even in the high-precision regime, we

find a significant reduction in k.

3. Bit-string sampling from mixed magic states

Consider the setting where we have an n-qubit mixed

magic state ρ, and we measure a subset of w qubits in

the computational basis (i.e., we measure Pauli Z for each

qubit), thereby generating a random bit string �x of length

w representing the measurement outcomes. Without loss

of generality we can assume we measure the first w qubits.

Let ��x = |�x〉〈�x| ⊗ 1n−w be the projector representing the

outcome where we obtain bit string �x. Then the probability

of obtaining the string �x is given by the Born rule:

P(�x) = Tr[��xρ]. (114)
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We call P the quantum probability distribution. Here

we deal with the simulation task of classically sampling

from a probability distribution Psim(�x) over w bit strings

�x such that Psim is δ-close in ℓ1 norm to P, with high

probability. Our algorithm is closely related to the sam-

pling algorithm given in Bravyi et al. [25], differing in

two key respects: (i) whereas the Bravyi et al. simulator

is defined only for pure states, our variant admits general

mixed states; and (ii) we take advantage of our improved

sparsification lemma to reduce runtime. We also avoid a

postselection step needed for the Bravyi et al. algorithm

(see Appendix E). Figure 7 gives the key steps for our pro-

cedure for sampling a single bit string. Full pseudocode

is given in Appendix H. The main steps in the algorithm

are (1) the sampling of a random pure state |ψj 〉 from

the ensemble ρ = ∑
j pj |ψj 〉〈ψj |, (2) a call to the subrou-

tine SPARSIFY to generate the k-term approximation |�〉,
and (3) computation of a chain of conditional probabilities

using at most 2w + 1 calls to FASTNORM. In Appendix H

we prove the validity of the algorithm, and give a full anal-

ysis of the runtime. Here we first sketch the proof before

discussing the runtime improvement over Bravyi et al.

[25]. In what follows we assume that δ > δc as defined in

Eq. (16), returning to the case of arbitrary precision at the

end of the section.

We want to show that the classical probability distribu-

tion Psim satisfies

‖Psim − P‖1 ≤ δ + O(δ2), (115)

where P is the quantum distribution. We split the proof into

two parts. First, we consider an idealized algorithm EXACT

where the calls to FASTNORM are replaced by an oracle that

can compute ‖��x|�〉‖ exactly given k-term sparsification

|�〉. Let Pex(�x) be the probability of obtaining the string �x
as the output of EXACT. We first show that Pex is δS-close

to the quantum distribution P in ℓ1 norm, and then show

that Psim is ǫ-close to Pex. We then split the error budget so

that δ = δS + ǫ. In Appendix H we show that the optimal

strategy is to set δS = δ/3 and ǫ = 2δ/3.

Let �xm = (x1, . . . , xm) be the bit string comprised of the

first m bits of �x, and let |�m〉 = ��xm |�〉 be the projection

of the first m qubits of |�〉. By inspection of the last two

steps of Fig. 7, we can multiply the chain of conditional

probabilities and obtain the probability of sampling �x from

EXACT given fixed sparsification |�〉:

Pr(�x|�) = Pr(x1)Pr(x2|�x1) . . . Pr(xw|�xw−1), (116)

= ‖|�1〉‖2

‖|�〉‖2

‖|�2〉‖2

‖|�1〉‖2
. . .

‖��x|�〉‖2

‖|�w−1〉‖2
, (117)

= ‖��x|�〉‖2

‖|�〉‖2
= Tr

[
��x

|�〉〈�|
〈�|�〉

]
. (118)

FIG. 7. Our procedure for classically sampling a single length

w bit string given an n-qubit state with known decomposition

ρ = ∑
j pj |ψj 〉〈ψj |, where each pure state |ψj 〉 in turn has a

known stabilizer decomposition |ψj 〉 = ∑
r c

(j )
r |φj 〉. We assume

that δ is greater than the critical precision defined in Theorem 16.

The procedure is a variant of that given in Ref. [25] for pure-state

input, making use of two subroutines from that work, SPARSIFY

and FASTNORM, as described above. In the main text we describe

how we improve on the sparsification step, and extend the simu-

lator to admit mixed states as input. The factor of 12 in the initial

step arises from optimization of the error budget between the

sparsification error δS and fast norm estimation error ǫ; we set

δS = δ/3 and ǫ = 2δ/3 (see Appendix H).

Thus EXACT simulates sampling from the quantum state

|�〉/‖|�〉‖ exactly; any error arises solely from the sparsi-

fication procedure. Now consider that randomly choosing

a pure state ψj from ρ = ∑
j pj |ψj 〉〈ψj |, generating a

random approximation |�〉 using SPARSIFY and then nor-

malizing is equivalent to sampling a pure state from the

ensemble:

σ =
∑

j

pj

∑

�

Pr(�|ψj )
|�〉〈�|
〈�|�〉 =

∑

j

pj ρ
(j )

1 , (119)
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where Pr(�|ψj ) is the probability of SPARSIFY out-

putting the vector |�〉, and ρ
(j )

1 is the expected projector

E(|�〉〈�|/〈�|�〉) as defined in Eq. (103), both condi-

tioned on the input to SPARSIFY being |ψj 〉. From our

argument above it follows that Pex(�x) = Tr[��xσ ]. A key

conceptual difference between our method and that of

Bravyi et al. [25] is that while the BBCCGH sparsifica-

tion results are concerned with the fidelity between the

target state |ψ〉 and a single randomly chosen sparsifi-

cation |�〉, here we compare the target state ρ with the

full ensemble over sparsifications σ . From our sparsifica-

tion lemma (Theorem 16), for each pure state |ψj 〉, we

have that ‖ρ(j )

1 − |ψj 〉〈ψj |‖1 ≤ δS + O(δ2
S). It follows that

‖σ − ρ‖1 ≤ δS + O(δ2
S), and so

‖Pex − P‖1 ≤ δS + O(δ2
S). (120)

Next we argue that Pex is ǫ-close to Psim, the distribu-

tion arising from our full classical algorithm. Recall from

Theorem 15 that FASTNORM is able to output estimates for

‖�m‖2 up to some relative error ǫFN, which we can set arbi-

trarily small (at the cost of increased runtime). One can

show (see Appendix H) that estimating the chain of w con-

ditional probabilities, Eq. (117), using FASTNORM leads

to a total relative error 3wǫFN in the distribution sampled

from, i.e.,

(1 − 3wǫFN)Pex(�x) ≤ Psim(�x) ≤ (1 + 3wǫFN)Pex(�x),
(121)

so to achieve relative error ǫ we must set ǫFN = ǫ/3w.

This governs the runtime of FASTNORM. By combining

this result with Eq. (120) we have

‖Psim − P‖1 ≤ δ + O(δ2). (122)

To analyze the runtime of our simulator, we define

�̃ =
∑

j

pj ‖c(j )‖1
2
, (123)

where c(j ) is the vector of coefficients in the decompo-

sition |ψj 〉 = ∑
r c(j )|φj 〉. Recall from Theorem 15 that

for an n-qubit state vector with k terms, the runtime of

FASTNORM is O(kn3ǫ−2
FN). From the previous discussion,

if we select the j th pure state in the decomposition of ρ,

we set k ∝ ‖c(j )‖1
2
δ−1 and ǫFN ∝ δw−1. In a single run of

the full algorithm, FASTNORM is called O(w) times. There-

fore, the runtime to generate a single w-length bit string

is T = O(‖c(j )‖1
2
w3n3δ−3) with probability pj . So from

Eq. (123), the average-case runtime is O(�̃w3n3δ−3).

Through �̃, this average-case runtime is sensitive to the

particular decomposition of ρ supplied to the simula-

tor. In the case where the decomposition is optimal with

respect to the mixed-state extent � (Definition 3), we have

�̃ = �(ρ), so that the average-case runtime is linear in

�(ρ). Recall from Sec. III that all single-qubit states admit

an equimagical decomposition (Theorem 3) that naturally

extends to all tensor products of single-qubit states. In that

case ‖c(j )‖1
2 = �(ρ) for all j , so that we can give the

worst-case runtime as O[�(ρ)].

The runtime scaling of O(δ−3) holds provided that the

sparsification error δS is not smaller than the critical thresh-

old δc = 8(C − 1)/‖c‖2
1, where C is defined in Eq. (104).

However, the algorithm is still valid for the case of arbi-

trary precision, δS < δc. In this case we recover the same

leading-order scaling as Bravyi et al., namely O(δ−4) [25],

but typically with a prefactor improved by several orders

of magnitude (see Fig. 6). A detailed technical analysis is

provided in Appendix H, including proof of the following

theorem, which captures the results discussed above.

Theorem 19. Let ρ = ∑
j pj |ψj 〉〈ψj | be an n-qubit

state where every pure state has a known stabi-

lizer decomposition |ψj 〉 = ∑
r c

(j )
r |φr〉. For every |ψj 〉,

let Cj = ‖c(j )‖1

∑
r |c(j )

r ||〈ψ |φr〉|2. Let �̃ = ∑
j pj ‖c(j )‖2

1,

and let D = max{(Cj − 1)/‖c(j )‖2
1}. Then for any pfail > 0,

and δ ≥ 24D there exists a classical algorithm that, with

success probability (1 − pfail), samples a bit string �x of

length w with probability Psim(�x) such that

‖Psim − P‖1 ≤ δ + O(δ2), (124)

where P(�x) = Tr(��xρ), and ��x = |�x〉〈�x| ⊗ 1n−w is a pro-

jector. The algorithm returns �x with random runtime T

where the average runtime is

E(T) = O[w3n3�̃δ−3 log(w/pfail)]. (125)

If the decomposition of ρ is optimal with respect to

Definition 9, then the expected runtime is O[�(ρ)]. More-

over, if the state decomposition is equimagical, then the

right side of Eq. (125) also bounds the worst-case runtime.

If arbitrary precision δ ≤ 24D is required, this can be

achieved at the cost of an increased runtime:

E(T) = O[w3n3�̃(δ−3 + 3Dδ−4) log(w/pfail)]. (126)

C. Constrained path simulator

In a standard quasiprobability simulator, the target state

ρ = ∑
j qj σj is decomposed as an affine combination of

frame elements σj that are in some sense easy to sim-

ulate. We can alternatively combine all the positive and

negative contributions into convex combinations σ+ and

σ−, respectively, so that the decomposition is rewritten:

ρ = λσ+ − (λ − 1)σ−, for some λ = ∑
qj ≥0 qj ≥ 1. The

standard sampling procedure for estimating 〈E〉 for some
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observable E can then be divided into two steps: (i) ran-

domly sample the positive or negative path with proba-

bility λ/‖q‖1 or (λ − 1)/‖q‖1, where ‖q‖1 = 2λ − 1; (ii)

sample an individual frame element from the selected con-

vex combination σ±. As explained in Sec. VII A1, the

number of samples needed to achieve any accuracy ǫ >

0 is O(‖q‖2
1ǫ

−2). Viewed in this way, we see that any

increased runtime for simulating magic states arises in step

(i) rather than step (ii). In other words, sampling a frame

element from the convex combination σ± does not incur

additional overhead.

An alternative strategy is to constrain sampling to the

positive path so that step (i) is avoided. This is equiv-

alent to making the approximation ρ ≈ λσ+, and comes

at the cost of an unavoidable systematic error of size

|(λ − 1)Tr[Eσ−]|. However, an advantage to this approach

is that since Tr[Eσ−] is no longer evaluated explicitly, σ−
need not be an efficiently simulable state. Therefore, it is

natural to connect this strategy with primal solutions to the

generalized robustness problem:

ρ = 
+(ρ)σ − [
+(ρ) − 1]ρ−, (127)

where σ is a mixed stabilizer state, but ρ− can be any den-

sity operator. Moreover, since systematic error is unavoid-

able, it is unnecessary to evaluate the first term to high

precision, so the runtime can be reduced. Pseudocode for

our constrained path simulator is given in Algorithm 1. We

then place tight bounds on the systematic error.

Choosing Emax and Emin to be given in steps 3 and 4, we

ensure that for all λ and Eσ ,

|̂E − Tr(EO[ρ])| ≤ � (128)

holds with probability 1 − pfail. The major caveat is that

there are certain regimes (for large λ and small Eσ ) where

the algorithm fails by trivially estimating the true expec-

tation value to be anywhere in the range [−1, 1]. Never-

theless, in some regimes we efficiently obtain a biased but

nontrivial estimate. We first briefly explain steps 3 and 4,

before analysing the error bound and runtime.

Algorithm 1. Constrained path simulator.

When λ and σ are such that ρ ≤ λσ , using Eq. (13),

there is some density matrix ρ− such that ρ can be written

as

ρ = λσ − (λ − 1)ρ−. (129)

Step 2 estimates Eσ such that |Eσ − λTr(EO[σ ])| ≤ ǫ with

probability 1 − pfail. We use this to bound possible values

of Tr(EO[ρ]):

Tr(EO[ρ]) = λTr(EO[σ ]) − (λ − 1)Tr(EO[ρ−]) (130)

≤ Eσ + ǫ + (λ − 1). (131)

Similarly one obtains Tr(EO[ρ]) ≥ Eσ − ǫ − (λ − 1).

Trivially we know that |Tr(EO[ρ])| ≤ 1, so in case either

expression exceeds this (for example, if Eσ is close to ±1)

we simply take either Emax = 1 or Emin = −1 as necessary.

We now consider the regimes where the bounds are trivial,

and give the size of the error otherwise.

Case 1 (failure): Trivial bounds are obtained when both

these conditions hold:

Eσ + ǫ + (λ − 1) ≥ 1, (132)

Eσ − ǫ − (λ − 1) ≤ −1, (133)

that is, when Eσ satisfies

2 − λ(1 + c) ≤ Eσ ≤ λ(1 + c) − 2. (134)

This holds only if λ ≥ 2/(1 + c) ≈ 2, as otherwise at most

one of the inequalities, Eqs. (132) and (133), can be true.

Case 2 (constant error): When λ < 2/(1 + c) ≈ 2,

there is a range of values of Eσ where inequalities,

Eqs. (132) and (133), are both violated:

λ(1 + c) − 2 ≤ Eσ ≤ 2 − λ(1 + c). (135)

In this case, we have

Ê = Eσ , (136)

� = λ(1 + c) − 1. (137)

Case 3 (error decreases with |Eσ |): The remaining case

occurs when |Eσ | is sufficiently large, so that either Emax =
1 or Emin = −1. This limits the range of possible values of

Tr(EO[ρ]), so that

� = λ(1 + c) − |Eσ |
2

. (138)

This occurs when exactly one of the inequalities,

Eqs. (132) and (133), is satisfied, while the other is vio-

lated. Note that this can happen even when λ ≫ 2, as

it depends on the value of Eσ returned. For example, if

Eσ = ±λ, we obtain Ê = 1 ∓ ǫ/2 and � = ǫ/2.
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Estimating λTr(EO[σ ]) using any Clifford simulator

(e.g., the dyadic frame simulator) takes up the most time

in the algorithm, as the other steps are trivial to evalu-

ate. Since σ is a convex combination of stabilizer states,

there is no additional sampling overhead due to negativity.

The prefactor λ increases the variance of the estimator, but

we compensate for this by setting the precision to ǫ = cλ,

where c is a small constant. The rationale for this is that

the systematic error due to our ignorance of ρ− is unavoid-

able, and this error is of size λ − 1. Therefore, there is a

limit to the precision we can achieve by increasing the run-

time of the sampling step, and we should set the precision

commensurate with the size of λ. Using the standard argu-

ments (see Sec. VII A1), the smallest number of samples T

sufficient to achieve this precision is

T = ⌈2λ2ǫ−2 log(2p−1
fail)⌉ = ⌈2c−2 log(2p−1

fail)⌉. (139)

The runtime for our constrained path simulator is therefore

constant with respect to λ [i.e., the generalized robustness


+(ρ) when the decomposition is optimal], depending

only on the parameters c and pfail. In this sense, we achieve

efficient runtime by trading off against precision in the esti-

mate; it is the error � that scales with the magic monotone

rather than the runtime.

Our explicit algorithm for estimating Pauli expectation

values easily adapts to estimate Born-rule probabilities

for stabilizer projectors � by replacing the assumption

|Tr(Eρ)| ≤ 1 for any ρ with 0 ≤ Tr(�ρ) ≤ 1.

VIII. APPLICATIONS TO OTHER RESOURCES

Although we focus on the simulation of quantum cir-

cuits within the stabilizer formalism in Sec. VII, our

methods can be extended beyond magic-state quantum

computation. The crucial idea here is to identify an effi-

ciently simulable quantum subtheory, consisting of a set

of n-qubit pure-state vectors Sn and a set of operators Tn

such that any K ∈ Tn acts on a state |φ〉 ∈ Sn as K |φ〉 ∝
|φ′〉 ∈ Sn, and this update can be efficiently tracked. Any

such subtheory can then be extended to mixed states and to

the dyadic setting, allowing for the adaptation of our clas-

sical simulators. In particular, we can show that—as long

as the subtheory itself satisfies some basic criteria regard-

ing its simulability—we can always efficiently simulate

quantum circuits built from operators in Tn when acting

on states composed of convex mixtures of projectors in Sn.

Just as before, when the algorithms work outside the given

quantum subtheory, they incur an additional resource cost,

which can be measured using our monotones.

This formalism very naturally fits into the framework

of quantum resource theories [50], which study the quan-

tification and manipulation of resources in physically

restricted settings. Here, a set of states and a set of oper-

ations are considered “free,” while states and operations

outside of these sets are costly to use and implement.

The connection we build between classical simulators and

resource theories then connects the quantitative value of

such resources with the performance of the classical sim-

ulators, thus giving an explicit operational meaning to

important resource monotones. Indeed, the monotones R,


, and 
+ can be defined in general resource theories [55],

but their operational meaning is not always known. For

instance, although the robustness monotones R and 
+

have found general use in tasks such as channel discrimi-

nation [75,76] and resource conversion [66,77], the dyadic

negativity 
 has not been shown to have any direct oper-

ational applications in general resource theories, nor has

a connection between monotones such as the generalized

robustness 
+ and classical simulation been established.

In the following, we refer to the pure states Sn as

free. Similarly, we define the set of free operations On

as all quantum channels whose Kraus operators belong

to Tn, and thus cannot generate any resource from a free

state. Analogously, the set of free observables Mn can be

defined to be all observables, which always result in a free

postmeasurement state.

From our discussion of the dyadic frame simulator in

Sec. VII A and Appendix C, the proof clearly requires

only three crucial assumptions about the classical simula-

bility of the underlying subtheory. We formalize them as

follows.

(S1) Only O[poly(n)] bits of information are necessary

to index all n-qubit pure free states in the set Sn.

(S2) Given a free operator K ∈ Tn and any free state

|φ〉 ∈ Sn, we can compute the update K |φ〉 as well as the

norm ‖K |φ〉‖ in O[poly(n)] time.

(S3) Given a free observable � ∈ Mn and any

free states |L〉, |R〉 ∈ Sn, we can compute 〈R|�|L〉 in

O[poly(n)] time.

As before, we are interested in the composition of free

operations O ∈ On, which admit a simulable decompo-

sition, i.e., can be written as O(·) = ∑NK
i=1 Ki · K

†
i with

each Ki ∈ Tn and NK ≤ poly(n). With this, our proofs of

Sec. VII A and Appendix C can be immediately applied to

generalize the dyadic frame simulator.

Theorem 14’. Consider a resource theory with free pure

states Sn, free operations On, and free observables Mn

satisfying criteria (S1)–(S3) above.

Let ρ = ∑
j αj |Lj 〉〈Rj |, be a known dyadic decompo-

sition of an initial n-qubit state, where α ∈ C and the

probability distribution {|αj |/‖α‖1} can be efficiently sam-

pled. Let E = O(T) ◦ . . . ◦ O(1), where each O(t) ∈ On. Sup-

pose that every O(t) has a known simulable decomposi-

tion. Then, given � ∈ Mn, we can estimate the Born-

rule probability μ = Tr(�E[ρ]) within additive error ǫ,
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with success probability at least 1 − pfail and worst-case

runtime

‖α‖2
1

ǫ2
log(p−1

fail)Tpoly(n). (140)

Furthermore, if the dyadic decomposition of ρ is optimal

then ‖α‖1 can be replaced by 
(ρ).

Theorem 14’ establishes an efficient simulation algorithm,

which can be employed in any resource theory that sat-

isfies the requirements. The theorem also connects the

monotone 
 with the sampling overhead of the algorithm,

thus endowing 
 with an exact operational interpretation

in the context of resource theories beyond magic. The

result of Theorem 14’ additionally allows us to employ

the constrained path simulator of Sec. VII C to define a

related simulation algorithm, which depends on another

monotone—the generalized robustness 
+. Once again,

the reasoning of Sec. VII C can be applied verbatim under

the assumptions (S1)–(S3).

As an example where the result can be immediately

applied, consider the resource theory of quantum coher-

ence [51,52], where the free states Sn are the vectors of

the computational basis {|i〉}. The free measurements are

in the computational basis, for instance projectors of the

form � = |x〉〈x| ⊗ 1 where x is a fixed bit string, which

can be efficiently computed. The corresponding dyadic

negativity 
 is then the (elementwise) ℓ1 norm, ‖ρ‖ℓ1
=∑

i,j |〈i|ρ|j 〉|. We remark that ‖ · ‖ℓ1
is trivially a mul-

tiplicative monotone in any dimension. Although ‖ · ‖ℓ1

is one of the most commonly employed measures in the

resource theory of coherence [51,52,78], it has lacked

an explicit operational interpretation thus far. Since the

resource theory of coherence is not known to admit a

unique, physically motivated choice of free operations

[52,79], we briefly discuss the possible choices of On and

their classical simulability. From this, we use Theorem 14’

to give ‖ · ‖ℓ1
an operational interpretation.

The most fundamental class of free operations within the

resource theory of coherence are the incoherent operations

(IOs) [51], defined to be maps that admit a decomposition

into Kraus operators that preserve the set of incoherent

states. Such Kraus operators can be expressed as [80]

K = ∑
x∈S cx|f (x)〉〈x| for some set of bit strings S, coef-

ficients cx, and an arbitrary function f . Given such a K

acting on no more than b qubits, where b is constant, we

can efficiently compute (K ⊗ 1n−b)|i〉. Since any Boolean

f can be implemented by composing a set of universal

classical logic gates (with b = 2) such as AND and XOR,

such gates can generate an IO realizing any Boolean func-

tion. Furthermore, IOs can simulate any quantum channel

with sufficiently many coherent states [51,81].

One family of useful IOs in practice are the strictly inco-

herent operations (SIOs) [80,82], which can be efficiently

implemented by quantum circuits using only incoherent

ancillae [82]. As a subtheory of IO, all the updates are

still efficiently computable. Furthermore, b = 3 suffices to

provide the Toffoli gate, which is universal for classical

reversible logic, and so can generate any Kraus operator

of the required form. The biggest difference between SIOs

and IOs is that, while SIOs are better understood from the

perspective of their practical implementation, they cannot

be promoted to universal quantum operations through the

use of ancillary resource states [81].

We conclude that the resource theory of coherence that

uses either IOs or SIOs as free operations satisfies the con-

ditions of Theorem 14’. Thus, the theorem endows the ℓ1

norm of coherence with an operational interpretation as

the sampling overhead in black the simulation of either of

the classes of operations using the dyadic frame simulator,

and similarly the constrained path simulator gives another

meaning to the robustness of coherence 
+ [83].

Our dyadic frame simulator is especially useful in

resource theories where other simulation algorithms such

as the Howard-Campbell simulator for magic states [21]

cannot be readily adapted. For instance, in the resource

theory of coherence, the free states S̄n form a zero-measure

subset of all states, which means that no resourceful state

ρ can be decomposed as ρ = ∑
j pj |φj 〉〈φj | with |φj 〉 ∈

Sn and so the corresponding robustness quantifier R(ρ)

diverges.

Note, however, that the dyadic frame simulator does not

work for all resource theories. While the dyadic frames

for stabilizer and incoherent operations meet the condi-

tions of Theorem 14, the requirements cannot hold for the

theory of separable states under local operations and classi-

cal communication (LOCC). This is because the free states

consist of an infinite number of inequivalent pure prod-

uct states, which cannot be described using poly(n) bits.

However, one can accurately compute local unitaries act-

ing on product states efficiently. Indeed, our framework

could encompass entanglement and similar theories using

a suitable ǫ net over the set of separable states, and we

leave the precise statement of the relevant conditions for

future work.

IX. CONCLUSIONS

We introduce three resource monotones into the set-

ting of magic state quantum computation: the dyadic

negativity 
, the generalized robustness 
+, and the

mixed-state extent �. The first part of the paper focuses on

resource-theoretic results, including that (i) for pure states,

the monotones all equal the extent monotone ξ ; (ii) for ten-

sor products of single-qubit mixed states, they all coincide;

and (iii) the monotones act multiplicatively on tensor prod-

ucts of single-qubit mixed states. The results significantly

simplify the computation of the monotones for multiple

copies of a single-qubit state, and allow us to completely
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understand the asymptotic behavior of our magic quan-

tifiers, which contrasts with previously used monotones.

Furthermore, our magic monotones often tighten previ-

ously known bounds on distillation rates.

For each monotone, we introduce a related classical sim-

ulation algorithm. Our dyadic negativity simulator has a

runtime proportional to 
(ρ)2, which is similar to—but

significantly faster than—the Howard-Campbell simulator

with runtime R(ρ)2 where R is the robustness of magic.

Additionally, we show that the dyadic negativity simulator

works for circuits that use completely stabilizer-preserving

operations. This class includes all the conventional stabi-

lizer operations (Clifford unitaries, Pauli projections, etc.)

and we believe it is likely to be strictly larger. If true, the

situation would mirror entanglement theory in the sepa-

ration between LOCC and separable operations [84]. We

find that for tensor products of n single-qubit states, both


 and R scale exponentially with n, but R is exponen-

tially larger than 
. This establishes our dyadic negativity

simulator as the fastest known quasiprobability simulator

for qubit magic states.

However, not all classical simulation algorithms are

based on quasiprobability distributions, with the stabilizer-

rank methods representing a distinct paradigm. There are

several crucial differences, including that stabilizer-rank

methods enable a stronger notion of classical simulation,

as they allow us to sample outputs of a quantum com-

putation, not just estimate Born-rule probabilities. Prior

work on stabilizer-rank simulations considered only pure

states, but our simulator extends this to mixed states and

demonstrates an expected runtime proportional to �(ρ).

Note the linear dependence on � (largely due to fast

norm estimation [24]), in contrast to the quadratic depen-

dence encountered with quasiprobability simulators. Since

in general 
[ρ] ≤ �[ρ], it is theoretically possible that


[ρ] ≪ �[ρ] so that 
[ρ]2 ≤ �[ρ], which would mean a

runtime advantage for the quasiprobability methods. How-

ever, for products of single-qubit states the monontones are

equal, so for such states our resource theory results show

that the advantage clearly falls to the stabilizer-rank sim-

ulators. Furthermore, we improve stabilizer-rank bounds,

with the runtime for sampling Clifford magic states (e.g., T

states) improved to O(1/δ3) from the prior O(1/δ4) bound

where δ is the sampling precision. For other magic states,

the advantage is not as simple to describe using big-O

notation, but Fig. 6 shows it to be considerable in practice.

Finally, by ensuring that our simulation algorithms can

be easily generalized and providing a recipe to adapt the

simulators to resource theories beyond magic states, we

shed light on the simulation of quantum circuits using

very general resources under suitable assumptions. This

not only provides new insight into the practical uses of

resource quantifiers in well-studied theories such as quan-

tum coherence, but also opens an avenue for a further study

of the connections between the theoretical frameworks of

quantum resources and their operational applications in

quantum computation.

A clear direction for further research is to extend our

results to the channel picture, which would enable a more

direct route to simulate circuits with no need to replace

nonfree operations with state injection gadgets. This is

especially important in the context of stabilizer theory for

the simulation of circuits with gates outside the Clifford

hierarchy, as the gadgets then become more complex.
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APPENDIX A: ALTERNATIVE PROOFS FOR

PREVIOUS RESULTS

1. Monotone equivalence proof

Here we prove Lemma 1. Consider an optimal decom-

position for the extent, such that

|
〉 =
∑

i

ci|ψi〉, |ψi〉 ∈ Sn, (A1)

with ξ(
) = ‖c‖2
1. Then

|
〉〈
| =
∑

i,j

cic
∗
j |ψi〉〈ψj | (A2)

is a valid decomposition into the dyadic frame leading to


(|
〉〈
|) ≤
∑

i,j

|cicj | (A3)

=
(∑

i

|ci|
)⎛
⎝∑

j

|cj |

⎞
⎠

= ‖c‖2
1 = ξ(
).
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Next, we prove the converse inequality. The dual convex

problem to the minimization of ξ is

ξ(
)= maxω{|〈ω|
〉|2 : such that ∀φ ∈ Sn, |〈ω|φ〉|2 ≤ 1}.
(A4)

Note that the ω need not be properly normalized. Let

us label ω⋆ as a vector achieving this maximum so that

ξ(
) = |〈ω⋆|
〉|2. We further recall that 
 also has a dual

formulation


(ρ) = max
W

{Tr[Wρ] : such that ∀|φ〉, |ψ〉

∈ Sn, |〈φ|W|ψ〉| ≤ 1}. (A5)

In particular for feasible W we have 
(ρ) ≥ Tr[Wρ]. We

notice that the extent witness |ω⋆〉 can be used to build

an operator W = |ω⋆〉〈ω⋆| that is a valid witness for 
.

Therefore,


(|
〉〈
|) ≥ Tr[|ω⋆〉〈ω⋆|
〉〈
|]
≥ |〈ω⋆|
〉|2 = ξ(
). (A6)

Having proved both directions, we conclude an equality.

This proves Lemma 1. Since the witness W is a positive

operator, an identical proof also shows that 
+(|
〉〈
|) =
ξ(|
〉〈
|). For the � monotone, there is only one

convex decomposition of |
〉〈
|. Hence �(|
〉〈
|) =
ξ(|
〉〈
|).

2. Sandwich theorem

Here we present a proof of Theorem 2. Recall that 
 is

the result of maximizing over all W witnesses, whereas 
+

is limited to all W+ witnesses, which immediately leads to


+(ρ) ≤ 
(ρ). To show 
(ρ) ≤ �(ρ), one simply takes

the optimal decomposition with respect to �, as follows:

ρ =
∑

j

pj |
j 〉〈
j |,

�[ρ] =
∑

j

pj ξ(
j ).
(A7)

Next, we insert this decomposition into 
 and use

convexity


[ρ] ≤
∑

j

pj 
(|
j 〉〈
j |). (A8)

Using Lemma 1 we have


[ρ] ≤
∑

j

pj ξ(
j ) = �[ρ], (A9)

which completes the proof of Theorem 2.

APPENDIX B: GEOMETRY OF �±

ρ

Here we show that the states �±
ρ introduced in Eq. (49)

are contained in the set PY introduced in Definition 7. Note

that Eq. (49) is defined in terms of ρ ∈ PY.

The result �±
ρ ∈ PY is used in the proof of Lemma

7. In that proof, we appeal to geometry presented

in Fig. 3 and here we instead provide an algebraic

argument.

Using the definition of the set PY, to prove that �±
ρ ∈ PY,

it suffices to show that

〈�±
ρ |Y|�±

ρ 〉 ≥ 0,

〈�±
ρ |(X − Y)|�±

ρ 〉 ≥ 0,

〈�±
ρ |(Z − Y)|�±

ρ 〉 ≥ 0.

(B1)

Now note that 〈�±
ρ |Y|�±

ρ 〉 = Tr[Yρ]. Minimizing Tr[Yρ]

over all feasible Bloch vectors (rA, rB, rF) in the decom-

position of ρ given by Eq. (46), we find that Tr[Yρ] ≥ 0,

which proves the first inequality.

Next, we tackle the second inequality (with the third

inequality following in a similar fashion). One computes

that

2〈�±
ρ |(X − Y)|�±

ρ 〉 = 〈�±
ρ |(

√
6σA +

√
2σB)|�±

ρ 〉 (B2)

=
√

6rA ±
√

2

√
1 − r2

A − f 2,

which is positive whenever

√
6rA ≥

√
2(1 − r2

A − f 2) (B3)

or more concisely

rA ≥
√

(1 − f 2)/2. (B4)

For mixtures of 
X
f and 
Z

f , we find this holds with

equality. For mixtures in the convex hull of {
X
f , 
Y

f , 
Z
f }

we find rA ≤
√

(1 − f 2)/2. However, we are currently

considering ρ outside this set, just outside the facet

spanned by 
X
f and 
Z

f . Therefore, Eq. (B4) indeed

holds.

APPENDIX C: DYADIC FRAME SIMULATOR

TECHNICAL DETAILS

Here we prove Theorem 14, which assures the valid-

ity and runtime of our dyadic frame simulator. Recall

that the goal of the dyadic frame simulator is to esti-

mate the Born-rule probability μ = Tr[�E(ρ)], where ρ

is an n-qubit mixed magic state, and E = O(T) ◦ . . . ◦ O(1)

is a sequence of completely stabilizer-preserving channels

O(t) ∈ On. Before proving the theorem, we first restate
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and discuss the restrictions we impose on O(t). Any com-

pletely stabilizer-preserving channel O ∈ On has at least

one Kraus decomposition of the form

O =
NU∑

r

prUr +
NK∑

s

qsKs, (C1)

where all Ur = Ur(·)U†
R are unitary Clifford operations,

and Ks = Ks(·)K†
s correspond to completely stabilizer-

preserving nonunitary Kraus operators [22]. Let PU =∑
r pr be the total weight of the unitary part of the decom-

position. We say that a channel decomposition is sim-

ulable if the number of Kraus operators is bounded as

NU, NK ≤ poly(n). In Theorem 14 we assume that the

channels O(t) provided as input to the algorithm all have

a known simulable decomposition. We use the restriction

on NU for simplicity in the proof, but provided one can

efficiently sample from the distribution {pr/PU} and com-

pute any corresponding Ur, then this restriction can be

removed. Note however that the restriction on NK can-

not be similarly relaxed. For concreteness, we assume

that nonunitary Kraus operators are given as a length

poly(n) list with each entry being a pair. The pair encodes

a stabilizer-preserving Kraus operator and its associated

weight factor. The Clifford part of the decomposition takes

the same format. We use L
(t)
U and L

(t)
K to denote the

respective lists for the unitary and nonunitary part of the

decomposition of O(t). Each stabilizer-preserving Kraus

operator K is described by giving an efficient descrip-

tion of the stabilizer state corresponding to the Choi

state �K as

�K = (K ⊗ 1)|�〉〈�|, (C2)

where |�〉 ∝ ∑
j |j 〉|j 〉. Note that since K acts by conju-

gation, �K is a pure stabilizer state, so can be specified by

O(n2) classical bits.

The class of simulable channel decompositions encom-

passes a wide range of practically important stabilizer

operations. First, any convex combination of n-qubit Clif-

ford gates O = ∑
j pj Uj is included, provided {pj } can

be efficiently sampled from. Another subset of simula-

ble channels are those of the form O = O′ ⊗ 1n−b, where

O′ ∈ Ob and b is a small constant. Any O′ ∈ Ob has a 2b-

qubit Choi state �O′ that lies inside the stabilizer polytope

(i.e., it can be written as a convex combination of pure sta-

bilizer states, each corresponding to a Kraus operator) [22].

Although the number of stabilizer states grows superexpo-

nentially with b, the real vector space inhabited by 2b-qubit

density matrices is (4b − 1) dimensional. We can therefore

completely partition the stabilizer polytope into simplices

with 4b vertices, where any mixed stabilizer state inhab-

itsat least one simplex. Hence, by Carathéodory’s theorem,

�O can be written as a convex combination of at most 4b

pure stabilizer states. Thus for families of circuits where

b has a fixed upper bound, NU + NK does not grow with

n. This restriction is not too onerous, since practical quan-

tum algorithms are typically synthesized in terms of one-,

two-, and three-qubit gates, and noise channels are often

assumed to act locally. Moreover, we often already know

the stabilizer decompositions of interesting channels. For

instance, we can express T-gate injection gadgets and the

single-qubit depolarizing channel with only two and four

Kraus operators, respectively.

We now present the algorithm and prove its validity. Our

algorithm has two subroutines: (i) Algorithm 2, which is

an extended Gottesman-Knill-type subroutine that proba-

bilistically updates an input stabilizer dyad given a set of

Kraus operators; and (ii) Algorithm 3, which is an outer

quasiprobability sampling routine that samples an initial

dyad from the initial nonstabilizer state and propagates the

dyad through the circuit, randomly selecting a single Kraus

operator from each decomposition O(t).

Note that in Algorithm 2, we use the trace norm (i.e., the

Schatten 1-norm, ‖A‖1 = Tr[
√

A†A]), rather than the usual

trace (as in the Born rule) to calculate the transition prob-

abilities for propagating with a particular Kraus operator.

While Tr(�ρ) = ‖�ρ�†‖1 for physical states ρ, this does

not hold for general dyads |L〉〈R|. We illustrate that the

Schatten 1-norm is the appropriate choice with a toy exam-

ple. Consider the scenario where the penultimate dyad

is σ (T−1) = |+0〉〈−0|, the final stabilizer channel O(T) is

defined by Kraus operators K1 = 1⊗ |0〉〈0| and K2 =
U ⊗ |1〉〈1| for some Clifford U, and the final measure-

ment operator to be evaluated is � = |1〉〈1| ⊗ 1. Now, the

channel O(T) leaves σ (T−1) unchanged, O(T)(|+0〉〈−0|) =
|+0〉〈−0|. It is therefore clear that the correct contribution

to the expectation value estimate (line 15 in Algorithm 3)

should be

μm = ‖α‖1Re{Tr[�σ (T)]}, (C3)

= ‖α‖1Re{Tr[(|1〉〈1| ⊗ 1)|+0〉〈−0|]}, (C4)

= ‖α‖1Re{〈−|1〉〈1|+〉} = −‖α‖1/2, (C5)

where we use cyclicity of the trace, and neglect the phase

eiθr for brevity. We need to ensure that the transition prob-

abilities we compute (in line 4 of Algorithm 2) produce

statistics that converge to this contribution. Suppose we

were to naively use the trace to compute transition prob-

abilities, PTr,j = Tr[Kj σ
(T−1)K

†
j ]. Then we would obtain

PTr,1 = Tr[(1⊗ |0〉〈0|)|+0〉〈−0|(1⊗ |0〉〈0|)], (C6)

= 〈−|+〉 = 0, (C7)
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PTr,2 = Tr[(U ⊗ |1〉〈1|)|+0〉〈−0|(U† ⊗ |1〉〈1|)], (C8)

= 〈−|U†U|+〉|〈1|0〉|2 = 0. (C9)

Here we have a problem, because both paths evaluate to

zero, preventing μm from making any nonzero contribution

to our estimate. By contrast, in our algorithm we use the

Schatten 1 norm to compute transition probabilities:

P1 = ‖(1⊗ |0〉〈0|)|+0〉〈−0|(1⊗ |0〉〈0|)‖1, (C10)

= ‖|+0〉〈−0|‖1 = 1, (C11)

P2 = ‖(U ⊗ |1〉〈1|)|+0〉〈−0|(U† ⊗ |1〉〈1|)‖1, (C12)

= |〈1|0〉|2‖(U|+〉)|1〉〈1|(〈−|)U†‖1 = 0. (C13)

This method correctly tells us that we should select Kraus

operator K1 with certainty, resulting in the correct contri-

bution μm = −‖α‖1/2.

Below we prove that this strategy leads to an unbiased

estimator for μ, where each individual sample is bounded

as |μm| ≤ ‖α‖1. As per standard quasiprobability simula-

tors (see Sec. VII A1), to estimate an observable within

additive error of ǫ with success probability psuc ≥ 1 − pfail,

we require at least M samples from our algorithm [20,21],

where

M ≥ 2
‖α‖2

1

ǫ2
log

(
2

pfail

)
. (C14)

To prove the validity of our algorithm we must (i)

explain how the stabilizer update qrKrσK
†
r can be car-

ried out efficiently, (ii) show that the values Pr in steps

2–6 of Algorithm 2 form a proper probability distribution,

and (iii) show that μ̂ returned by Algorithm 3 is an unbi-

ased estimator for Tr[�E(ρ)]. The total runtime given in

Algorithm 2. Stabilizer Kraus update subroutine.

Algorithm 3. Dyadic frame simulator.

Theorem 14 is the product of the number of samples M and

the runtime to compute each sample.

(i) Efficient stabilizer update with Kraus operators.

In Algorithm 2 we must compute the trace norm

‖qrKr|L〉〈R|K†
r ‖1 for all n pairs (qr, Kr) ∈ L, and then

perform the update |L〉〈R| → |L′〉〈R′|. Note that we track

any accumulated phase through the update, but here we

absorb this factor in |L′〉〈R′| for brevity. There are two

cases. Either L is a list of unitary operators, or it is a

list of nonunitary Kraus operators. In the unitary case,

computation of the norm is trivial. Since the initial dyad

σ is normalized with respect to the trace norm, and the

norm is unitarily invariant, we have ‖prUrσU
†
r‖1 = pr. By

assumption, pr/
∑

r pr can be efficiently sampled from. In

the nonunitary case, we must compute

‖q′
rKr|L〉〈R|K†

r ‖1 = q′
r‖Kr|L〉‖ · ‖Kr|R〉‖. (C15)

Note that unlike the trace, the trace norm does not depend

on the overlap between Kr|L〉 and Kr|R〉, and their vector

norms are calculated separately. To see how this is done,

we note that a Kraus operator whose Choi state is a nor-

malized pure stabilizer state can always be written in the

form Kr = 2h/2Ur�r, where Ur is a Clifford gate and �r is

a stabilizer projector of rank 2n−h [85], for some h ≤ n.

Since Ur leaves the norm invariant, for the purpose of

computing transition probabilities, only the projector and
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normalization constant matter:

‖q′
rKr|L〉〈R|K†

r ‖1 = q′
r2

h‖�r|L〉‖ · ‖�r|R〉‖. (C16)

The projection of each pure state onto a stabilizer sub-

space can be computed using standard stabilizer simulation

techniques [3,25], in time O(hn2). In the nonunitary case,

we must compute the norm for 2NK projected stabilizer

states, so the total runtime for computing all transition

probabilities for a single step t is O(hNK n2).

Once all N transition probabilities are computed, a sin-

gle Kraus operator Ks ∝ Us�s is randomly selected for the

update, so we must compute |L′〉〈R′| ∝ Us�s|L〉〈R|�sU
†
s .

As discussed in Sec. VII A, it is vital that we track any

acquired phase throughout each update, as this will affect

our final estimate when we average over all M samples

μm. We can do this using the phase-sensitive Clifford sim-

ulator described in Ref. [25]. There it was shown that the

update corresponding to the projection (1+ Q)/2, where

Q is a Pauli operator, can be carried out in O(n2) steps.

A rank 2n−h stabilizer projector can be decomposed as a

product of h Pauli projections, so the projective part of

the update takes time O(hn2). As for the Clifford update,

any n-qubit Clifford operation can be written in canonical

form comprised of O[n2/ log(n)] gates from the stan-

dard gate set {CNOT, H , S} [3]. Bravyi et al. [25] showed

that their phase-sensitive Clifford simulator can perform

CNOT and S updates in time O(n), and H in time O(n2),

so the Clifford update for Ur can be completed in time

O[n4/ log(n)]. Since h ≤ n and for simulable decomposi-

tions NK ≤ poly(n), the time taken is poly(n).

Combining all steps, the total time for a single call to

STABILIZERUPDATE is O[h(NK + 1)n2] + O[n4/ log(n)].

Since h ≤ n and for simulable decompositions NK ≤
poly(n), the call is completed in poly(n) time in the gen-

eral case. We note that in the special case where we restrict

each O(t) to act on at most b qubits, for some fixed b, the

runtime for a single call can be improved considerably. In

that case, NK ≤ 4b (i.e., a constant with respect to n) and

the runtime will be O[b(4b + 1)n2] + O[b2n2/ log(b)].

(ii) Valid probability distribution. From the definition of

P0 in step 6 of Algorithm 2, it is clear that
∑N

r=0 Pr = 1 and

P1, . . . , PN ≥ 0. Hence, to show that {Pr} is a probability

distribution, it suffices to show that P0 ≥ 0. This is trivially

true for the unitary path, as
{

pr/
(∑NU

s=1 ps

)}
is clearly a

properly normalized distribution, with P0 = 0. It remains

to show P0 ≥ 0 for the nonunitary case.

It is given that the channel O(t) is a completely pos-

itive and trace-preserving (CPTP) map. Let OK(·) =∑NK
r=1 qrKr(·)K†

r denote the nonunitary part of the decom-

position, Eq. (C1), and let OU(·) = ∑NU
r=1 prUr(·)U†

r , so

that O(t) = OU + OK . Each Clifford is a unitary operator,

so
∑NU

r=1 prU
†
r Ur = PU1, recalling that PU = ∑NU

r=1 pr and

PK = 1 − PU. Since O(t) is CPTP, its Kraus representation

must be complete:

1 = PU1+
NK∑

r=1

(
√

qrKr)
†(

√
qrKr). (C17)

It follows that
∑NK

r=1(
√

qrKr)
†(

√
qrKr) = PK1, meaning

that OK is a CPTP map up to normalization by 1/PK . This

normalization is achieved by setting q′
r = qr/PK in step 3.

Then for any pure state |ψ〉, we have

1 ≥ Tr[O(|ψ〉〈ψ |)/PK ] =
NK∑

r=1

Tr[
√

q′
rKr|ψ〉〈ψ |K†

r

√
q′

r],

=
NK∑

r=1

‖
√

q′
rKr|ψ〉‖2

. (C18)

Let Q(ψ) be the NK -element real vector where the rth entry

is Q
(ψ)
r = ‖

√
q′

rKr|ψ〉‖. From Eq. (C18), we have that

‖Q(ψ)‖ ≤ 1. Then for any normalized dyad |L〉〈R| we can

express the sum of Pr for r ≥ 1 as a dot product between

Q(L) and Q(R):

NK∑

r=1

Pr =
∑

r=1

‖q′
rKr|L〉〈R|K†

r ‖1, (C19)

=
∑

r=1

‖√qrKr|L〉‖ · ‖√qrKr|R〉‖, (C20)

=
∑

r=1

Q(L)
r Q(R)

r , (C21)

= Q(L) · Q(R) ≤ ‖Q(L)‖ · ‖Q(R)‖ ≤ 1, (C22)

where in the last line we use the Cauchy-Schwarz inequal-

ity to show that
∑

r≥1 Pr ≤ 1, as promised. We note that

the strategy of using an “abort” outcome P0 is deployed in

the appendix of Ref. [28] to simulate postselective chan-

nels. In our case the fact that Pr for r ≥ 1 can sum to less

than 1 instead arises from the non-Hermiticity of the initial

dyad σ .

(iii) Unbiased estimator. Finally we show that the

expected value of μ̂ in Algorithm 3 is Tr[�E(ρ)]. First, let

us recombine the unitary and nonunitary part of O(t) into

a single Kraus representation O(t) = ∑NTot
a=1 q(t)

r K (t)
r (·)K (t)†

r ,

where NTot = NU + NK , and consider the probability of

sampling the rth pair (qr, Kr) at step t. By inspection of

Algorithms 2 and 3 we see that the probability of taking

the unitary path and then selecting the rth pair from LU is

Pr(“U”, r) = PU × Pr = PU‖p ′
rUrσU†

r‖1 = ‖prUrσU†
r‖1.

(C23)

Similarly the probability of choosing the nonunitary path

followed by the rth element of LK is Pr(“K”, r) = PK Pr =
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‖qrKrσK
†
r ‖1. Thus at step t, the probability of sampling

any Kraus operator from the decomposition, whether uni-

tary or nonunitary, is given by Pr(qr, Kr) = ‖qrKrσK
†
r ‖1,

and we can drop the distinction between the two.

Now, let the (T + 1)-element vector �r = (r0, r1, . . . , rT)

label a particular trajectory through the circuit, in the fol-

lowing sense. The first entry r0 labels the initial dyad

σ
(0)

�r = |Lr0
〉〈Rr0

| sampled in step 3. For t ≥ 1, the entry

rt gives the index of the Kraus operator chosen at the

tth circuit element and we write K
(t)

�r (·) = K (t)
rt

(·)K (t)†
rt , and

use q
(t)

�r to denote the corresponding prefactor. Let σ
(t)

�r
denote the current dyad updated up to the tth Kraus oper-

ator along the trajectory �r, so that we have the recursive

relation σ
(t)

�r = q
(t)

�r K
(t)

�r (σ
(t−1)

�r )/P
(t)

�r , where P
(t)

�r is the prob-

ability of obtaining the outcome corresponding to the map

K
(t)

�r . The probability P�r of choosing the trajectory �r is

given by P�r = ∏T
t=0 P

(t)

�r , where P
(0)

�r = |αr0
|/‖α‖1 is the

probability of sampling the initial dyad σ
(0)

�r . For t ≥ 1,

P
(t)

�r = ‖q
(t)

�r K
(t)

�r (σ
(t−1)

�r )‖1 is calculated in the tth call to

Algorithm 2. Then the final dyad σ
(T)

�r that we obtain from

sampling the trajectory �r is

σ
(T)

�r = q�rK�r[σ
(0)

�r ]

P�r/P
(0)

�r
, (C24)

where K�r(·) = K
(T)

�r ◦ . . . ◦ K(1)

�r (·) and q�r = ∏T
t=1 q

(t)

�r .

This dyad is properly normalized according to the trace

norm, but is defined only for those trajectories with

nonzero probabilities P
(t)

�r > 0 for all t. We write R to

denote the set of all such nonzero probability trajectories.

Now, there are two mutually exclusive possibilities for

a given iteration of Algorithm 3: either we pick rt > 0 at

each circuit element, choose some �r ∈ R, and thus obtain

a normalized dyad σ
(T)

�r , or at some step we choose rt = 0,

and the iteration terminates with σ
(T)

�r = 0. Since these are

the only possible outcomes, the total probability of termi-

nating must be Pterm = 1 − ∑
�r∈R P�r. We can now write

down an explicit expression for the expectation value of

the random variable μm in step 15:

〈μm〉 = Pterm · 0 +
∑

�r∈R
P�rRe{‖α‖1eiθr0 Tr[�σ

(T)

�r ]},

(C25)

=
∑

�r∈R
P

(0)

�r Re
(
‖α‖1e

iθ�r0 Tr{�q�rK�r[σ
(0)

�r ]}
)

, (C26)

where in the second line we cancel the factors P
(t)

�r for t ≥ 1

with those in the denominator of Eq. (C24). The real vec-

tors �r /∈ R are never chosen when running the algorithm,

since they correspond to paths where P
(t)

�r = 0 for some

t, and hence K
(t)

�r [σ
(t−1)

�r ] = 0. Since K�r[σ
(0)

�r ] = 0 for all

�r /∈ R, we can add these zero-probability trajectories to the

summation, Eq. (C26), without affecting the total. Thus

〈μm〉 =
∑

�r
P

(0)

�r Re
(
‖α‖1eiθr0 Tr{�q�rK�r[σ

(0)

�r ]}
)

, (C27)

=
∑

r0

P
(0)

�r Re{‖α‖1eiθr0 Tr

× [�
∑

r1,...,rT

q�rK�r(|Lr0
〉〈Rr0

|)]},

where in the second line we write P
(0)

�r outside of the inner

sum since this probability is independent of rt for t ≥ 1.

The inner expression sums over all Kraus trajectories, and

by linearity we have

∑

r1,...,rT

q�rK�r =
∑

rT

q
(T)

�r K
(T)

�r ◦ . . . ◦
∑

r1

q
(1)

�r K
(1)

�r , (C28)

= O(T) ◦ . . . ◦ O(1) = E . (C29)

Hence

〈μm〉 =
∑

r0

P
(0)

�r Re{‖α‖1eiθr0 Tr[�E(|Lr0
〉〈Rr0

|)]} (C30)

= Re

⎧
⎨
⎩Tr

⎡
⎣�E

⎛
⎝∑

r0

αr0
|Lr0

〉〈Rr0
|

⎞
⎠
⎤
⎦
⎫
⎬
⎭ (C31)

= Tr[�E(ρ)], (C32)

where in the second line we use the definition P
(0)

�r eiθr0 =
αr0

/‖α‖1. Hence we prove that 〈μ̂〉 = Tr[�E(ρ)], so μ̂ is

an unbiased estimator, with each individual sample sat-

isfying |μm| ≤ ‖α‖1. We argue above this implies we

need 2‖α‖2
1ǫ

−2 log(2p−1
fail) samples [Eq. (C14)]. To gen-

erate each sample, we need to make T calls to STABI-

LIZERUPDATE, and we showed in part (i) that each call is

computed in poly(n) time. Therefore, the total runtime is

‖α‖2
1ǫ

−2 log(p−1
fail)Tpoly(n), as stated in Theorem 14.

APPENDIX D: TRACE-NORM ERROR FOR

BBCCGH SPARSIFICATION

As discussed in Sec. VII B1, the BBCCGH sparsifica-

tion lemma [25, Lemma 6] entails that, given a pure state

with exact stabilizer decomposition |ψ〉 = ∑
j cj |φj 〉, one

can randomly generate a k-term sparsification |�〉, such

that

E(‖|ψ〉 − |�〉‖2) ≤ ‖c‖2
1

k
, (D1)

where ‖·‖ is the standard vector norm. In order to compare

with our new sparsification result, which deals with density
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operators, we need to translate this in terms of the trace

norm. Here we prove the following simple corollary to the

BBCCGH sparsification lemma.

Corollary 1. Given a normalized state |ψ〉 = ∑
j cj |φj 〉,

for any k > 0, one can sample from a distribution of spar-

sified vectors |�〉 = (‖c‖1/k)
∑k

α=1 |ωα〉, where |ωα〉 are

stabilizer states, such that

E(‖|ψ〉〈ψ | − |�〉〈�|‖1) ≤ 2
‖c‖1√

k
+ ‖c‖1

2

k
. (D2)

Proof. Let |�〉 = |ψ〉 − |�〉. Then for any particular |�〉
we have

|ψ〉〈ψ | − |�〉〈�| = |ψ〉〈ψ | − (|ψ〉〈ψ | + |�〉〈�|
− |�〉〈ψ | − |ψ〉〈�|), (D3)

= |�〉〈ψ | + |ψ〉〈�| − |�〉〈�|. (D4)

Using the triangle inequality

‖|ψ〉〈ψ | − |�〉〈�|‖1 ≤ 2‖|�〉〈ψ |‖1 + ‖|�〉〈�|‖1, (D5)

= 2‖|�〉‖ · ‖|ψ〉‖ + ‖|�〉‖2, (D6)

= 2‖|�〉‖ + ‖|�〉‖2, (D7)

where the last line follows because |ψ〉 is normalized.

Since the above is true for any |�〉 taken from the distribu-

tion, it follows that

E(‖|ψ〉〈ψ | − |�〉〈�|‖1) ≤ 2E(‖|�〉‖) + E(‖|�〉‖2).

(D8)

For the second term, the BBCCGH sparsification lemma

[25, Lemma 6] tells us that we have E(‖|�〉‖2) ≤ ‖c‖2
1/k.

This leaves the first term. From Jensen’s inequality, for

any random variable X , we have that E(X ) ≤
√

E(X 2).

So,

E(‖�‖) ≤
√

E(‖�‖2), (D9)

≤ ‖c‖1√
k

, (D10)

where the second line again follows from Ref. [25, Lemma

6]. Substituting into the inequality, Eq. (D8), we obtain the

result. �

APPENDIX E: POSTSELECTION, STABILIZER

FIDELITY, AND THE SPARSIFICATION TAIL

BOUND IN BBCCGH

In this section we discuss technical difficulties that

arise when applying the sparsification results of Bravyi

et al. [25] in the context of the bit-string sampling

algorithm. Recall that the main BBCCGH sparsifica-

tion lemma [25, Lemma 6] only tells us that ran-

domly chosen k-term sparsifications |�〉 will be close to

the target state |ψ〉 = ∑
j cj |φj 〉 on average, specifically

E(‖|ψ〉 − |�〉‖2) ≤ ‖c‖1
2/k. In itself, this does not pre-

clude the possibility of occasionally obtaining |�〉 that

are very poor estimates for |ψ〉. One can check numeri-

cally that this is a rare occurrence, but it is preferable to

put rigorous bounds on the probability of obtaining such

outliers. Bravyi et al. addressed this with the sparsifica-

tion tail bound [25, Lemma 7]. This states that if we set

k ≥ ‖c‖1
2/δ2, the probability of obtaining |�〉 close to |ψ〉

is lower bounded as follows.

Pr
{
‖|ψ〉 − |�〉‖2 ≤ 〈�|�〉 − 1 + δ2

}

≥ 1 − 2 exp

[
− δ2

8F(ψ)

]
, (E1)

where F(ψ) is the stabilizer fidelity, defined F(ψ) =
maxφ |〈φ|ψ〉|2 where φ are stabilizer states. However,

there are two subtleties involved in applying this result in

practice.

First, note that the usefulness of the bound depends on

the norm of |�〉 being close to (or smaller than) 1. But in

general 〈�|�〉 can be larger. In principle, it is possible for

it to be as large ‖c‖1
2, though this is rather unlikely. In

any case, this can be solved by using a postselection step

where we estimate 〈�|�〉 (e.g., using FASTNORM) and then

discard if we find 〈�|�〉 − 1 ≫ δ2. Note that normalizing

|�〉 does not solve this problem, as the BBCCGH sparsifi-

cation results do not tell us about the closeness of |ψ〉 with

|�〉/‖|�〉‖, only the unnormalized vector |�〉.
Assuming we successfully obtain |�〉 with sufficiently

small norm, a second difficulty arises from the right-hand

side of Eq. (E1). The probability of success is larger when

the stabilizer fidelity is small. In Bravyi et al. [25] it is

argued that the failure probability is negligible for cases

of interest where stabilizer fidelity is exponentially small

in the number of qubits n. Let us unpack this argument by

considering a specific case. Assume for the sake of argu-

ment that 〈�|�〉 is very close to 1, so that the expression

in square brackets in Eq. (E1) is ‖|ψ〉 − |�〉‖2 � δ2. Now

suppose we fix target precision δ, and we want to achieve

success probability at least p . By rearranging Eq. (E1)

we see that this is possible only if the stabilizer fidelity

satisfies

F(ψ) ≤ δ2

8 log
(

2
1−p

) . (E2)

To make this concrete, let us use the modest assump-

tions that we want trace-norm error δ no larger than
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10%, and success probability better than 1/2. This can

be achieved only when F(ψ) � 0.0009. Now consider the

case where |ψ〉 = |T〉⊗t, where |T〉 = (|0〉 + eiπ/4|1〉)/
√

2.

For t-fold tensor products of m-qubit states where m ≤ 3,

stabilizer fidelity is multiplicative [25], so that we have

F(|T〉⊗t) ≈ (0.854)t. It follows that Eq. (E2) is satisfied

for these parameters only when we have at least 45 copies

of |T〉. If we want improved accuracy and success prob-

ability, the minimum value of t needs to satisfy Eq. (E2)

increases. Furthermore, the sparsification tail bound has

the curious property that it seems to suggest worse per-

formance for states containing less magic, as quantified by

the stabilizer fidelity. For example, if instead of the π/8

state |T〉 we consider t-fold tensor products of the π/32

state |π/32〉 = (|0〉 + eiπ/16|1〉)/
√

2, we must have at least

t ≈ 1200 before Eq. (E1) gives a nontrivial lower bound

on success probability. Therefore, there is a large class of

interesting intermediate-sized quantum circuits for which

the BBCCGH sparsification tail bound cannot be applied.

Our improved sparsification results in Sec. VII B 2

sidestep these difficulties by considering the difference in

the trace norm between |ψ〉〈ψ | and the ensemble ρ1 =∑
� Pr(�)

|�〉〈�|
〈�|�〉 from which sparsified vectors are drawn,

rather than fidelity with any particular |�〉. This allows

us to implement classical bit-string sampling with a dis-

tribution δ-close to the quantum distribution, even though

any particular |�〉 may not be a good approximation to

|ψ〉. The key idea is that the measurement statistics on

the ensemble ρ1 mimic those on |ψ〉〈ψ |; the comparison

with any individual |�〉 is unimportant in the context of

bit-string sampling.

APPENDIX F: PROOF OF ENSEMBLE SAMPLING

LEMMA

Here we prove Lemma 17, the first of the two lem-

mata leading to our sparsification result. Given target state

|ψ〉 = ∑
j cj |φj 〉, we need to prove that, for randomly

generated sparse vectors |�〉 = (‖c‖1/k)
∑

α |ωα〉 output

from SPARSIFY (Fig. 5), where |ωα〉 are stabilizer states

randomly drawn from {(cj /|cj |)|φj 〉}, the following holds:

δS = ‖ρ1 − |ψ〉〈ψ |‖1 ≤ 2‖c‖2
1

k
+
√

Var[〈�|�〉]. (F1)

Here k is the number of terms in the sparsified vector |�〉
and ρ1 is the ensemble over all possible normalized |�〉:

ρ1 := E

[ |�〉〈�|
〈�|�〉

]
=
∑

�

Pr(�)
|�〉〈�|
〈�|�〉 . (F2)

First we introduce the operator

ρ2 = 1

μ
E [|�〉〈�|] , (F3)

where μ = E[〈�|�〉]. Then using the triangle inequality,

δS = ‖ρ1 + ρ2 − ρ2 − |ψ〉〈ψ |‖1, (F4)

≤ ‖ρ1 − ρ2‖1 + ‖ρ2 − |ψ〉〈ψ |‖1. (F5)

Now,

‖ρ1 − ρ2‖1 = ‖E

[ |�〉〈�|�
〈�|�〉

]
− E [|�〉〈�|]

μ
‖1, (F6)

= ‖E

[
|�〉〈�|

(
1

〈�|�〉 − 1

μ

)]
‖1. (F7)

Using Jensen’s inequality we can bring the expectation

value outside the norm so that

‖ρ1 − ρ2‖1 ≤ E‖
[
|�〉〈�|

(
1

〈�|�〉 − 1

μ

)]
‖1,

= E

∣∣∣∣〈�|�〉
(

1

〈�|�〉 − 1

μ

)∣∣∣∣ ,

= 1

μ
E|μ − 〈�|�〉|. (F8)

That μ = E[〈�|�〉] = 1 + (‖c‖2
1 − 1)/k comes from

Ref. [25]. Loosening Eq. (F8) with μ−1 ≤ 1 gives

‖ρ1 − ρ2‖1 ≤ E|μ − 〈�|�〉|, (F9)

which is simply the average deviation of 〈�|�〉 from the

mean. Using Jensen’s inequality we get

E|μ − 〈�|�〉| ≤
√

E|μ − 〈�|�〉|2, (F10)

=
√

Var[〈�|�〉],

and so

‖ρ1 − ρ2‖1 ≤
√

Var[〈�|�〉]. (F11)

Next, we consider the term ‖ρ2 − |ψ〉〈ψ |‖1, by first find-

ing an explicit form for ρ2. Observe that

|�〉〈�| = ‖c‖2
1

k2

∑

α,β

|ωα〉〈ωβ |, (F12)

recalling that |ωα〉 = cj |φj 〉/|cj | with probability |cj |/‖c‖1,

so that E(|ωα〉) = |ψ〉/‖c‖1 [25]. Taking the expectation
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value we have

E(|�〉〈�|) = μρ2 = ‖c‖2
1

k2

∑

α,β

E[|ωα〉〈ωβ |]. (F13)

Let σ := E[|ωα〉〈ωα|]. We split Eq. (F13) into two sum-

mations as follows:

μρ2 = ‖c‖2
1

k2

⎡
⎣
⎛
⎝∑

α �=β

E[|ωα〉〈ωβ |]

⎞
⎠+

(∑

α

E[|ωα〉〈ωα|]
)⎤
⎦,

(F14)

= ‖c‖2
1

k2

⎡
⎣
⎛
⎝∑

α �=β

|ψ〉〈ψ |
‖c‖2

1

⎞
⎠ +

(∑

α

σ

)⎤
⎦ , (F15)

= 1

k2

⎛
⎝∑

α �=β

|ψ〉〈ψ |

⎞
⎠ + ‖c‖2

1

k2

∑

α

σ .

In the first contribution, we use the independence of ωα

and ωβ when α �= β and E[|ωα〉] = |ψ〉/‖c‖1. Next, there

are k(k − 1) terms and k terms in the first and second

summations, respectively, so that

μρ2 =
(
1 − k−1

)
|ψ〉〈ψ | + ‖c‖2

1

k
σ . (F16)

Using this form for ρ2, we have that

‖ρ2 − |ψ〉〈ψ |‖1 = μ−1‖μρ2 − μ|ψ〉〈ψ |‖1, (F17)

= μ−1‖(1 − k−1 − μ)|ψ〉〈ψ |

+ ‖c‖2
1

k
σ‖1.

Substituting in the value of μ we find 1 − k−1 − μ =
−‖c‖2

1/k and so

‖ρ2 − |ψ〉〈ψ |‖1 = ‖c‖2
1

kμ
‖σ − |ψ〉〈ψ |‖1 ≤ 2

‖c‖2
1

k
,

(F18)

where we use the triangle inequality, ‖σ‖1 = 1 and

μ−1 ≤ 1. Substituting Eq. (F11) and Eq. (F18) into

Eq. (F5), completes the proof of the lemma.

APPENDIX G: SPARSIFICATION VARIANCE

BOUND

We now prove Lemma 18, the second lemma leading

to Theorem 16. Recall that given a state |ψ〉 = ∑
j cj |φj 〉,

where |φj 〉 are stabilizer states, we can obtain a sparsified

k-term approximation given by

|�〉 = ‖c‖1

k

k∑

α=1

|ωα〉, (G1)

where each |ωα〉 is chosen randomly so that |ωα〉 =
(cj /|cj |)|φj 〉 with probability pj = |cj |/‖c‖1. In general

|�〉 may not be conventionally normalized, but Lemma 18

upper bounds the variance of 〈�|�〉. We now prove

Lemma 18.

Proof of Lemma 18. In Ref. [25] it was shown that

μ = E[〈�|�〉] = ‖c‖2
1

k
+ ‖c‖2

1

k2
E (B) , (G2)

where B = ∑
α

∑
β �=α〈ωα|ωβ〉. Since |ωα〉 and |ωβ〉 are

independently sampled for distinct α and β, we get

E
(
〈ωα|ωβ〉

)
= E(〈ωα|)E(|ωβ〉) = 〈ψ |ψ〉

‖c‖1
2

. (G3)

We use similar proof techniques to bound E[〈�|�〉2], and

in turn bound the variance. We begin with

〈�|�2〉 = ‖c‖4
1

k4

⎛
⎝∑

α,β

〈ωα|ωβ〉

⎞
⎠

2

, (G4)

= ‖c‖4
1

k4

⎡
⎣∑

α

⎛
⎝〈ωα| +

∑

β �=α

〉〈ωα|ωβ〉

⎞
⎠
⎤
⎦

2

, (G5)

= ‖c‖4
1

k4
(k + B)2, (G6)

= ‖c‖4
1

k4
(k2 + 2kB + B2), (G7)

where in the second line we note that there are k terms in

the summation. Whereas from Eq. (G2) we have

E[〈�|�〉]2 = ‖c‖4
1

k4
[k2 + 2kE(B) + E(B)2]. (G8)

Comparing these expressions, for the variance we obtain

Var[〈�|�〉] = E[〈�|�〉2] − E[〈�|�〉]2, (G9)

= ‖c‖4
1

k4
[E(B2) − E(B)2]. (G10)

By counting terms in the summation B, and using the

relation, Eq. (G3), we find

E(B)2 = k2(k − 1)2

‖c‖4
1

. (G11)
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Expanding B2, we get

B2 =

⎛
⎝∑

α

∑

β �=α

〈ωα|ωβ〉

⎞
⎠
⎛
⎝∑

λ

∑

μ�=λ

〈ωλ|ωμ〉

⎞
⎠ (G12)

=
∑

(α,β,λ,μ)∈A
〈ωα|ωβ〉〈ωλ|ωμ〉 + B′, (G13)

where A denotes the set of all possible combinations

(α, β, λ, μ) where all four indices are distinct, and B′

denotes the remaining terms where at least two of the

indices are the same. Now, if (α, β, λ, μ) are all distinct,

then 〈ωα|ωβ〉 and 〈ωλ|ωμ〉 are independent random vari-

ables, so E(〈ωα|ωβ〉〈ωλ|ωμ〉) = E(〈ωα|ωβ〉)E(〈ωλ|ωμ〉).
This yields

E(B2) = k(k − 1)(k − 2)(k − 3)

‖c‖4
1

+ E(B′). (G14)

Substituting Eqs. (G11) and (G14) back into Eq. (G10), we

obtain

Var[〈�|�〉] = ‖c‖4
1

k4
E(B′) − k(k − 1)(4k − 6)

k4
. (G15)

We now consider terms 〈ωα|ωβ〉〈ωλ|ωμ〉 in the expan-

sion of B2 where (α, β, λ, μ) are not all distinct. We use

the notation Bj =k to indicate the sum of all terms where

indices j and k are equal but all others are distinct, e.g.,

Bλ=α = ∑
α,β,μ〈ωα|ωβ〉〈ωα|ωμ〉, where the summation is

over terms such that α, β, and μ are all distinct, and so on.

There are k(k − 1)(k − 2) terms in each summation of this

type. Similarly for the terms sharing two pairs of indices,

we use the notation Bλ=α;μ=β = ∑
α �=β〈ωα|ωβ〉〈ωα|ωβ〉.

These summations comprise of k(k − 1) terms. From

Eq. (G12), we never have terms where α = β or λ = μ.

We can therefore write

B′ = Bλ=α + Bμ=α + Bλ=β + Bμ=β + Bλ=α;μ=β

+ Bμ=α;λ=β . (G16)

One can check that E[B∗
λ=α] = E[Bμ=β] and E[B∗

μ=α] =
E[Bλ=β]. Therefore,

E[B′] = 2Re{E[Bλ=β] + E[Bμ=β]} + E[Bλ=α;μ=β

+ Bμ=α;λ=β]. (G17)

Next we note that

E[Bλ=β] =
∑

α

∑

β �=α

∑

α �=μ�=β

E[〈ωα|ωβ〉〈ωβ |ωμ〉], (G18)

= k(k − 1)(k − 2)E[〈ωα|]E[|ωβ〉〈ωβ |]E[|ωμ〉],

= k(k − 1)(k − 2)

‖c‖2
1

〈ψ |σ |ψ〉, (G19)

where σ = E[|ωβ〉〈ωβ |] = ∑
j (|cj |/‖c‖1)|φj 〉〈φj |, since

the probability of sampling |ωβ〉〈ωβ | = |φj 〉〈φj | is defined

as pj = |cj |/‖c‖1. Next we consider E[Bμ=β]. Taking the

modulus and using the triangle inequality we obtain

|E[Bμ=β]| ≤
∑

α

∑

β �=α

∑

α �=λ �=β

E[|〈ωα|ωβ〉〈ωλ|ωβ〉|], (G20)

= k(k − 1)(k − 2)E[〈ωα|ωβ〉〈ωβ |ωλ〉], (G21)

= k(k − 1)(k − 2)

‖c‖2
1

〈ψ |σ |ψ〉. (G22)

Similarly, for the last two terms B′′ = Bλ=α;μ=β + Bμ=α;λ=β ,

we obtain

|E[B′′]| ≤
∑

α

∑

β �=α

E[|〈ωα|ωβ〉〈ωα|ωβ〉|], (G23)

+
∑

α

∑

β �=α

E[〈ωα|ωβ〉〈ωβ |ωα〉], (G24)

= 2
∑

α

∑

β �=α

E[〈ωα|ωβ〉〈ωβ |ωα〉]. (G25)

Using cyclicity of the trace get

E[〈ωα|ωβ〉〈ωβ |ωα〉] = E[Tr[〈ωα|ωβ〉〈ωβ |ωα〉]], (G26)

= Tr[E[|ωα〉〈ωα|ωβ〉〈ωβ |]], (G27)

= Tr[E[|ωα〉〈ωα|]E[|ωβ〉〈ωβ |]],
(G28)

= Tr[σ 2], (G29)

so that

|E[B′′]| ≤ 2k(k − 1)Tr[σ 2] ≤ 2k(k − 1). (G30)

Combining the results, Eqs. (G17), (G19), (G22),

and (G30), gives us

E[B′] ≤ 4
k(k − 1)(k − 2)

‖c‖2
1

〈ψ |σ |ψ〉 + 2k(k − 1). (G31)

Writing

C = ‖c‖1
2〈ψ |σ |ψ〉 = ‖c‖1

∑

j

|cj ||〈ψ |φj 〉|2 (G32)

and substituting the expression for E(B′) into Eq. (G15)

we obtain

Var[〈�|�〉] ≤4
k3 − 3k2 + 2k

k4
C + 2

‖c‖1
4

k2

(
1 − 1

k

)

− 4k3 − 10k2 + 6k

k4
, (G33)
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which to leading order in 1/k is

Var[〈�|�〉] ≤ 4(C − 1)

k
+ 2

(‖c‖2
1

k

)2

+ O

(
C

k3

)
,

(G34)

which gives us the general bound appearing in Lemma 18.

Clifford magic states are defined in Ref. [25] as those

pure states |ψ〉 that are stabilized by a group Q of Clifford

unitary operators whose generators take the form UXj U†,

where Xj is the Pauli X operator that acts on the j th qubit.

For such states, there exists [25] an optimal decomposition

|ψ〉 =
∑

q∈Q
cq|φq〉 = 1

|Q|〈ψ |φ0〉
∑

q∈Q
q|φ0〉, (G35)

where |φ0〉 is some stabilizer state that achieves the maxi-

mize possible value for |〈ψ |φ0〉|. If we take this decompo-

sition as the basis for our sparsification, then we have

‖c‖1 = |Q| · (|Q||〈ψ |φ0〉|)−1 = |〈ψ |φ0〉|−1 (G36)

and

σ =
∑

q∈Q
pqq|φ0〉〈φ0|q†, (G37)

where pq = |Q|−1. This yields

〈ψ |σ |ψ〉 =
∑

q∈Q
pq〈ψ |q|φ0〉〈φ0|q†|ψ〉, (G38)

=
∑

q∈Q
pq〈ψ |φ0〉〈φ0|ψ〉, (G39)

= |〈ψ |φ0〉|2 = 1

‖c‖1
2

, (G40)

where in the second line we use the Hermiticity of q and

q|ψ〉 = |ψ〉. This shows that for optimal decompositions

of Clifford magic states, C = 1, and leads to the simplified

bound

Var[〈�|�〉] ≤ 2

(‖c‖1
2

k

)2

+ 2

k3
. (G41)

�

Finally, we comment on the effect of the constant

C when |ψ〉 is not a Clifford magic state. Recall

that C can be written in terms of this expected over-

lap, C = ‖c‖1
2
E
[
|〈ψ |ω〉|2

]
, and enters into Theorem

16 via the critical precision δc = 8(C − 1)/‖c‖1
2. Con-

sider |ψ〉 = |ψ ′〉⊗N
where |ψ ′〉 are pure states. When

|ψ〉 is a product of N pure states, we can write each
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:= [cos(θ)|0 + sin(θ)|1 ]|θ

C = θ|σθ|θ ||c||21
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8

1

0
.1

1
8
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FIG. 8. The variable C as introduced in Eq. (G32) as a function

of the angle θ for a class of single-qubit states. This is the C value

for one copy of the state, for n copies we must raise to the nth

power. The prefactor C − 1 appears in Eq. (G33) and is impor-

tant because when C = 1, the variance scales asymptotically as

O(1/k2). We highlight two specific angles θ = {π/8, 0.1187}
that correspond to angles used in Fig. 6. For θ = π/8, we have

C − 1 = 0 and so the O(1/k2) is exact as can be seen in Fig. 6.

For θ = 0.1187, we have the maximal possible value of C and

Fig. 6 shows the maximal deviation from O(1/k2) scaling.

randomly sampled stabilizer state as |ω〉 = ⊗N
α=1|ωα〉,

where |ωα〉 are i.i.d. random vectors. It follows that

E
[
|〈ψ |ω〉|2

]
= (E

[
|〈ψ ′|ωα〉|2

]
)N . Since |ωα〉 are always

stabilizer states, when |ψ ′〉 are nonstabilizer states, we

have |〈ψ ′|ωα〉|2 < 1. Therefore, the threshold precision

δc < 8C/‖c‖2
1 = 8(E

[
|〈ψ ′|ωα〉|2

]
)N vanishes for large N

when |ψ〉 is a tensor product of N pure states. Moreover,

in Fig. 8 we plot values of C for a class of single-qubit

states, showing that C − 1 is close to zero even when N is

not large.

APPENDIX H: BIT-STRING SAMPLING

SIMULATOR TECHNICAL DETAILS

In this appendix, we give full pseudocode for our bit-

string sampling simulator (Algorithm 4), prove its validity

as a method to classically emulate sampling from the quan-

tum distribution P(�x) = Tr[��xρ], and analyze its runtime.

This constitutes a proof of Theorem 19. As described in the

main text, Algorithm 4 draws bit strings �x from a classical

distribution Psim(�x), using two subroutines from Ref. [25],

SPARSIFY and FASTNORM. As sketched in the main text,

our strategy is to define an idealized algorithm EXACT

where calls to FASTNORM are replaced by an oracle, which

can compute ‖��y |�〉‖ exactly for any unnormalized |�〉
and bit string �y. The algorithm EXACT draws from a dis-

tribution Pex(�x). We first show that Pex is δS-close to the

quantum distribution P. We then argue that the distribu-

tion Psim that Algorithm 4 draws from is ǫ-close to Pex.

Finally we optimize the choice of δS and ǫ and analyze the

runtime.

010345-37



JAMES R. SEDDON et al. PRX QUANTUM 2, 010345 (2021)

Algorithm 4. Bit-string sampling for mixed states.

EXACT is identical to our Algorithm 4, except where

our algorithm estimates probabilities ‖��y |�〉‖2 using

FASTNORM, EXACT computes them exactly. Therefore

EXACT first samples a state |ψj 〉 from the ensemble with

probability pj , and chooses a sparsification |�〉 = |�j ,l〉
with probability qj ,l = Pr(�j ,l|ψj ). Given the selected |�〉,
a bit string is sampled by choosing each bit in turn via a

series of conditional probabilities:

Pr(�x|�) = Pr(x1)Pr(x2|�x1) . . . Pr(xw|�xw−1), (H1)

= ‖��x|�〉‖2

‖|�〉‖2
= Tr

[
��x

|�〉〈�|
〈�|�〉

]
. (H2)

Here we use the notation �xm to denote the string comprised

of the first m bits of �x, so that ��xm = ⊗m
j =1|xj 〉〈xj | ⊗ 1n−m.

We take �x0 to be the empty string, so that ��x0
= 1. The

probability of choosing y ∈ 0, 1 for the mth bit, given

m − 1 bits already sampled, is computed as

Pr(y|�xm−1) = ‖�(x1,...,xm−1,y)|�〉‖2/‖��xm−1
|�〉‖. (H3)

Thus EXACT outputs bit strings X sampled from a distribu-

tion:

Pex(�x) =
∑

j

∑

l

pj qj ,l

‖��x|�j ,l〉‖2

‖|�j ,l〉‖2
, (H4)

=
∑

j

∑

l

pj qj ,l

Tr[��x|�j ,l〉〈�j ,l|]
〈�j ,l|�j ,l〉

,

= Tr

⎡
⎣��x

∑

j

pj

∑

l

qj ,l

|�j ,l〉〈�j ,l|
〈�j ,l|�j ,l〉

⎤
⎦ ,

= Tr

⎡
⎣��x

∑

j

pj E

( |�j 〉〈�j |
〈�j |�j 〉

)⎤
⎦ = Tr[��xρ

′],

where ρ ′ = ∑
j pj ρ

(j )

1 , and each ρ
(j )

1 given by

ρ
(j )

1 :=
∑

�

Pr(�|ψj )
|�〉〈�|
〈�|�〉 . (H5)

In other words ρ
(j )

1 is the expected sparsification given

target pure state |ψj 〉, as defined in Eq. (103). In

step 2, k is chosen so that by Theorem 16, we

have ‖ρ(j )

1 − |ψj 〉〈ψj |‖1
≤ δS + O(δ2

S), provided δS ≥ δc,

where δc is the critical precision. We return to the δS < δc

case at the end of this appendix. By the triangle inequality

we have

‖ρ ′ − ρ‖1 = ‖
∑

j

pj ρ
(j )

1 −
∑

j

pj |ψj 〉〈ψj |‖
1

, (H6)

≤
∑

j

pj ‖ρ(j )

1 − |ψj 〉〈ψj |‖1
, (H7)

≤
∑

j

pj [δS + O(δ2
S)] = δS + O(δ2

S). (H8)

Since Pex(�x) = Tr[��xρ ′] and for the quantum distribution

we have P(�x) = Tr[��xρ ′], It follows that ‖Pex − P‖1 ≤
δS + O(δ2

S).

It remains to show that using a sequence of calls to

FASTNORM, Algorithm 4 generates probability distribu-

tions Psim(x) that well approximate Pex(�x), where

Psim(�x) =
∑

j

pj qj ,lQj ,l(�x). (H9)

Here each Qj ,l(�x) is the probability of Algorithm 4 return-

ing �x given the sparsification |�j ,l〉. We now drop the

subscript as we consider a single sparsification |�〉. Recall

that FASTNORM takes as input error parameters pFN and

ǫFN, and unnormalized vectors ��y |�〉 with known k-term

stabilizer decomposition. Then with probability (1 − pFN)
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it outputs a random variable η that approximates ‖��y |�〉‖2

to within a multiplicative error of ǫFN:

(1 − ǫFN)‖��y |�〉‖2 ≤ η ≤ (1 + ǫFN)‖��y |�〉‖2. (H10)

Algorithm 4 approximates the chain of conditional prob-

abilities H1 by calls to FASTNORM. The probability of

choosing y ∈ {0, 1} for the mth bit of �x, conditioned on the

first m − 1 bits being �xm−1 is therefore bounded as

ǫ−
‖�(�xm−1,y)|�〉‖2

‖��xm−1
|�〉‖2

≤ Pr(y|�xm−1) ≤ ǫ+
‖�(�xm−1,y)|�〉‖2

‖��xm−1
|�〉‖2

,

with probability (1 − pFN)2, where

ǫ± = 1 ± ǫFN

1 ∓ ǫFN

. (H11)

So, given a particular sparsification |�〉, the w bit string �x
is sampled from a distribution Q(�x), which satisfies

w∏

m=1

ǫ−
‖��xm |�〉‖2

‖��xm−1
|�〉‖2

≤ Q(�x) ≤
w∏

m=1

ǫ+
‖��xm |�〉‖2

‖��xm−1
|�〉‖2

with probability at least (1 − pFN)2w. This simplifies to

(1 − ǫFN)w‖��x|�〉‖2

(1 + ǫFN)w‖|�〉‖2
≤ Q(�x) ≤ (1 + ǫFN)w‖��x|�〉‖2

(1 − ǫFN)w‖|�〉‖2
.

(H12)

One can check that (1 + ǫFN)w/(1 − ǫFN)w ≤ 1 + 3wǫFN,

whenever ǫFN ≤ 1/5, and the analogous result holds

for the lower bound. Therefore, Qj ,l(�x) approximates

‖��x|�j ,l〉‖2/‖|�j ,l〉‖2 up to multiplicative error 3wǫFN.

Comparing Eq. (H4) with Eq. (H9), we therefore obtain

(1 − 3wǫFN)Pex(�x) ≤ Psim(�x) ≤ (1 + 3wǫFN)Pex(�x).
(H13)

If we want to bound the total multiplicative error due to

the sequence of calls to FASTNORM to ǫ, then we must set

ǫFN = ǫ/(3w). It then follows that

‖Psim − Pex‖1 ≤ ǫ. (H14)

In the first part of the proof we show that ‖Pex − P‖1 ≤
δS + O(δ2

S) (provided we are above the critical precision

threshold δc). Combined with Eq. (H14), we obtain

‖Psim − P‖1 ≤ ǫ + δS + O(δ2
S), (H15)

where P(�x) = Tr[��xρ].

Similarly the error bound given above is only obtained

with probability (1 − pFN)2w ≈ 1 − 2wpFN, so to obtain

the above closeness in ℓ1 norm, with failure probability

at most pfail, we must set pFN = pfail/(2w). If we select

the state |ψj 〉 in step 1, then k ≤ 4‖c(j )‖2

1δ
−1
S + 1. To

return a single bit string �x there are at most 2w calls

to FASTNORM, so the runtime is O(wkn3ǫ−2
FN log p−1

FN ) =
O[w3n3‖c(j )‖2

1δ
−1
S ǫ2 log(w/pfail)]. Recall that the statement

of the theorem defined the quantity �̃ = ∑
j pj ‖c(j )‖1

2
,

so that the time T to obtain a single bit string is non-

deterministic. The expected (average-case) runtime is

O[w3n3�̃δ−1
S ǫ2 log(w/pfail)]. If the decomposition is opti-

mal with respect to the monotone �, then we have

�̃ = �(ρ) and the average-case runtime is O[�(ρ)].

For equimagical states, �(ρ) = ξ(ψj ) for all j , and this

expression becomes the worst-case runtime.

We now optimize the choice of δS and ǫ. Setting the total

error budget δ = δS + ǫ, by inspecting the runtime we find

that the best constant is obtained by setting δS = δ/3 and

ǫ = 2δ/3. The constraint δS ≥ 8D therefore becomes δ ≥
24D. Substituting the optimal choice of δS and ǫ into the

expected runtime, we obtain

E(T) = O[w3n3�̃δ−3 log(w/pfail)]. (H16)

The above holds for the case where the sparsification

error δS is no smaller than a critical value δc = 8(Cj −
1)/‖c(j )‖2

1, where Cj = ‖c(j )‖1

∑
r |cr||〈ψj |φr〉|2 is defined

for the randomly chosen pure state |ψj 〉. Therefore, to

ensure we are above the critical error regime for any

|ψj 〉, we can require that δS ≥ 8D, where D = max{(Cj −
1)/‖c(j )‖1

2}. This entails δ ≥ 24D for the overall preci-

sion.

Now suppose that we want to achieve arbitrary preci-

sion, δ < 24D. In this regime, one can amend the expres-

sion for k in step 2 to achieve any desired precision, at the

cost of slightly poorer scaling in the runtime. We first use

Lemmas 17 and 18 to obtain a sharpened bound on the

sparsification error:

δS ≤ 2
‖c(j )‖1

2

k
+
√

‖c(j )‖2
1

k

√
4D + 2

‖c(j )‖2
1

k
+ O

(
1

k2

)
.

(H17)

When δS ≪ 8D, we can achieve a precision of δS by

choosing

k ≈ 4‖c(j )‖2
1

(
D

δ2
S

+ 1

δS

)
+ O(1). (H18)

Substituting the revised expression for k into the expected

runtime, with δS = δ/3 and ǫ = 2δ/3, we obtain

E(T) = O[w3n3�̃(δ−3 + 3Dδ−4) log(w/pfail)]. (H19)

Here we recover the same asymptotic δ−3 scaling

as derived from the original BBCCGH sparsification
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lemma [25]. However, the prefactor from this prior work

was two, whereas our prefactor D is typically exponen-

tially small in the number of qubits (see Appendix G).

Therefore, at intermediate precision, the δ−4 term may still

dominate. When the target precision δ is too small, our

bound on the required k exceeds the number of terms in

the exact decomposition of |ψ〉 [i.e., the decomposition

achieving the stabilizer rank χ(ψ)]. In this scenario, using

a sparsified approximation in both our approach and in

Ref. [25] has no benefit, and one should instead use an

exact decomposition without any sparsification.
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