
This is a repository copy of A novel approach to PFC for nonlinear systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/187722/

Version: Accepted Version

Article:

Rossiter, J. orcid.org/0000-0002-1336-0633, Aftab, M.S., Panoutsos, G. orcid.org/0000-
0002-7395-8418 et al. (1 more author) (2022) A novel approach to PFC for nonlinear 
systems. European Journal of Control, 68. 100668. ISSN 0947-3580 

https://doi.org/10.1016/j.ejcon.2022.100668

© 2022 European Control Association. This is an author produced version of a paper 
subsequently published in European Journal of Control. Uploaded in accordance with the 
publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND 
licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A novel approach to PFC for nonlinear

systems

John Anthony Rossiter a Muhammad Saleheen Aftab a

George Panoutsos a Oscar Gonzalez-Villarreal b

aDepartment of Automatic Control and Systems Engineering, University of
Sheffield, Sheffield, S1 3JD, UK (e-mail: j.a.rossiter@sheffield.ac.uk,

msaftab1@sheffield.ac.uk,g.panoutsos@sheffield.ac.uk)
bSchool of Aerospace, Transport and Manufacturing Centre for Autonomous and

Cyber-Physical Systems, Cranfield University, UK, (email:
Oscar.Gonzalez-Villarreal@cranfield.ac.uk)

Abstract

This paper proposes a computationally efficient predictive control law for non-linear
systems, that is one that can easily be coded and implemented on low cost hardware.
Moreover, it has a secondary core benefit that the core tuning parameter reduces
to a single choice which is: how much faster than open-loop would you like the
closed-loop to converge? Conceptually the approach builds on the PFC approach
but proposes a very different type of coincidence condition which removes the lag
associated to the conventional approach. Simulations demonstrate that for some
non-linear systems this is a cheap and simple way of ensuring effective feedback,
with constraint handling. 1

Key words: Predictive functional control, computational efficiency, transparent
tuning, nonlinear systems.

1 Introduction

Model predictive control (MPC) [1] is very popular in both the industrial [2,3]
and academic communities [4–6]. This is because it makes good intuitive
sense combined with delivering reliable results for MIMO (multi-input-multi-
output) systems and managed constraint handling. Moreover, although rarely

1 This is a slightly extended and corrected version of the paper which appeared at
the European Control Conference, 2022.
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discussed carefully [7], it also has the potential to handle future target infor-
mation systematically.

Nevertheless, despite the popularity and effectiveness, MPC is still not widely
deployed on low level loops where PID continues to dominate. This is as ex-
pected. PID tuning [8, 9] is simple enough to be handled without recourse to
expensive consultants and moreover, for many practical feedback loops, deliv-
ers performance that is adequate. Of course, in addition and critically, PID
is much cheaper to purchase, code and implement than MPC in general and
thus there needs to be a significant potential benefit before a more expensive
alternative would be considered.

This paper focuses on one notable exception to the above observations. There
are some SISO (single-input-single-ouput) loops where a simple PID imple-
mentation does not deliver adequate performance, perhaps due to challenging
dynamics or perhaps due to the need for constraint handling. In such a case, a
cheap MPC approach would be competitive in both price and complexity and
indeed this is what has been noticed by PFC (predictive functional control)
vendors [10, 11] over many years. More specifically:

(1) Being model based, PFC is able, in principle, to exploit model information
more systematically than PID and thus improve closed-loop behaviour.

(2) Being prediction based, again in principle, PFC can handle constraints
systematically.

Nevertheless, the reader will note the use of words in principle to clarify the
above statements. A large number of recent works have investigated the tuning
[12–15] and constraint handling [6, 17] of PFC and made a number of useful
observations and contributions:

• The original PFC algorithm is effective with processes having over-damped
behaviour, but tuning is much more difficult with other dynamics.

• Recent work has suggested a number of modified PFC algorithms which
are more reliable, consistent and enable better links between the tuning
parameters and behaviour.

• The constraint handling in the original PFC algorithm was more akin to
approaches used in PID and thus suboptimal at best. Using predictions
more systematically is straightforward and enables far better results while
still requiring no optimisation.

One of the weaknesses in conventional PFC is the use, in predictions, of a fixed
future input whereas it is well known (e.g. [15]) that more nuanced parame-
terisations of the future input sequence are helpful. A very recent work [18]
demonstrated how a very simple PFC algorithm could combine steady-state
estimates with a simple exponential parameterisation to give intuitive and
effective tuning. This work, for now considered only the linear case whereas,
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the original creators of PFC saw one huge advantage of the simplicity of the
algorithm being in its potential usage with non-linear systems. The reader
may note that nonlinear MPC (NLMPC) in the literature is largely both
complex and computationally demanding [19]. Hence, the core contribution of
this paper is to demonstrate how this recent new PFC approach [18] can be
adapted to the nonlinear case and implemented with almost negligible comput-
ing and complexity, certainly when compared to more conventional NLMPC
algorithms [19].

The paper is organised as follows. Section 2 gives core background on both
PFC and the recent proposed algorithm. Section 3 shows how this algorithm
can be modified for the nonlinear case. Section 4 presents a case study on a
mixing tank with an endothermic reaction and the paper finishes with some
numerical results and conclusions.

2 Background on PFC

2.1 System definition

The non-linear system will be taken to be of the form:

ẋ = f(x, u) (1)

with state x and input u (dimensions nx, nu respectively) and f(.) is differ-
entiable. This paper assumes this model can be approximated, at individual
sample times, by a discrete linear time varying state-space model:

xk+1 = Akxk +Bkuk (2)

More discussion of the linearisation and the use of deviation variables is in
section 3.

In practice model (1) is an approximation, so we need to allow for some un-
certainty. Here we use standard practice in the literature and define the true
process state to be xp and thus the error term xe, at each sample, is given as:

xe,k = xp,k − xk (3)

As is standard practice in the MPC literature, the error term is used to ensure
unbiased prediction and offset free tracking and caters for both parameter
uncertainty and disturbances. It assumes that the relevant true state xp,k at
the current sample can be measured.
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2.2 System prediction

Prediction is well known [6] so details are omitted here. It is sufficient that the
reader recognises that with LTV model (2), or indeed similar models, one can
easily deduce n-step ahead output predictions as follows, for suitable H,P, L
(dimensions implicit from the context).

x
→k+1|k

= Hu
→k

+ Pxk + Ldk (4)

where dk = xe,k and

uk
→

=













uk

uk+1

...

uk+n−1













; x
→k+1|k

=













xk+1|k

xk+2|k

...

xk+n|k













and L is a vector of ones. In the non-linear case, H,P will be time varying
and need to be updated every sample, as seen in section 3.

2.3 Conventional PFC control law

This is presented for completeness only and thus very briefly. Conventional
PFC is based on the premise of matching the output prediction to a first
order response with a given time constant. Hence, assuming the steady-state
target is a constant R, define define a target trajectory during transients rk+i|k

as:

rk+i|k = (1− λi)R + λixp,k, i = 1, 2, · · · (5)

The PFC control law is determined by ensuring that xk+n|k = rk+n|k and thus,
in effect, substitution of (4) into (5) and solving for the degree of freedom
which typically is the future value of the input (assumed constant).

However, as mentioned in the introduction [12, 14, 18], this algorithm often
fails to give reliable behaviour in that the main tuning parameter λ is often
ineffective and indeed, for some open-loop dynamics it is difficult to gain
satisfactory beahviour. Thus, some simple alternatives have been proposed
and hereafter we introduce one of these.
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2.4 Open-loop dynamics PFC (OL)

The simplest predictive algorithm is one which makes no attempt to change the
dynamics and focuses solely on ensuring offset free tracking. Such an algorithm
is summarised as:

uk = E[uss] (6)

where E[uss] is the expected steady-state input.

This algorithm gives a useful benchmark for more computationally demanding
algorithms, and is especially useful when the open-loop dynamics are benign
because it gives a very simple and effective control law. Hence, one would
embellish this control law if and only if one wanted faster settling times or a
slower change of the input.

Remark 1 This control law is very simple to code and implement as no de-
tailed prediction is needed, rather just a mechanism to estimate uss. Thus it
provides a route to computationally efficient control of non-linear systems

2.5 Speeding up OL PFC with exponential input parameterisations

In order to speed up the response it is necessary to over actuate during tran-
sients. A simple over-actuation strategy [17, 18] is to parameterise the future
inputs as follows:

uk = uss + λkη; {0 < λ < 1} ⇒ lim
k→∞

uk = uss (7)

This has a single degree of freedom (d.o.f.), that is η and thus is amenable to
simple optimisation. The parameter λ should be chosen sympathetically with
the open-loop dynamics and desired closed-loop dynamics, that is, to converge
in a roughly equivalent period; typically chosen the same as in (5).

The selection of η is critical, and hence it was proposed [16] to ensure the
associated predictions converge a factor S faster than those associated to the
use of (6) alone. The conceptual steps are summarised next.

Algorithm 1 PFC algorithm to speed up predicted convergence by a factor of
S.

(1) Determine the n-step ahead error Eo between the prediction and target
using control law (6).

(2) Determine the n-step ahead error Eη(η) between the prediction and target
using control law (7). This depends on η.
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(3) Choose η such that SEη(η) = Eo where S is a design speed-up factor to
be selected.

The algorithm is presented conceptually because, in the non-linear case there
will not be fixed algebraic computations for the terms Eo or indeed Eη(η) and
these will need to computed online each sample. However, it is critical to note
that the d.o.f. η is a single variable and thus easy to determine efficiently; this
will be evident in the numerical examples shown later.

A further important observation is that the tuning is now based on a simple
intuitive statement: how much faster than open-loop dynamics would you like
to be?

Remark 2 In the linear case, because explicit and fixed algebraic relationships
are possible, it is possible to make the tuning even more precise as discussed
in [16]. Here we are extending and applying the concept to the non-linear case
where relationships are time varying, and thus those additional steps are not
considered for now. Of specific interest one should note that the actual closed-
loop speed-up achieved will be different to the ratio of the prediction errors
SEη(η) = Eo so some offline analysis will be needed.

2.6 Constraint handling

One can incorporate constraint handling into Algorithm 1 in a systematic
and computationally simple way by comparing system predictions against
constraints for a sufficiently large horizon; this is standard in the literature
[6, 18, 20].

u ≤ uk ≤ u

∆u ≤ ∆uk ≤ ∆u

x ≤ yk ≤ x

(8)

Critically it is noted that as the predictions have a single d.o.f. η, the selection
of η can be determined using a simple for loop and thus done very efficiently.
One might also note that with (7) the maximum input and input rate will
occur at the first or second sample, and thus the number of inequalities to be
checked for the input constraints is very small.

Remark 3 Constraints limit the input amplitudes available and thus will also
impact on the speed-up achievable in some scenarios, especially with large
changes in target.
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2.7 Summary of proposed algorithm

This section has summarised the core conceptual steps and algebra needed to
implement the proposed algorithm 1. The user needs to define the following
design parameters.

(1) What is the prediction horizon n? Good practice [12] suggests something
like 2 time constants.

(2) What is the speed up factor S? Clearly this depends entirely on what the
user wants but we would not expect much bigger than 2-3 or significant
over actuation is inevitable and this is rarely implementable in practice.

(3) The parameter λ used in (7) is needed. Typically this should be close to
the target closed-loop pole and partially overlaps with the choice of n.

Having defined the core parameters, the remaining steps are linked to compu-
tation of the expected errors which is discussed in the following sections.

The reader should be reminded however that a core requirement for the efficacy
of the proposed approach is that the open-loop behaviour is broadly acceptable
(that is almost meets the performance requirements) so can be used as a valid
benchmark.

3 Background on linearisation and prediction with non-linear mod-

els

In NLMPC it is necessary to form predictions for a non-linear model. As PFC,
by design, is intended to be simple, here we take a very simple approach to
this process, accepting that more accurate but also more demanding numerical
integration approaches are possible.

3.1 Linearisation about a trajectory

Hence, we use superposition to find predictions by separating the nominal
trajectory (xk, uk) from the deviations part. It is implicit hereafter that the
nominal or baseline trajectory is that associated to input prediction (6).

(1) Simple difference equations are used to simulate the non-linear model and
thus to form a baseline prediction based on some assumed future input.
Let these values be: xk, uk for states xk and inputs uk and k the sample
number.
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(2) The model is linearised about all points xk, uk on the baseline prediction
to form state-space models of the form:

δẋk = Akδxk +Bkδuk (9)

where δxk = x̂k − xk, δuk = ûk − uk are deviations relative to the base-
line prediction and Ak, Bk are the linearised model parameters at the
kth sample of the baseline prediction. The full predicted state and input
values are x̂k = xk + δxk, ûk = uk + δuk.

Remark 4 In order to derive the matrices Ak, Bk, we need to undertake par-
tial differentiation of a model which is based on the first derivative, for exam-
ple, assume that:

˙̂x = f(x̂, û) ≈ f(x, u) +
∂f

∂x
δx+

∂f

∂u
δu (10)

˙̂x = f(x̂, û); ˙̂x = ẋ+ ˙δx = f(x, u) + ˙δx (11)

δẋ =
∂f

∂x
δxk +

∂f

∂u
δuk = Akδxk +Bkδuk (12)

3.2 Prediction using deviation variables

Once one has determined the models (9) for a notional trajectory, one can
easily determine the impact of small deviations in the input, that is δuk 6= 0.
Predictions can be found by recursive use of (9) as follows:

δẋk ≈
δxk+1

δt
= Akδxk +Bkδuk (13)

Summarising one deduces (for suitable period δt):

δxk+1 ≈ [Akδxk +Bkδuk]δt (14)

δxk+2 ≈ [Ak+1δxk+1 +Bk+1δuk+1]δt

δxk+3 ≈ [Ak+2δxk+2 +Bk+2δuk+2]δt
...

Next, making substitutions and assuming that δxk = 0:

8



δxk+1 ≈ [Bkδuk]δt (15)

δxk+2 ≈ [Ak+1Bkδukδt+Bk+1δuk+1]δt

δxk+3 ≈ [Ak+2[Ak+1Bkδukδt+Bk+1δuk+1]δt

+Bk+2δuk+2]δt
...

3.3 Prediction with input parameterised using an exponential

The predictions of (15) are somewhat clumsy to use, but in the context of the
PFC algorithm to be used here, the predicted input (7) has been parameterised
as follows:

δuk+i = λiη (16)

for a given λ and η the d.o.f. to be selected online. Substitute (16) into (15)
then:

δxk+1 =Bkδt
︸ ︷︷ ︸

αk

η (17)

δxk+2 = [Ak+1αk +Bk+1λ]δt
︸ ︷︷ ︸

αk+1

η

δxk+3 = [Ak+2αk+1 +Bk+2λ
2]δt

︸ ︷︷ ︸

αk+2

η

...

δxk+n+1 = [Ak+nαk+n−1 +Bk+nλ
n]δt

︸ ︷︷ ︸

αk+n

η

It is noted that the main computation here is the simple recursion of:

αk+n = [Ak+nαk+n−1 +Bk+nλ
n]δt (18)

Algorithm 2 Predictions for the non-linear model ẋ = f(x, u) with input
parameterisation (16) are computed as follows:

(1) Estimate the required steady-state input uss and simulate the model ẋ =
f(x, u) forward (using numerical integration) over the required horizon
using uk = uss, ∀k > 0.

(2) For the nominal trajectory (xk, uk) determined in step 1, form the matri-
ces Ak, Bk at every sample using:

Ak =
∂f

∂x
; Bk =

∂f

∂u
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(3) Use recursion (17) to determine αk+n for the required horizon n. The
n-step ahead predictions for the state are now given as:

x̂k+n = xk+n + αk+nη (19)

Remark 5 It is implicit from the use of first order Taylor series and simple
difference equations for the numerical integration that the trajectories do not
deviate a long way from the baseline. If they do, then the approximation errors
would grow and could impact on behaviour. This means the sample period δt
should be small enough.

We can define the final algorithm more precisely.

Algorithm 3 The PFC algorithm 1 can be combined with Algorithm 2 as
follows.

(1) Find the baseline trajectory (xk, uk) using (6) and also the associated state
space matrices (12) and prediction (19).

(2) Determine the n-step ahead error Eo = R− xk+n.
(3) Determine the n-step ahead error Eη(η) = R− x̂k+n.
(4) Choose η such that SEη(η) = Eo:

S[R− xk+n − αk+nη] = R− xk+n (20)

(5) The control value to be implemented at the current sample is: uk = uss +
λ0η.

4 Description of case study

This section describes a simple mixing tank with an endothermic reaction.
Chemical A is produced by a reaction in the tank, but this reaction is en-
dothermic thus cooling down the tank contents. The rate of reaction is also
temperature dependent (the main non-linear characteristic), so to maximise
the reaction rate, the temperature needs to be maintained and thus heat must
be supplied. Consequently, the tank can be described by two equations, one
for the concentration and a second for the temperature. The objective is to
control the concentration (output CA) by manipulation of supplied heating
(input W ).
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4.1 Core model equations

The concentration model depends on the flow rates into and out of the tank
(assumed equal) and the reaction rate:

V
dCA

dt
= γCAV e0.05(T−Ti) + F (CA0 − CA) (21)

where V is tank volume, F is the flow rate, T is the temperature in the
tank (assume well mixed), Ti is the temperature of the in flow, CA0 is the
concentration of the inflow and CA is the concentration in the tank. The
variable γ is linked to the reaction rate.

The basic heat equation is:

V ρCp

dT

dt
= FρCp(Ti − T )− β[γCAV e0.05(T−Ti)] +W (22)

where ρ is fluid density, Cp is fluid heat capacity, W the heat supply and β a
variable linked to the rate of reaction and thus how much heat is absorbed by
the reaction.

For convenience, the model equations (21),(22) can be re-arranged as follows.

dCA

dt
= γCAe

0.05(T−Ti) +
F

V
(CA0 − CA) (23)

dT

dt
=

F

V
(Ti − T )− β[

γ

ρCp

CAe
0.05(T−Ti)] +

W

V ρCp

(24)

For the purposes of this paper the following values were used: ρ = 103kgm−3, Cp =
4000J/kgdeg, V = 5m3, F = 0.01m3s−1, β = 107deg, γ = 0.005s−1, Ti =
20deg. It is also noted that the inlet concentration and inlet temperature are
not considered to be degrees of freedom in this paper.

4.2 Steady-state estimates

For the proposed algorithm, we need to determine an estimate of the steady-
state, assuming that the provided heating is constant, that is W = Wss.
Moreover, assume that the required steady-state concentration is known as
CA,ss. There will be an implied steady-state temperature Tss.

A steady-state exists if the derivatives in (23),(24) are zero:

0 = γCA,sse
0.05(Tss−Ti) +

F

V
(CA0 − CA,ss) (25)
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0 =
F

V
(Tss − Ti)− β[

γ

ρCp

CA,sse
0.05(Tss−Ti)] +

Wss

V ρCp

(26)

Using (25) to solve for the steady-state temperature gives:

e0.05(Tss−Ti) = −
F

V

(CA0 − CA,ss)

γCA,ss

(27)

(Tss − Ti) = 20 log

(

F

V

(CA,ss − CA0)

γCA,ss

)

(28)

Now we can use (26) and (28) to find the required power input to maintain
this temperature.

β[γV CA,sse
0.05(Tss−Ti)]− FρCp(Tss − Ti) = Wss (29)

4.3 Linearisation of case study

It is clear that both model equations (23), (24) take the form:

ẋ = f(x, u); x =






CA

T




 ; u = W (30)

Hence we can linearise as in section 3. The partial derivatives can be computed
as follows:

∂

∂CA

(ĊA) = γe0.05(T−Ti) −
F

V
(31)

∂

∂T
(ĊA) = 0.05γCAe

0.05(T−Ti) (32)

∂

∂CA

(Ṫ ) = −β[
γ

ρCp

e0.05(T−Ti)] (33)

∂

∂T
(Ṫ ) = −

F

V
− 0.05β[

γ

ρCp

CAe
0.05(T−Ti)] (34)

The corresponding linearised state-space model is given as:

Ak =






∂
∂CA

(ĊA)
∂
∂T

(ĊA)

∂
∂CA

(Ṫ ) ∂
∂T

(Ṫ )




 ; Bk =






0

1
V ρCp




 (35)

In summary, the parameters needed for (17) depend upon the current values
of CA, T as evident from (31)-(34) and thus can easily and quickly be updated
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with the values in (xk, uk) as required. Consequently the prediction equations
outlined in Algorithm 2 and used in (20) of Algorithm 3 can be determined.

5 Simulation results

This section demonstrates the efficacy of the proposed Algorithm 3 on the
case study given in section 4. A core selling point is the intuitive nature of the
tuning whereby one can request performance as a relative measure compared
against open-loop behaviour, the so called speed up factor. A second selling
point is the computational simplicity; the main computing requirement is the
recursion in (17) which, in terms of modern computing, is not significant.

This section will present results for the nominal case and also with significant
parameter uncertainty to demonstrate that, as expected with most MPC ap-
proaches, the algorithm is robust to some uncertainty. We also include some
comparisons with a conventional NMPC approach to highlight some of the
differences.

5.1 Open-loop behaviour

In order to form a benchmark, this section begins by demonstrating the per-
formance achieveable with control law (6) which ensures offset free tracking
with open-loop dynamics. The corresponding behaviour is shown in Figure 1
where it is clear that:

• The settling time is around 2000 sec.
• There is no offset in CA.
• The closed-loop input signal W is constant.

To demonstrate the impact of uncertainty, the true plant parameters are
changed slightly from those in subsection 4.1 to: V = 4.9m3, F = 0.012m3s−1, β =
1.1 × 107deg, , Ti = 21deg. The corresponding simulation is given in Figure
2. Unsurprisingly the behaviour is slightly different, but again there is no off-
set in the steady-state but now the feedback takes a while to determine the
correct steady-state value for W which slows down the overall settling time.

5.2 Speeding up behaviour

Next we deploy Algorithm 3 and use a target speed up of a factor of β = 2
with n = 15, λ = 0.9 and sampling period of 5s. The corresponding behaviour
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Fig. 1. Closed-loop responses for the nominal case using control law (6).
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Fig. 2. Closed-loop responses for the robust case using control law (6).

for the nominal case is shown in Figure 3 alongside the results for β = 1 where
it is clear that:

• The Settling time is closer to 1000 sec and thus nearly twice as fast as in
Figure 1.

• There is no offset.
• The closed-loop input signal is very aggressive (off the scale) and indeed the
transient temperature has risen by nearly 20 degrees to facilitate the faster
rise in the reaction rate.

Similar observations arise in the uncertain case as seen in Figure 4. The speed
up is achieved as requested, alongside offset free tracking, but at the expense
of aggressive heating during transients.
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Fig. 3. Closed-loop responses for the nominal case using control law (20) alongside
the open-loop behaviour.
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Fig. 4. Closed-loop responses for the uncertain case using control law (6).

5.3 Constraint handling

For completeness, Figure 5 gives a simulation for the uncertain case and with
some input constraint handling to demonstrate that this is straightforward
to implement. Here we implement a reasonable upper limit on the heating
available to be not significantly bigger than the steady-state requirements.
Unsurprisingly this results in a slight slow down in performance, that is, the
target speed up of a factor of 2 is not achievable in this case.

5.4 Off-the shelf NMPC

For completeness we illustrate the differences with a much more expensive
and complicated off-the-shelf NMPC approach in Figure 6. In this case the
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Fig. 5. Closed-loop responses for the uncertain case using control law (6) and with
input saturation.

user is able to change the performance index weights to achieve different per-
formances, so we show how simple changes to the input weighting lead to
different closed-loop behaviours. Nevertheless, what is most interesting here is
that: i) the overall speed of response and smoothness of the output behaviour
is similar to PFC and ii) NMPC is much less aggressive in its use of the heat-
ing and indeed more flexible in general to tune and trade-off the input and
output behaviour.

Fig. 6. Closed-loop responses for the uncertain case using NMPC and three alterna-
tive choices of weights (solid, dashed and dotted refer to different weighting choices).

6 Conclusions and future work

This paper has modified a recently proposed PFC Algorithm for the non-linear
case and demonstrated that it can be applied affectively. The algorithm de-

16



ploys an intuitive tuning factor, denoted speed-up, which is easy for workers
to relate to and thus negates the need for experts to manage the implementa-
tion. The user can easily explore the impact of different speed-up choices on
other aspects of behaviour such as input activity and decide upon the desired
trade-off.

Other core benefits are that, despite being a full non-linear control law, the
required on-line computations are relatively minor and thus can easily be
coded in low cost processors. Also, in line with other predictive control laws,
the incorporation of systematic constraint handling is straightforward and can
be managed with a simple for loop. Moreover, the algorithm demonstrates the
expected robustness to some parameter uncertainty similarly to other MPC
approaches.

Future work will look at whether this concept can be usefully applied to sce-
narios where the model and measurement information is less precise, or fuzzy,
such as where feedback is based on images rather than specific numerical val-
ues. It is also important to present a more complete and balanced comparison
with tuning using alternative and conventional PFC approaches and this con-
stitutes work in progress.

Funding: EPSRC Future Manufacturing Hub - Manufacture using Advanced
Powder Processes (MAPP) through grant EP/P006566/1.
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