
This is a repository copy of DAG Scheduling and Analysis on Multi-core Systems by
Modelling Parallelism and Dependency.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/187710/

Version: Accepted Version

Article:

Zhao, Shuai, Dai, Xiaotian orcid.org/0000-0002-6669-5234 and Bate, Iain John
orcid.org/0000-0003-2415-8219 (2022) DAG Scheduling and Analysis on Multi-core
Systems by Modelling Parallelism and Dependency. IEEE Transactions on Parallel and
Distributed Systems. 9779935. ISSN 1558-2183

https://doi.org/10.1109/TPDS.2022.3177046

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

DAG Scheduling and Analysis on Multi-core Systems by Modelling

Parallelism and Dependency

Shuai Zhao, Xiaotian Dai, Iain Bate
Department of Computer Science, University of York, UK

{shuai.zhao, xiaotian.dai, iain.bate}@york.ac.uk

Abstract—With ever more complex functionalities being implemented
in emerging real-time applications, multi-core systems are demanded for
high performance, with directed acyclic graphs (DAG) being used to
model functional dependencies. For a single DAG task, our previous
work presented a concurrent provider and consumer (CPC) model that
captures the node-level dependency and parallelism, which are the two
key factors of a DAG. Based on the CPC, scheduling and analysis methods
were constructed to reduce makespan and tighten the analytical bound of
the task. However, the CPC-based methods cannot support multi-DAGs as
the interference between DAGs (i.e., inter-task interference) is not taken
into account. To address this limitation, this paper proposes a novel multi-
DAG scheduling approach which specifies the number of cores a DAG can
utilise so that it does not incur the inter-task interference. This is achieved
by modelling and understanding the workload distribution of the DAG
and the system. By avoiding the inter-task interference, the constructed
schedule provides full compatibility for the CPC-based methods to be
applied on each DAG and reduces the pessimism of the existing analysis.
Experimental results show that the proposed multi-DAG method achieves
an improvement up to 80% in schedulability against the original work
that it extends, and outperforms the existing multi-DAG methods by up
to 60% for tightening the interference.

I. INTRODUCTION

Driven by the demands of high performance and complex func-

tionalities, multi-core systems with complex computing models are

increasingly being deployed in real-time applications. The Directed

Acyclic Graphs (DAGs) are often used to model functional depen-

dencies between the parallel computation units in such systems [2].

Figure 1 provides an example DAG which contains eight nodes with

a set of edges. A node indicates a computation unit that must be

executed sequentially and a directed edge describes the execution

dependency of two nodes (e.g., node v5 and v7). Nodes with no

dependency can be executed in parallel, e.g., node v2, v3 and v4.

Many existing works use DAGs to model the system [3], [4], [5],

[6], [7], [8], [9]. For example, Verucchi et al. [3] models a complete

automotive task chain from perception to control as a DAG task.

v1 v4 v8

v5 v7

v3

v2

v6

Figure 1: An example DAG.

Focusing on a single recurrent DAG task, Zhao et al. [10] reduced

the makespan (i.e., the time interval between the start and finish of the

DAG execution) and provided a tight yet safe bound on the makespan,

compared to the state-of-art method in He et al. [1]. To achieve this,

a model named the Concurrent Producer and Consumer (CPC) was

developed in Zhao[10] to provide detailed knowledge of the node-

level parallelism and inter-node dependency of a DAG task, which are

the essence of the DAG topology. This paper was the first work that

fully exploited the node-level parallelism and inter-node dependency

of a DAG task to facilitate both schedule and analysis.

However, despite the reduced makespan and tighter analysis for a

single DAG task, the methods proposed in Zhao[10] can only support

executing one DAG at a time. This is because the limitation that

the CPC-based methods did not take into account the interference

between DAG tasks (i.e., inter-task interference). For systems with

multiple recurrent DAG tasks [1], [11], [12], methods in Zhao[10]

will lose their benefits as DAGs must be executed one by one in a

sequential fashion even if certain cores are idle during the execution

of a DAG, which results in a low schedulability. This limitation

imposes a significant barrier for the methods in Zhao [10] to be

applied on multi-DAG systems.

The principal contribution of this paper is a novel scheduling

approach for multiple sporadic DAGs which (i) is the first multi-

DAG method compatible with the CPC-based analysis constructed in

Zhao[10] and (ii) significantly reduces the pessimism of the analysis.

To achieve this, the following new contributions are made in Section

VII. To achieve this, the following new contributions are made in

Section VII:

• A Parallelism-aware Workload Distribution Model (P-WDM)

that describes the workload distribution of a DAG task when

executing on any given number of cores (Section VII-B).

• A P-WDM accumulation method that adds two P-WDMs under

a given number of cores. This enables the understanding of the

workload distribution of the system when multiple DAGs are

running in parallel (Section VII-C).

• An offline core assignment method that utilises the P-WDM to

determine the number of cores that a DAG can execute on so

that it (i) does not incur interference from other DAGs and (ii)

can meet its deadline. This method provides full compatibility

for the CPC-based methods in Zhao[10] on a multi-DAG system

and minimises the pessimism in the analysis (Section VII-D).

For each DAG in a hyper-period, the constructed schedule first

specifies the number of cores it can utilise based on the P-WDM

model of the task and the current system. This avoid the inter-

task interference between DAGs during execution. Then, given the

specified number of cores, the methods in Zhao[10] are applied

to schedule and analyse nodes in a DAG without incurring the

pessimism due to the inter-task interference.

With the constructed multi-DAG method, we address the appli-

cation barrier and significantly expand the capability of methods

construed in Zhao [10] on multi-DAG systems. Experimental results

show that the proposed multi-DAG method achieves an improvement

up to 80% in system schedulability over the non-work-conserving

method in original paper that it extends, Zhao[10], and outperforms

existing multi-DAG methods (e.g., He [1] by up to 60%) for tight-

ening the inter-task interference.

Organisation: Section II presents the task and system model. Sec-

tion III describes the state-of-the-art approaches in DAG scheduling

and analysis. Section IV presents the CPC model that captures the

1

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

two key factors (dependency and parallelism) of the DAG. Based

on the CPC, Section V presents the new response time analysis and

Section VI describes the proposed schedule for a single DAG task.

Then, for multi-DAG systems, Section VII identifies and addresses

the key challenges of applying the proposed analysis, and presents

a novel scheduling method to improve overall system schedulability.

Finally, the evaluation is reported in Section VIII and Section IX

draws the conclusion.

II. TASK AND SCHEDULING MODEL

A. Task model of a single recurrent DAG

A DAG task τx is defined by {Tx, Dx,Gx = (Vx, Ex)}, with

Tx denoting its minimum inter-arrival time, Dx gives a constrained

relative deadline, i.e., Dx ≤ Tx, and Gx is a graph defining the

set of activities forming the task. The graph is defined as Gx =
(Vx, Ex) where Vx denotes the set of nodes and Ex ⊆ (Vx × Vx)
gives the set of directed edges connecting any two nodes. Each node

vx,j ∈ Vx represents a task that must be executed sequentially and is

characterised by its Worst-Case Execution Time (WCET), Cx,j . For

simplicity, the subscript of the DAG task (i.e., x for τx) is omitted

when we consider a single DAG task.

For any two nodes vj and vk connected by a directed edge

((vj , vk) ∈ E), vk can start execution only if vj has finished its

execution. That is, vj is a predecessor of vk, whereas vk is a

successor of vj . A node vj has at least one predecessor pre(vj)
and at least one successor suc(vj), formally defined as pre(vj) =
{vk ∈ V | (vk, vj) ∈ E} and suc(vj) = {vk ∈ V | (vj , vk) ∈ E},

respectively. Nodes that are either directly or transitively predecessors

and successors of a node vj are termed as its ancestors anc(vj) and

descendants des(vj) respectively. A node vj with pred(vj) = ∅ or

succ(vj) = ∅ is referred to as the source vsrc or sink vsink respec-

tively. As with He[1] and Fonseca[13], we assume each DAG has one

source and one sink node. Nodes that can execute concurrently with

vj are given by C(vj) = {vk|vk /∈ (anc(vj) ∪ des(vj)), ∀vk ∈ V }.

A DAG task has the following fundamental features. First, a path

λa = {vs, · · · , ve} is a node sequence in V and follows (vk, vk+1) ∈
E, ∀vk ∈ λa\ve. The set of paths in V is defined as ΛV . A local

path is a sub-path within the task and as such does not feature both

the source vsrc and the sink vsink. A complete path features both.

Function len(λa) =
∑

∀vk∈λa
Ck gives the length of λa. Second,

the longest complete path is referred to as the critical path λ∗, and

its length is denoted by L, where L = max{len(λa), ∀λa ∈ ΛV }.

Nodes in λ∗ are referred to as the critical nodes. Other nodes are

referred to as non-critical nodes, denoted as V ¬ = V \λ∗. Finally, the

workload W is the sum of a task’s WCETs, i.e., W =
∑

∀vk∈V
Ck.

The workload of all non-critical nodes is referred to as the non-

critical workload.

Figure 2(a) shows an example DAG task with eight nodes (i.e.,

V = {v1, v2, ..., v8}). The number at the top right of each node

gives its WCET, e.g., C2 = 7. Based on the above terminologies,

for node v7 we have pre(v7) = {v5, v6}, anc(v7) = {v1, v5, v6},

suc(v7) = des(v7) = {v8} and C(v7) = {v2, v3, v4}. For the DAG,

we have L = 10, W = 24, with λ∗ = {v1, v5, v7, v8}, vsrc = v1
and vsink = v8.

B. Task model of multiple recurrent DAGs

Following the single-DAG task model, a multi-DAG system con-

tains n sporadic DAG tasks Γ = {τ1, ..., τn}, in which each task τx
is assigned with a unique priority Px. A task τx can give raise to a

set of jobs in one hyper-period. For the jth (starting from one) job

of task τx, denoted as Jx,j , it is released at rx,j = Tx × (j− 1) and

v1

1
v4 v8

v5 v7

v3

v2

v6

1

7

3

3

6 2

1

v1
t

17

v2 v5 v7 v8

v6v4v3

0

v1
t

16

v2

v5 v7

v8v6 v4v3
0

v1
t14

v2

v5 v7 v8v6

v4

v3
0

v1
t13

v2

v5 v7 v8

v6 v4

v3
0

(a) Example DAG (b) Execution scenarios

Figure 2: Makespan of a DAG task with different execution scenarios.

has a deadline of dx,j = Dx× j. As with the system model in He[1]

and Fonseca[13], the DAG tasks in this work are independent from

each other. That is, we assume DAGs do not share any resource and

there exists no dependency between any two DAGs.

C. System and scheduling model

In this work we consider a homogeneous system with m cores

and a non-preemptive fixed-priority scheme for both DAG- and node-

level scheduling [14]. That is, a late-arriving high priority DAG can

be blocked by low priority DAGs that are running. The same rule

also applies at the node level in one DAG.

The schedule for a multi-DAG system follows the principle of

highest priority DAG first and then within a task, it follows the highest

priority node first, for all DAGs tasks and nodes that are ready to

release. That is, task priority is used to select the next task to execute

in the ready queue, whereas node priority gives the exact execution

order of nodes in the scheduled DAG. The priorities at DAG-level are

assigned by the Deadline Monotonic Priority Ordering (DMPO) [15]

and nodes in each DAG are ordered by Algorithm 2 presented in

Section VI.

III. RELATED WORK

A. Work-conserving schedule and analysis

The majority of the existing work on scheduling DAG tasks

assumes a work-conserving scheduler [16]. A scheduling algorithm

is said to be work-conserving if it never idles a processor when

there exists pending workload. A generic bound that captures the

worst-case response time of tasks scheduled globally with any work-

conserving method is provided in Graham[17]. This analysis is

later formalised in Melani[16] and Fonseca[13] for DAG tasks. The

analysis of a single DAG task is given in Equation 1. Notation Rx

denotes the response time of τx, m denotes the number of cores.

Rx = Lx +

⌈

1

m
(Wx − Lx)

⌉

(1)

In this analysis, the worst-case response time of a DAG task τx
is upper bounded by the length of the critical path and the intra-task

interference imposed by the non-critical nodes of τx itself. However,

this analysis assumes the critical path can be delayed by all the

concurrent nodes, which is pessimistic for scheduling methods with

an explicit execution order known a priori [16], [1].

Figure 2(b) provides possible execution scenarios of the example

DAG in a dual-core system. With nodes scheduled randomly, a total

240 different execution scenarios are possible, with a makespan

ranging from 13 to 17. The analysis described above provides a safe

bound with R = L+ 1
m
(W −L) = 10+ 1

2
(24−10) = 17. However,

there are scheduling orders with a makespan much lower than 17.

Based on the work-conserving schedule and the classic analysis,

we propose new analysis and scheduling approach to tighten the

2

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

analytical bounds of DAGs and to reduce the run-time makespan,

respectively.

B. Scheduling a single DAG task

For homogeneous multiprocessors with a global scheme, exist-

ing scheduling (and their analysing) methods aim at reducing the

makespan and tightening the worst-case analytical bound. They can

be classified as either slice-based [18], [19] or node-based [1], [20].

The slice-based schedule enforces node-level preemption and divides

each node into a number of small computation units (e.g., units with

a WCET of one in Chang[18]). By doing so, the slice-based methods

can improve node-level parallelism but to achieve an improvement

the number of preemptions and migrations need to be controlled.

The node-based methods provide a more generic solution by pro-

ducing an explicit node execution order, based on heuristics derived

from either the spatial (e.g., number of successors of a node [21] and

topological order of nodes [1]) or the temporal (execution time of

nodes [20], [3], [22]) characteristics of the DAG. Below we describe

two most recent node-based methods.

In Chen et al. [20], an non-preemptive scheduling method is

proposed for a single periodic DAG, which always executes the

ready node with the longest WCET to improve parallelism. Chen[20]

prevents anomalies from occurring when nodes are executing less

than their WCETs, which can lead to an execution order different

from the schedule. This is achieved by guaranteeing nodes are

executed in the same order as the offline simulation. However, without

considering inter-node dependencies, this schedule cannot minimise

the delay on the completion of DAG. For the example in Figure 2,

this method leads to the scenario with a makespan of 14, in which

the non-critical node v6 delays the DAG completion due to a late

start.

In He et al. [1], a new response time analysis is presented, which

dominates the traditional bound in Graham[17] and Melani[16] when

an explicit node execution order is known a priori. That is, a node vj
can only incur a delay from the concurrent nodes that are scheduled

prior to vj . Then, a scheduling method is proposed that always

executes: i) the critical path first; and ii) the immediate interference

nodes first (nodes that can cause the most immediate delay on the

currently-examined path). The novelty in He[1] is considering both

topology and path length in a DAG, and provides the state-of-the-

art analysis against which our approach is compared. However, the

method in He[1] schedules concurrent nodes based on the length

of their longest complete path (a path from the source to the sink

node), i.e., nodes in the longest complete path first. This heuristic

is not dependency-aware, which reduces the level of parallelism that

can be exploited, and hence, lengthen the finish time of a DAG task.

C. Scheduling multi-DAG systems

The above works focus on scheduling and analysing a single DAG

task, but can be applied to multi-DAG systems with a global work-

conserving scheme which dispatches ready nodes to the first available

core. In addition, there exists a large body of work which has a

particular focus on allocating DAGs to cores. They can be classified

into two major categories: federated and partitioned.

The federated scheme considers DAG tasks as either heavy or light,

where each heavy task is assigned with a number of dedicated cores

and the light ones share the remaining cores. Li et al. [23] presents

a hard real-time federated scheme for DAGs with arbitrary deadlines

and achieves a capacity augmentation bound of 2. Baruah [24]

presents a federated schedule for new DAG model (i.e., conditional

DAGs) with both constrained and arbitrary deadlines. Ueter et al. [25]

provides an reservation-based federated scheduling for DAG tasks.

Further, Jiang et al. [26], Yang et al. [27] and Shariati et al. [28]

extend the federated approach to the semi-federated scheme, which

allow both heavy and light tasks to share certain cores to execute.

The partitioned scheme decomposes DAGs to a set of sequential

sporadic tasks, and assign each task with a fixed core to execute.

Fonseca et al. [29] decomposes DAGs to a set of self-suspending tasks

and presents the first response time analysis for DAGs under a fully-

partitioned scheme. Casini et al. [14] provides a partitioning algorithm

and a fine-grained analysis for non-preemptive DAG tasks. Further,

Bado et al. [30], Maia et al. [31] and Hatami et al. [32] propose semi-

partitioned schemes for parallel tasks, which allow certain nodes to

execute on more than one cores for better schedulability.

However, most of the above works focus on offline methods which

do not consider the workload distribution of the system and the

scheduled DAGs. Intuitively, with such knowledge the inter-task

interference of DAG tasks can be significantly reduced, and hence,

leads to better schedulability. In this paper, we propose an novel

multi-DAG scheduling method (see Section VII) which specifies the

number of cores dedicated to each DAG task in a hyper-period based

on the workload distribution of the current system and the DAG task.

IV. THE CONCURRENT PROVIDER AND CONSUMER MODEL

Equation 1 indicates that minimising the delay caused by non-

critical nodes to the critical path (i.e., 1
m
(W−L)) effectively reduces

the makespan of the DAG. Achieving this requires the complete

knowledge of the inter-node dependency and node-level parallelism

of a DAG so that the potential delay imposed from the non-critical

nodes to the critical path can be identified. To support this, the

CPC model is proposed to obtain an in-depth understanding of DAG

structure and enable full exploitation of node dependency as well as

parallelism.

The intuition of the CPC model is: when the critical path is

executing, it utilises just one core so that the non-critical ones can

execute in parallel on the remaining (m−1) cores. The time allowed

for executing non-critical nodes in parallel is termed as the capacity.

We note that the non-critical nodes that utilise this capacity to execute

cannot cause any delay to the critical path. Therefore, by obtaining the

knowledge of which non-critical nodes can execute in parallel with

a critical node, the CPC model provides valuable information to (i)

the analysis so that the parallel workload can be explicitly computed

to reduce pessimism and (ii) the scheduling method so that a node

execution order can be produced to maximise such parallel workload.

Algorithm 1 presents the process for constructing the CPC model

of an input DAG G with its critical path λ∗. The construction of the

CPC model contains two key steps. The first step (lines 2-8) identifies

the capacity providers Θ∗. The second step (lines 10-14) identifies

the capacity consumers Θ. Function λ∗(n) returns the nth node in

critical path λ∗ based on the topological order, where n starts from

one. Notations i and k indicate the index of providers and nodes

in λ∗, respectively. Table I summarises notations introduced by the

proposed CPC model.

Step One. For a given DAG, the capacity providers are constructed

from the nodes in its critical path λ∗. Starting from the head node in

λ∗, the first provider θ∗1 is formed by taking nodes in λ∗ (following

topological order) until a node can be delayed by non-critical ones

based on its precedence constraints (line 4-7). Figure 3(a) provides an

example for identifying the providers, where θ∗1 only takes the first

two critical nodes (i.e., θ∗1 = {λ∗(1), λ∗(2)}) because the third one

can be delayed by non-critical ones. The algorithm then continues to

3

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

… … …

𝜃1∗ 𝜃2∗ 𝜃3∗ 𝜃4∗
(a) identifying providers 𝜽𝒊∗

… … …

𝜃1∗ 𝜃2∗ 𝜃3∗ 𝜃4∗
(b) identifying consumer groups 𝑭(𝜽𝒊∗)

𝐹(𝜃1∗) 𝐹(𝜃2∗) 𝐹(𝜃3∗)

… … …

𝜃1∗ 𝜃2∗ 𝜃3∗ 𝜃4∗
(c) identifying consumer groups 𝑮(𝜽𝒊∗)

𝐺(𝜃1∗)
𝐺(𝜃2∗)

Figure 3: The construction of the CPC model. The critical path is highlighted in orange and the non-critical nodes are in blue. The darker

the colour of a non-critical node is, the earlier it can delay the critical path.

Algorithm 1: CPC(G, λ∗): CPC model construction

Inputs : {G = (V,E)}; λ∗

Outputs : Θ∗; F (θ∗i), G(θ∗i), ∀θ
∗
j ∈ Θ∗

Initialise : V ¬ = V \λ∗; Θ∗ = ∅; i = 1; k = 1
1 /* Step 1: identifying capacity providers */

2 while k ≤ |λ∗| do

3 θ∗i = {λ∗(k)}; k++;

4 while pre(λ∗(k)) = {λ∗(k − 1)} do

5 θ∗i = θ∗i ∪ {λ∗(k)}; k++;

6 end

7 Θ∗ = Θ∗ ∪ θ∗i ; i++;

8 end

9 /* Step 2: identifying capacity consumers */

10 for i = 1; i < |Θ∗|; i++ do

11 F (θ∗i) = anc(θ∗i+1) ∩ V ¬;

12 G(θ∗i) =
⋃

vj∈F (θ∗
i
){C(vj) ∩ V ¬};

13 V ¬ = V ¬ \ F (θ∗i);
14 end

15 return {Θ∗; F (θ∗i), G(θ∗i), ∀θ
∗
i ∈ Θ∗}

construct the second provider θ∗2 by taking the third node in λ∗. This

process finishes until all nodes in λ∗ are taken as providers.

The principle for constructing the providers is: ∀θ∗i ∈ Θ∗, once

θ∗i starts its execution it should not be delayed by any non-critical

node. By doing so, we guarantee that each provider can (conceptually)

provide consecutive capacity without being blocked in the middle of

execution.

Step Two. With the providers, the CPC identifies the set of con-

sumers for each provider θ∗i . Here the CPC classifies the consumers

as two types.

The first type of consumers F (θ∗i) of provider θ∗i are identified

by the non-critical nodes which (i) can execute concurrently with θ∗i ,

and 2) can delay the start of θ∗i+1 (i.e., anc(θ∗i+1) ∩ V ¬ in Line

12). That is, nodes in F (θ∗i) that finish later than θ∗i will impose

a delay to the start of θ∗i+1 (if it exists). Figure 3(b) shows the

identification of the consumer group F (θi) of each capacity provider

θi. For example, nodes in F (θ∗1) can delay θ∗2 if they are finished

later than θ∗1 . With F (θ∗i) identified, the CPC model enables the

knowledge of the potential delay caused by non-critical nodes on the

critical path.

The second type of the consumers G(θ∗i) (line 13) denotes the

nodes that belong to the consumer groups of later providers, but

can execute in parallel (in terms of topology) with θ∗i . For instance,

in Figure 3(c) nodes in G(θ∗1) can execute in parallel with θ∗1 but

cannot directly delay the start of θ∗2 if they finish late. The key

difference between G(θ∗i) and F (θ∗1) is that consumers in G(θ∗i)
cannot impose a direct delay to θ∗i+1. However, nodes in G(θ∗i) can

Table I: Notations introduced in the proposed CPC model.

Notation Description

Θ∗ The set of capacity providers.
Θ The set of capacity consumers.
θ∗i A capacity provider with an index i.
F (θ∗i) The consumer of θ∗i that can delay θ∗i+1.

G(θ∗i) The consumer of θ∗i that cannot delay θ∗i+1.

λ∗(n) The nth node in critical path λ∗ by topological order,
where n starts from one.

delay the execution of F (θ∗i), and subsequently, impose an indirect

delay on θ∗i+1.

Note, the last provider has an empty set of both F (θ∗i) and G(θ∗i).
This is enforce by the assumption that each DAG has only one sink

node (see Section II-A).

Summary. With the CPC model constructed, a DAG is transformed

into a set of capacity providers and consumers, with a time com-

plexity of O(|V |+|E|), i.e., O(n). For each provider θ∗i ∈ Θ∗,

the CPC identifies (i) a set of consumers F (θ∗i) that can execute

using θ∗i ’s capacity as well as delay the next provider θ∗i+1, and (ii)

a set of consumers G(θ∗i) that can use θ∗i ’s capacity but will not

delay the start of θ∗i+1. For a given provider θ∗i , nodes in F (θ∗i) can

utilise a capacity of len(θ∗i) on each of m − 1 cores to execute in

parallel while incurring potential delay from G(θ∗i). The CPC model

enables complete knowledge of both the direct and indirect delay

from non-critical nodes to the critical path, and provides the basis for

the development of analysis (Section V) and schedule (Section VI)

for a single DAG.

V. PARALLELISM-AWARE RESPONSE TIME ANALYSIS

Based on the CPC model, this section presents a new response

time analysis, which explicitly accounts for the workload that can

execute in parallel with the critical path. The analysis then applies

this workload as a safe reduction on the delay of the critical path.

Two versions of the analysis are developed.

First, for generality, the proposed analysis assumes the critical path

first execution (i.e., CPFE) and allows any scheduling scheme for

non-critical nodes. This principle is highlighted by the CPC model

and is adopted in many existing methods [18], [1], [13]. Compared to

the traditional analysis [16], [17], this analysis provides an improved

bound for all schedules based on CPFE. The analysis does not assume

the explicit execution order for the non-critical nodes (i.e., consumers)

is known in advance.

Then, in Section V-D, we extend the proposed analysis for schedul-

ing methods with an explicit order known a priori (e.g., methods in

He[1] and Chen[20]) with minor modifications. Table II summarises

the notations introduced in the constructed analysis.

A. The parallel and interfering workload of a provider

From the CPC model we can understand: a provider θ∗i ∈ Θ∗ can

start if and only if the previous provider θ∗i−1 and its consumers

4

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

Table II: Notations introduced in the proposed response time analysis

Notation Description

pj The priority of a node vj .
f(·) The finish time of a given provider or a consumer node.
Li The length of provider θ∗i .
Wi The total workload of all nodes in θ∗i , F (θ∗i) and G(θ∗i).
αi The workload in F (θ∗i) and G(θ∗i) that can execute in

parallel with θ∗i .
βi The length of the longest path in F (θ∗i) that executes later

than f(θ∗i).
λve The set of nodes that form the longest path in F (θ∗i) that

executes later than f(θ∗i), with the end node ve.

ΛV Returns all paths of the given input node set V .
| · | returns the size of a given input set.

I(vj) The non-critical nodes that can interfere vj .
Ie(·) The non-critical nodes that can interfere the input node or

path with an explicit execution order.
Iλve ,j The actual delay on λve from a node vj that executed in

the interfering workload.

F (θ∗i−1) have finished executions (see Figure 3(b)). In addition,

F (θ∗i−1) can incur a delay from G(θ∗i−1) (i.e., early-released con-

sumers that can execute concurrently with F (θ∗i−1)), which in turn,

delays the start of θ∗i (see Figure 3(c)).

To facilitate the construction of the analysis, we formally define the

parallel workload and interfering workload of a capacity provider θ∗i .

The parallel workload can execute along with θ∗i and the interfering

workload may impose a delay to the following providers of θ∗i .

Let f(·) denote the finish time of a provider θ∗i or a consumer

node vj , Li = len(θ∗i) gives the length of θ∗i and Wi = Li +
∑

vk∈F (θ∗
i
){Ck}+

∑

vk∈G(θ∗
i
){Ck} gives the sum of the workload

in θ∗i , F (θ∗i) and G(θ∗i). Definitions 1 and 2 define the terms parallel

and interfering workload of θ∗i , respectively.

Definition 1 (Parallel Workload of θ∗i). The parallel workload αi

of θ∗i is the workload in Wi − Li that can execute before the time

instant f(θ∗i).

For a node vj in F (θ∗i) ∪ G(θ∗i), it contributes to αi if either

f(vj) ≤ f(θ∗i) or f(vj) − Cj < f(θ∗i). The former case (i.e.,

f(vj) ≤ f(θ∗i)) indicates vj is finished before the finish of θ∗i and

cannot cause any delay, whereas f(vj) − Cj < f(θ∗i) means vj
can partially execute in parallel with θ∗i so that its delay on θ∗i+1 is

less than Cj . In Section V-C, function f(·) is formulated for both

providers and consumers, along with the response time analysis.

Definition 2 (Interfering Workload of θ∗i). The interfering workload

of θ∗i is the workload in Wi −Li that executes after the time instant

f(θ∗i). For a provider θ∗i , its interfering workload is Wi − Li − αi.

With Definitions 1 and 2, Lemma 1 follows.

Lemma 1. For providers θ∗i and θ∗i+1, the workload in Wi that can

delay the start of θ∗i+1 is at most Wi − Li − αi.

Proof. Based on the CPC, the start of θ∗i+1 depends on the finish

of both θ∗i and F (θ∗i), which is max{f(θ∗i),maxvj∈F (θ∗
i
) f(vj)}.

By Definition 1, αi will not cause any delay as it always finishes

before f(θ∗i), and hence, the lemma follows. Note that although

G(θ∗i) cannot delay θ∗i+1 directly, it can delay on nodes in F (θ∗i),
and in turn, causes an indirect delay to θ∗i+1.

B. The (α, β)-pair analysis formulation

Based on Definitions 1 and 2, the parallel workload αi of θ∗i
finishes no later than f(θ∗i) on m − 1 cores. After θ∗i completes,

the interfering workload (if any) then executes on all m cores, in

which the latest-finished node in F (θ∗i) gives the earliest starting

time to the next provider (if it exists). Therefore, bounding this delay

requires:

1) a bound on the parallel workload (i.e., αi);

2) a bound on the longest execution sequence in F (θ∗i) that

executes later than f(θ∗i) (i.e., in the interfering workload),

denoted as βi.

With a random execution order, the worst-case finish time of βi

effectively upper bounds the worst-case finish of workload in F (θ∗i)
that executes later than f(θ∗i) [17], [16].

With αi and βi defined, Lemma 2 gives the bound on the delay

θ∗i that can incur due to the consumer nodes in F (θ∗i−1).

Lemma 2. For two consecutive providers θ∗i−1 and θ∗i ,

the consumers nodes in F (θ∗i−1) can delay θ∗i by at most
⌈

1
m
(Wi − Li − αi − βi) + βi

⌉

.

Proof. By Definition 2, the interfering workload in F (θ∗i) ∪ G(θ∗i)
that can (directly or transitively) delay θ∗i+1 is at most Wi−Li−αi.

Given the longest execution sequence in F (θ∗i) in the interfering

workload (i.e., βi), the worst-case finish time of F (θ∗i) (and also βi)

is bounded as
⌈

1
m
(Wi − Li − αi − βi)

⌉

+ βi, for a system with m
cores. This is proved in Graham[17] and Melani[16]. Note, as βi is

accounted for explicitly, it is removed from the interfering workload

to avoid repetition.

Based on Lemma 2, the response time can be formulated for a
DAG task, as shown in Equation 2. As Wi − Li − αi starts strictly
after f(θ∗i) (see Definition 1), the finish time of both θ∗i and F (θ∗i) is
bounded by the length of θ∗i (i.e., Li) and the worst-case finish time
of βi. In addition, θ∗i+1 can only start after the finish of θ∗i and all
nodes in F (θ∗i). Thus, the final response time of the DAG is bounded
by the sum of the finish time of each provider and its consumers.

R =
∑

θ∗
i
∈Θ∗

{

Li +

⌈

1

m
(Wi − Li − αi − βi)

⌉

+ βi

}

(2)

Compared to the traditional analysis [17], [16], this analysis can

improve the worst-case response time approximations, by tight-

ening the interference on the critical path (i.e., αi), without un-

dermining the correctness of the analysis (i.e., with βi). In the

case of
⌈

1
m
(W − L)

⌉

>
∑

θ∗
i
∈Θ

⌈

1
m
(Wi − Li − αi − βi)

⌉

+ βi,

a tighter bound can be obtained. That is, the proposed analysis

does not always dominate the traditional bound. Therefore, we take

min{R,L+
⌈

1
m
(W − L)

⌉

} as the final analytical bound.

C. Bounding αi and βi

Notations αi and βi can be bounded by examining f(θ∗i) and

f(vk), ∀vk ∈ F (θ∗i)∪G(θ∗i) in the scenario that one core is dedicated

to θ∗i and (m− 1) cores can be used by F (θ∗i).
For a node vj , it can be subject to interference (say Ij) from

the concurrent nodes upon arrival. Before bounding f(vj), we first

distinguish two special situations in which the interference of a node

vj is zero, as given in Lemma 3, with C(vj) gives vj’s concurrent

nodes, ΛV denotes paths in a given node set V and | · | returns the

size of a given set.

Lemma 3. Under a schedule with CPFE, node vj does not incur

any interference from its concurrent nodes C(vj), if vj ∈ λ∗ ∨
|ΛC(vj)\λ∗ |< m− 1.

Proof. First, the interference of vj is zero if vj ∈ λ∗. This is

enforced by CPFE (i.e., Rule 1), where a critical node always starts

immediately after all nodes in pre(vj) have finished their executions.

Second, a node vj ∈ V ¬ does not incur any interference if

|ΛC(vj)\λ∗ |< m − 1. The concurrent nodes that can interfere vj

5

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

on (m − 1) cores is C(vj)\λ
∗. Given that the number of paths in

C(vj)\λ
∗ is less than m − 1, at least one core is idle when vj is

ready so that it can start directly with no interference.

Followed by Lemma 3, Equation 3 provides the bound on

f(vj), vj ∈ V . For a node vj , it cannot release until all vk ∈ pre(vj)
have completed. This is enforced by the precedence constraints from

the DAG structure, and hence maxvk∈pre(vj){f(vk)}. In addition, if

vj does not satisfy either case in Lemma 3, vj can incur an worst-case

interference of 1
m−1

∑

vk∈I(vj)
Ck, in which I(vj) denotes the non-

critical nodes that can interfere vj (see Equation 4) [1]. The condition

|ΛC(vj)\λ∗ |< m−1 is checked by Line 8-9 in Algorithm 2 with m−1
searches, which identifies a path in the given node set during each

search.

f(vj) = Cj + max
vk∈pre(vj)

{

f(vk)
}

+

{

0, if vj ∈ λ∗ ∨ |ΛC(vj)\λ∗ |< m− 1
⌈

1
m−1

× (
∑

vk∈I(vj)
Ck)

⌉

, otherwise

(3)

Equation 3 bounds f(vj) by recursively computing the finish time

of all nodes in anc(vj). To guarantee each node is taken into account

only once when bounding the finish time of vj , I(vj) only takes the

concurrent non-critical nodes that cannot delay anc(vj) [1], as given

in Equation 4. Note that this equation only applies to non-critical

nodes vj with |ΛC(vj)\λ∗ |≥ m− 1.

I(vj) =
{

vk|vk /∈ λ∗ ∧ vk /∈
⋃

vl∈anc(vj)

I(vl), ∀vk ∈ C(vj)
}

(4)

With f(vj), ∀vj ∈ V computed, the worst-case finish time of a
provider θ∗i and its F (θ∗i) can be obtained, as given in Equations 5
and 6 respectively.

f(θ∗i) = max
∀vj∈θ∗

i

{

f(vj)
}

(5)

f(F (θ∗i)) = max
∀vj∈F (θ∗

i
)

{

f(vj)
}

(6)

To this end, αi and βi can be effectively upper bounded by
examining the f(θ∗i) and f(vj), ∀vj ∈ F (θ∗i) ∪G(θ∗i). Equation 7
gives the bound on αi.

αi =
∑

vj∈Va

{

Cj

}

+
∑

vj∈Vb

{

f(θ∗i)−
(

f(vj)− Cj

)}

,

∀vj ∈ F (θ∗i) ∪G(θ∗i),

where

Va ={vj |f(vj) ≤ f(θ∗i)}

Vb ={vj |f(vj) > f(θ∗i) ∧ f(vj)− Cj < f(θ∗i)}

(7)

This equation is derived from Definition 1. For vj ∈ F (θ∗i) ∪
G(θ∗i), it can contribute to αi if (i) it finishes before θ∗i , i.e., f(vj) ≤
f(θ∗i), or (ii) it finishes after f(θ∗i) but with a start time earlier than

f(θ∗i), i.e., f(vj) > f(θ∗i) ∧ f(vj)− Cj < f(θ∗i). The former case

gives Va in the equation, with nodes in Va fully contributing to αi

by Ca. The later case gives the set Vb, in which nodes in Vb are

partially contributing to αi by f(θ∗i)− (f(vj)− Cj).

Then, βi can be decided by the longest path of F (θ∗i) that executed

later than f(θ∗i), i.e., in the interfering workload. Let λve denote this

path ending with node ve, Lemmas 4 and 5 identifies ve and its

predecessor node in λve , among all nodes in F (θ∗i).

Lemma 4. For the end node ve in the longest path of F (θ∗i), f(ve) =
f(F (θ∗i)).

Proof. Given two paths λa and λb with length La > Lb and a total

workload of W , it follows f(λa) = La + 1
m
(W − La) ≥ f(λb) =

Lb+
1
m
(W −Lb), as f(λa)−f(λb) = La−Lb+

1
m
(Lb−La) ≥ 0.

Therefore, node ve with f(ve) = f(F (θ∗i)) gives the end node of

the longest path in the interfering workload.

Lemma 5. The predecessor node of the end node ve in the longest

path of F (θ∗i) is given by argmax
vj

{f(vj) | ∀vj ∈ pre(ve) ∩ F (θ∗i)}.

Proof. Given va, vb ∈ pre(vc) with f(va) ≥ f(vb), we have

len(λva ∪ vc) ≥ len(λvb ∪ vc) [1]. Therefore, the predecessor node

of ve with the latest finish is in the longest path ending with ve in

F (θ∗i).

Based on Lemmas 4 and 5, λve is computed recursively by
Equation 8. Starting from ve, λve searches through the predecessor
nodes recursively and includes the one with the longest finish time in
each recursion, until a complete path is obtained or all predecessors
are finished before f(θ∗i).

λve = λvj ∪ ve :

argmax
vj

{

f(vj)
∣

∣

∣
∀vj ∈ pre(ve) ∧ f(vj) > f(θ∗i)

}

arg
ve

{

f(ve) = f(F (θ∗i))
}

, ve, vj ∈ F (θ∗i)

(8)

With λve obtained, βi is computed by Equation 9, which bounds
the workload in λve that is executed later than f(θ∗i).

βi =
∑

vj∈λve

{

Cj , if f(vj)− Cj ≥ f(θ∗i)

f(vj)− f(θ∗i), otherwise
(9)

For the first node in λve (say vs), two cases can occur based on its

worst-case start time f(vs)−Cs. First, with f(vs)−Cs ≥ f(θ∗i), vs
starts after the finish of θ∗i and fully contributes to the interfering

workload. Otherwise (i.e., f(vs) − Cs < f(θ∗i)), vs partially

contributes to αi, i.e., vs ∈ Vb in Equation 7. Thus, by Definitions 1

and 2, it can contribute at most (f(vs) − f(θ∗i)) to the interfering

workload. Note that vs is the only node in λve that can have

f(vs)− Cs < f(θi).

With αi and βi computed for each provider θ∗i ∈ Θ∗, the response

time analysis for scheduling methods that feature CPFE is complete.

Sustainability: It is worth noting that this analysis is sustainable,

i.e., provides a safe bound if any node executes less than its WCET.

We demonstrate this by reducing the WCET of a randomly node in

V ¬ and λ∗
i respectively [33].

First, suppose vj ∈ F (θ∗i) ∪G(θ∗i) executes less than its WCET,

denoted as C′
j < Cj . Based on Equation 3, it leads to f ′(θ∗i) = f(θ∗i)

as vj /∈ pre(vk), ∀vk ∈ θ∗i , and f ′(vk) ≤ f(vk), ∀vk ∈ F (θ∗i) ∪
G(θ∗i). Based on Definitions 1 and 2, we have α′

i ≥ αi and β′
i ≤ βi.

This guarantees there is a non-increasing delay on the start of θ∗i+1

based on Equation 2.

Second, if a provider node vj ∈ θ∗i executes C′
j < Cj , we have

f ′(θ∗i) < f(θ∗i) and f ′(vk) = f(vk), ∀vk ∈ F (θ∗i) ∪ G(θ∗i) based

on Equation 3. That is, the parallel workload obtained by Equation 7

(with full WCET Cj) can still finish before f(θ∗i) in the case of

C′
j , and subsequently, the interfering workload can start no later than

f(θ∗i) on all m cores. Thus, the finish time of θ∗i and F (θ∗i) cannot

exceed the bound obtained by Equation 2 with full WCET.

Combining both, a decrease in WCET of arbitrary nodes in a DAG

leads to a non-increasing bound on its completion. Therefore, the

proposed analysis provides a safe worst-case bound as long as each

node in the DAG does not exceed its WCET, i.e., it is sustainable.

6

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

D. Supporting explicit execution order

With an explicit scheduling order for non-critical nodes, a tighter

bound can be obtained as each node can only incur interference

from concurrent nodes with a higher priority [1]. Using the proposed

schedule as an example, this section illustrates a novel analysis that

can support CPFE and explicit execution order for non-critical nodes.

With an explicit node ordering, the interfering nodes of vj on

m−1 cores can be effectively reduced to i) nodes in I(vj) that have

a higher priority than pj [1], and ii) m− 1 nodes in I(vj) that have

a lower priority and the highest WCET due to the non-preemptive

schedule [34]. Let Ie(vj) denote the nodes that can interfere a non-

critical node vj with an explicit order, it is given as Equation 10, in

which argmaxm−1
vk

returns the first m − 1 nodes with the highest

value of the given metric (Ck in this equation). The correctness of the

equation is proven in He[1] and Serrano[34]. For simplicity, we take

the (m−1) low priority nodes as a safe upper bound. A more accurate

ILP-based approach is available in Serrano[34] to precisely compute

this blocking. In addition, if node-level preemption is allowed, Ie(vj)
is further reduced to {vk|pk > pj , vk ∈ I(vj)}.

Ie(vj) =
{

vk|pk > pj , vk ∈ I(vj)} ∪

m−1
argmax

vk

{Ck|pk < pj , vk ∈ I(vj)
} (10)

With this schedule, f(vj), ∀vj ∈ V can be computed by Equation 3,

with Ie(vj) applied to non-critical nodes executing on m− 1 cores.

Hence, αi and βi can be bounded with the updated f(θ∗i) and

f(vj), ∀vj ∈ F (θ∗i) ∪ G(θ∗i), by Equation 7 and 9 respectively.

Note that with an explicit schedule, λve computed in Equation 8,

it is not necessarily the longest path in F (θ∗i) that executes in the

interfering workload [1]. Instead, λve in this case gives the path that

will always finish last due to the pre-planned node execution order.

The final bound on the response time of the DAG task is, however,
different from the generic case, i.e., Equation 2. With node priority,
it is not necessary that all workload in (Wi − Li − αi − βi) can
interfere with the execution of λve . Let Re denote the response
time of a DAG task with an explicit scheduling order. It is bound
in Equation 11, in which Ie(λve) determines the nodes that can
delay λve and Iλve ,j gives the actual delay on λve from node vj in
the interfering workload.

Re =
∑

θ∗
i
∈Θ∗

Li + βi +

{

0, if |ΛIe(λve)|< m
⌈

1
m

×
∑

vj∈Ie(λve) Iλve ,j

⌉

, otherwise

(11)

Given the length of θ∗i (Li) and the worst-case delay on λve (Iλve
)

in the interfering workload, the worst-case finish time of θ∗i and

F (θ∗i) is upper bounded by Li + βi +
⌈

1
m

×
∑

vj∈Ie(λve) Iλve ,j

⌉

.

This is proved in Lemma 2. In addition, if the number of paths in the

nodes that can cause Iλve
is less than m (i.e., |ΛIe(λve)|< m), λve

executes directly after θ∗i and finishes by Li + βi. This is proved in

Lemma 3. Note that Iλve
= 0 if βi = 0, as all workload in F (θ∗i)

contributes to αi so that θ∗i+1 (if it exists) can start immediately after

θ∗i .

The nodes that can interfere with λve (i.e., Ie(λve)) are given by
Equation 12, in which Iλve ,j gives the actual delay from node vj on
λve .

Ie(λve) =
⋃

vk∈λve

{

vj |f(vj) > f(θ∗i) ∧ pj > pk, ∀vj ∈ I(vk)
}

∪

⋃

vk∈λve

1..m
argmax

vk

{

Iλve ,j |f(vj) > f(θ∗i) ∧ pj < pk, vj ∈ I(vk)
}

(12)

Finally, Iλve ,j is bound by Equation 13, which takes the workload
of vj executed after f(θ∗i) (i.e., in the interfering workload) as the
worst-case delay on λve .

Iλve ,j =

{

Cj , if f(vj)− Cj ≥ f(θ∗i)

f(vj)− f(θ∗i), otherwise
(13)

This concludes the response time analysis constructed in this

paper. The analysis can be applied to scheduling methods with node

execution order known a priori. As with the generic bound, this

analysis is sustainable, as a reduction in WCET of any arbitrary

node cannot lead to completion later than the worst-case bound (see

Section IV). Compared to the generic bound for non-critical nodes

with random order, this analysis provides tighter results by removing

the nodes that cannot cause a delay due to their priorities, in which

Ie(vj) ⊆ I(vj) and Ive ≤ Wi − Li − αi − βi.

VI. DAG SCHEDULING: A PARALLELISM AND NODE

DEPENDENCY EXPLOITED METHOD

In this section, a scheduling method is developed to reduce DAG

makespan during execution, by maximising node parallelism based on

the CPC model. This is achieved by a rule-based priority assignment,

in which three rules are developed to statically assign a priority

to each node in the DAG. The Rule 1 (in Section VI-A) always

executes the critical path first (i.e., the longest path in a DAG), then

Rules 2 and 3 (Section VI-B) maximise parallelism and minimise

the delay to the critical path. The entire proposed approach has

general applicability to DAGs with any topology (unlike, e.g., the

schedule Fonseca[13], which assumes nested fork-join DAGs only).

It assumes a homogeneous architecture, however, it is not restricted

by the number of processors.

The example DAG in Figure 2 is used throughout the presen-

tation of the constructed priority assignment to illustrate its key

rationale. With CPC applied, its critical path forms three providers

θ∗1 = {v1, v5}, θ∗2 = {v7} and θ∗3 = {v8}, where the delay from

non-critical nodes only occurs on the head node of the providers.

For each provider, we have F (θ∗1) = {v6}, F (θ∗2) = {v2, v3, v4}
and F (θ∗3) = ∅. In addition, all nodes in F (θ∗2) = {v2, v3, v4}
can start earlier than θ∗2 delaying the execution of F (θ∗1) and

subsequently, the start of θ∗2 . Therefore, G(θ∗1) = {v2, v3, v4} and

G(θ∗2) = G(θ∗3) = ∅.

A. The “Critical Path First” execution

In the CPC model, the critical path is conceptually modelled as a

set of capacity providers. Arguably, each complete path can be seen as

the providers, which offers the time interval of its path length for other

nodes to execute in parallel. However, the critical path provides the

maximum capacity and hence, enables the maximised total parallel

workload (denoted as α =
∑

θ∗
i
∈Θ∗ αi). This provides the foundation

to minimise the interfering workload on the complete critical path.

Theorem 1. For a schedule S with CPFE and a schedule S ′ that

prioritises a random complete path over the critical path, the total

parallel workload of providers in S is always equal to or higher than

that of S′, i.e., α ≥ α′.

Proof. The change from S to S ′ leads to two effects: (i) a reduction

on the length of the provider path, and (ii) an increase on length of

one consumer path. Below we prove both effects cannot increase the

parallel workload after the change.

First, suppose the length of provider θ∗i is shortened by ∆ after the

change from S to S ′, the same reduction applies on its finish time,

i.e., f ′(θ∗i) = f(θ∗i) − ∆. Because nodes in θ∗i are shortened, the

7

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

finish time f(vj) of a consumer node vj ∈ F (θ∗i)∪G(θ∗i) can also be

reduced by a value from ∆/m (i.e., a reduction on vj’s interference,

if all the shortened nodes in θ∗i belong to C(vj)) to ∆ (if all such

nodes belong to pre(vj)) [17], [16]. By definition 1, a consumer

vj ∈ F (θ∗i) ∪ G(θ∗i) can contribute to the αi if f(vj) ≤ f(θ∗i) or

f(vj) − Cj ≤ f(θ∗i). Therefore, αi cannot increase in S ′, as the

reduction on f(θ∗i) (i.e., ∆) is always equal or higher than that of

f(vj) (i.e., ∆/m or ∆).

Second, let L and L′ denote the length of the provider path under

S and S ′ (with L ≥ L′), respectively. The time for non-critical nodes

to execute in parallel with the provider path is L′ on each of m− 1
cores under S ′. Thus, a consumer path with its length increased from

L′ to L directly leads to an increase of (L − L′) in the interfering

workload, as at most L′ in the consumer can execute in parallel with

the provider.

Therefore, both effects cannot increase the parallel workload after

the change from S to S ′, and hence, α ≥ α′.

Theorem 1 leads to the first assignment rule that assigns critical

nodes with the highest priority, where pj is the priority of node vj .

Rule 1. ∀vj ∈ Θ∗, ∀vk ∈ Θ ⇒ pj > pk.

With Rule 1, the maximum parallel capacity is guaranteed so that

an immediate reduction (i.e., α) on the interfering workload of λ∗

can be obtained. For the example DAG in Figure 2, Rule 1 leads to

the execution scenarios with a makespan of 16 and 13, and avoids the

worst case. In Section V, an analytical bound on αi for each provider

θ∗i is presented, with consumers nodes executed either randomly or

under an explicit schedule.

B. Exploiting parallelism and node dependency

With CPFE, the next objective is to maximise the parallelism of

non-critical nodes and reduce the delay on the completion of the

critical path. Based on the CPC model, each provider θ∗i is associated

with F (θ∗i) and G(θ∗i). For vj ∈ G(θ∗i), it can execute before F (θ∗i)
and use the capacity of θ∗i to execute, if assigned with a high priority.

Under this case, vj can 1) delay the finish of F (θ∗i) and the start

of θ∗i+1, and 2) waste the capacity of its own provider. A similar

observation is also obtained in He[1], which avoids this delay by the

heuristic of early interference node first.

Therefore, the second assignment rule is derived to specify the

priority between consumer groups of each provider. For any two

adjacent providers θ∗i and θ∗i+1, the priority of any consumer in F (θ∗i)
is higher than that of all consumers in F (θ∗i+1).

Rule 2. ∀θ∗i , θ
∗
l ∈ Θ∗ : i < l ⇒ min

vj∈F (θ∗
i
)
pj > max

vk∈F (θ∗
l
)
pk.

With Rule 2, the delay from G(θ∗i) on F (θ∗i) (and hence θ∗i+1) can

be minimised, because all nodes in G(θ∗i) belong to consumers of

the following providers and are always assigned with a lower priority

than nodes in F (θ∗i). With Rules 1 and 2 applied to the DAG in

Figure 2, the delay from v6 on the critical path can be avoided, by

assigning v6 with a higher priority than that of {v2, v3, v4}.

We now schedule the consumer nodes in each F (θ∗i). In He[1],

concurrent nodes with the same earliness (in terms of the time they

become ready during the execution of the critical path) are ordered

by the length of their longest complete path (i.e., from vsrc to vsink).

However, based on the CPC model, a complete path can be divided

into several local paths, each of these local paths belongs to the

consumer group of different providers. For local paths in F (θ∗i),
the order of their lengths can be the exact opposite to that of their

Algorithm 2: EA(Θ∗,Θ): Priority Assignment

Inputs : Θ∗; Θ
Outputs : pj , ∀vj ∈ Θ∗ ∪Θ
Initialise : pj = −1, ∀vj ∈ Θ∗ ∪Θ; p = pmax

1 /* Assignment Rule 1. */

2 ∀vj ∈ Θ∗, pj = p; p = p− 1;

3 /* Assignment Rule 2. */

4 for each θ∗i ∈ Θ∗, in topological order do

5 while F (θ∗i) 6= ∅ do
6 /* Find the longest local path in F (θ∗

i). */

7 ve, vj ∈ F (θ∗i) :
8 ve = argmax

ve

{le(F (θ∗i))|suc(ve) = ∅};

9 λve = ve ∪ λvj , argmax
vj

{lj(F (θ∗i))|∀vj ∈ pre(ve)};

10 if |pre(vj)|> 1, ∃vj ∈ λve then

11 {Θ∗′ ,Θ′} = CPC(F (θ∗i), λve);

12 EA(Θ∗′ ,Θ′);
13 break;

14 else
15 /* Assignment Rule 3. */

16 ∀vj ∈ λve , pj = p; p = p− 1;

17 F (θ∗i) = F (θ∗i) \ λve ;

18 end

19 end

20 end

21 return {pj , ∀vj ∈ Θ∗ ∪Θ}

complete paths. Therefore, this approach can lead to a prolonged

finish of F (θ∗i).

In the constructed schedule, we guarantee a longer local path is

always assigned with a higher priority in a dependency-aware manner.

This derives the final assignment rule, as given below.

Rule 3⋆. vj , vk ∈ F (θ∗i) : lj(F (θ∗i)) > lk(F (θ∗i)) ⇒ pj > pk

Notation lj(F (θ∗i)) denotes the length of the longest local path in

F (θ∗i) that includes vj . This length can be computed by traversing

anc(vj)∪des(vj) in F (θ∗i) [1]. For example, we have l2(F (θ∗2)) = 7
and l3(F (θ∗2)) = l4(F (θ∗2)) = 3 for the DAG in Figure 2, so v2 is

assigned a higher priority than v3 and v4. With Rules 1-3 applied to

the example DAG, it finally leads to the best-case schedule with a

makespan of 13.

However, simply applying Rule 3 to each F (θ∗i) is not sufficient.

Given a complex DAG structure, every F (θ∗i) can form a smaller

DAG G′, and hence, an inner nested CPC model with the longest

path in F (θ∗i) is the provider. Furthermore, this procedure can be

recursively applied to keep constructing inner CPC models for each

consumer group in a nested CPC model, until all local paths in a

consumer group are fully independent. For each inner nested CPC

model, Rules 1 and 2 should be applied for maximised capacity and

minimised delay of each consumer group, whereas Rule 3 is only

applied to independent paths in a consumer group for maximised

parallelism (and hence, the star mark on Rule 3). This enables

complete awareness of inter-node dependency and guarantees the

longest path first in each nested CPC model.

Algorithm 2 provides the complete approach of the rule-based

priority assignment, where pmax denotes the highest priority of all

nodes in the DAG. The method starts from the outer-most CPC

model (CPC(G, λ∗)), and assigns all provider nodes with the highest

priority based on Rule 1 (Line 2). By Rule 2, the algorithm starts from

8

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

2 8 9 10 14 16 t10 6

1

2

4

1 2 6 8 11 13 t0

1

2

4

5 7 0 1 2 4 6 108 t

1

2

4

(a) non-work-conserving schedule in [10] (c) a schedule with lower delay(b) ?fan-in? schedule in [10]

Figure 4: Scheduling examples for two DAG tasks τa and τb. The y-axis indicates the number of cores used by the tasks.

the earliest F (θ∗i) (Line 4) and finds the longest local path λve in

F (θ∗i) (Line 8-9). If there exists dependency between nodes in λve

and F (θ∗i)\λve (Line 9), F (θ∗i) is further constructed as an inner

CPC model with the assignment algorithm applied recursively (Line

11-12). This resolves the detected dependency by dividing λve into a

set of providers. Otherwise, λve is an independent local path so that

priority is assigned to its nodes based on Rule 3. The algorithm then

continues with F (θ∗i)\λve . The process continues until all nodes in

V are assigned with a priority.

The time complexity of Algorithm 2 is quadratic. At most,

|V |+|E| calls to Algorithm 1 are invoked to construct the inner CPC

models (Line 11), which examines each node and edge in the DAG.

Mutually exclusively, Lines 16-17 assign each node with a priority

value. Given that the time complexity of Algorithm 1 is O(|V |+|E|),
we have the time complexity O((|V |+|E|)2) for Algorithm 2, i.e.,

O(n2). Although Algorithm 2 is recursive, this result holds as a node

assigned with a priority will be removed from further iterations (Line

17), i.e., each node (edge) is processed only once.

With the CPC model and the schedule, the complete process for

scheduling a DAG consists of three phases: i) transferring the DAG to

CPC; ii) statically assigning a priority to each node by the rule-based

priority assignment, and iii) executing the DAG by a fixed-priority

scheduler. With the input DAG known a priori, phases i) and ii)

can be performed offline so that the scheduling cost at run-time is

identical to that of the traditional fixed-priority scheduling, which is

in widespread use in real-time systems [35].

VII. OFFLINE CORE ASSIGNMENT FOR SCHEDULING

MULTI-DAG SYSTEMS

The above sections target a single recurrent DAG task, in which a

node in the DAG can only incur the intra-task interference from nodes

in the same DAG. In a multi-DAG system, a node can incur both

intra-task interference and inter-task interference, where the later one

is caused by other DAGs running in parallel. For multi-DAGs, the

existing bound in Graham[17] and Melani[16], and He[1] of the inter-

task interference is shown in Equation 14. Notation Ix denotes the

inter-task interference of τx and hp(x) returns DAGs with a priority

higher than that of τx. The sum of the DAG makespan (i.e., Rx in

Equation 1) and its inter-task interference (i.e., Ix) gives the worst-

case response time of τx on a multi-DAG system [1].

Ix =
1

m

∑

τj∈hp(x)

⌈

Rx

Tj

⌉

·Wj (14)

This analysis can be pessimistic as it does not take the parallel

degree of the DAGs into account. In an extreme case where there is

a sufficient number of cores to accommodate the maximum parallel

degree of the system, all DAGs can execute when they are ready

without incurring any inter-task interference. However, the above

analysis still impose a certain amount of inter-task interference on τx,

as it accounts for this interference based on the sum of the workload

of all high priority DAGs released during Rx. This pessimism can

t

inter-task

interference

offset

Figure 5: An example illustrating the “offset” effect on the analysis.

become significant when the high priority DAG τj has a very large

workload Wj , e.g., with very long nodes.

For the proposed analysis in Section V, the inter-task interference

brings significant barriers for the analysis to be applied on multi-

DAG systems. The key reason is that for a given DAG τx, its nodes

(especially the non-critical ones) can often incur an additional delay

due to other DAGs so that it creates an “offset” effect between the

execution of the critical path and the non-critical workload inside

τx. Figure 5 illustrates the impact of the “offset” on the constructed

analysis. With inter-task interference, the execution of the consumer

group (i.e., F (θ∗i)) is delayed so that most of its workload is executed

after the provider θ∗i is finished. For the proposed analysis, this leads

to a small αi yet a large βi, and subsequently, a large delay on

θ∗i+1 (see Equation 7). This is because the analysis can only provide

fine-grained computations for nodes in the same DAG, and hence,

results in a small αi even though the provider is executed in parallel

with other DAGs. Accordingly, the “offset” effect directly breaks the

fundamental advantage of the proposed analysis, which then often

leads to a high degree of pessimism of the resulting timing bound.

To address the offset effect of the proposed analysis on multi-

DAG systems, Zhao[10] presents a non-work-conserving schedule

which only allows one DAG to execute at a time and completely

avoids inter-task interference. However as shown in Figure 4(a), it

can impose a large delay on τb, which has to wait for τa to finish

even if most of the cores are free. Further, based on the non-working-

conserving method, Zhao[10] briefly describes a possible “fan-in”

schedule which allows τb to start (where possible) when τa’s parallel

degree is monotonically non-increasing (i.e., fan-in). As shown in

Figure 4(b), τb under the “fan-in” schedule is able to start (and finish)

3 units of time earlier than that in Figure 4(a). However, as shown in

the figure this method does not address the fundamental challenge and

still imposes a large delay to τb. The above two scheduling methods

indicate that the cost of avoiding the offset effect is the prolonged

delay for incoming DAGs. However, as shown in Figure 4(c), if τb
only utilises two cores to execute, it can (i) avoid the offset effect

as the number of cores requested by τb is satisfied during its entire

execution, and (ii) significantly reduces the delay as the competition

on cores is reduced as τb now require less cores to execute. With this

schedule, τb can finish at time 10, with a total delay of only one unit

of time.

Based on the motivational example in Figure 4, we propose an

9

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

Table III: Notations in scheduling and analysing multi-DAGs.

Notation Description

τx a DAG task with index x.
Jx,j the jth release of τx.
Px the priority of DAG task τx.
Ix the inter-task interference of τx.
rx,j the release time of the jth release of τx.
dx,j the deadline of the hth release of τx.
nopx,j the number of cores a job Jx,j can execute on.

Ix the inter-task interference of τx.
WDm

x the P-WDM of τx on m cores.
WDm

x (t) the parallel degree of WDm
x at time t.

hp(x) the set of tasks with a priority higher than that of τx.
lp(x) the set of tasks with a priority lower than that of τx.
A⊕B the accumulation operator of two P-WDMs.

v1

0 1

v6

v3

v4

v2

v5

2

v3

v4

v2

v5

4

v2

v5 + v7

8

v7 v8

9 10 t

h

1

2

4

5

v1

1
v4 v8

v5 v7

v3

v2

v6

1

7

3

3

6 2

1

(a) Example DAG (b) Parallel Distribution Model

Figure 6: Workload distribution model on infinite number of cores.

offline core assignment that address the difficulties of applying the

analysis on multi-DAG systems and reduces the delay for the incom-

ing DAGs. Essentially, this method allows the parallel execution of

multi-DAGs by assigning a specific number of cores to each DAG and

(analytically) guarantees that the assigned cores are always available

when a DAG starts or resumes execution. By doing so, our analysis

can be applied without suffering from the pessimism due to the offset

effect. Assigning an appropriate number of cores to each DAG based

on its parallelism becomes crucial to the performance of this method.

To achieve this, we first propose a Parallelism-aware Workload

Distribution (P-WDM) model to understand the internal parallelism of

a DAG when running on a any given number of cores (Section VII-B).

Then, an P-WDM accumulation method that adds two P-WDMs is

developed to understand the workload distribution of the system when

multiple DAGs are running in parallel (Section VII-C). Based on this

model, the proposed method determines the number of cores that an

incoming DAG can run on such that (i) this DAG can execute without

suffering from the offset effect due to the currently-executing DAGs

and (ii) the deadline of the DAG can be met (Section VII-D). Table III

presents notations introduced in this section.

A. Overview of the multi-DAG schedule

As described in Section II, the system contains n sporadic DAG

tasks, and each of them can give rise to a set of jobs in a hyper-period.

With the multi-DAG schedule constructed in this section, each DAG

job Jx,j is assigned with a number of cores it can execute on during

run-time by the offline core assignment constructed in this section,

denoted as nopx,j . During run-time, Jx,j can be scheduled in a work-

conserving manner on nopx,j . That is, the scheduler will not assign

more cores than nopx,j to Jx,j , but allows Jx,j to execute if there is

fewer cores available. In Section VII-D we prove that this does not

jeopardise the proposed method and the analysis results.

B. The parallelism-aware workload distribution model

As described above, the key of the proposed method is the effective

assignment of the number of cores that each DAG can utilise to

v1

0 1

v2

v6

v5

2

v3

v2

v5

4

v3 + v4

v2

v5 + v7

8

v7 v8

9 10 t

h

1

2

3

(a) node order: {v1, v5, v6, v2, v3, v4, v7, v8}

v1

0 1

v4

v3

v6

2

v2

v4

v3

v5

v2

8

v5

9 10 t

h

1

2

3

54

v7 v8

12 13

(b) node order: {v1, v6, v3, v4, v2, v5, v7, v8}

Figure 7: The workload distribution of the example DAG when

executing on three cores with two different orders.

execute on. This can impose a direct effect on the parallel degree

of the DAG during execution, and subsequently, its finish time.

Therefore, it is crucial to understand the execution behaviours (in

terms of parallelism) of DAG tasks when executing on different

numbers of cores.

The original Workload Distribution Model (WDM) in Fonseca[13]

describes the parallel degree of a DAG task on the infinite number of

cores. The WDM maps a DAG task to a set of consecutive execution

blocks, where the height of an execution block denotes the number

of nodes that are executing in parallel while its length gives the

execution time of the block. Figure 6 presents the WDM of the

example DAG task used in Figure 2, where the y-axis shows the

number of cores being used by the DAG task with the passage of

time (the x-axis).
The WDM can be formally described by Equations 15 and 16. In

Equation 15, the start and finish time of each node in a DAG can be
computed. For a DAG task that starts at time t = 0 with an infinite
number of cores, f∞(vj) returns the finish time of a given node vj in
the DAG. Note that on the infinite number of cores, vj does not incur
any interference and can start as long as its predecessors (pred(vj)))
are finished. Then, for a given time instant t, Equation 16 returns the
parallel degree of the DAG task, by counting the number of nodes
that are actively executing at the time. Notation PD∞(Vx, t) denotes
the parallel degree of DAG τx at time t, with an infinite number of
cores.

f∞(vj) = Cj + max
vk∈pred(vj)

(

f∞(vk)
)

(15)

PD∞(Vx, t) =
∑

vj∈Vx

{

1, if t ∈
[

f∞(vj)− Cj , f
∞(vj)

)

0, otherwise
(16)

However, one major limitation of the original WDM is that it

cannot describe the parallel distribution of a DAG when the number

of cores is less than the maximum parallelism of the DAG. To address

this limitation, this paper proposes a Parallelism-aware Workload

Distribution Model, namely P-WDM. The essential difference be-

tween the WDM and the P-WDM is that P-WDM can describe

the parallel execution of the DAG on any given number of cores.

When a DAG is assigned with an insufficient number of cores, the

node ordering can impose a direct impact on the shape of workload

distribution of the DAG.

Figure 7 presents the workload distribution of the example DAG

on three cores with different node orderings. In Figure 7(a), the nodes

10

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

Algorithm 3: Construction of the P-WDM

Inputs : Vx; m
Outputs : WDm

x

Initialise : t = 0; WDm
x = ∅

1 /* Compute finish time of each node under m cores. */

2 for each vi in Vx do

3 compute f(vi) by Equation 3;

4 end

5 /* Find active nodes at each time instant. */

6 while PD(Vx, t) > 0 do

7 WDm
x = WDm

x ∪ PD(Vx, t);
8 t = t+ 1;

9 end

10 return {WDm
x }

are ordered by the method proposed in Section VI and the workload

distribution of the DAG is evenly distributed on three cores. However,

a different node ordering would change the workload distribution,

e.g., in Figure 7(b) the workload distribution is prolonged by 3

units of time with a lower parallel degree. More importantly, such

differences can directly affect the offline core assignment algorithm.

For instance, the P-WDM in Figure 7(b) indicates that another

incoming DAG with one or two cores assigned can start earlier with

less delay.

Therefore, the proposed P-WDM features (i) the ordering at the

node level and (ii) the number of cores assigned to the DAG, and

describes the workload distribution of the DAG based on these two

factors. This can be achieved by Equation 3, which computes the start

and finish time of a node vi, given the node priority and the number of

cores. Then, Equation 16 is applied to compute the number of nodes

that are executing for a given time instant, but with the notation ∞
removed to feature any given m.

The process of constructing P-WMD is similar to that of the

original WMD [13], as given in Algorithm 3. The algorithm takes all

nodes in τx (i.e., Vx) and a number of cores (i.e., m) as the input,

and produces the P-WDM of τx on m cores, denoted by WDm
x .

The algorithm first iterates through each node in Vx and computes its

finish time f(vi) (line 1-3). Then, starting from time t = 0 (relative

to the release of the DAG), the algorithm iterates PD(Vx, t) for each

time instance t and adds the current parallel degree of the DAG into

WDm
x (line 4-7). The algorithm terminates until PD(Vi, t) = 0, i.e.,

the finish of the sink node (line 4). During each iteration, it adds the

current parallel degree of the DAG into WDm
x (line 5).

For instance, the P-WDM shown in Figure 7(a) is described as

WD3
x = {1, 3, 3, 3, 3, 3, 3, 3, 1, 1}, in which the index of the array

gives the relative time t and the value of the array gives the workload

distribution of the DAG at t. Please note the time t here denotes the

time relative to the release of the DAG, i.e., it always starts from zero

even the DAG is not released from the beginning of a hyper-period.

The time complexity of this algorithm is linear, i.e., O(n), as

at most |Vx|+Wx iterations (in the worst case) are required to

examine each node in the DAG task. In addition, there exists several

implementation approaches to reduce the computation time of this

algorithm. For example, the P-WDM can be constructed by iterating

the nodes in Vx instead of the relative time t. This will then only

require at most |Vi|×2 iterations which is often much lesser than Li.

Algorithm 4: The ⊕ operator: accumulation of P-WDMs

Inputs : WDm1
a ; WDm2

b ; m
Outputs : WDm; Ib
Initialise : WDm = WDm1

a ; Ib = 0
1 while WDm2

b (t) > 0 do

2 if WDm1
a (t) +WDm2

b (t) ≤ m then

3 WDm(t) = WDm1
a (t) +WDm2

b (t);
4 else

5 Ib = Ib + 1;

6 end

7 t = t+ 1;

8 end

9 return {WDm; Ib}

C. The P-WDM of parallel DAGs

When two DAGs are running simultaneously, their P-WDMs can be

combined to form a new P-WDM. For the proposed core assignment

method, it is important to understand the accumulated workload

distribution of the system at a given time so that the method can

decide the number of cores that the next DAG can run on without

interfering with the existing ones.

To achieve this, we define a new operator ⊕ to denote the

accumulation of two P-WDMs, where WDm1
a ⊕ WDm2

b gives a

new P-WDM by adding the P-WDM WDm2
b on top of WDm1

a

under m cores, with m1 ≤ m and m2 ≤ m. That is, the operator

⊕ features the notion of the non-preemptive schedule, where task

τa is scheduled before τb and cannot be preempted. In addition, the

workload accumulation method follows two principles when adding

workload:

• The workload distribution of WDm1
a will not be interfered by

the workload in WDm2
b , featuring τa has a higher execution

eligibility in a non-preemptive scheduling scheme.

• The workload of WDm2
b will only be added if there exist m2

free cores, featuring that the τb does not incur the offset effect

due to core competition.

In this section, the working mechanism of the workload accumula-

tion method is described and the algorithm is presented. Then, we use

two illustrative examples to demonstrate the accumulation method ⊕
can (i) provide the key to address the issue of applying the proposed

analysis on multi-DAG systems and (ii) highlight the intuition of the

offline core assignment algorithm.

Algorithm 4 presents the pseudo-code for adding two P-WDMs.

The algorithm takes the following inputs: (i) the base P-WDM

WDm1
a , (ii) the P-WDM to be added WDm2

b , and (iii) the total

number of cores of the system m. It then produces two outputs: (i) the

accumulated P-WDM on m cores (WDm) and (ii) the delay (denoted

by Ib) that the task of WDm2
b incurs when adding its workload on

WDm1
a . The algorithm iteratively calculates the workload in WDm2

b

by time t (line 1) and checks whether there exist enough cores to

accommodate the workload (line 2). If so, the workload is added

on the top of WDm1
a (line 3). Otherwise, τb incurs a delay until

the system has enough free cores to allocate the workload (line 5).

The algorithm terminates when WDm2
b (t) = 0, which indicates the

finish of its sink node. We note that a simple mechanism should be

supported to transform the absolute time of the system (which starts

from the beginning of the hyper-period) to the relative time of a job

(which starts from the execution of the job) when accessing its P-

WDM. By performing Algorithm 4 iteratively on the P-WDMs of

11

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

all jobs in one hyper-period, one can obtain the complete workload

distribution model of the system.

As with Algorithm 3, the time complexity of Algorithm 4 is linear

(i.e., O(n)), with respect to the workload of the incoming DAG

(i.e., Wb in the algorithm). In addition, implementation efforts can be

conducted to further speed up the algorithm, by iterating execution

blocks instead of time. However, we present the algorithm by iterating

time for simplicity and better understanding.

Example 1. Figure 8(a) provides an example illustrating the P-WDM

accumulation of two DAGs (τa and τb) running on 6 cores. In this

example, both DAGs are assigned with 4 cores and start at t = 0.

The example adds the P-WDM of τb on τa, i.e., WD4
a ⊕WD4

b .

This example first illustrates the working mechanism of the ⊕
operator. As shown in the figure, the workload of τb can be added

on the top of τa from t = 0 to t = 2, as the number of cores needed

by both DAGs does not exceed the total number of cores. However,

from t = 2 to t = 6, the system cannot provide enough cores to

allocate τb’s workload, which requires 4 cores. Under this case, τb
is delayed until t = 6. After t = 6, the number of cores τb required

are satisfied and the rest workload of τb is added on τa to form a

new P-WDM.

More importantly, this example explains the application of the

analysis for multi-DAG systems. In this example, when the number of

free cores is less than the cores τb needs, τb will be delayed instead of

utilising fewer cores to “execute”, which may seem counter-intuitive.

However, by allowing this delay we can avoid the “offset” effect for

τb, where the start of non-critical nodes in τb will not be delayed due

to other DAGs in the system. By guaranteeing that each DAG can run

on a fixed number of cores during the entire execution, we transform

the multi-DAG analysis problem into the analysis of a set of single

DAGs, with an additional delay to reflect the inter-task interference.

This is because the analysis ensures: (i) the number of cores assigned

to a DAG is fixed during the entire execution of the DAG; and (ii)

the start time of nodes in the DAG is not prolonged due to other

DAGs in the system.

Based on this model, the inter-task interference can be bounded by

the delay a task can incur when being added to the current P-WDM

of the system, which reflects the competition for cores between the

DAG tasks. The intra-task interference can then be computed directly

by the proposed analysis, which takes the number of cores being

assigned as the input. By summing these two factors, the response

time of a task in a multi-DAG system can be obtained.

We note that the P-WDM and the ⊕ operator are developed to

facilitate the application of the single-DAG analysis on multi-DAG

systems. During execution, the DAG can run as long as there exist

idle cores, within the number of cores assigned to the DAG. That is,

in Figure 8(a) the execution block with a height of four can execute

along with τa in the real-world, without incurring any delay. However,

in the viewpoint of P-WDM, τb incurs a delay of four units of time so

that the proposed analysis can be effectively applied. The complete

analysis and proof of correctness are presented later in Section VII-D.

Example 2. Figure 8(b) provides another scenario of the workload

accumulation of τa (in blue) and τb (in red). In this case, τa is

assigned with 4 cores but τb can only execute on 2 cores. The example

adds the P-WDM of τb on τa, i.e., WD4
a ⊕WD2

b .

In this example, the number of cores required by τb can be satisfied

during its entire “execution” so that all workload in WM2
b can be

added on WM4
a directly without any delay. Compared with Example

1, two observations can be obtained. First, although with fewer cores

1
2

4

2
1 1

1

2 2

1 1

0 1 2 4 8 9 10 t

h

1

2

4

5

6

11 126

2 2

2

1
2

4

2
1 1

1

2

4

2

1 1

0 1 2 4 8 9 10

h

1

2

4

5

6

11 12

2

6 13 14 t

Figure 8: Then P-WDM accumulation.

assigned, the workload of τb in this example can be allocated with 2

units of time shorter, i.e., τb in Example 2 is a shorter “finish time”.

Second, with fewer cores being assigned, the “execution” duration of

τb is two units of time longer that in Example 1.

This example highlights the trade-off between the delay due to

core competition and the execution duration (i.e., the time spent

for computation), which is controlled by the number of cores being

assigned to the task. Although the execution duration of τb becomes

longer with fewer cores assigned, τb can finish earlier in this case

as it does not incur any delay from other DAGs in the system. This

trade-off motivates the proposed core assignment method, which aims

to find a balanced solution between the number of cores that a DAG

can use and the delay it incurs due to core competition with other

DAGs in the system, so that the overall system schedulability can be

improved.

D. Response time analysis and core assignment based on P-WDM

As illustrated in Example 1, the response time of a DAG job Jx,j

can be bounded by Equation 17, denoted as R⋄
x,j . Notation Rx,j gives

the makespan of Jx,j by the single-DAG analysis and Ix,j gives the

inter-task interference by Algorithm 4. Note, as different jobs of τx
can be assigned with different number of cores, we use Rx,j instead

of Rx to differentiate each job instance. The notion of the number

of cores that Jx,j can execute on is encoded in Equation 2 and the

construction (as well as the accumulation) of P-WDMs.

R⋄
x,j = Rx,j + Ix,j (17)

Theorem 2. The response time of Jx,j is bounded by Equation 17.

Proof. A DAG can incur both intra-task and inter-task interference

in a Multi-DAG system [1], [16]. Below we prove R⋄
x,j can upper

bounds both types of interference.

For the inter-task interference, it is bounded by examining the P-

WDM of the system and the incoming DAG based on P-WDM, where

the DAG is delayed as long as the system cannot provide the number

of core assigned (see Figure 8(a)). This upper bound is safe because

the P-WDM is constructed based on the WCET of nodes, which

depicts the worst-case workload of a DAG and the system. As with

He[1], we focus on systems where no dependency exists between

DAGs (see Section II-B). Therefore, a reduction in execution time of

a DAG can only lead to less competition for cores, i.e., less inter-task

interference.

As for the intra-task interference, it is effectively bounded by

Equation 2 for two reasons. First, the analysis has been proved to

bound the intra-task interference of a single DAG (see Lemmas 2-

7 in Section V). Second, in a multi-DAG system, a reduction in

execution time of DAG τa will not jeopardise the analysis of intra-

task interference of an incoming DAG τb. With the work-conserving

schedule applied, when nodes in τa execute less than their WCETs,

nodes in τb can also start (and finish) earlier, if possible on the number

12

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

Algorithm 5: Offline core assignment for multi-DAGs

Inputs : Γ,m
Outputs : nopx,j , ∀Jx,j ∈ ΓH

Initialise : WDm = ∅

1 get and sort ΓH by (i) earliest release time first and (ii)

highest priority first;

2 for each Jx,j ∈ ΓH do

3 Ř⋄
x,j = ∞;

4 for i = m...1 do

5 get WDi
x,j by Algorithm 3;

6 (WDm, Ix,j) = WDm ⊕WDi
x,j ;

7 compute Rx,j by Equation 2 with i cores;

8 R⋄
x,j = Rx,j + Ix,j ;

9 if R⋄
x,j < Ř⋄

x,j then

10 Ř⋄
x,j = R⋄

x,j ;

11 else

12 reset WDm;

13 end

14 end

15 if Ř⋄
x,j > dx,j then

16 return infeasible;

17 end

18 end

19 return {nopx,j , ∀Jx,j ∈ ΓH}

of cores being assigned. As the single-DAG analysis is proved to be

sustainable (see Section V-C), this will not lead to a Rx,j higher than

the worst case. For the same reason, allowing τb to execute earlier

when there is fewer cores available than the number of cores assigned

to τb does not jeopardise the bound.

To this end, the offline core assignment algorithm for multi-DAGs

can be constructed, as shown in Algorithm 5. The algorithm takes a

set of sporadic DAG tasks Γ and the number of cores of the system

m as the input, and produces a schedulable configuration with the

minimal response time (if found) for each job in one hyper-period.

A configuration of a job Jx,j specifies the number of cores Jx,j can

execute on, denoted as nopx,j .

Given the inputs, the algorithm first gets all jobs in one hyper-

period (denoted as ΓH) from Γ, and sorts the jobs by their release

time in a non-decreasing order (line 1). If two DAGs are released

at the same time, they will be sorted by priority non-increasingly.

Then, starting from m, the algorithm searches for the configuration

that leads to the minimal response time of the job, based on (i) the

P-WDM of the current system and the job (lines 5-6, Algorithm 4)

and (ii) the multi-DAG analysis in Equation 17 (lines 7-8). If a

schedulable configuration is found, the algorithm assigns the current

configuration to the DAG job, and the search continues for the next

job (line 9-10). If a job is found unschedulable with any configuration,

the algorithm returns immediately with no schedulable solution being

found (line 15-17). A system is deemed schedulable if each job in

one hyper-period is found schedulable with a given configuration.

Assuming linear complexity of the analysis, the time complexity

of this algorithm is O(n4), depending on the number of DAG jobs

in one hyper-period |ΓH | and the number of cores in the system

(i.e., m). In the worst case, (|ΓH |×m) iterations are required to

test the schedulability of each job under each configuration based

on the P-WDM model. In each iteration, Algorithms 1 to 4 will

be invoked to compute the priority of the DAG and its P-WDM,

leading to a time complexity of (|ΓH |×m × n2) ≈ n4, where

n2 is the highest time complexity among the invoked algorithms,

i.e., Algorithm 2. However, as described, the constructed multi-DAG

scheduling method is performed offline to compute the number of

cores each DAG can use. During run-time, the scheduler takes this

configuration and executes DAGs based on their priorities, which

has a run-time cost similar to that of a fixed priority scheduler with

a global scheme [35].

In addition, it is worth noting that proposed single and multi-

DAG methods are developed for homogeneous systems. As for

heterogeneous platforms, the key challenge is raised by the different

speed and types (e.g., FPGA or GPU) of the processing units, which

can lead to fundamental changes of the DAG structure (e.g., the

critical path), and subsequently, the CPC and WDM of a DAG

when executing on different processing units [36]. In addition, the

constraint that certain nodes can only be executed on a specific

type of processing units further exacerbates the complexity of this

problem [37]. To tackle this challenge, the constructed methods

need to take into account the knowledge of which cores the DAG

will execute on. Then, an analyse will be required to compute the

impact of cores to the DAG structure and the constructed models

before making scheduling and allocation decisions. Extending the

constructed methods to heterogeneous system will be addressed in

our future work.

VIII. EVALUATIONS

The objectives of this evaluation are multifold: (i) to demonstrate

the analysis (rta-cpf in Section V-B and rta-cpf-eo in Section V-D)

and node execution ordering (Section VI) improve the worst-case

makespan (using the classic bound as reference) of a DAG; (ii) to

establish the conditions in which the proposed methods lead to an

improved makespan of a DAG; (iii) to demonstrate the proposed

execution order reduces makespan and the proposed single-DAG

analysis tightens the worst-case bounds; and (iv) to demonstrate

the offline core assignment has a higher system schedulability than

existing methods on multi-DAG systems due to tighter bounds on the

inter-task interference. The proposed node execution order (denoted

as EO), analysis and the multi-DAG methods are compared with

methods in He[1] (denoted as He2019 hereafter) in which a node

priority assignment is proposed alongside the analysis for both single

and multi-DAGs. Objectives (i) to (iii) show the contributions from

Zhao[9]. Objective (iv) represents the most significant contribution

on multi-DAGs made in this paper.

The experiment is evaluated through randomly generated DAGs.

Each DAG task is generated as follows: the generator starts from a

source node, and then generates nodes layer by layer. The maximum

depth (the number of layers) is randomly chosen from 5 to 8. The

number of generated nodes in each layer is uniformly distributed from

2 to the parallelism parameter, p. Open-ended nodes randomly add

connections with a probability of pc = 0.5 to join the other nodes in

the previous layer. Then, all terminal nodes are connected to a sink

node. The source and sink nodes serve the purpose of organising

the node graph, they both have a execution time of one unit. Finally

the execution times are randomly assigned to nodes given a total

workload of W 1.

A. Evaluation of the worst-case makespan

This section evaluates the worst-case makespan produced by the

constructed methods and the state-of-the-art [1], by varying the

1The evaluation implementation can be accessed at https://github.com/
automaticdai/research-dag-scheduling-analysis.

13

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

Figure 9: Normalised DAG worst-case makespan using analytical

methods with varied number of cores (m).

number of cores (m). For each configuration (task and system

setting), 1,000 trials are applied to the compared methods. Each trial

generates one DAG task randomly. The makespan is normalised by

the largest value observed and is used as the indicator (i.e., the y-

axis).

Observation: Figure 9 presents the worst-case makespan of the

existing and the proposed methods with a varied number of cores,

on DAGs generated with p = 8. With m ≤ 4, the rta-cpf provides

similar results to the classic bound, i.e., most of its results are upper

bounded by the classic bound. This is because with a small number of

cores, the parallelism degree of the DAG is limited so that each non-

critical node has a high worst-case finish time (see Equation 3). This

leads to a low αi bound (as well as a high βi bound) for each provider

and hence a longer worst-case makespan approximation. With m
further increased, the rta-cpf becomes effective and outperforms the

classic bound, e.g., by 15.7% and 16.2% on average when m = 7
and m = 8, respectively. In this case, more workload can execute in

parallel with the critical path, i.e., an increase in αi and a decrease in

βi. Thus, the rta-cpf leads to tighter results by explicitly accounting

for such workload, resulting in a safe reduction in interference on

the critical path.

Similar observations are also obtained in the comparison of rta-

cpf-eo and He2019, where rta-cpf-eo provides shorter worst-case

makespan approximations with m ≥ 4, e.g., by up to 11.1% and

12.0% with m = 7 and m = 8 respectively. We note that the

node execution order in both methods can also affect the analytical

worst-case bounds. In Section VIII-C, we compare the scheduling

and analysing methods separately. Furthermore, we observe that with

m = 7, rta-cpf (with random execution order) provides similar

results with He2019, and outperforms He2019 with m = 8.

Summary: These experiments provide an overall comparison

of the proposed methods and the existing ones. The observations

demonstrate that the our methods in general can achieve lower

DAG makespan with varying number of cores. However, it is not

straightforward to understand how different DAG properties would

impact the worst-case makespan. In the next section we evaluate the

sensitivity of our methods to different DAG properties.

B. Sensitivity of DAG properties on the evaluated methods

This experiment shows how the evaluated analysis is sensitive

to certain DAG characteristics. That is to say, by controlling the

parameters of the DAGs and evaluating the makespan in normalised

values, it can be seen by how much the performance of the analysis

changes. This would otherwise not be distinguishable through worst-

case makespan or schedulability analysis. Specifically, we consider

the following parameters in this experiment (with the number of

cores fixed): (i) DAG parallelism (the maximum possible width when

generating the randomised DAG), p; and (ii) DAG critical path ratio

to the total workload, %L, where %L = L/W .

Figure 10: Sensitivity of parallelism parameter (p) when m = 4.

Figure 11: Sensitivity of critical path ratio (%L) when m = 2, p = 8.

Observation: Figure 10 shows the worst-case makespan of the

proposed methods with varied values of the parallelism parameter

(with m = 4). Note, DAGs in this experiment are randomly generated

as with Figure 9 so that %L is not controlled explicitly. As shown

in the figure, given a fixed number of cores, rta-cpf outperforms

the classic bound in general. However, with the increase of p, the

difference in performance of both methods becomes less significant.

The intuition behind this observation is, with an increased number

of concurrent nodes, the interference set of each node also increases

(see Equation 4), which then results in an increased worst-case finish

time. This undermines the effectiveness of rta-cpf, which accounts

for αi and βi based on worst-case finish time.

However, rta-cpf-eo demonstrates a strong performance and its

effectiveness is not affected by the change on p, which consistently

outperforms other methods in all system settings. This is because with

an explicit execution order, the increase of concurrent nodes cannot

impose a significant effect on the finish time of nodes, in which

high priority nodes can execute immediately without any delay (see

Equation 12). Therefore, rta-cpf-eo with parallelism DAGs can still

account for the actual interfering workload effectively, and provide

the lowest worst-case makespan.

Observations: Figure 11 evaluates the impact of the length of

the critical path on the effectiveness of the proposed methods, with

m = 2. The critical path is varied in a range from 60% to 90% of

total workload of generated DAGs. In this experiment, the proposed

analysis demonstrates the most pronounced performance compared

to the existing methods.

For the proposed methods, the worst-case makespan of rta-cpf

varies with a small number of %L, due to the varied internal structure

of the generated DAGs (e.g., %L = 0.6). However, with a further

increase of both %L, rta-cpf provides a constant makespan, as all

non-critical workload can execute in parallel with the critical path.

In this case, the makespan directly equals the length of the critical

path. Similar observations are also obtained for rta-cpf-eo, which

provides a constant makespan (i.e., the length of critical path) under

all experimental settings. Note, with further increases of %L, He2019

is completely dominated by rta-cpf (based on evaluations but not

presented due to page limitation).

Summary: Based on the above experiments, the proposed methods

outperform the classic method and the state-of-the-art in a general

14

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

Table IV: Percentage of improvement in advantage cases w.r.t. node ordering policy

EO ≻ He2019 EO ≺ He2019

m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=2 m=3 m=4 m=5 m=6 m=7 m=8
avg. 7.89 8.05 7.21 6.77 6.18 5.72 5.41 6.47 5.92 4.53 3.24 2.52 1.64 1.65
max. 30.63 36.18 33.39 34.17 30.65 27.75 25.27 30.68 27.19 23.83 21.59 24.09 16.76 19.26
min. 0.05 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.04 0.02 0.03 0.03 0.02 0.03

m=2 m=3 m=4 m=5 m=6 m=7 m=8
0

200

400

600

800

Fr
eq

ue
nc

y

EO He2019
EO He2019

Figure 12: Proposed priority ordering v.s. the ordering in He[1],

grouped by the number of cores (m), with p = 8. In the legend,

“≻” indicates outperforming and “≺” means the vice versa.

case. In addition, we observed that each of the tested parameters m,

p, %L has an impact on the performance of the proposed methods.

For rta-cpf, it is sensitive to the relation between m, p, in which a

low m or a high p undermines the effectiveness of the method. Both

factors have a direct impact on the finish time of all non-critical

nodes. In addition, %L can also significantly affects the performance

of rta-cpf, in which a long critical path generally leads to more

accurate makespan approximations. Similar with rta-cpf, rta-cpf-eo

demonstrates better performance with the increase of %L. However,

due to its explicit execution order, rta-cpf-eo shows much stronger

performance than rta-cpf and is not affected by parameter p.

C. Effectiveness of the proposed schedule and analysis

In this experiment, the proposed priority assignment is compared

against the assignment in He[1] in terms of the worst-case DAG

makespan. Overall there are 1000 random tasksets generated under

each configuration. Two metrics are compared in this evaluation: (a)

the percentage of times that the proposed rta-cpf-eo analysis is better

than the compared method, and (b) the reduction in the normalised

makespan within the improved cases.

Observation: Figure 12 reports the comparison of the proposed

ordering method and the method in He[1], with a varied number of

cores. The term “frequency” indicates the number of cases that the

proposed schedule has a shorter (in red) or longer (in blue) makespan

than He2019. For fairness, the proposed worst-case makespan anal-

ysis for explicit order (Section V-D) is applied for both ordering, so

the differences in performance all comes from the ordering policies.

From the results, the proposed method outperforms He2019 with a

higher frequency in general, especially with a small number of cores,

e.g., around the frequency of 600 with m = 2 and m = 3. With the

increase of m, the difference in frequency of the methods gradually

decreases, and becomes difficult to distinguish with m = 7, 8. In

these cases, most nodes can execute in parallel so that different

execution order have less impact on the final makespan. For the same

reason, both methods have an increasing frequency to produce the

same makepsan with the increase of m. This explains the decreasing

total frequency in the figure, which only reports the cases where one

method outperforms another.

Table IV presents detailed comparison of both methods in their

advantage cases, in terms of the percentage of improvements. For EO

≻ He2019 (i.e., proposed schedule outperforms He2019), we observe

Table V: Advantage cases and scientific significance in node ordering

– both EO and He2019 are implemented in (α, β) analysis.

m Dataset # of data Magnitude

2
EO ≻ He2019 668 medium
He2019 ≻ EO 261 medium

4
EO ≻ He2019 450 medium
He2019 ≻ EO 276 small

6
EO ≻ He2019 298 small
He2019 ≻ EO 255 negligible

8
EO ≻ He2019 192 small
He2019 ≻ EO 184 negligible

an average improvement (in terms of worst-case makespan) higher

than 5.4% (up to 7.89%) in all cases. For cases with EO ≺ He2019

(i.e., He2019 performs better), the improvement is consistently lower

than the corresponding case with EO ≻ He2019.

Table V reports the number of advantage cases and the scientific

significance of the improvements, in both EO ≻ He2019 and EO

≺ He2019. The magnitude in Table V is a categorical value in

(negligible effect, small effect, medium effect and large effect) to

reflect the scientific significance [38]. In other words, the scientific

significance informs whether any difference is more than random

chance and the size of the difference. The column # of data illustrates

the number of times one approach has a lower makespan than the

other. In all cases our approach outperforms the state of the art. The

Magnitude gives further evidence of the benefits of our approach,

e.g., m = 4 the effect size when EO outperforms He2019 is medium

versus small for He2019 outperforming EO, and for m = 8 it is

small versus negligible even though # of data have similar values.

Summary. The above experiments show the benefits of the pro-

posed single-DAG scheduling method. A similar comparison of our

analysis and the one in He[1] by applying the same execution order is

also conducted with consistent results being observed (not presented

due to page limitation). Therefore, we conclude that the proposed

scheduling and analysing are effective, and outperform the state-of-

art techniques in the general case.

D. Evaluation of the schedulability of multi-DAG systems

The objective of this section is to demonstrate the proposed

multi-DAG core assignment (denoted as mDAG-CA) achieves higher

system schedulability than methods in He[1] and the non work-

conversing approach in Zhao[10] (denoted as Zhao2020), and

achieves lower response time compared to a variant of mDAG-CA

(denoted as the Baseline). The baseline method shares the same

process with mDAG-CA but returns immediately if a schedulable

configuration is found instead of minimising the response time of

the DAG. Two experiments are conducted. The first evaluates the

resulting system schedulability of the competing methods. Then,

the second experiment reveals the key reason that mDAG-CA has

a higher schedulability by examining the intra-task and inter-task

interference respectively of the evaluated methods.

The experiment setup is as follows unless specified otherwise: the

number of cores is set to m = 8. The total utilisation of the system

15

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

System Utilisation

0

20

40

60

80

100

S
y
s
te

m
 S

c
h
e
d
u
la

b
ili

ty
 (

%
)

mDAG-CA

He2019

Zhao2020

Baseline

Figure 13: System schedulability comparison with scaled U .

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of Cores

0

20

40

60

80

100

S
y
s
te

m
 S

c
h

e
d

u
la

b
ili

ty
 (

%
)

mDAG-CA

He2019

Zhao2020

Baseline

Figure 14: System schedulability comparison with scaled m.

ranges from 5% to 100%, with a step size of 5%. A taskset has

5 DAG tasks, and each DAG is generated randomly in the same

way as introduced earlier. We use the Dirichlet-Rescale algorithm in

Griffin[39] to generate and ensure the uniformity of the utilisation

of DAGs in a taskset as well as the execution time of nodes in each

DAG based on its workload Wi = Ui/Ti. The periods of DAG tasks

are generated randomly in a uniform distribution from all periods that

lead to a hyper-period of 1440ms, and deadlines are equal to periods.

The priorities are assigned to DAGs based on the deadline-monotonic

policy. The system schedulability of He2019 is computed by its

multi-DAG analysis under a non-preemptive scheduling scheme. The

schedulability of Zhao2020 is computed by its multi-DAG analysis

for the non work-conserving schedule.

Experiment One: Figures 13 and 14 present the system schedula-

bility of mDAG-CA, He2019, Zhao2020 and the Baseline by scaling

the system utilisation U and the number of cores m, respectively.

Observation: As shown in Figure 13, the mDAG-CA demonstrates

a higher schedulability compared to H2019 and Zhao2020, in which

the mDAG-CA can schedule more than 90% systems with U = 20%
while He2019 and Zhao2020 can only schedule 40% and 10% of

systems, respectively. This observation is expected because based

on the P-WDM, mDAG-CA effectively reduces the pessimism in

the inter-task analysis. For He2019, it outperforms Zhao2020 but

demonstrates a quick fall off when U is increasing. As discussed at

the beginning of Section VII, this is due to the pessimism in its inter-

task analysis, which does not take DAG parallelism into account. For

Zhao2020, it is not surprising that it has the lowest schedulability.

This is due to its non-work-conserving approach, where the next

ready DAG can execute only if the current one is finished. In addition,

the Baseline method demonstrates a similar schedulability with the

mDAG-CA. This is expected as both methods share a similar process

for producing schedulable solutions. The key difference between

mDAG-CA and the Baseline will be revealed in experiment two.

The same observations are also obtained in Figure 14 by varying

the number of cores (m), where the mDAG-CA is similar with the

Baseline and is consistently better than He2019 and Zhao2020. Note

that in Figure 14, the workload of the DAGs is fixed (which is

equivalent to the workload of systems with U = 30% and m = 8)

so that we only change one parameter (i.e., m) at a time. With

m ∈ [1, 4], all methods cannot schedule any system because the

workload is too high for the given system configuration. With m > 4,

5% 10% 15% 20% 25% 30%

System Utilisation

0

2

4

6

In
tr

a
-t

a
s
k
 I
n
te

rf
e
re

n
c
e

10
4

mDAG-CA

He2019

Baseline

Figure 15: The intra-task interference comparison with scaled U .

5% 10% 15% 20% 25% 30%

System Utilisation

0

2

4

6

In
te

r-
ta

s
k
 I
n
te

rf
e
re

n
c
e

10
4

mDAG-CA

He2019

Baseline

Figure 16: The inter-task interference comparison with scaled U .

the mDAG-CA and the Baseline demonstrate a strong schedulability,

where they can schedule more than 90% of systems when m = 10. In

contrast, He2019 has a much slower increasing trend in schedulability

because of the pessimism in its inter-task interference, where it can

only schedule 20% systems with m = 10. As for Zhao2020, it cannot

schedule any system in this case as the increase in m does not bring

any effect to its non work-conserving schedule.

Experiment Two: To provide evidence that the mDAG-CA

achieves high schedulability due to its tighter bound on the inter-task

interference in Figures 13 and 14, the second experiment presents

the intra-task and inter-task interference of tasks under each evaluated

method. The experimental results are presented in Figures 15 to 18. In

the figures, each trial reports the intra-task (or inter-task) interference

of 1000 schedulable systems by mDAG-CA, He2019 and the Baseline

with the given system configuration. The outliers are removed for the

sake of readability.

Observation: Figures 15 and 16 present the intra-task and inter-

task interference of the mDAG-CA, He2019 and the Baseline with

scaled system utilisation U . In Figure 15 we observe that the intra-

task interference of all methods increases along with the increase of

U , in which mDAG-CA is slightly higher. This is because mDAG-CA

can assign a number of cores less than m to a DAG job based on the

P-WDM, resulting in higher intra-task interference but a lower inter-

task interference to reduce the total response time. The key reason

that mDAG-CA can achieve higher schedulability is highlighted in

Figure 16, where it demonstrates a much lower inter-task interference

than He2019 and the Baseline method. The inter-task interference in

He2019 is computed based on the sum of workload of all high priority

DAGs released during the release of τx (i.e.,
∑

τj∈hp(x)

⌈

Rx

Tj

⌉

·Wj in

Equation 14). With an increasing utilisation, this interfering workload

becomes significant so that He2019 has a large bound on the interfer-

ence, and subsequently, low schedulability in Figure 13. In addition,

although the Baseline method shares a similar process as the mDAG-

CA, it does not focus on minimising the response time. Therefore,

even if a similar schedulability is achieved, it demonstrates a higher

inter-task interference compared to the mDAG-CA, especially when

the system workload is high (e.g., when U = 30%). In contrast, the

mDAG-CA aims to minimise the response time of each DAG, which

leads to a tighter bound on the inter-task interference and high system

schedulability.

16

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

8 12 16 20 24 28 32

Number of Cores

0

2

4

6

In
tr

a
-t

a
s
k
 I
n
te

rf
e
re

n
c
e

10
4

mDAG-CA He2019 Baseline

Figure 17: The intra-task interference comparison with scaled m.

8 12 16 20 24 28 32

Number of Cores

0

2

4

6

In
te

r-
ta

s
k
 I

n
te

rf
e

re
n

c
e

10
4

mDAG-CA He2019 Baseline

Figure 18: The inter-task interference comparison with scaled m.

Figures 17 and 18 present the intra-task and inter-task interference

of the mDAG-CA, He2019 and Baseline with scaled number of cores

m. We first observed that with the increase of m, DAGs with a

higher workload become schedulable so that intra-task interference

of all methods are slightly increased. In addition, with a large number

of m (e.g. m = 12), the intra-task interference of mDAG-CA and

Baseline becomes slightly lower than that of He2019 (Figure 17).

This observation is in line with previous sections that with a large

number of cores, the proposed single-DAG analysis is less pessimistic

by explicitly computing the parallel workload which does not impose

a delay. As for the inter-task interference (Figure 18), the mDAG-

CA is able to provide a very tight bound, where it is close to zero

when m ≥ 16. This highlights the key advantage of the proposed

method, which bounds the inter-task interference by a parallelism-

aware manner. Notably, the Baseline method produces a low inter-

task interference in this experiment. This is because the increase

of m naturally leads to a lower inter-task interference, which can

be precisely computed by the Baseline method (as well as the

mDAG-CA) based on the P-WDM of each DAG and the system.

Therefore, with m ≥ 16, the Baseline method significantly reduces

the pessimism of the analysis and provides tight analytical bounds.

However, He2019 can still impose certain inter-task interference due

to lacking the knowledge of DAG parallelism, even if most of the

DAGs can execute in parallel given a large number of cores.

Summary: In these experiments, we show that the mDAG-CA has

a higher system schedulability than the competing method. Further,

an in-depth examination of the intra-task and inter-task interference

provides evidence that the high schedulability of the proposed method

is achieved by its tighter bound on the inter-task interference.

Computation cost: Table VI reports the average computation cost

of the complete multi-DAG scheduling process, i.e. Algorithms 1

to Algorithm 5. The measurement is performed in a simulation

environment on a Intel(R) Core(TM) i7-6700K CPU. The setup

is identical to Figure 17 with m = 8, and each algorithm are

executed and measured for 10,000 times. From the table we observe

Algorithms 1 to 4 have a relatively low computation cost, i.e. less than

5 milliseconds. However, for the complete multi-DAG scheduling

process (Algorithm 5), its computation cost is quite high, i.e., above

2 seconds. This is because the measurement also takes into account

Table VI: The average computation cost of the complete multi-DAG

scheduling process (i.e. Algorithms 1 to 5) in milliseconds.

Algorithm Computation Cost Standard Deviation Time Complexity

Alg. 1 1.934 ms 1.234 O(n)
Alg. 2 3.476 ms 2.075 O(n2)
Alg. 3 4.870 ms 12.173 O(n)
Alg. 4 0.095 ms 0.014 O(n)
Alg. 5 2188.5 ms 202.153 O(n4)

the cost for running the proposed analysis (Section V). However,

as described in Section VII, the construct multi-DAG scheduling

approach is an offline method. During run-time, the scheduler only

executes DAGs based on the pre-determined configuration, which has

a similar cost to the fixed priority scheduler with a global scheme.

IX. CONCLUDING REMARKS

In this paper, a CPC model is constructed for a DAG to provide

an in-depth understanding of inter-node dependency and parallelism.

Based on CPC, a response time analysis is developed for a single

recurrent DAG that provides tighter bounds than existing analysis

for (i) any scheduling method that prioritises the critical path, and

(ii) scheduling methods with explicit execution order known a priori.

A rule-based scheduling method is proposed which maximises node

parallelism to reduce makespan.

To support scheduling and analysing of multi-DAG systems, we

develop the P-WMD to understand the workload distribution of

a DAG under a given number of cores. Based on this model,

an offline core assignment method is constructed to address the

problem of applying the single-DAG analysis and to facilitate the

scheduling on multi-DAG systems. We demonstrate that the proposed

scheduling and analysing methods outperform existing techniques,

and the proposed core assignment can achieve higher schedulability.

REFERENCES

[1] Q. He, X. Jiang, N. Guan, and Z. Guo, “Intra-task priority assignment in
real-time scheduling of DAG tasks on multi-cores,” IEEE Transactions

on Parallel and Distributed Systems, vol. 30, no. 10, pp. 2283–2295,
2019.

[2] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in Real-Time Systems Symposium, 2012, pp. 63–72.

[3] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware
generation of single-rate DAGs from multi-rate task sets,” in Real-Time

and Embedded Technology and Applications Symposium, 2020, pp. 226–
238.

[4] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-
sizing job-level dependencies for automotive multi-rate effect chains,”
in International Conference on Embedded and Real-Time Computing

Systems and Applications, 2016, pp. 159–169.
[5] Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio, “Rosch: real-

time scheduling framework for ROS,” in International Conference on

Embedded and Real-Time Computing Systems and Applications, 2018,
pp. 52–58.

[6] Y. Suzuki, T. Azumi, N. Nobuhiko, and S. Kato, “HLBS: Heterogeneous
laxity-based scheduling algorithm for DAG-based real-time computing,”
in International Conference on Cyber-Physical Systems, Networks, and

Applications, 2016, pp. 83–88.
[7] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling

dependent periodic tasks without synchronization mechanisms,” in Real-

Time and Embedded Technology and Applications Symposium, 2010, pp.
301–310.

[8] S. E. Saidi, N. Pernet, and Y. Sorel, “Automatic parallelization of multi-
rate fmi-based co-simulation on multi-core,” in Symposium on Theory

of Modeling and Simulation , 2017, p. Article No. 5.
[9] A. Vincentelli, P. Giusto, C. Pinello, W. Zheng, and M. Natale, “Op-

timizing end-to-end latencies by adaptation of the activation events in
distributed automotive systems,” in Real Time and Embedded Technology

and Applications Symposium, 2007, pp. 293–302.

17

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3177046, IEEE

Transactions on Parallel and Distributed Systems

[10] S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang, “DAG scheduling
and analysis on multiprocessor systems: Exploitation of parallelism and
dependency,” in IEEE Real-Time Systems Symposium, 2020, pp. 128–
140.

[11] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill,
“Parallel real-time scheduling of dags,” IEEE Transactions on Parallel

and Distributed Systems, vol. 25, no. 12, pp. 3242–3252, 2014.

[12] N. Ueter, G. von der Brüggen, J.-J. Chen, J. Li, and K. Agrawal,
“Reservation-based federated scheduling for parallel real-time tasks,” in
2018 IEEE Real-Time Systems Symposium, 2018, pp. 482–494.

[13] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis
of sporadic DAG tasks for global FP scheduling,” in International

Conference on Real-Time Networks and Systems, 2017, pp. 28–37.

[14] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned fixed-
priority scheduling of parallel tasks without preemptions,” in IEEE Real-

Time Systems Symposium. IEEE, 2018, pp. 421–433.

[15] N. C. Audsley, A. Burns, and A. J. Wellings, “Deadline monotonic
scheduling theory and application,” Control Engineering Practice, vol. 1,
no. 1, pp. 71–78, 1993.

[16] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional DAG tasks
in multiprocessor systems,” in Euromicro Conference on Real-Time

Systems, 2015, pp. 211–221.

[17] R. L. Graham, “Bounds on multiprocessing timing anomalies,” Journal

on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.

[18] S. Chang, X. Zhao, Z. Liu, and Q. Deng, “Real-time scheduling and
analysis of parallel tasks on heterogeneous multi-cores,” Journal of

Systems Architecture, vol. 105, p. 101704, 2020.

[19] F. Guan, J. Qiao, and Y. Han, “DAG-fluid: A real-time scheduling
algorithm for DAGs,” IEEE Transactions on Computers, no. 01, pp.
1–1, 2020.

[20] P. Chen, W. Liu, X. Jiang, Q. He, and N. Guan, “Timing-anomaly free
dynamic scheduling of conditional DAG tasks on multi-core systems,”
ACM Transactions on Embedded Computing Systems, vol. 18, no. 5, pp.
1–19, 2019.

[21] H. Lin, M.-F. Li, C.-F. Jia, J.-N. Liu, and H. An, “Degree-of-node task
scheduling of fine-grained parallel programs on heterogeneous systems,”
Journal of Computer Science and Technology, vol. 34, no. 5, pp. 1096–
1108, 2019.

[22] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE

Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, 2002.

[23] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in
Euromicro Conference on Real-Time Systems, 2014, pp. 85–96.

[24] S. Baruah, “The federated scheduling of systems of conditional sporadic
DAG tasks,” in International Conference on Embedded Software, 2015,
pp. 1–10.

[25] N. Ueter, G. Von Der Brüggen, J.-J. Chen, J. Li, and K. Agrawal,
“Reservation-based federated scheduling for parallel real-time tasks,” in
2018 IEEE Real-Time Systems Symposium. IEEE, 2018, pp. 482–494.

[26] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling
of parallel real-time tasks on multiprocessors,” in Real-Time Systems

Symposium, 2017, pp. 80–91.

[27] T. Yang, Y. Tang, X. Jiang, Q. Deng, and N. Guan, “Semi-federated
scheduling of mixed-criticality system for sporadic DAG tasks,” in
International Symposium on Real-Time Distributed Computing, 2019,
pp. 163–170.

[28] M. Shariati, M. Naghibzadeh, and H. Noori, “Semi-federated scheduling
of multiple periodic real-time dags of non-preemptable tasks,” in 2018

8th International Conference on Computer and Knowledge Engineering.
IEEE, 2018, pp. 84–91.

[29] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho, “Response time anal-
ysis of sporadic DAG tasks under partitioned scheduling,” in Symposium

on Industrial Embedded Systems, 2016, pp. 1–10.

[30] B. Bado, L. George, P. Courbin, and J. Goossens, “A semi-partitioned
approach for parallel real-time scheduling,” in Proceedings of the 20th

International Conference on Real-Time and Network Systems, 2012, pp.
151–160.

[31] C. Maia, P. M. Yomsi, L. Nogueira, and L. M. Pinho, “Semi-partitioned
scheduling of fork-join tasks using work-stealing,” in International

Conference on Embedded and Ubiquitous Computing. IEEE, 2015,
pp. 25–34.

[32] M. Hatami, “Semi-partitioned scheduling hard real-time periodic dags
in multicores,” in The Proceeding of First Work-in-Progress Session of

2018 CSI International Symposium on Real-Time and Embedded Systems

and Technologies, 2018, p. 9.
[33] A. Burns and S. K. Baruah, “Sustainability in real-time scheduling.”

Journal of Computing Science and Engineering, vol. 2, no. 1, pp. 74–
97, 2008.

[34] M. A. Serrano, A. Melani, M. Bertogna, and E. Quiñones, “Response-
time analysis of DAG tasks under fixed priority scheduling with limited
preemptions,” in Design, Automation & Test in Europe Conference &

Exhibition, 2016, pp. 1066–1071.
[35] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis, “An

empirical survey-based study into industry practice in real-time systems,”
in 2020 IEEE Real-Time Systems Symposium. IEEE, 2020, pp. 3–11.

[36] M. Han, N. Guan, J. Sun, Q. He, Q. Deng, and W. Liu, “Response time
bounds for typed dag parallel tasks on heterogeneous multi-cores,” IEEE

Transactions on Parallel and Distributed Systems, vol. 30, no. 11, pp.
2567–2581, 2019.

[37] M. Han, T. Zhang, Y. Lin, and Q. Deng, “Federated scheduling for typed
dag tasks scheduling analysis on heterogeneous multi-cores,” Journal of

Systems Architecture, vol. 112, p. 101870, 2021.
[38] A. Vargha and H. D. Delaney, “A critique and improvement of the CL

common language effect size statistics of McGraw and Wong,” Journal

of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[39] D. Griffin, I. Bate, and R. I. Davis, “Generating utilization vectors for
the systematic evaluation of schedulability tests,” in IEEE Real-Time

Systems Symposium, 2020, pp. 76–88.

Shuai Zhao is a research associate in real-time
system group, University of York, UK. He received
a Ph.D. degree in computer science from the Uni-
versity of York in 2018, supervised by Prof. Andy
Wellings. His research interests include scheduling
algorithm, multiprocessor resource sharing, schedu-
lability analysis, and safety-critical programming
languages.

Xiaotian Dai is a research associate at the Univer-
sity of York, UK. He received a PhD degree from
University of York in 2019 (with Best Thesis). He
joined real-time systems group in 2015 as a PhD
research student, supervised by Prof. Alan Burns.
His PhD research involves cooperatively design of
control system and real-time task scheduling for
Cyber-Physical Systems. He serves as a reviewer
and a Program Committee member for many top
real-time and design automation conferences.

Iain Bate is a Professor in Dependable Real-Time
Systems within the Department of Computer Science
at the University of York. He is also the Deputy Head
of the department. His research interests include
scheduling and timing analysis, and the design and
certification of Cyber Physical Systems. He has
chaired a number of leading International Confer-
ences and is a frequent member of Programme
Committees. He was the Editor-in-Chief of the Mi-
croprocessors and Microsystems journal and then the
Journal of Systems Architecture for 15 years. He

leads a number of prestigious research projects in collaboration with industry.

18

