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ABSTRACT
Background: Gestational diabetes mellitus (GDM) is the most common global pregnancy complication; however,

prevalence varies substantially between ethnicities, with South Asians (SAs) experiencing up to 3 times the risk of the

disease compared with white Europeans (WEs). Factors driving this discrepancy are unclear, although the metabolome

is of great interest as GDM is known to be characterized by metabolic dysregulation.

Objectives: The primary aim was to characterize and compare the metabolic profiles of GDM in SA and WE women

(at <28 wk of gestation) from the Born in Bradford (BIB) prospective birth cohort in the United Kingdom.

Methods: In total, 146 fasting serum metabolites, from 2,668 pregnant WE and 2,671 pregnant SA women (average

BMI 26.2 kg/m2, average age 27.3 y) were analyzed using partial least squares discriminatory analyses to characterize

GDM status. Linear associations between metabolite values and post–oral glucose tolerance test measures of

dysglycemia (fasting glucose and 2 h postglucose) were also examined.

Results: Seven metabolites associated with GDM status in both ethnicities (variable importance in projection ≥1),

whereas 6 additional metabolites associated with GDM only in WE women. Unique metabolic profiles were observed

in healthy-weight women who later developed GDM, with distinct metabolite patterns identified by ethnicity and

BMI status. Of the metabolite values analyzed in relation to dysglycemia, lactate, histidine, apolipoprotein A1, HDL

cholesterol, and HDL2 cholesterol associated with decreased glucose concentration, whereas DHA and the diameter of

very low-density lipoprotein particles (nm) associated with increased glucose concertation in WE women, and in SAs,

albumin alone associated with decreased glucose concentration.

Conclusions: This study shows that the metabolic risk profile for GDM differs between WE and SA women enrolled

in BiB in the United Kingdom. This suggests that etiology of the disease differs between ethnic groups and that ethnic-

appropriate prevention strategies may be beneficial. J Nutr 2022;152:2186–2197.

Keywords: GDM, metabolomics, ethnicity, South Asians, pregnancy, maternal health, PLSDA, sPLSDA,

personalized nutrition

Introduction
During pregnancy, there is a natural increase in catabolism to
ensure sufficient energy for the fetus (1, 2). This increase is
governed by maternal hormones, beginning as a mild change
in insulin sensitivity and progressing through hyperinsulinemia
to controlled insulin resistance by the third trimester (2–5).
For most pregnancies, these changes are safe and controlled,
with insulin sensitivity returning to a healthy state following
pregnancy. However, for approximately 1 in 7 pregnancies,
insulin resistance exceeds normal “healthy” levels and enters
a diabetic state, putting the mother and her growing offspring
in danger of short- and long-term health risks (6, 7).
This pregnancy-induced state of diabetes, gestational diabetes
mellitus (GDM), is a major global health concern with varying
prevalence between populations.

In Middle Eastern, North Africa, and South Asian countries,
GDM prevalence can exceed 20% of pregnancies, whereas in
European countries, prevalence of GDM is commonly ∼5%
(5). Numerous lifestyle, biological, and genetic factors are
thought to contribute to this disparity of risk (5, 8). Despite
the numerous factors, diet is the mainstay of most prevention
and treatment strategies because of its demonstrated efficacy for
managing glucose concentrations (9–11). Nonetheless, we and
others have demonstrated that the effects of dietary prevention
strategies on maternal and offspring health are not generalizable
across populations or ethnic groups, with dietary patterns
demonstrating varied effects between ethnic groups in relation
to both GDM prevention and birth weight (12–15). These
data suggest that the metabolism and pathology of GDM
may differ across populations, where some ethnic groups have
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unique metabolic profiles that make them more susceptible
to GDM (4, 5, 16–18). Specifically, elevated concentrations of
alanine, numerous fatty acids (e.g., myristic acid, palmitic acid,
palmitoleic acid), and lower amounts of glutamate, proline, and
phospholipids in blood have been identified as predictors of
GDM risk in early pregnancy (i.e., before 16 wk) (4), with
recent evidence demonstrating significant differences in the
abundance of these metabolites between ethnic groups (19).
Notably, evidence from Born in Bradford (BiB), a prospective
multiethnic pregnancy and birth cohort, has demonstrated
the need for potentially modified GDM assessment criteria
for South Asian (SA) women because of increased risks of
delivery complication and newborn macrosomia at significantly
lower glucose thresholds compared with white European (WE)
women (20). Indeed, currently, the United Kingdom’s National
Health Service (NHS) routinely screens all women of SA
ancestry for GDM, whereas only high-risk WE women are
screened (21).

As a consequence of this, the Diabetic Pregnancy Study
Group called for increased research into the role of the
metabolome on GDM in 2018 (22). To date, however, the
metabolic drivers of GDM remain unclear with numerous
discrepancies within the field, likely due to small, heterogeneous
cohorts of varying populations, cultures, and ancestral groups
(23). Indeed, only 1 study has conducted an analysis of
individual metabolites and GDM in an ethnic-specific fashion
(1). This work investigated univariate associations between
numerous metabolites in WE (n = 4,072) and SA (
n = 4,702) women and demonstrated that concentrations
of lipoproteins and cholesterols are typically higher in WE
women and are stronger predictors of GDM [i.e., have a higher
variable importance in projection (VIP) score] compared with
SA women. However, metabolite profiles are heterogeneous
mixtures of metabolites, many of which are strongly correlated
and may depend on other metabolites to exhibit an effect. In
light of this, multivariate approaches that assess all variables
simultaneously along with their intervariable correlations ( 24)
can be used to identify 1) patterns of uncorrelated metabolites
that associate with GDM risk, and 2) cardinal metabolites that
independently associate with GDM risk. Therefore, this study
aims to build upon existing work by applying multivariate
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statistical techniques within an ethnically diverse population to
1) determine underlining metabolite patterns that correlate with
GDM and 2) identify ethnic-specific metabolic drivers of GDM
risk.

Methods
Population characteristics
The BiB cohort was established to examine determinants of health
from pregnancy and childhood into adulthood in an ethnically diverse
region in the north of England (25). Between 2007 and 2010, BiB
recruited 12,453 women (26–28 wk of gestation, mean maternal age
27.8), collecting baseline data on 13,776 pregnancies and 13,858 births,
with 45% of the cohort of SA origin (25, 26). BiB aimed to recruit
all mothers giving birth at the Bradford Royal Infirmary, the largest
hospital within Bradford. Bradford is a northern English city with high
levels of deprivation and a large SA population, the majority of whom
have Pakistani ancestry. All women were invited to partake in an oral
glucose tolerance test (OGTT) for GDM diagnosis at approximately
26–28 wk gestation during their standard antennal care. Almost all UK
citizens use the NHS for antenatal care.

Of these, 11,480 women provided blood samples for metabolite
analyses during the same visit as their OGTT. Written consent was
gained from all participants and ethical approval was granted by the
Bradford Research Ethnics Committee (ref07/H1302/112) (25).

Blood metabolite analysis
Full details of venous blood sample collection, preparation, metabolite
quantification, and validation have previously been described in detail
(1). In brief, fasted blood samples were taken at the Bradford Royal
Infirmary by trained phlebotomists, processed within 2.5 h, and
stored at –80◦C in the absence of freeze–thaw cycles (27). Samples
were processed using a high-throughput automated NMR platform
and have previously been validated (Nightingale Health). Metabolite
values expressed as a percentage or ratio were excluded to minimize
redundancy, resulting in a panel of 146 metabolite values expressed in
absolute quantitative measures. This panel comprised measures of 97
lipoproteins, 9 amino acids, 2 apolipoproteins, 9 cholesterols, 8 fatty
acids, 8 glycerides and phospholipids, 4 glycolysis-related metabolites,
2 ketone bodies, 3 measures of fluid balance and inflammation, and
3 measures of the mean lipoprotein particle diameter (Supplemental
Table 1).

Participant selection
Of the 11,480 blood samples analyzed for metabolites, 54 samples were
excluded because they failed 1 of 5 Nightingale quality control measures
(low glucose, high lactate, high pyruvate, low protein concentration and
plasma samples). Of the 11,426 available samples, ∼3% of mothers
were missing ≥1 metabolite values. The structure of missing metabolite
data was assessed via the visualization and imputation of missing
values package within R (28) and multiple correspondence analysis.
There was no evidence that the missing metabolite data occurred in
a nonrandom pattern. It was therefore deemed appropriate to impute
missing values. Optimized multiple imputation with iterative principal
component analysis (100 simulations, K-fold cross-validation) based on
the minimization of mean square error of prediction was performed
using the missMDA package (29). A sensitivity analysis was performed
to test the effect of mothers with higher rates of missingness (≥3%
missing metabolite values) on imputation. No detectable difference in
imputation quality was noticed. As such, the metabolite data of all
available 11,426 maternal samples were included for imputation.

Imputed metabolite data were combined with descriptive BiB
reported characteristics, including participant’s ethnicity, age moved
to the United Kingdom (if born abroad) GDM status, gestational
age at sample collection (obtained from obstetric records), history of
diabetes, age, BMI (in kg/m2), smoking status, parity, and whether
they were carrying a singleton/multiple pregnancy. Length of residence
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was calculated by subtracting the age the mother moved to the United
Kingdom from maternal age. When an individual was born within the
United Kingdom, length of residency was taken to be the mother’s age.

All women were recruited prior to their scheduled GDM assessment
(mean gestational age 26.1 wk) and prior to the 28th week of pregnancy.
GDM was diagnosed using a modified version of the World Health
Organization criteria (1, 25).

Using these criteria, a woman was diagnosed with GDM if either her
fasting glucose concentration exceeded ≥6.1 mmol/L or 2-h postload
glucose concentrations was ≥7.8 mmol/L following a 75-g OGTT. The
OGTT was completed in the morning following an overnight fast and
involved the consumption of a standard solution over a 5-min period
containing the equivalent of 75 g of anhydrous glucose (30). Following
a GDM diagnosis, all SA and WE mothers receive the same standardized
care following a GDM diagnosis. Initially, GDM management involves
referral to a dietitian and the management of glucose concentration
through diet and increased exercise. If unsuccessful, management by
metformin or insulin injections will be prescribed. Women with GDM
will also be offered additional antenatal appointments to monitor the
health of both mother and baby throughout the pregnancy. Irrespective
of GDM status, basic nutritional counseling is offered to all mothers as
part of standard antenatal classes offered throughout pregnancy by the
UK NHS (31).

Ethnicity was self-reported. If ethnicity was not collected, details
were obtained from primary care records along with information on
parity and the number of registered births. Maternal age was recorded
at pregnancy booking (i.e., the first routine antenatal visit) and BMI was
calculated using height measured at recruitment and maternal weight
recorded at the first antenatal visit. When examined as a categorical
variable, ethnic specific cutoffs were used to classify mothers into BMI
(kg/m2) groups (underweight: ≤18.5 in WEs and SAs; normal/healthy
weight: 18.6–25 in WEs or 18.6–22.9 in SAs; overweight: 25–29.9 for
WEs or 23–27.4 for SAs; obese: >30 for WEs or >27.5 for SAs) (32).
When analyzed as a binary variable, women were grouped as having
a “healthy” or “high” BMI if they were above/below the BMI cutoff
for overweight status using these ethnic-specific cutoffs. Smoking status
was self-reported at baseline and during pregnancy. Recruitment and the
baseline assessment of covariates were the same in both ethnic groups.
Summary statistics for each variable were presented as a mean and SE.
Differences in baseline characteristics were calculated between women
with and without GDM for continuous variables via a Mann–Whitney
(MW) test, whereas differences for categorical variables were tested
using the Pearson χ2 test.

Participants whose samples were collected after GDM diagnosis
(28th week or later) were excluded from the analysis as well as mothers
with a history of diabetes. Individuals who reported being of a South
Asian origin other than Pakistani (SA) were also excluded due to
the small sample size (therefore limited power) of other South Asian
ancestry groups. In total, 5,339 participants, 2,671 SAs (all of Pakistani
descent) and 2,688 WEs, were retained for analysis (Figure 1).

Ethnicity was self-reported and the homogeneity of the WE group
has been confirmed in previous genetic analyses within the BIB (33). In
total, 93.2% of the included WEs were born in the British Isles (i.e., the
United Kingdom, Republic of Ireland, Channel Islands, or Isle of Man),
with the majority in England (91.4%). Of these women, 95.5% reported
that both of their parents were also born in the British Isles. Within the
group of WE women not born in the British Isles, 3.7% were born in
Eastern Europe (Czech Republic, Poland, Slovakia), with the remaining
proportion reporting “other”or “unknown.”Within the SA population,
43.7% were born within the United Kingdom. Of the SA women born
in the United Kingdom, 93% reported that their mother was born in
Pakistan (87.4%) or India (5.6%), and 95% reported that their father
was born in Pakistan (88.6%) or India (6.7%). A small proportion did
not know their mother’s (1.4%) or father’s (1.3%) place of birth. Of
the women born outside of the United Kingdom, the average age of
immigration to the United Kingdom was 18.8 y (IQR: 18–23 y).

Metabolite discriminatory analysis
Partial least squares discriminatory analysis (PLSDA) is a supervised
dimensionality reduction technique that uses all included variables to

discriminate group data based on predefined outcome groups. Included
variables are then ranked by the degree to which they explain the
variance between groups (i.e., GDM compared with non-GDM). These
are known as VIPs, where VIPs ≥1 denote a variable with good
discriminatory quality and predictive ability (34, 35).

PLSDA allowed an overall assessment of the predictive capacity of
metabolites for GDM, in models with and without known GDM risk
factors (i.e., BMI, maternal age, parity, multiple pregnancy, and smoking
status), with ethnicity added to visually assess its effect on the model.
Following this, both sets of PLSDA models were performed within each
ethnic group. To assess bidirectionality, models predicting ethnicity were
also executed within the overall population and GDM cases/noncases
separately using the same criteria as above.

The optimum number of components to include within the model
was selected based on the component’s ability to significantly predict
group membership within the training (pR2Y ≤ 0.05) and validation
(pQ2Y ≤ 0.05) data sets (7-fold cross-validation, “nipals” algorithm).
When multiple components were significantly predictive, the predictive
component that best discriminated between groups (i.e., maximization
of outcome variance explained, R2Y) with the minimal error [root
mean squared error of estimation (RMSEE)] was selected. Data were
pareto scaled and mean centered prior to analysis. External validity was
assessed via 7-fold cross-validation. PLSDA models were performed via
the “ropls” package within R (36). When the size of the outcome groups
differed by ≥1%, the larger group was randomly sampled (n = 20) to
minimize error. VIPs were mean averaged and SEs calculated across all
significant iterations (pR2Y ≤ 0.05, pQ2Y ≤ 0.05) for each metabolite
following the removal of outlier VIPs, defined as 1.5 × IQR of VIP
values. Differences in the distribution of VIP values between both
ethnicities and case status were assessed for significant iterations via a
MW test; this was possible because all comparisons were tested against
the same panel of metabolite measures. To assess the impact of smoking
on PLSDA results, PLSDA models predicting smoking in the overall
study population were also performed.

Post hoc multivariate analyses
BMI, a suspected mediator along the casual pathway that links
metabolism and GDM, was a significant driver of GDM within
SA women and WE women. To explore this, the ethnic-specific
impact of BMI on the metabolome and subsequent GDM diag-
noses was investigated using sparse PLSDA (sPLSDA). sPLSDA is a
supervised multivariate technique with the ability to predict group
membership in multiclass problems (i.e., stratification by ethnicity,
body weight, and GDM status) by simultaneously performing and
balancing variable selection with group classification (37). Women were
classified as “healthy” or “overweight” based on ethnic-specific cutoffs
(BMI ≥25 for WE women and BMI ≥23 for SA women), which is
the same approach used by the NHS (38). The analyses focused on
low-risk WE (n = 872) and low-risk SA women (n = 864)—that is,
only women 1) in their first pregnancy, 2) who did not smoke during
pregnancy, and 3) were <35 y of age were included. This was done to
prevent these covariates from overpowering the models and allowing
the contributing roles of BMI on GDM to be more clearly appreciated
within and between each ethnic group.

Metabolites selected by sPLSDA in each comparison were fed into
PLSDA models (20 iterations) alongside highly correlated metabolites
(Pearson correlation coefficient ≥0.9) in order to determine metabolite
values contributing to the separation of the outcome groups while
balancing dimensionality reduction and group discrimination. PLSDA
models were adjusted for maternal age (continuous), BMI (continuous),
smoking status, parity, and multiple pregnancies such as before.
Differences in the distributions of metabolites within each group were
also compared by a MW test.

Linear regression analyses for identified metabolite
associations
Linear regression models investigating the relation between postoral
OGTT measures (fasting glucose and 2-h post-OGTT) were performed
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FIGURE 1 Flowchart of study participants from the Born in Bradford (BiB) cohort included within this study.

on all metabolite values identified as important (VIP ≥1) in charac-
terizing GDM status. Normality of glucose measures and metabolite
values were assessed using histograms and Q–Q plots. Most metabolites
(136/146) required normalization. Normality was most often achieved
by log transformation (59 metabolite values); however, in some cases,
square root and normal score transformation were implemented via the
“rcompanion” package (39). All glucose measures were log normalized.
Known GDM risk factors of maternal age (years), gestational age (days),
parity, and smoking status during pregnancy (yes/no) were initially
including in the models. When significant associations were observed
between metabolite values and glucose in this exploratory analysis
(P < 0.05), BMI was added to the models (initially as a continuous
and then as a binary variable using ethnic-specific BMI cutoffs for
overweight status) to assess the role of early pregnancy BMI as a
mediator of metabolite–dysglycemia associations. Within SAs, a final
additional adjustment of length of residency within the United Kingdom
was made to account for any effects of acculturation.

Results
Population characteristics

The mean age of participants was 26.7 y and had a mean
BMI of 26 kg/m2. WE women were significantly older and had
higher BMIs compared with SA women (Table 1). Parity was
significantly higher in SA women compared with WE women
(P < 0.001), and parity was only significantly higher in GDM
cases compared with noncases within SA women (Table 1).
Smoking during pregnancy was significantly more common in
WE women compared with SA women (25% compared with
3%; P < 0.001). No difference in proportion of singleton
pregnancies (>97%) was observed between WE women and SA
women. Alcohol intake was not assessed because it was reported
by only 1% of SA women. The mean time of sample collection
was 187 gestational days.

Primary analysis

Metabolite characterization of GDM.

In the first model, an overall analysis of the full cohort (i.e.,
both ethnic groups), PLSDA explained 21.7% of the variation
between the GDM and non-GDM groups and confirmed
maternal age and BMI as primary risk factors for GDM risk
followed by parity, smoking status, and having a nonsingleton
pregnancy as the primary drivers of GDM (Table 2). In the full
model, 7 metabolite values reported VIPs ≥1, including 4 fatty

acid metabolite measures (total fatty acids, 18:2 linoleic acid,
total MUFA and total SFA) and 1 glycolysis-related metabolite
(lactate) (Figure 2). Modeled independently, the PLSDA with
only covariates explained 12.4% of the variation in GDM status
and significantly predicted GDM status, whereas the model with
only metabolites explained 13.5% of the variance in GDM but
was nonsignificant. The second model, which included ethnicity
as a covariate, accounted for 26.6% of the variation between
the GDM and non-GDM groups. The same 6 metabolites we
reported as predictors of GDM with an additional cholesterol
metabolite measure (total esterified cholesterol). Notably, model
2 confirmed ethnicity (SA compared with WE) as a major risk
factor for GDM, after age and BMI. Modeled independently,
“ethnicity” and other covariates explained 15.2% of the
variance in GDM status; therefore, the addition of metabolites
into the model increased the amount of variance explained by
over 11%.

Ethnically stratified analysis of metabolites

characterizing GDM.

In an ethnically stratified analysis (20 iterations), models only
including metabolites accounted for a median average of 6.5%
of the variation in GDM status in SA women and 5.8%
of the variation in WE women in optimized models (i.e.,
minimization RMSEE and maximization of R2Y), although no
model comprising metabolites alone was significant. Conversely,
models only including established clinical risk factors (age,
BMI, parity, smoking status and multiple pregnancy) were
significantly predictive (P value R2 < 0.05, Q2 < 0.05) of
GDM status and explained 13.3% of the variation in SAs and
12.8% of the variation in WEs. The addition of metabolites to
these covariate models also resulted in the significant prediction
of GDM. These models resulted in 26% of the variance in
GDM status in WE women and 20% of the variance in
SA women being accounted for, an increase of 13.6% and
6.8% when compared with covariate models in WEs and SAs,
respectively. Following adjustments for maternal age, parity,
BMI, and smoking status, GDM could be predicted within both
ethnicities. Maternal age, parity, and BMI were predictors of
GDM in both ethnicities (VIP ≥1), with BMI the most important
predictor of GDM in SA women, whereas in WE women,
maternal age was most important predictor (Supplemental
Table 2). Smoking was a predictor of GDM only in WE women.
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TABLE 2 Key metabolite measures (VIP ≥1) that discriminate women diagnosed with GDM from women without GDM in partial
least squares discriminatory analysis1

Variable Model 1 Model 2

Age 6.4 ± 0.03 5.9 ± 0.03
BMI 5.4 ± 0.04 5.1 ± 0.02
Ethnicity — 2.9 ± 0.02
Parity 2.4 ± 0.01 2.3 ± 0.01
Smoking status 1.9 ± 0.02 1.7 ± 0.01
Multiple pregnancy 1.5 ± 0.01 1.3 ± 0.009
Lactate 1.5 ± 0.01 1.2 ± 0.008
VLDL_D 1.3 ± 0.01 1.3 ± 0.01
Total fatty acids 1.2 ± 0.01 1.5 ± 0.01
Total MUFA 1.2 ± 0.001 1.2 ± 0.008
18:2 linoleic acid 1.1 ± 0.01 1.1 ± 0.004
Total SFA 1.1 ± 0.01 1.2 ± 0.007
Esterified cholesterol — 1.0 ± 0.008

1Variable of importance in projection (VIP) scores (mean ± SE) across 20 partial least squares discriminatory analysis iterations discriminating between women with GDM
(n = 414) and women without GDM (n = 414). Model 1: Includes all metabolite measures plus BMI (continuous), maternal age (years), smoking status, parity, and multiple
pregnancy status. Model 2: Model 1 + ethnicity. GDM, gestational diabetes mellitus; VLDL_D, mean diameter of VLDL.

After adjustment for confounders, 7 metabolite variables
characterized GDM status (VIP ≥1) in both ethnicities [total
fatty acids, total MUFA, total SFA, linoleic acid, glycoprotein
acetyls, lactate, and diameter of VLDL (VLDL_D)] (Figure 3,
Supplemental Table 3). Of these metabolites, the VIPs of 3
(lactate, glycoprotein acetyls, and linoleic acid) characterized
GDM status comparatively well between ethnicities (VIP ≥1;
MW P > 0.05), whereas 4 metabolite measures (total fatty acids,
total MUFA, total SFA, and VLDL_D) characterized GDM
in both ethnic groups but were significantly stronger markers
of GDM in WE women (VIP ≥1; MW P < 0.05 between
ethnicities). Additionally, alanine, glutamine, total cholesterol,
total n–6 PUFA, total PUFA, and citrate were markers (VIP ≥1)
of GDM status in WE women only. No markers of GDM
were specific to SA women. On average, the optimized models
explained 26% of the variance of GDM in WE women and 20%
of the variance in SA women (Supplemental Table 4).

Metabolites characterized by ethnicity.

To explore underlying metabolic profiles within each ethnic
group, we identified metabolites that most strongly distin-
guished WE women and SA women. In a PLSDA including
known GDM risk factors as covariates (maternal age, smoking
status, parity, BMI, and GDM status), 12 metabolic measures
had a VIP ≥1 in statistically significant models (P value
R2 > 0.05 and Q2 > 0.05) and therefore were believed to
have characterized ethnicity in GDM and non-GDM women:
total fatty acids, serum cholesterol, SFA, MUFA, total n–
6, esterified cholesterol, linoleic acid (LA), LDL cholesterol,
remnant cholesterol, phosphatidylcholine, and total cholesterol
(Supplemental Table 5).

Additionally, ethnicity was characterized by 6 metabolites
values exclusively in women diagnosed with GDM (i.e.,
alanine, total fatty acids, LA, glycoprotein acetyls, lactate, and
VLDL_D), whereas 5 metabolite values were exclusive in those
not diagnosed with GDM (i.e., apolipoprotein A1, remnant
cholesterol, DHA, and phosphatidylcholine). An additional 9
metabolite values (i.e., total serum cholesterol, LDL cholesterol,
total esterfied cholesterol, n–3 fatty acids, PUFA, MUFA, SFA,
phosphatidylcholine, and total cholines) were predictive of
ethnicity in both GDM cases and noncases (Supplemental
Figure 1).

Post hoc analyses

Characterization of GDM in low-risk women.

BMI was classified as an important variable (VIP ≥1) in
the overall analysis and in both ethnic subgroup analyses.
However, a greater mean VIP (± SE) was observed in SA women
compared with WE women (VIPSA = 7.06 ± 0.22 compared
with VIPWE = 4.33 ± 0.22; P < 0.001) (Supplemental Table
2), indicating that BMI may be a more important predictor of
GDM status within WEs. Indeed, healthy-weight SA women
who developed GDM (SAHealthy-GDM) presented the most distinct
metabolic profile [receiver operator curve (ROC) = 0.783] but
were most similar to healthy WE women who developed GDM
(WEHealthy-GDM; ROC = 0.691) (Supplemental Figure 2). The
reason for this shared and distinct pattern of metabolites in
“healthy”-weight women who developed GDM is unclear, and
many hypotheses are possible. One hypothesis may be that the
pattern is an artifact of their fetal programming. Adult offspring
from GDM pregnancies are at increased risk of dysglycemia,
diabetes, and GDM that has been attributed to metabolic
dysregulation and early dysglycemia that progresses in later life
(40–43).

Future work in established cohorts that investigate transgen-
erational pregnancy risks (such as Born in Bradford, Generation
R, and Nutrigen) is integral to unravel the source of this unique
metabolic profile that distinguishes healthy-weight GDM cases
of SA ancestry from noncases, overweight SA cases, and WE
cases (25, 44, 45). Due to the higher proportion of underweight
mothers of SA ancestry, a sensitivity analysis was performed
where underweight mothers were removed (nremoved = 93,
BMI ≤18.5) to determine if their profiles were unique. No
difference in the outcome was observed following the removal
of these individuals.

Metabolites selected by sPLSDA in each comparison were
fed into PLSDA models (20 iterations) alongside highly
correlated metabolites (Pearson correlation coefficient ≥0.9) to
identify key metabolic drivers of this separation (Supplemental
Figure 3). Alanine, glutamine, and glycerol were important to
distinguish healthy-weight SA women who developed GDM
(SAC-N) from all others, whereas fatty acids were important
to distinguish SAC-N from other GDM cases. Interestingly,
in healthy women, aromatic and branched-chain amino acids
distinguished GDM and non-GDM women between (but not
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FIGURE 2 Circular bar plot identifying key metabolites [variable importance in projection (VIP) ≥1] that distinguished 414 women with
gestational diabetes mellitus (GDM) from 414 women without GDM. Mean average VIP scores across 20 partial least squares discriminatory
analysis (PLSDA) model iterations (ncases = 414). Bars represent SEs. The PLSDA included maternal age (years), BMI (continuous), smoking
status, parity and multiple pregnancy status, and ethnicity. Red line denotes VIP cutoff of 1. Units mmol/L unless stated. GRM, glycolysis-related
metabolite; LPS, lipoprotein particle size; VLDL_D, mean diameter of VLDL.

within) ethnic groups. Glycerol distributions were significantly
different in all comparisons (MW <0.05).

Characterization of GDM in low-risk women by BMI and

ethnicity.

Orthogonal partial least squares discriminant analysis
(oPLSDA) is a supervised multivariate technique that separates
variation within each predictor variable based upon its linear
(correlated) and orthogonal (uncorrelated) association with the
outcome variable (46, 47). This can provide better separation
along fewer components when a large proportion of variance
within the data set does not directly correlate with the outcome
variable. Furthermore, through the creation of shared and

unique structure (SUS) plots, it is possible to determine shared
and unique factors separating the main group of interest
(SAC-N) with the 2 most relevant biological comparisons
[healthy-weight SA noncases (SANC-N) and healthy-weight
WE cases (WEC-N)].

No significant separation of the SAC-N compared with
SANC-N, SAC-N compared with high-weight South Asian
cases, and SAC-N compared with WEC-N groups was identified
via SUS plots with oPLSDA. Following the inclusion of BMI and
age within the models, the SAC-N group was found to separate
from all other groups (Supplemental Figure 4). BMI was the
only variable found to be responsible for this separation with
a high magnitude and reliability. Pyruvate, large-high density
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FIGURE 3 Circular bar plot of ethnically stratified analyses identifying key metabolites variable importance in projection (VIP) ≥1] that
distinguished South Asian women with gestational diabetes mellitus (GDM) from South Asian women without GDM (ncases = 286) and
white Europeans (ncases = 128). Mean average VIP scores across 20 partial least squares discriminatory analysis (PLSDA) model iterations
(ncasesSA = 286, ncasesWE = 128). Bars represent SEs. The PLSDA was run separately for SA (blue) and WE (red) women and included maternal
age (years), BMI (continuous), smoking status, parity, and multiple pregnancy status. Red circular line denotes VIP cutoff of 1. No lipoproteins
demonstrated a VIP >1 and were not included in the figure to preserve space. Units mmol/L unless stated. 18.2 LA, 18.2 linoleic acid; GRM,
glycolysis-related metabolite; LPS, lipoprotein particle size; Tot FA, total fatty acids; VLDL_D, mean diameter of VLDL.

lipoproteins (L-HDL), and extra-large HDLs (XL-HDL) had a
small impact on the separation of the SAC-N group but with a
low reliability, as shown within SUS plots.

Association between important metabolites and

gestational dysglycemia.

Overall, 8 of 146 metabolite measures were associated with
fasting glucose or 2-h postglucose (Table 3), all of which
were identified as GDM predictors via PLSDA or sPLSDA.
The analysis in WE women demonstrated the greatest number
of associations between metabolite and glucose measures. Six
metabolites positively associated fasting glucose concentration
(albumin, lactate, histidine, apolipoprotein A1, HDL choles-
terol, and HDL2 cholesterol), whereas 1 negatively associated
with fasting glucose (mean density of LDL) (Supplemental
Tables 6 and 7). Only DHA associated with 2-h post-OGTT

in WEs, where a 1-mmol/L increase in DHA associated
with a 0.20-mmol/L increase in 2-h postglucose. In the
analysis of SA women, only albumin was associated with
dysglycemia, where higher albumin associated with lower
concentration of fasting glucose and 2-h post-OGTT. In an
additional analysis, length of residency within the United
Kingdom was added to the fully adjusted model to evaluate
the role of UK acculturation as a modifier of the association
between albumin and postprandial glucose measures. In both
models, significant associations were identified with albumin
(Pfasting = 0.031, β = –0.79, SE = 0.37; P2-h = 0.028, β =
–1.75, SE = 0.80). Length of residency was not found to
be a significant variable in the model, but the magnitude of
associations decreased slightly following its inclusion (Sup-
plemental Tables 6 and 7). In the ethnic-combined analysis,
associations between albumin, lactate, and mean diameter of
LDL with fasting glucose retained significance. Adjusting for
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TABLE 3 Metabolite measures associated with dysglycemia in South Asian and white European pregnant women before 28 wk of
gestation (mean gestational age 26.7 wk)1

Dysglycemia, mmol/L

Combined analyses of
South Asian and White
Europeans (n = 5538) South Asian (n = 2671)

White European
(n = 2267)

Fasting glucose Albumin (–)2

Lactate (–)
LDL_D (+)

Lactate (–)
Histidine (–)
ApoA1 (–)
HDL-C (–)

HDL2-C (–)
LDL_D (+)

2-h postglucose Albumin (–) DHA (+)

1Multivariable linear regression analysis was undertaken in the overall population of pregnant women of 2671 South Asians and 2667 white Europeans. Metabolites associated
(P < 0.05) with measures of fasting glucose or 2-h post–oral glucose tolerance test in the overall population or in ethnic-specific analyses are presented. All models included
maternal age (years), gestational age (days), parity, BMI (continuous), and smoking status during pregnancy. No differences in association were identified when BMI was
included within the model as a categorical variable.
2Direction of associations is presented in brackets—that is, positive (+) or negative (–). ApoA1, apolipoprotein A1; LDL_D, mean diameter of LDL.

BMI as a continuous or binary variable had no impact on the
associations.

Discussion

Using a prospective birth cohort with an equal proportion
of WE and SA women, we identified 7 metabolite measures
that characterized GDM in both WE and SA women—4 of
which were more predictive in WE women. These results agree
with the Omega cohort (78.5% non-Hispanic white; nested
case-control; 46 cases, 47 controls) that highlighted a distinct
metabolic profile at 16 wk of gestation (comprising fatty acids,
sugars, alcohols, amino acids, and organic acids), associated
with future GDM diagnosis (48). Although the metabolite
patterns identified by the Omega study were not predictive,
our predictive multivariate analysis (and a previous univariate
analyses) (1) found similar associations between GDM and
many of these metabolites (i.e., amino acids, glycolysis-related
metabolites, and fatty acids) and offers further evidence of
ethnic-specific associations.

Given the overall elevated risk of GDM observed in SA
women compared with WE women, even at a healthy BMI (i.e.,
OR ≈3) (49), and the role of ethnicity in predicting GDM, in
the present study, we sought to characterize distinct metabolic
profiles of SA and WE women. Of the 146 metabolite values
tested, 7 were important for stratifying GDM and non-GDM
women in the overall population (lactate, mean density of VLDL
particles, total fatty acids, total MUFAs, 18:2 linoleic acid,
total SFA, and esterified cholesterol). Following stratification by
ethnicity, alanine, glutamine, total serum cholesterol, n–6 fatty
acids, PUFAs, and citrate distinguished GDM and non-GDM in
WE women, whereas no metabolite values were predictive solely
within SA women.

Although no metabolite value identified solely within WE
women was associated with post-OGTT measures of glucose
in post hoc analyses, our evidence agrees with previous
work from 1) a small case-control study (26 type-2 diabetics
compared with 7 controls) that reported alanine, glutamine,
and citrate to characterize GDM and controls, with citrate
being a key marker of diabetics with underlying complications
(e.g., cardiovascular disease) (50), and 2) a cohort study
of 431 pregnant Chinese women (12–16 wk of gestation),
where alanine and glutamine were associated with GDM

(51). Biologically, alanine, glutamine, and citrate are connected
and could moderate dysglycemia through their interaction
with the tricarboxylic acid cycle (TCA) to promote the
formation of TCA intermediates, develop fatty acid synthesis,
and modulate glucagon and insulin secretion (52, 53). Taken
together, it may be that alanine and glutamine are more
robust markers of dysglycemia, whereas citrate is a marker of
metabolic or physiologic stress in diabetic individuals—such as
pregnancy. The role of total cholesterol is uncertain as it is not
convincingly associated with dysglycemia (a meta-analysis of 73
observational studies found no association) (54), suggesting that
associations between total cholesterol and GDM are complex
and/or subject to confounding.

In the ethnic subgroup analyses, fatty acids were identified as
the most important family (i.e., VIP ≥1) to characterize GDM
status. In WE women and SA women, respectively, 75% and
50% of the fatty acids included within the metabolite panel
were considered “important” to characterize GDM within WE
women. Furthermore, in SA women, fatty acids constituted
more than half of all metabolites with a VIP ≥1.

This reflects earlier work by Taylor et al. (1), which identified
some evidence of ethnic-specific associations between fatty acids
and GDM and agrees with molecular analyses that demonstrate
that fatty acids alter insulin resistance and insulin secretion
during pregnancy (55, 56).

Furthermore, fatty acids (total MUFAs, total n–3 PUFAs,
total n–6 PUFAs, total PUFAs, and DHA) were identified as
key metabolic factors to distinguish healthy-weight SA and
WE women who developed GDM. Interestingly, we highlighted
associations between n–6 PUFA and total PUFAs with GDM
that were specific to WE women. Given the equal sample
sizes between groups and that fatty acids were important
to characterize ethnicity, it is suggestive of ethnic differences
in PUFA metabolism (57–59) and a role in ethnic-associated
GDM risk (57, 60, 61). Indeed, n–6 PUFA-derived eicosanoids
show discriminatory qualities between type 2 diabetics and
controls with good accuracy (R2X = 0.824, R2Y = 0.995,
Q2 = 0.779) and were identified as proposed mediators of
dysglycemia within a Chinese population (62). Longitudinal
analyses to evaluate the association between changes in
PUFA and eicosanoid concentrations on dysglycemia during
pregnancy are required to better understand this association.

The association between VLDL_D and dysglycemia is
supported by a recent hypothesis linking insulin resistance,

2194 Fuller et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/jn/article/152/10/2186/6650363 by guest on 26 O

ctober 2022



triglyceride synthesis, and increased VLDL_D (63, 64). Al-
though we cannot disregard that VLDLs are sensitive to level
of fasting (65) (as our participants were subjected to prior
to blood collection), evidence also suggests that ethnic-specific
genetic variants associate with ethnic-specific differences in
VLDL_D (66). Although there has been less work on the
possible association between glycoprotein acetyls (a marker of
systemic inflammation) and GDM, future work is required in
this area.

Lactate was one of the strongest predictors of GDM within
both groups, in agreement with evidence from a case-control
study in China (n = 12 GDM; n = 10 controls) (67) and
pathway analyses that propose lactate as a regulator of insulin
resistance and a marker metabolic syndrome severity (68, 69).
Post hoc analysis demonstrated no association between glyco-
protein acetyls and glucose concentrations, whereas lactate and
mean diameter of VLDL were associated with fasting glucose in
WE women but not SA women. The multiethnic Hyperglycemia
and Adverse Pregnancy Outcome (HAPO) cohort demonstrated
a similar ethnic-specific association between lactate and fasting
glucose within individuals of northern European ancestry but
not minority ethnic groups (48, 70, 71).

Of the numerous fatty acid measures that were associated
with GDM, only DHA was associated with a post-OGTT
measure of glucose and only in WE women. Overall, DHA
is considered a protective metabolite against insulin resistance
(e.g., HOMA-IR); however, recent evidence suggests high
heterogeneity (56, 72, 73). As we did, researchers investigating
the Camden pregnancy cohort (n = 1368) reported a significant
positive linear association between DHA and HOMA-IR
(0.303 ± 0.152 per unit DHA %; P < 0.05) (56), whereas
conversely, the DHA to Optimize Mother Infant Outcome
(DOMINO) trial (n = 1990 pregnant women) reported no
difference in 1-h post-OGTT glucose concentrations between
DHA-supplemented mothers and controls (74). The reason
for such discrepancies is unclear but may be that n–3 PUFAs
(such as DHA) require interactions with other metabolites
(e.g., vitamin D) (75) to impart an effect, concentrations of
which vary considerably between populations, seasons, and
geographic region (76–78).

The study aimed to increase and test generalizability of
results within a diverse population; however, our results may
not be generalizable across other ethnic groups or geographic
regions. Nonetheless, this study has 4 main limitations. First,
samples were taken at a single time point before 28 wk of ges-
tation; therefore, 1) we were unable to account for differences in
fasting duration and diurnal variation, and 2) our results are not
generalizable across the full term of pregnancy. Second, as with
all observational studies, the effect of confounding cannot be
disregarded and causality cannot be inferred. Despite this, to our
knowledge, this is the first study to use a panel of multivariate
statistical techniques to characterize GDM within a large
prospective cohort with an equal representation of WE women
and women from a non-WE population, meaning that statistical
power to measure the same effect size is comparable between
groups. Third, the biological validity of the identified metabo-
lites was tested and many correlated with postprandial glucose
measures, and although confounding cannot be eliminated, all
models included known GDM confounders, and modeling char-
acterizing the overall metabolic differences between ethnicities
was also performed to test whether differences in metabolite
profiles were found between ethnicities in relation to GDM
status. Finally, diet is a contributor to metabolite concentrations,
but comprehensive dietary data were not available for our

analysis. Future work with comprehensive dietary records is
needed to evaluate the presence of a moderating effect of diet
on metabolism and GDM risk.

In conclusion, this study has identified unique and shared
metabolic profiles that characterize GDM in WE and SA
women. Future work exploring the moderating role of lifestyle
on the metabolome and the underlying biological mechanisms
driving the identified associations will provide a better under-
standing of the etiologic factors responsible for the heightened
level of GDM risk experienced by SA women and shed light on
improved prevention strategies.
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