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Summary 77 

To interrogate the factors driving therapy resistance in diffuse glioma, we collected and analyzed 78 

RNA and/or DNA sequencing data from temporally separated tumor pairs of 304 adult patients 79 

with IDH-wild-type or IDH-mutant glioma. Tumors recurred in distinct manners that were 80 

dependent on IDH mutation status and attributable to changes in histological feature composition, 81 

somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A 82 

deletions associated with an increase in proliferating stem-like malignant cells at recurrence in 83 

both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive 84 

at recurrence, and their malignant cells exhibited increased expression of neuronal signaling 85 

programs that reflected a possible role for neuronal interactions in promoting glioma progression. 86 

Mesenchymal transition was associated with the presence of a specific myeloid cell state defined 87 

by unique ligand-receptor interactions with malignant cells. Collectively, our results uncover 88 

recurrence-associated changes that could be targetable to shape disease progression following 89 

initial diagnosis. 90 

 91 

Keywords: Glioma, glioblastoma, genomics, treatment resistance, microenvironment, single-cell 92 

 93 

Introduction 94 

Diffuse gliomas in adults are aggressive primary tumors of the central nervous system that are 95 

characterized by a poor prognosis and the development of resistance to a treatment regimen that 96 

typically includes surgery, alkylating chemotherapy, and radiotherapy (Stupp et al., 2005; Wen et 97 

al., 2020). Genomic profiling of diffuse glioma has identified genetic drivers of disease progression 98 

and led to the definition of clinically relevant subtypes based on the presence of somatic mutations 99 

in the isocitrate dehydrogenase (IDH) genes and co-deletion of chromosome arms 1p and 19q 100 

(Cancer Genome Atlas Research et al., 2015; Ceccarelli et al., 2016; Eckel-Passow et al., 2015; 101 

Louis et al., 2016; Weller et al., 2015; Yan et al., 2009). Transcriptional profiling of whole tumors 102 
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and single cells has revealed that the gene expression programs in malignant glioma cells are 103 

influenced by underlying somatic alterations and interactions with the tumor microenvironment. 104 

Additionally, malignant cells exhibit high plasticity that enables them to respond dynamically to 105 

diverse challenges (Johnson et al., 2021; Neftel et al., 2019; Patel et al., 2014; Phillips et al., 106 

2006; Venteicher et al., 2017; Verhaak et al., 2010; Wang et al., 2017). Studies of changes relating 107 

to therapy using bulk genomics approaches have revealed mesenchymal transitions and both 108 

branching and linear evolutionary patterns (Barthel et al., 2019; Kim et al., 2015a; Kim et al., 109 

2015b; Kocakavuk et al., 2021; Korber et al., 2019; Wang et al., 2016; Wang et al., 2017). 110 

However, the extent to which individual malignant glioma and microenvironmental cells interact 111 

and evolve over time to facilitate therapy resistance remains poorly understood.  112 

 113 

To identify the drivers of treatment resistance in glioma, we established the Glioma Longitudinal 114 

Analysis Consortium (GLASS) (Bakas et al., 2020; Barthel et al., 2019; Consortium, 2018). In our 115 

initial effort, we assembled a set of longitudinal whole-exome and whole-genome sequencing data 116 

from 222 patients to define the clonal dynamics that allow each glioma subtype to escape therapy. 117 

In the current study, we build upon these analyses by integrating this genomic dataset with 118 

overlapping and complementary longitudinal transcriptomic data. We apply single-cell-based 119 

deconvolution approaches to these data to infer a tumor’s physical structure and identify the cell 120 

state interactions across IDH-wild-type and IDH-mutant glioma. Collectively, we find that gliomas 121 

exhibit several common transcriptional and compositional changes at recurrence that represent 122 

promising therapeutic targets for delaying disease progression. 123 

 124 

Results 125 

Overview of the GLASS Cohort 126 

We expanded the GLASS cohort with an emphasis on collecting orthogonal RNA sequencing 127 

profiles to include data from a total of 381 patients treated across 37 hospitals (Table S1). After 128 
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applying genomic and clinical quality control filters, the resulting dataset included genomic data 129 

from a total of 304 patients, with 168 having RNA sequencing data available for at least two time 130 

points, 256 having DNA sequencing data available for at least two time points, and 115 having 131 

overlapping RNA and DNA available for at least two time points. The cohort of 168 tumors used 132 

for RNA sequencing analyses comprised each of the three major glioma subtypes, with 128 IDH 133 

wild-type (IDH-wild-type), 31 IDH mutant 1p/19q intact (IDH-mutant-noncodel), and 9 IDH mutant 134 

1p/19q co-deleted (IDH-mutant-codel) glioma pairs (Figure 1A; Table S2). Given the limited 135 

number of IDH-mutant-codel cases, we grouped the IDH-mutant categories, unless specified 136 

otherwise. To facilitate further investigation and discovery of the drivers of treatment resistance 137 

in glioma, we have made this resource publicly available (https://www.synapse.org/glass).  138 

 139 

Transcriptional activity and cellular composition in glioma are variable over time 140 

To obtain a baseline understanding of transcriptional evolution in glioma, we assessed the 141 

representation of the classical, mesenchymal, and proneural transcriptional subtypes in each 142 

sample. IDH-wild-type tumors exhibited primarily classical and mesenchymal characteristics 143 

compared to IDH-mutant tumors, which were largely proneural (Figure 1A). Longitudinally, the 144 

dominant subtype in IDH-wild-type tumors switched in 49% of patients, with classical to 145 

mesenchymal being the most common transition. IDH-mutant tumors were more stable, with 78% 146 

of tumors remaining proneural at both time points (Figure 1B). Classical IDH-wild-type and IDH- 147 

mutant tumors switched subtype 52% of the time, while the mesenchymal and proneural subtypes 148 

switched 38% of the time. This resulted in an overall reduction of classical tumors at recurrence, 149 

suggesting that the tumor cells underlying the classical subtype have higher plasticity than other 150 

subtypes.  151 

 152 

To understand the cellular phenotypes underlying the transcriptional dynamics over time, we 153 

deconvoluted the GLASS gene expression dataset using CIBERSORTx (Newman et al., 2019) 154 

https://www.synapse.org/glass


6 

 

integrated with reference cell state signatures derived from our previously established collection 155 

of 55,284 single-cell transcriptomes from 11 adult patients spanning glioma subtypes and time 156 

points (Johnson et al., 2021) (Table S3, Table S4). Unsupervised analyses of the single-cell data 157 

had previously identified 12 cell states that represented the glial, stromal, immune, and malignant 158 

compartments commonly present in glioma. The malignant population expressed a shared set of 159 

markers (e.g., SOX2) and was split across three pan-glioma cell states, differentiated-like, stem-160 

like, and proliferating stem-like, that together capture the gradient between development, lineage 161 

commitment, and proliferative status that has been observed across numerous glioma single-cell 162 

studies (Bhaduri et al., 2020; Castellan et al., 2021; Couturier et al., 2020; Garofano et al., 2021; 163 

Neftel et al., 2019; Richards et al., 2021; Tirosh et al., 2016; Venteicher et al., 2017; Wang et al., 164 

2019; Yuan et al., 2018). Specifically, the differentiated-like state encompassed malignant cells 165 

exhibiting oligodendrocyte-like, astrocyte-like (EGFR+), and mesenchymal-like (CD44+) 166 

processes, while the stem-like states could be segregated by cell cycle activity (Ki67+) and 167 

resembled undifferentiated and progenitor-like malignant cells (OLIG2+) (Neftel et al., 2019; 168 

Venteicher et al., 2017). To validate this approach, we applied the method to bulk glioma RNAseq 169 

profiles that had ground truth cellular proportions determined by 1) synthetic mixing of single-cell 170 

profiles, 2) single-cell RNAseq, and 3) histo-cytometry of whole-slide multiplex 171 

immunofluorescence stains (Figures S1A-C). Together, these orthogonal analyses supported the 172 

validity of the CIBERSORTx deconvolution approach in glioma. 173 

 174 

When applying our deconvolution approach to the GLASS dataset, we observed variations in 175 

cellular composition across each subtype consistent with prior literature (Neftel et al., 2019; Wang 176 

et al., 2017). In both initial and recurrent tumors, the classical and mesenchymal subtypes were 177 

dominated by differentiated-like malignant cells, with mesenchymal samples also having high 178 

levels of stromal and immune cells. The proneural subtype, in contrast, contained high levels of 179 

proliferating stem-like and stem-like malignant cells (Figure 1C and S1D). We observed 180 
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consistent associations in the TCGA glioma cohort. (Figure S1E). Longitudinally, we found that 181 

IDH-wild-type tumors had significantly higher levels of oligodendrocytes and significantly lower 182 

levels of differentiated-like malignant cells at recurrence (P = 5e-6 and 4e-3, paired t-test). These 183 

changes remained significant even after accounting for differences in the surgical resection extent 184 

at each time point, suggesting a greater admixture of malignant cells and oligodendrocytes 185 

(Figure S1F). We observed similar changes in cellular composition when using an independently 186 

published integrative model of cell state classification that has been established for IDH-wild-type 187 

glioma (Neftel et al., 2019), including a significant decrease at recurrence in the astrocyte-like 188 

malignant cell state that is dominant in classical IDH-wild-type tumors (P = 7e-3, paired t-test; 189 

Figure S1G). Recurrent IDH-mutant tumors exhibited significantly higher levels of proliferating 190 

stem-like malignant cells and significantly lower levels of differentiated-like malignant cells (P = 191 

1e-3 and 2e-6, paired t-test; Figure 1C). Stratifying this group by 1p/19q co-deletion status 192 

revealed that the increase in proliferating stem-like cells was only significant in IDH-mutant-193 

noncodels, while IDH-mutant-codels exhibited a significant increase in stem-like cells (P = 0.04, 194 

paired t-test; Figure S1H). Overall, the differences IDH-wild-type and IDH-mutant tumors 195 

exhibited over time suggested that distinct factors influence recurrence in each subtype. 196 

 197 

Histological features underlie subtype switching and cell state changes at recurrence  198 

Intratumoral heterogeneity is a hallmark of glioma and is abundant in hematoxylin and eosin-199 

stained (H&E) tissue slides, where features such as microvascular proliferation and necrosis are 200 

used for diagnosis and grading by pathologists (Hambardzumyan and Bergers, 2015; Kristensen 201 

et al., 2019). The Ivy Glioblastoma Atlas Project (Ivy GAP) has defined and microdissected five 202 

“anatomic” features on the basis of reference histology, including two features found at the tumor 203 

periphery (leading edge and infiltrating tumor), and three features found in the tumor core (cellular 204 

tumor, pseudopalisading cells around necrosis, and microvascular proliferation)  (Puchalski et al., 205 

2018). They have shown that each of these features has a distinct transcriptional profile, 206 
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suggesting that changes in a tumor’s cell state composition at recurrence reflect changes in a 207 

tumor’s underlying physical structure. To obtain a better understanding of the cell states found in 208 

these features, we assessed the cellular composition of each feature through transcriptional 209 

deconvolution and multiplex immunofluorescence (Figures 2A, S2A).  Each feature exhibited a 210 

distinct cell state composition profile. Leading-edge features, which have been shown to exhibit 211 

expression patterns associated with the proneural subtype and neural tissue (Gill et al., 2014; Jin 212 

et al., 2017; Puchalski et al., 2018), were rich in oligodendrocytes and stem-like malignant cells. 213 

Pseudopalisading cells around necrosis features, which are areas of hypoxia, exhibited the 214 

highest levels of differentiated-like malignant cells. Conversely, microvascular proliferation 215 

features were enriched in proliferating stem-like malignant cells, supporting the role of oxygen in 216 

influencing cell state. Finally, the cellular tumor feature exhibited sample-specific variation, with 217 

high levels of differentiated-like malignant cells in IDH-wild-type samples and high levels of stem-218 

like cells in IDH-mutant samples. Overall, each cell state’s distribution was more significantly 219 

associated with the histological feature than the patient from which it was derived (two-way 220 

ANOVA; Figure S2B) (Puchalski et al., 2018).  221 

 222 

Given the strong association between histological features and cellular composition, we examined 223 

how the representation of these features varied over time by deconvoluting the GLASS dataset 224 

with the available feature-specific gene signatures developed as part of Ivy GAP. To assess the 225 

performance of this deconvolution, we compared the resulting proportions to pathologist 226 

estimates of related features in a subset of samples with matched H&E slides (Table S5). This 227 

revealed that the method was successfully able to distinguish between periphery- and tumor core-228 

associated features regardless of time point, (Figure S2C) and identified expected correlations 229 

between the pseudopalisading cells around necrosis feature and pathologist estimates of the slide 230 

area occupied by necrosis (Figure S2D). However, in recurrent samples, transcriptional 231 

deconvolution of some tumor core-associated features was influenced by the presence of 232 
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recurrence-specific histological features not profiled by Ivy GAP (Figure S2E). Within the GLASS 233 

dataset, deconvolution captured differences in each bulk transcriptional subtype’s anatomy that 234 

were consistent with their underlying cell state composition (Figure 2B). It also revealed that IDH-235 

wild-type tumors had significantly higher leading-edge content at recurrence (P = 4e-5, paired t-236 

test; Figure 2B), which was consistent with the increase in oligodendrocytes we had previously 237 

observed (Figure 1C). In most cases this increase was independent of whether a tumor 238 

underwent a transcriptional subtype transition, suggesting it was a general feature at recurrence 239 

(Figure 2C). At the cell state level, we found that changes in the abundance of differentiated-like 240 

malignant cells positively associated with increased cellular tumor features in IDH-wild-type 241 

tumors, increased leading edge features in IDH-mutant tumors, and increased pseudopalisading 242 

cells around necrosis features in both subtypes. Changes in stem-like malignant cells positively 243 

associated with changes in leading-edge features in IDH-wild-type tumors and cellular tumor 244 

features in IDH-mutant tumors. Finally, in both subtypes, changes in proliferating stem-like and 245 

immune cells positively associated with changes in microvascular proliferation (Figure 2D).  246 

 247 

Given these correlations, we hypothesized that subtype switches in IDH-wild-type tumors were 248 

attributable to changes in histological feature composition over time. To test this, we recalculated 249 

our malignant cell fractions by adjusting for the presence of non-malignant cells, as well as 250 

leading-edge content which may vary by surgery. While most subtype switches associated with 251 

changes in at least one malignant cell fraction pre-adjustment, the strongest difference observed 252 

post-adjustment was a decrease in stem-like cells in tumors undergoing a proneural-to-253 

mesenchymal transition (P = 3e-4, paired t-test; Figures S2F, S2G). This association remained 254 

significant even after adjusting for the remaining non-cellular tumor features, suggesting that 255 

tumors undergoing this switch exhibit a loss of stem-like cells independent of histological feature 256 

composition (Figures 2E, S2F). Collectively, these results indicate that while most subtype 257 

switches in IDH-wild-type tumors are related to changes in a tumor’s underlying physical structure 258 
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and microenvironment, the changes observed in the proneural-to-mesenchymal transition may 259 

result from tumor-wide changes that reflect malignant cell-intrinsic processes at recurrence. 260 

 261 

Acquired somatic alterations at recurrence associate with changes in cellular composition 262 

While most tumors exhibited changes in cell state and associated histological feature 263 

composition, the factors underlying these changes remained unclear. Somatic genetic alterations 264 

have been shown to be associated with the cell state distribution of IDH-wild-type and IDH-mutant 265 

glioma (Johnson et al., 2021; Neftel et al., 2019; Tirosh et al., 2016; Verhaak et al., 2010). We 266 

thus hypothesized that changes in cellular composition resulted from genetic changes at 267 

recurrence. To test this, we began by comparing how each malignant cell state differed across 268 

samples that acquired or lost driver mutations (Ceccarelli et al., 2016) at recurrence. Within IDH-269 

mutant tumors, this identified acquired deletions of the cell cycle regulator CDKN2A and acquired 270 

amplifications of the cell cycle regulator CCND2 as genetic events that together associated with 271 

an increase in proliferating stem-like cells (P = 3e-3, paired t-test, n = 6; Figure 3A). Whole slide 272 

multiplex immunofluorescence scans of a recurrent IDH-mutant tumor with an acquired CDKN2A 273 

deletion and its matched initial tumor confirmed this association, with the recurrence exhibiting a 274 

significantly higher number of SOX2+/Ki67+ cells (P < 1e-5, Fisher’s exact test; Figure 3B). We 275 

did not observe this association in IDH-wild-type tumors, which typically harbor CDKN2A deletions 276 

at initial presentation (Figure S3A).  277 

 278 

We next examined how malignant cell states associated with treatment-induced hypermutation. 279 

Approximately 20% of gliomas recur with a hypermutated phenotype following treatment with 280 

alkylating agents, a standard-of-care chemotherapy (Barthel et al., 2019; Touat et al., 2020). This 281 

phenotype has been associated with disease progression and distant recurrence (Yu et al., 2021). 282 

We found that in both IDH-wild-type and IDH-mutant glioma, hypermutation also associated with 283 

an increase in proliferating stem-like malignant cells (n = 13 and 7, respectively; Figure 3C). 284 
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Multiplex immunofluorescence scans of an IDH-wild-type tumor pair with temozolomide-induced 285 

hypermutation confirmed this association, with the recurrence having significantly higher number 286 

of SOX2+/Ki67+ cells (P < 1e-5, Fisher’s exact test; Figure 3D). In IDH-mutant tumors, 287 

hypermutation largely occurred independent of acquired copy number changes in CDKN2A and 288 

CCND2, suggesting that there are multiple genetic routes to increasing proliferating stem-like 289 

malignant cells at recurrence (Figure 3E). Notably, neither of these alterations associated with 290 

changes in microvascular proliferation, suggesting that increases in proliferating stem-like 291 

malignant cells were a result of genetics and not microenvironmental interactions (Figure S3B). 292 

Survival analyses revealed that that increases in proliferating stem-like malignant cells in IDH-293 

mutant tumors were significantly associated with reduced overall survival (P = 0.02, log-rank test; 294 

Figure 3F), and remained so after adjusting for age, grade, and 1p/19q co-deletion status (P = 295 

0.02, Wald test; Figure S3C). Collectively, these results indicate that genetic evolution at 296 

recurrence can alter malignant glioma cells toward a more proliferative phenotype that associates 297 

with poor prognosis. 298 

 299 

In addition to malignant cells, genetic alterations have been associated with changes in the 300 

microenvironmental composition of tumors (Wellenstein and de Visser, 2018). We thus repeated 301 

our longitudinal analyses with non-malignant cells, examining how each cell state differed in tumor 302 

pairs that acquired or lost selected driver mutations at recurrence. In IDH-wild-type tumors, non-303 

hypermutated recurrences that acquired NF1 mutations all underwent a mesenchymal transition 304 

and exhibited a significant increase in granulocytes (P = 0.03, paired t-test, n = 3; Figure S3D). 305 

Granulocytes have previously been associated with tumor necrosis, a feature that is prominent in 306 

mesenchymal glioblastoma (Yee et al., 2020). There were additionally several copy number 307 

alterations, including loss of EGFR or PDGFRA amplifications, that were associated with 308 

increased non-malignant cell content (P < 0.05, paired t-test, n = 11 and n = 4, respectively), and 309 

a transition to the mesenchymal subtype (P = 0.05, Fisher’s exact test; Figures S3E and S3F). 310 
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We did not observe any significant changes in the fractions of non-malignant cells when 311 

comparing hypermutated recurrences with their corresponding non-hypermutated initial tumors, 312 

including T cells (Figure S3G). These results together indicate that while genetic evolution is a 313 

major driver of changes in malignant cell state composition, it has less of an effect on a tumor’s 314 

microenvironment. 315 

 316 

IDH-wild-type malignant cells exhibit an increase in neuronal signaling gene expression 317 

programs at recurrence 318 

While a subset of tumors demonstrated a genetic-associated increase in proliferating stem cell 319 

content at recurrence, the remaining IDH-wild-type and IDH-mutant tumors did not exhibit a 320 

shared longitudinal trajectory in their malignant cell composition. We hypothesized that the 321 

expression programs of individual cell states may change following treatment in more subtle ways 322 

that do not manifest as a ubiquitous shift in cellular composition. To test whether these changes 323 

were taking place, we utilized our pan-glioma single-cell RNAseq dataset (Johnson et al., 2021) 324 

as a reference to deconvolute GLASS bulk gene expression profiles into their component 325 

differentiated-like, stem-like, proliferating stem-like, and myeloid gene expression profiles (Figure 326 

S4A). To validate these profiles, we compared them to those derived from fluorescence-activated 327 

cell sorting (FACS)-purified glioma-specific CD45- and myeloid populations. This revealed strong 328 

concordance between the corresponding profiles of each cell state (Figures S4B and S4C). To 329 

ensure the profiles were capturing established biology, we employed differential expression and 330 

gene ontology (GO) enrichment analyses to assess how each malignant cell profile differed 331 

across each transcriptional subtype in IDH-wild-type glioma samples from TCGA. This revealed 332 

subtle differences between the cell state-specific expression profiles, such as high levels of 333 

immune-related functions in differentiated-like malignant cells from mesenchymal tumors, that 334 

together were reflective of unique microenvironment interactions that were characteristic of each 335 

subtype (Figure S4D). 336 
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 337 

To determine how the expression programs in each malignant cell state vary longitudinally, we 338 

compared the cell state-specific gene expression profiles between the initial and recurrent tumor 339 

for each pair receiving temozolomide and/or radiotherapy. In IDH-wild-type tumors, we found that 340 

10.0% of the 7,511 genes that could be inferred in stem-like cells were significantly differentially 341 

expressed at recurrence (false discovery rate (FDR) < 0.05, Wilcoxon signed-rank test). This 342 

number was 7.6% of the 11,641 differentiated-like state genes and 6.1% of the 6,019 proliferating 343 

stem-like state genes (Figure 4A; Table S6). Based on these results, we defined recurrence-344 

specific signatures as the genes that were significantly up-regulated at recurrence in each cell 345 

state. Within our pan-glioma single-cell dataset, we confirmed the recurrence-specific nature for 346 

each of these signatures by comparing their expression between malignant cells from unmatched 347 

recurrent and initial tumors (Figure S4E). To understand the functions these cell states up-348 

regulate at recurrence, we then performed GO enrichment analysis on each signature. This 349 

revealed that the stem-like signature was significantly enriched in terms relating to neuronal 350 

signaling, while the differentiated-like and proliferating stem-like signatures exhibited similar, but 351 

weaker, associations (Figures 4B and S4F). 352 

 353 

Given our previous results that showed increased levels of oligodendrocytes and leading edge 354 

content in recurrent IDH-wild-type tumors, we hypothesized that neuronal signaling in stem-like 355 

malignant cells may be found in infiltrative regions of the tumor characterized by high tumor-356 

neuron interactions. To test this hypothesis, we examined how the stem-like malignant cell 357 

recurrence signature associated with histological feature content in the GLASS cohort. This 358 

revealed a positive association between stem-like malignant cell-specific expression of the 359 

recurrence signature and leading edge content (Figure 4C). Notably, we observed this result at 360 

both time points, suggesting that neuronal signaling in stem-like malignant cells may be driven 361 

more by tumor-neuron interactions than malignant cell-intrinsic changes specific to recurrence. 362 
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We next utilized an independent single-cell RNAseq dataset to compare the recurrence-specific 363 

signature between malignant cells collected from the invasive rim, where there are higher levels 364 

of neurons, to those collected from the tumor core (Yu et al., 2020).  This analysis revealed 365 

significantly higher signature expression at the invasive rim, further supporting the association 366 

between neuronal signaling and tumor-neuron interactions (Figure 4D). Finally, we performed 367 

multiplex immunofluorescence to examine how malignant cell expression of neuronal markers 368 

differed between pathologist-annotated histological features in recurrent glioma (Figure S4G). 369 

Within the infiltrating tumor region, we found neurons (NeuN+) and a high number of malignant 370 

cells (SOX2+) staining positively for SNAP25, a neuronal marker that was part of our stem-like 371 

malignant cell recurrence signature. In contrast, there were few neurons and no SNAP25+ cells 372 

in the cellular tumor region (Figure 4E). Collectively, these results suggest that increased normal 373 

cell content at recurrence associates with higher signaling between malignant cells and 374 

neighboring neural cells. Neuron-to-glioma synapses have been implicated in increased tumor 375 

growth and invasion, and collectively our results support a model of greater tumor invasion into 376 

the normal brain at recurrence that is likely facilitated by an increase in neuronal interactions 377 

(Venkataramani et al., 2019; Venkatesh et al., 2015; Venkatesh et al., 2019; Venkatesh et al., 378 

2017).  379 

 380 

We next compared how the expression profiles of each cell state differed between initial and 381 

recurrent IDH-mutant tumors that received treatment. The resulting signatures were distinct from 382 

those in IDH-wild-type tumors, with the largest proportion of differentially expressed genes found 383 

in the differentiated-like state instead of the stem-like state (FDR < 0.05, Wilcoxon signed-rank 384 

test; Figure 4F, Table S5). A GO enrichment analysis of the genes up-regulated at recurrence in 385 

the differentiated-like cell state revealed a significant enrichment of terms related to the cell cycle 386 

and mitosis (FDR < 0.05; Figure 4G), while the stem-like signature exhibited similar associations 387 

at a relaxed significance threshold (FDR < 0.1; Figure S4H). These signatures were consistent 388 
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with those found in higher grade tumors, suggesting that the cell state-specific gene expression 389 

changes were indicative of grade increases at recurrence. Accordingly, we observed that these 390 

changes were strongest in the tumor pairs that recurred at a higher grade (Figure S4I). 391 

Furthermore, when we compared signature expression in single cells of the same cell state, we 392 

found that the signatures were differentially expressed in the cells derived from grade III versus 393 

grade II tumors (Figure S4J). These results indicate that IDH-wild-type and IDH-mutant tumors 394 

recur in distinct manners that may reflect their response to treatment. 395 

 396 

Mesenchymal malignant cell activity associates with a distinct myeloid cell phenotype 397 

The mesenchymal subtype of glioma has been associated with an accumulation of myeloid cells 398 

as well as radiotherapy resistance and poor patient survival (Bhat et al., 2013; Kim et al., 2021; 399 

Wang et al., 2017). Given the importance of this subtype on a patient’s clinical trajectory, we 400 

sought to understand the factors driving tumors toward this subtype over time.  Within IDH-wild-401 

type tumors in the GLASS dataset, the mesenchymal subtype was the most common subtype at 402 

recurrence. In agreement with previous findings, IDH-wild-type tumors with a mesenchymal 403 

recurrence exhibited a significantly shorter surgical interval compared to those with non-404 

mesenchymal recurrences (P = 0.03, log-rank test; Figure S5A) (Wang et al., 2017). However, 405 

this association was weaker in a multi-variate model (Figure S5B). Single-cell studies have 406 

previously shown that samples of this subtype exhibit high levels of malignant cells that express 407 

a distinct mesenchymal-like expression signature (Neftel et al., 2019). Analysis of the malignant 408 

cell state-specific expression profiles in samples undergoing a mesenchymal transition revealed 409 

that differentiated-like cells, but not stem-like cells, up-regulated this signature at recurrence 410 

(Figure S5C).   411 

 412 

Given the changes in cellular composition and malignant cell expression associated with a 413 

mesenchymal transition, we hypothesized that this trajectory may be driven in part by unique 414 
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interactions between the tumor-infiltrating myeloid cells and malignant cells. To understand how 415 

the myeloid compartment differed across each glioma subtype, we deconvoluted the myeloid-416 

specific gene expression profiles from a collection of diffuse glioma bulk RNAseq profiles (n = 417 

687) from The Cancer Genome Atlas (TCGA). The myeloid compartment in IDH-wild-type tumors 418 

was characterized by high expression of a previously defined blood-derived macrophage 419 

signature (Muller et al., 2017), while myeloid cells in IDH-mutant-noncodel tumors exhibited high 420 

expression of a previously defined brain-resident microglia signature (Figure 5A). Stratifying this 421 

cohort by transcriptional subtype revealed that the blood-derived macrophage signature followed 422 

a stepwise increase with mesenchymal subtype representation, while microglial gene expression 423 

was highest amongst tumors of the mixed subtype classification that is seen most frequently in 424 

IDH-mutant-noncodel glioma (Figure S5D). Consistent with these results, principal component 425 

analysis of tumor and normal brain myeloid cell expression profiles revealed that proneural tumors 426 

most closely resembled those from normal brain tissue, while mesenchymal myeloid profiles were 427 

more distinct (Figure S5E). In IDH-wild-type tumors, blood-derived macrophage signature 428 

expression was positively correlated with the abundance of microvascular proliferation and 429 

pseudopalisading cells around necrosis features, while the microglia signature was most 430 

positively correlated with leading-edge content. In IDH-mutant tumors, the blood-derived 431 

macrophage signature negatively associated with leading-edge content, while the microglia 432 

signature did not exhibit any clear associations (Figure S5F). Longitudinally, when holding 433 

transcriptional subtype constant, we observed very few differentially expressed genes in the 434 

myeloid cell profiles from matched initial and recurrent tumors in the GLASS cohort (Figure S5G). 435 

However, the myeloid profiles in IDH-mutant tumors that increased grade at recurrence exhibited 436 

a significant decrease in microglia signature expression, suggesting a shift in myeloid cell states 437 

away from brain-resident microglia (P = 4e-4, Wilcoxon signed-rank test; Figure 5B). 438 

 439 
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Macrophages are highly plastic and capable of changing their transcriptional programs in 440 

response to different stimuli (Xue et al., 2014). We thus hypothesized that different glioma 441 

transcriptional subtypes would exhibit distinct myeloid expression programs. To test this 442 

hypothesis, we performed a differential expression analysis comparing the deconvoluted myeloid 443 

cell expression profiles from each transcriptional subtype to those from normal brain tissue 444 

(Figure S5H). This analysis revealed that myeloid cells from the classical and mesenchymal 445 

subtypes exhibit an immunosuppressive phenotype, with each signature including several genes 446 

from the blood-derived macrophage signature as well as the immune checkpoint genes, 447 

PDCD1LG2 and IDO1.  In addition to this shared signature, myeloid cells from mesenchymal 448 

glioma uniquely up-regulated another 300 genes not seen in the other subtypes, suggesting they 449 

exhibit distinct biology. To better understand the processes taking place in this subtype, we 450 

directly compared the myeloid gene expression profiles between mesenchymal and non-451 

mesenchymal IDH-wild-type tumors in TCGA. This analysis revealed a 186-gene signature that 452 

was significantly upregulated in mesenchymal samples (FDR < 0.05, fold-change > 1.5; Figure 453 

5C, Table S7) and enriched in chemokine signaling and lymphocyte chemotaxis functions (Figure 454 

S5I). To validate this signature, we examined its expression in our scRNAseq dataset and found 455 

that expression of this signature in a patient’s myeloid cells strongly associated with the patient’s 456 

bulk RNAseq-derived mesenchymal glioma subtype score (R = 0.89, P = 3e-3; Figure S5J). 457 

Longitudinally, IDH-wild-type tumors in the GLASS dataset undergoing a mesenchymal transition 458 

exhibited myeloid-specific expression profiles with significantly higher expression of this signature 459 

at recurrence (P = 8e-8, Wilcoxon signed-rank test; Figure 5D). 460 

 461 

Overall, these analyses revealed a mesenchymal-specific myeloid cell state that was associated 462 

with dynamic changes in malignant cell expression over time. We hypothesized that these cells 463 

represent a subset of blood-derived macrophages that interact directly with mesenchymal 464 

malignant cells. To determine where this myeloid cell state was located, we examined how the 465 
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expression of the mesenchymal myeloid signature varied across each of the Ivy GAP dataset’s 466 

histological feature samples. This revealed that the mesenchymal myeloid signature was 467 

expressed most highly in the pseudopalisading cells around necrosis and microvascular 468 

proliferation features that also harbor high levels of blood-derived macrophages (Figure 5E). 469 

Correlating the myeloid-specific expression of this signature with histological feature proportions 470 

in TCGA revealed similar results (Figure S5K).  We next performed a ligand-receptor interaction 471 

analysis to identify candidate ligand-receptor pairs that associate with mesenchymal-transitions 472 

over time. To probe these interactions, we downloaded a set of 1,894 literature-supported ligand-473 

receptor pairs (Ramilowski et al., 2015) and identified all pairs that had one component expressed 474 

in a tumor’s deconvoluted myeloid profile and the other expressed in the differentiated-like 475 

malignant cell profile. We then compared how the longitudinal change in expression of each 476 

component associated with the change in each tumor pair’s mesenchymal subtype score. This 477 

identified 69 putative ligand-receptor pairs where each component exhibited a positive association 478 

(R > 0, FDR < 0.05). Of these pairs, 35 also exhibited these associations in our single-cell dataset 479 

(Table S8). Notably, this analysis revealed that expression of oncostatin M (OSM) and oncostatin 480 

M receptor (OSMR) by myeloid cells and differentiated-like malignant cells, respectively, was one 481 

of the strongest correlates of the mesenchymal subtype. This was consistent with studies showing 482 

that this signaling associates with mesenchymal-like expression programs both in vitro and in vivo 483 

(Hara et al., 2021; Junk et al., 2017). To determine whether spatial convergence of OSM-484 

expressing myeloid cells (CD14+) and mesenchymal-like malignant cells (CD44+/SOX2+) takes 485 

place in human tissue samples, we examined their distribution using multiplex 486 

immunofluorescence. In mesenchymal IDH-wild-type glioma, we observed high OSM expression 487 

in myeloid cells near blood vessels and mesenchymal malignant cells, while these expression 488 

patterns were not observed in classical glioma (Figure 5F). These analyses together identify a 489 

candidate ligand-receptor interaction that can potentially be targeted to change a tumor’s 490 

trajectory following treatment. 491 
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 492 

Antigen presentation is disrupted at recurrence in IDH-mutant-noncodel glioma 493 

The interactions we identified between myeloid cells and mesenchymal malignant cells 494 

demonstrated a role for the immune system in shaping glioma evolution. In addition to myeloid 495 

cells, T cells have been implicated in driving the evolution of multiple cancer types through the 496 

elimination of neoantigen-presenting tumor subclones (Grasso et al., 2018; McGranahan et al., 497 

2017; Rooney et al., 2015; Rosenthal et al., 2019; Zhang et al., 2018). While rare in glioma, these 498 

cells have been shown to select for epigenetic changes and specific genetic alterations  (Gangoso 499 

et al., 2021; Kane et al., 2020) and converge with rare, recorded responses to checkpoint 500 

inhibition (Cloughesy et al., 2019; Zhao et al., 2019). However, the extent to which T cell-mediated 501 

selection interacts with standard-of-care treatment to influence glioma evolution at recurrence 502 

remains unclear. We hypothesized that if T cell selection was taking place in glioma, we would 503 

observe high rates of loss-of-heterozygosity (LOH) in the human leukocyte antigen (HLA) genes 504 

that are central to the presentation of neoantigens. We thus called HLA LOH throughout the 505 

GLASS cohort (Figure 6A). We observed that HLA LOH takes place in glioma, occurring in at 506 

least one timepoint in 19% of patients. Within IDH-wild-type and IDH-mutant-codel tumors, HLA 507 

LOH was found at similar rates between initial and recurrent tumors, with most affected pairs 508 

exhibiting this alteration at both time points. This was not the case in IDH-mutant-noncodel 509 

tumors, where significantly more samples acquired HLA LOH at recurrence (P = 0.04, Fisher’s 510 

exact test). Given the increase in HLA LOH in recurrent IDH-mutant samples, we reasoned that 511 

HLA LOH may be under positive selection at recurrence. To test this, we used a previously 512 

established simulation approach (McGranahan et al., 2017) that determined whether focal losses 513 

of the HLA genes occurred at a rate greater than expected by chance given a sample’s overall 514 

somatic copy number alteration (SCNA) burden. In both IDH-wild-type and IDH-mutant 515 

recurrences we did not observe evidence of positive selection using this approach (P > 0.05). 516 

Furthermore, we did not observe an association between HLA LOH status and T cell-mediated 517 
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selection metrics, including the fraction of infiltrating T cells in each tumor (Figure 6B), the rates 518 

of neoantigen depletion (Figure S6A), and the number of neoantigens binding to the kept versus 519 

lost alleles (Figures S6B).  520 

 521 

Overall, our results suggested that HLA LOH in glioma was not selected for, contrasting it with 522 

other cancer types (Grasso et al., 2018; McGranahan et al., 2017; Rosenthal et al., 2019; Zhang 523 

et al., 2018). We hypothesized instead it was a passenger event, and thus would be more likely 524 

to occur in samples with high SCNA burdens. In support of this, we found that while IDH-mutant-525 

noncodel tumors generally exhibit significantly higher SCNA burdens at recurrence (Barthel et al., 526 

2019), the tumors that acquired HLA LOH at recurrence exhibited significantly higher changes in 527 

SCNA burden than those that did not (P = 0.02, Wilcoxon rank-sum test; Figure 6C). In IDH-wild-528 

type tumors, we did not observe these longitudinal associations. However, at both the initial and 529 

recurrent time points IDH-wild-type tumors with HLA LOH exhibited significantly higher SCNA 530 

burdens than those with both HLA alleles, supporting that HLA LOH is a passenger event in these 531 

tumors as well (P < 0.05, Wilcoxon rank-sum test; Figure S6C). Taken together, these results 532 

suggest that disruption of antigen presentation in glioma is likely a byproduct of genome-wide 533 

copy number changes rather than being a result of selection by cytolytic T cells. 534 

 535 

Discussion 536 

To understand the factors driving the evolution and treatment resistance of diffuse glioma, we 537 

integrated genomic and transcriptomic data from the initial and recurrent tumor pairs of 304 538 

patients. By integrating this resource with data from single-cell RNAseq experiments, a 539 

histological transcriptional atlas, multiplex immunofluorescence imaging, and a multitude of 540 

external transcriptional datasets, we have comprehensively defined the longitudinal 541 

transcriptional and compositional changes that gliomas sustain at recurrence. As a result of these 542 

findings, we have grouped recurrent tumors into three “recurrence states”: neuronal, 543 
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mesenchymal, or proliferative, based on their shared cellular, genetic, and histological features 544 

(Figure 7). These states associate with different clinical trajectories and are present in IDH-wild-545 

type and IDH-mutant tumors at different rates, with IDH-wild-type tumors exhibiting all three states 546 

at recurrence and IDH-mutant tumors primarily exhibiting the proliferative state. Notably, these 547 

states are not mutually exclusive, with some IDH-wild-type tumors simultaneously exhibiting 548 

features associated with multiple states. Overall, this grouping offers a framework through which 549 

to better understand progression in diffuse glioma and can help guide clinical decision-making for 550 

recurrent disease. 551 

 552 

In this study, we employed single-cell deconvolution approaches to enable high-resolution 553 

quantification of the cellular composition of gliomas. Available cell state classification models have 554 

been developed for diffuse glioma using single cells of a single glioma subtype (Castellan et al., 555 

2021; Garofano et al., 2021; Neftel et al., 2019; Richards et al., 2021; Venteicher et al., 2017). In 556 

contrast, our reference matrix utilized cell states derived from a pan-glioma single-cell dataset 557 

composed of initial and recurrent tumors of all major clinically relevant glioma subtypes, and thus 558 

included malignant and normal cell states commonly found across diffuse glioma. The resulting 559 

cellular proportions reflected true cell state levels in multiple benchmarking analyses, making this 560 

an invaluable approach for comparing and contrasting the longitudinal changes taking place 561 

across IDH-wild-type and IDH-mutant tumors. In the future this approach can continue to be 562 

refined as the number of cells per tumor and patients profiled by scRNAseq increases and enables 563 

even higher resolution estimates of glioma cell state composition and heterogeneity.  564 

 565 

While transcriptional subtype switching has been reported to occur frequently in IDH-wild-type 566 

glioma, the role these switches play in treatment resistance is unclear. Pathology-defined 567 

histological features from Ivy GAP exhibit distinct transcriptional profiles that correspond to 568 

different glioma transcriptional subtypes, suggesting that subtype switching may be more 569 
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reflective of changes in the tumor’s histological feature composition at recurrence (Jin et al., 2017; 570 

Puchalski et al., 2018). Ivy GAP comprises features defined from primary tumors, which we found 571 

to be useful proxies to measure the biological changes at recurrence that underlie subtype 572 

switching. Limitations of the Ivy GAP resource may include the absence of commonly observed 573 

features, such as necrotic tissue and depopulated tumor, which may be more present following 574 

radiation therapy. We showed that the proneural-to-mesenchymal transition is independent of 575 

histological feature composition and reflects transcriptional changes in the cellular tumor. 576 

Mesenchymal transitions have been shown to associate with several factors, including increased 577 

myeloid cell infiltration, radiation-induced NF-κB activation, altered tumor metabolism, and 578 

hypoxia (Bhat et al., 2013; Garofano et al., 2021; Kim et al., 2021; Mao et al., 2013; Osuka et al., 579 

2021; Schmitt et al., 2021; Wang et al., 2017). Our results indicate that the proneural-to-580 

mesenchymal transition is likely influenced by tumor-wide changes, supporting the hypothesis 581 

that this transition is involved in therapy resistance. Additional studies where multiple biopsies are 582 

obtained from the same tumor over time may help to further elucidate the relationship between 583 

histological feature composition and gene expression subtype.  584 

 585 

Across IDH-wild-type and IDH-mutant glioma, we identified a sub-population of samples that 586 

exhibited an increase in proliferating stem-like malignant cells at recurrence. Analysis of the 587 

acquired somatic alterations in these tumors revealed that hypermutation was associated with 588 

this change in both subtypes. This finding across both subtypes suggests that hypermutation may 589 

represent a pan-glioma treatment resistance mechanism. Hypermutation did not associate with 590 

patient survival in the GLASS dataset but has been found more frequently in distant recurrences 591 

and linked to reduced survival following high-grade progression in low-grade IDH-mutant tumors 592 

(Barthel et al., 2019; Touat et al., 2020; Yu et al., 2021). Given these findings, our data highlights 593 

methods to predict treatment-induced hypermutation represent a previously unrecognized unmet 594 

clinical need in the field. Integrating such methodologies into clinical care pathways would help to 595 
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identify patients that may benefit from therapies that complement chemotherapy and further target 596 

cycling cells. 597 

 598 

We did not identify any somatic alterations associated with changes in malignant cell composition 599 

outside of hypermutation and copy number changes in cell cycle regulators. Despite this, we 600 

found that malignant glioma cells in IDH-wild-type tumors exhibited a significant increase in the 601 

expression of genes involved in neuronal signaling. This change coincided with an increase in 602 

oligodendrocytes at recurrence that was independent of the extent of tumor resection, providing 603 

a medium for increased interactions between malignant and normal cells in the brain. Additionally, 604 

neuronal signaling was most significantly up-regulated within the malignant stem-like cells, which 605 

are found at the highest levels at the leading edge of the tumor and frequently resemble 606 

oligodendroglial precursor-like malignant cells involved in neuronal signaling (Venkatesh et al., 607 

2019). Increased neuronal signaling has previously been reported in malignant cells that have 608 

infiltrated into the surrounding tissue in response to low oxygen content and our study extends 609 

these observations to glioma progression (Darmanis et al., 2017). Collectively these findings 610 

coupled with our results relating to proneural-to-mesenchymal transition support a model where 611 

recurrent IDH-wild-type tumors, in response to changes in hypoxia or tumor metabolism at 612 

recurrence, invade the surrounding peripheral tissue where they actively interact with neighboring 613 

neuronal cells. Given the growing appreciation of the role neuron-glioma interactions play in 614 

glioma invasion and progression, it will be critical to understand the extent to which these 615 

interactions facilitate tumor regrowth and treatment resistance (Venkataramani et al., 2019; 616 

Venkatesh et al., 2015; Venkatesh et al., 2019; Venkatesh et al., 2017). 617 

 618 

In agreement with other studies, we found that the myeloid cell phenotype varied in relation to 619 

tumor subtype and malignant cell state (Klemm et al., 2020; Muller et al., 2017; Ochocka et al., 620 

2021; Pombo Antunes et al., 2021; Venteicher et al., 2017). Notably, we found that this variation 621 
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was most apparent in mesenchymal tumors, where myeloid cells exhibited a distinct 622 

transcriptional program. Ligand-receptor analyses revealed several candidate interactions 623 

involved in driving malignant and myeloid cells toward this mesenchymal phenotype. Resolving 624 

the directionality of these interactions, or determining whether additional factors mediate them, 625 

will be an important step toward understanding the contribution myeloid cells make in 626 

mesenchymal transformation. We did not observe any differences in T cell activity, nor did we 627 

observe evidence of T cell-mediated selection, making glioma distinct from several other cancers 628 

(Grasso et al., 2018; McGranahan et al., 2017; Rooney et al., 2015; Rosenthal et al., 2019; Zhang 629 

et al., 2018). Despite this, we did observe that antigen presentation in IDH-mutant-noncodel 630 

tumors is frequently disrupted at recurrence and is associated with increases in SCNA burden. 631 

As data from studies of immunotherapy trials in glioma are published, it will be important to assess 632 

whether antigen presentation loss and SCNA burden serve as biomarkers of response. These 633 

results may inform the design of T cell-based immunotherapies going forward, as standard-of-634 

care therapies may inadvertently disrupt malignant cells’ ability to present neoantigens to T cells. 635 

 636 

Therapy resistance remains a significant obstacle for patients with diffuse glioma and must be 637 

overcome to improve patient survival and quality of life. Overall, our results reveal that gliomas 638 

undergo changes in cell states that associate with changes in genetics and the microenvironment, 639 

providing a baseline towards building predictive models of treatment response. Taking into 640 

consideration the current histopathologic diagnostic criteria for gliomas and their longitudinal 641 

follow-up, future efforts by the GLASS Consortium are now underway. These include expansion 642 

of the cohort, integration of digitized tissue sections, and association with clinical and genomic 643 

datasets with radiographic imaging data (Bakas et al., 2020). Computational imaging studies have 644 

shown mounting evidence and promise in revealing imaging signatures associated with increased 645 

invasion and proliferation for glioma patients harboring particular mutations (Bakas et al., 2017; 646 

Binder et al., 2018; Fathi Kazerooni et al., 2020; Mang et al., 2020; Zwanenburg et al., 2020), and 647 
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given their use in clinical monitoring, are highly complementary to the longitudinal datasets 648 

established here. Going forward, the transcriptional and compositional changes we have identified 649 

can be integrated with these imaging-based results to more broadly assess the molecular and 650 

microenvironmental heterogeneity of glioma and identify clinically targetable factors to aid in 651 

shaping a patient’s disease trajectory.  652 

 653 

Limitations of the Study 654 

In this study, we applied single-cell RNAseq-based deconvolution approaches to bulk RNAseq 655 

glioma expression profiles to infer the cellular composition, cell state-specific transcriptional 656 

activity, and cellular interactions within each tumor. While such deconvolution approaches have 657 

been validated extensively, both during their own development and for this study, they are limited 658 

in their ability to detect rare cellular subpopulations and can only attribute cell state-specific 659 

expression activity to the cell states defined in their input single-cell signature matrix. Due to these 660 

limitations, our analyses were mainly directed at understanding broad differences between 661 

longitudinal samples and transcriptional subtypes where we were well-powered to make 662 

comparisons. Furthermore, we focused our cell state-specific gene expression profile analyses 663 

on malignant cells and myeloid cells, as these cells represent the most common cell states in 664 

glioma and thus contribute the strongest expression signals to bulk RNAseq profiles. Going 665 

forward, transcriptomic analyses of smaller glioma patient subpopulations or rare cell states will 666 

require a combination of a larger cohort of samples and/or a higher resolution technology such 667 

as single-cell RNAseq to make robust conclusions. Spatially resolved transcriptomic methods can 668 

additionally be applied to infer cellular interactions and identify ligand-receptor signaling that drive 669 

glioma cells towards different cell states. Collectively, these approaches can build upon the results 670 

in this study to refine our understanding of how gliomas evolve following therapy and improve 671 

patient treatment regimens. 672 

 673 
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 856 

Figure Legends 857 

Figure 1. Diffuse glioma exhibits transcriptional and cellular heterogeneity across 858 

samples, subtypes, and time. (A) Overview of the GLASS dataset. Each column represents a 859 

tumor pair, and their initial (I) and recurrent (R) samples are labelled. All tumor pairs with RNAseq 860 

data at each time point are included. Pairs are arranged based on the representation of the 861 

proneural and mesenchymal subtypes in their initial tumors. The first track indicates whether there 862 
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is whole exome or whole genome sequencing data available for that pair. The next three tracks 863 

indicate the representation of each bulk subtype across each sample. The stacked bar plots 864 

indicate the cell state composition of each sample based on the single cell-based deconvolution 865 

method, CIBERSORTx. The bottom tracks indicate molecular and clinical information for each 866 

tumor pair. (B) Sankey plot indicating whether the highest-scoring transcriptional subtype 867 

changed at recurrence. Each color reflects the transcriptional subtype in the initial tumors. 868 

Number in parentheses indicates number of samples of that subtype. Subtype abbreviations: 869 

proneural (Pro.), classical (Class.) and mesenchymal (Mes.). (C) Left: The average cell state 870 

composition of each bulk transcriptional subtype across all GLASS samples. Right: The average 871 

cell state composition of initial and recurrent tumors stratified by IDH mutation status. 872 

Abbreviations: IDH-wild-type (IDHwt) and IDH-mutant (IDHmut). Colors in (C) are identical to 873 

those used in (A).  874 

 875 

Figure 2. Histological features underlie changes in the cellular composition of diffuse 876 

glioma over time. (A) The cell state composition of each of the reference histology-defined Ivy 877 

GAP histological features across 10 patients. Patient and IDH mutation status tracks are included 878 

beneath the stacked bar plots. For the patient track, each colored block represents a unique 879 

patient. (B) Left: The average histological feature composition of each bulk transcriptional subtype 880 

across all GLASS samples. Right: The average histological feature composition of initial and 881 

recurrent tumors stratified by IDH mutation status. Abbreviations: IDH-wild-type (IDHwt) and IDH-882 

mutant (IDHmut). (C) Heatmap depicting the changes in each histological feature between initial 883 

and recurrent tumors undergoing the indicated subtype transition. The initial subtype is indicated 884 

in the columns and the recurrent subtype is indicated in the rows. Colors represent the change in 885 

fraction of the indicated features between initial and recurrent tumors, while * indicates a paired 886 

t-test P-value < 0.05. (D) Heatmap depicting the Pearson correlation coefficients measuring the 887 

association between the change in a given histological feature and the change in a given cell 888 
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state when going from an initial tumor to recurrence. * indicates a significant correlation (P < 0.05). 889 

(E) Left: Ladder plot depicting the change in the adjusted stem-like cell proportion between paired 890 

initial and recurrent tumors undergoing a proneural-to-mesenchymal transition. Right: The 891 

average adjusted proportions for malignant cells for the tumor pairs outlined on the left. Malignant 892 

cell proportions were adjusted for the presence of non-malignant cells as well as non-cellular 893 

tumor content. 894 

 895 

Figure 3. Hypermutation and acquired cell cycle alterations associate with increased 896 

proliferating stem-like malignant cells in IDH-wild-type and IDH-mutant glioma. (A) Left: 897 

Ladder plot depicting the change in the proliferating stem-like cell proportion between paired initial 898 

and recurrent IDH-mutant tumors that acquired CDNK2A deletions or CCND2 amplifications. 899 

Right: Stacked bar plot depicting the average proportions of each cell state for the tumor pairs in 900 

the ladder plots. (B) Left: Representative multiplex immunofluorescence images from a matched 901 

initial and recurrent IDH-mutant tumor that acquired a CDKN2A deletion at recurrence. Scale bars 902 

represent 50 μm. Right: Stacked bar plot depicting the proportion of SOX2+/Ki67+ cells among 903 

all SOX2+ cells across the entire tissue section for each sample. Exact proportions are indicated 904 

in the graph. (C) Top: Ladder plots depicting the change in the proliferating stem-like cell 905 

proportion between paired initial and recurrent tumors that did and did not undergo hypermutation. 906 

Point colors indicate IDH mutation and 1p/19q co-deletion status. Paired t-test P-values are 907 

indicated. Bottom: The average proportions of each cell state for the tumor pairs outlined above. 908 

(D) Left: Representative multiplex immunofluorescence images from a matched initial and 909 

recurrent IDH-wild-type tumor that was hypermutated at recurrence. Scale bars represent 50 μm. 910 

Right: Stacked bar plot depicting the proportion of SOX2+/Ki67+ cells among all SOX2+ cells 911 

across the entire tissue section for each sample. Exact proportions are indicated in the graph. (E) 912 

Top: The change in proliferating stem-like cell fraction between initial and recurrent tumors from 913 

IDH-mutant tumor pairs. Each bar represents a tumor pair. Bottom: Molecular and clinical 914 
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information for each tumor pair. (F) Kaplan-Meier plot depicting the survival distributions of 915 

patients that exhibited an increase or non-increase in proliferating stem-like cells at recurrence. 916 

P-value was calculated using the log-rank test. 917 

 918 

Figure 4. Malignant cells exhibit increased neuronal signaling and cell cycle activation 919 

programs in recurrent IDH-wild-type and IDH-mutant tumors. (A) Heatmaps depicting the 920 

average normalized log10 expression level of genes that were differentially expressed between 921 

malignant cell states from initial and recurrent IDH-wild-type tumors that received treatment. 922 

Fractions on each plot’s right indicate the number of differentially expressed genes (numerator) 923 

out of the number of genes inferred for that cell state’s profile using CIBERSORTx (denominator). 924 

(B) Bar plot depicting the -log10(adjusted P-value) from a GO enrichment analysis of the genes 925 

significantly up-regulated at recurrence in stem-like malignant cell-specific gene expression 926 

profiles from IDH-wild-type tumors. The top 15 GO terms are included. (C) Scatterplot depicting 927 

the association between the leading edge fraction and the average expression of the stem-like 928 

malignant cell recurrence signature for samples in the GLASS dataset. Pearson correlation 929 

coefficients are indicated. (D) Violin plot depicting the average expression of the stem-like 930 

malignant cell recurrence signature in malignant single-cells collected from the invasive rim and 931 

tumor core of 9 grade IV gliomas (Yu et al. 2020). P-value was calculated using the Wilcoxon 932 

rank-sum test. (E) Multiplex immunofluorescence images of the interface between the cellular 933 

tumor (top right; CT) and infiltrating tumor (bottom right; IT) histological features in a recurrent 934 

IDH-wild-type tumor. Histological features were defined by a neuropathologist using the H&E 935 

image in Figure S4G. Scale bars represent the values indicated in the figure. (F) Heatmaps 936 

depicting the average normalized log10 expression level of genes that were differentially 937 

expressed between malignant cell states from initial and recurrent IDH-mutant tumors that 938 

received treatment. Fractions are as outlined in (A). (G) Bar plot depicting the -log10(adjusted P-939 

value) from a GO enrichment analysis of the genes significantly up-regulated at recurrence in 940 
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differentiated-like malignant cell-specific gene expression profiles from IDH-mutant tumors. The 941 

top 15 GO terms are included. In (B) and (G), dashed line corresponds to adjusted P-value < 942 

0.05. 943 

 944 

Figure 5. Myeloid cells in diffuse glioma exhibit diverse phenotypes based on IDH mutation 945 

status, transcriptional subtype, and recurrence status. (A) Left: Uniform Manifold 946 

Approximation and Projection (UMAP) dimensionality reduction plot of the CIBERSORTx-inferred 947 

myeloid profiles from TCGA. Colors indicate bulk transcriptional subtype; shapes indicate IDH 948 

and 1p/19q co-deletion status. Abbreviations: IDH-wild-type (IDHwt) and IDH-mutant (IDHmut). 949 

When all three bulk transcriptional subtypes were significantly represented in a sample, the 950 

‘mixed’ classification was used. Right: UMAP plot colored based on the relative mean expression 951 

of macrophage and microglia signatures. (B) Box and ladder plots depicting the difference in the 952 

mean expression of the indicated signatures between initial and recurrent IDH-mutant tumors 953 

from GLASS that do and do not recur at higher grades. Point colors indicate 1p/19q co-deletion 954 

status. *** indicates Wilcoxon signed-rank test P-value < 1e-3. (C) Heatmap depicting the 955 

normalized expression z-score of genes that were differentially expressed between myeloid cells 956 

from mesenchymal and non-mesenchymal TCGA tumors. Rows indicate genes and columns 957 

indicate samples. Top sidebar indicates the bulk mesenchymal score of each sample divided by 958 

1,000. Right sidebar indicates the -log10 adjusted Wilcoxon rank-sum test P-value of the 959 

association for each gene. Bottom sidebar indicates the transcriptional subtype of each sample 960 

per panel (A). (D) Box and ladder plots depicting the difference in the mean expression of the 961 

mesenchymal myeloid signature between initial and recurrent IDH-wild-type tumors undergoing 962 

a mesenchymal transition in GLASS. **** indicates Wilcoxon signed-rank test P < 1e-5. (E) 963 

Boxplot depicting the mean mesenchymal myeloid signature expression for CIBERSORTx-964 

inferred myeloid profiles from different histological features in the Ivy GAP dataset. Features in 965 

this dataset include the leading edge (LE), infiltrating tumor (IT), cellular tumor (CT), 966 
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pseudopalisading cells around necrosis (PAN), and microvascular proliferation (MVP). (F) 967 

Representative multiplex immunofluorescence images of myeloid cells near blood vessels from 968 

classical (left) and mesenchymal (right) IDH-wild-type tumors. Scale bars represent 20 μm. 969 

 970 

Figure 6. Loss of heterozygosity in HLA genes is associated with increased somatic copy 971 

number alterations in IDH-mutant non-1p/19q co-deleted glioma. (A) Left: Sankey plot 972 

indicating whether a tumor pair acquires or loses HLA LOH at recurrence. Colored lines reflect 973 

the IDH and 1p/19q co-deletion status of the tumor pair and indicate HLA LOH in the initial tumor. 974 

Dark gray lines indicate acquired HLA LOH. Right: Stacked bar plot indicating the proportion of 975 

samples for each glioma subtype that acquired HLA LOH at recurrence. * indicates Fisher’s exact 976 

test P-value < 0.05. (B) Violin plot depicting the difference in T cell proportion in samples with and 977 

without HLA LOH. P-values were calculated using the t-test. (C) Left: Ladder plots depicting the 978 

change in SCNA burden between paired initial and recurrent IDH-mutant-noncodel tumors that 979 

did and did not acquire HLA LOH. P-values were calculated using the Wilcoxon signed-rank test. 980 

Right: Boxplot depicting the difference in the change in SCNA burden between IDH-mutant-981 

noncodel tumor pairs that did and did not acquire HLA LOH. P-value was calculated using the 982 

Wilcoxon rank-sum test. Abbreviations: IDH-wild-type (IDHwt) and IDH-mutant (IDHmut). 983 

 984 

Figure 7. Recurrent diffuse gliomas can be grouped into three recurrence states based on 985 

their shared cellular, genetic, and histological features. Analysis of the GLASS dataset 986 

reveals that IDH-wild-type and IDH-mutant tumors can be grouped into three “recurrence states”: 987 

neuronal, mesenchymal, and proliferative. Each of these tumor states are associated with unique 988 

cellular and histological features and molecular alterations with some also associating with poor 989 

patient survival.  990 

 991 
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Figure S1. Validation of deconvolution results and IDH-wild-type-specific cell state 992 

profiles. Related to Figure 1. (A) Scatterplots depicting the association between the true 993 

proportion and the CIBERSORTx-inferred proportion for each cell state in gene expression 994 

profiles from synthetic mixtures composed of different combinations of single cells. (B) 995 

Scatterplots depicting the association between the proportion of each malignant cell state 996 

determined from single-cell RNAseq and the non-malignant cell-adjusted malignant cell state 997 

proportion inferred from CIBERSORTx applied to each sample’s respective bulk tumor RNAseq 998 

profile. (C) Scatterplots depicting the association between the proportion of each malignant cell 999 

state, as well as myeloid cells, as determined using whole slide multiplex immunofluorescence 1000 

scans and histo-cytometry. In all plots, Pearson correlation coefficients are indicated. (D) The 1001 

average cell state composition of each bulk transcriptional subtype across initial (left) and 1002 

recurrent (right) GLASS samples. (E) The average cell state composition of each bulk 1003 

transcriptional subtype across all TCGA samples. (F) Left: Stacked bar plot indicating the 1004 

proportion of samples of IDH-wild-type tumors that underwent a gross total resection at each 1005 

timepoint. Right: The average proportions of each cell state for tumors that underwent a subtotal 1006 

resection at initial and a gross total resection at recurrence (Subtotal-gross total) and tumors that 1007 

underwent a gross total resection at both time points (Gross total-gross total). (G) Left: The 1008 

average Neftel et al. cell state composition of each bulk transcriptional subtype for all initial IDH-1009 

wild-type GLASS tumors. Right: The average Neftel et. al cell state composition of initial and 1010 

recurrent IDH-wild-type tumors. (H) The average cell state composition of initial and recurrent 1011 

IDH-mutant tumors stratified by 1p/19q co-deletion status. Colors for all panels are indicated at 1012 

the bottom of the figure. Abbreviations: IDH-wild-type (IDHwt) and IDH-mutant (IDHmut). 1013 

 1014 

Figure S2. Relationship between bulk subtype switching and cell state changes after 1015 

adjusting for histological feature composition. Related to Figure 2. (A) Representative H&E 1016 

and multiplex immunofluorescence images for each Ivy GAP histological feature. Features were 1017 
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identified by a neuropathologist based on the H&E images on the left. The leading edge, infiltrating 1018 

tumor, and cellular tumor features are from GLSS-LU-0B10 (primary), while the pseudopalisading 1019 

cells around necrosis and microvascular proliferation features are from GLSS-LU-00B9 (primary). 1020 

Scale bars represent 50 μm. (B) Bar plot depicting the -log10 P-value from a two-way ANOVA 1021 

measuring whether the fractions of each cell state in a sample associate with the patient the 1022 

sample was derived from (red bar) and the feature the sample represents (blue bar). Dashed line 1023 

corresponds to P = 0.05. (C) Heatmap depicting the Pearson correlation coefficients measuring 1024 

the association between pathologist and CIBERSORTx estimates of tumor core- and tumor 1025 

periphery-related histological features. Evaluations were performed across 5 initial and 5 1026 

recurrent samples (D) Scatterplots depicting the association between pathologist estimates of 1027 

necrosis and CIBERSORTx estimates of the IvyGAP pseudopalisading cells around necrosis 1028 

(PAN) feature in the GLASS and TCGA datasets. Shapes indicate initial and recurrence status. 1029 

(E) Heatmap depicting the Pearson correlation coefficients measuring the association between 1030 

pathologist estimates of recurrence-specific nucleated histological features and CIBERSORTx 1031 

estimates of IvyGAP features. Evaluations were performed across 5 recurrent samples. In (C-E), 1032 

pathologist estimates were based on the percent of the H&E slide area occupied by a given 1033 

feature while CIBERSORTx estimates were based on RNAseq. (F) Heatmap depicting the 1034 

changes in each malignant cell state between initial and recurrent tumors undergoing the 1035 

indicated subtype transition. The initial subtype is indicated in the columns and the recurrent 1036 

subtype is indicated in the rows. Each row of heatmaps reflects a different histological feature 1037 

adjustment. Colors represent the change in fraction of the indicated features between initial and 1038 

recurrent tumors, while * indicates a paired t-test P-value < 0.05. (G) Left: Ladder plot depicting 1039 

the change in the adjusted stem-like cell proportion between paired initial and recurrent tumors 1040 

undergoing a proneural-to-mesenchymal transition. Right: The average adjusted proportions for 1041 

malignant cells for the tumor pairs outlined on the left. Malignant cell proportions were adjusted 1042 

for the presence of non-malignant cells and leading-edge content. 1043 
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 1044 

Figure S3. Cell state composition changes associated with the acquisition and loss of 1045 

somatic alterations. Related to Figure 3. (A) Left: Ladder plot depicting the change in the 1046 

proliferating stem-like cell proportion between paired initial and recurrent IDH-wild-type tumors 1047 

that acquired CDNK2A deletions or CCND2 amplifications. Right: Stacked bar plot depicting the 1048 

average proportions of each cell state for the tumor pairs in the ladder plots. (B) Ladder plots 1049 

depicting the difference in microvascular proliferation fraction in IDH-mutant and IDH-wild-type 1050 

tumors that underwent hypermutation at recurrence. (C) Forest plot depicting the results of a 1051 

multivariable Cox proportional hazards model that included proliferating stem-like cell increase, 1052 

age, initial grade, and 1p/19q co-deletion status as variables. Points represents the hazard ratio 1053 

and lines represent the 95% confidence interval. P-values were calculated using the Wald test. 1054 

(D) Left: Ladder plots depicting the change in granulocyte proportion in IDH-wild-type tumors that 1055 

acquired mutations in NF1 at recurrence. Right: The average proportions of each cell state for the 1056 

tumor pairs in the ladder plots. (E) Non-malignant cell state differences in IDH-wild-type tumors 1057 

that lost EGFR or PDGFRA amplifications at recurrence. Panel is split by alteration. Ladder plots 1058 

depict the change in the non-malignant cell state proportion between paired initial and recurrent 1059 

tumors while stacked bar plots depict the average proportions of each cell state for these tumors. 1060 

(F) Sankey plot indicating whether the highest scoring transcriptional subtype changed at 1061 

recurrence for the tumors depicted in (E). Each color reflects the transcriptional subtype in the 1062 

initial tumors. Numbers in parentheses indicate number of samples. Subtype abbreviations: 1063 

proneural (Pro.), classical (Class.) and mesenchymal (Mes.). (G) Ladder plots depicting the 1064 

difference in T cell fraction in IDH-mutant and IDH-wild-type tumors that underwent hypermutation 1065 

at recurrence. In all figures, P-values were calculated using a paired t-test unless otherwise noted. 1066 

Abbreviations: IDH-wild-type (IDHwt) and IDH-mutant (IDHmut). 1067 

 1068 



39 

 

Figure S4. Validation and differential expression analysis of cell state-specific gene 1069 

expression profiles. Related to Figure 4. (A) Schema for single-cell RNAseq-based 1070 

deconvolution of cell state-specific gene expression profiles. (B) Heatmap depicting the 1071 

relationship between the CIBERSORTx-inferred gene expression profiles and gene expression 1072 

profiles from analogous cell types from a FACS-purified ground truth dataset (Klemm et al.). In 1073 

the CD45neg column in the Klemm et al. heatmap, which represents a composite gene 1074 

expression profile from the non-immune cells purified from a collection of glioma tumors, gene 1075 

expression patterns from all three malignant cell states can be observed. (C) Heatmap depicting 1076 

the correlation coefficients between each CIBERSORTx-inferred cell state-specific gene 1077 

expression profile and the gene expression profiles from the FACS-purified ground truth dataset. 1078 

(D) Heatmap depicting the results from a GO enrichment analysis of the genes from the 1079 

differentiated-like and stem-like-specific expression profiles that are significantly up-regulated in 1080 

TCGA IDH-wild-type samples of the indicated transcriptional subtype versus samples from the 1081 

remaining subtypes. The top two GO terms for each subtype are shown, including ties. Subtype 1082 

abbreviations: proneural (Pro.), classical (Class.) and mesenchymal (Mes.). (E) Boxplot depicting 1083 

the average signature expression in single cells of the indicated malignant cell states from 1084 

unmatched initial and recurrent IDH-wild-type tumors. (F) Bar plot depicting the -log10(adjusted P-1085 

value) from a GO enrichment analysis of the genes significantly up-regulated at recurrence in the 1086 

differentiated-like and proliferating stem-like malignant cell-specific gene expression profiles from 1087 

IDH-wild-type tumors. The top 5 GO terms for each cell state are included. Dashed line 1088 

corresponds to adjusted P-value < 0.05. (G) H&E image used to define the histological features 1089 

used for multiplex immunofluorescence staining in Figure S4E. Cellular tumor and infiltrating 1090 

tumor features are highlighted in the indicated colors. (H) Bar plot depicting the -log10(adjusted P-1091 

value) from a GO enrichment analysis of the genes significantly up-regulated at recurrence in the 1092 

differentiated-like malignant cell-specific gene expression profiles from IDH-mutant tumors. 1093 

Dashed line corresponds to adjusted P-value < 0.1. (I) Boxplot depicting the average signature 1094 
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expression in the analogous cell state-specific gene expression profiles for each IDH-mutant 1095 

tumor pair in GLASS. Comparisons are stratified based on whether the tumor pair was grade 1096 

stable or exhibited a grade increase at recurrence. (J) Boxplot depicting the average signature 1097 

expression in single cells of the indicated malignant cell states from grade II and grade III. Across 1098 

all panels, **** indicates Wilcoxon rank-sum test P-value < 1e-5, *** indicates Wilcoxon signed 1099 

rank test P-value < 1e-3 and * indicates P < 0.05. 1100 

 1101 

Figure S5. Characterization of the mesenchymal myeloid signature. Related to Figure 5. 1102 

(A) Kaplan-Meier plot depicting the survival distributions of patients with tumors that were and 1103 

were not mesenchymal at recurrence. P-value was calculated using the log-rank test. (B) Forest 1104 

plot depicting the results of a multivariable Cox proportional hazards model that included recurrent 1105 

tumor subtype, age, and initial grade as variables. Points represents the hazard ratio and lines 1106 

represent the 95% confidence interval. P-values were calculated using the Wald test. (C) Box and 1107 

ladder plots depicting the difference in the median-normalized mean expression of the Neftel et 1108 

al. MES-like signature between initial (Init.) and recurrent (Rec.) IDH-wild-type tumors from 1109 

GLASS undergoing a mesenchymal transition. Point colors indicate transcriptional subtype. P-1110 

values were calculated using the Wilcoxon signed-rank test. (D) Boxplots depicting the average 1111 

macrophage and microglia gene expression signatures in CIBERSORTx-inferred myeloid-specific 1112 

gene expression profiles from TCGA. Samples are stratified by IDH and 1p/19q co-deletion status 1113 

(left) and bulk transcriptional subtype (right). **** indicates Wilcoxon rank-sum test P-value < 1e-1114 

5. (E) Left: Principal component analysis plot of the CIBERSORTx-inferred myeloid profiles from 1115 

TCGA and GTEx. Colors indicate bulk transcriptional subtype; shapes indicate tissue subtype. 1116 

Right: Density plot depicting the distribution of principal component 1 (PC1) among each 1117 

transcriptional subtype. (F) Bar plots depicting the Spearman correlation coefficients measuring 1118 

the association between the myeloid-specific expression scores for the macrophage and microglia 1119 

signatures versus the presence of the four Ivy GAP histological features in TCGA. The features 1120 
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measured were leading edge (LE), cellular tumor (CT), microvascular proliferation (MVP), and 1121 

pseudopalisading cells around necrosis (PAN). (G) Heatmaps depicting the average normalized 1122 

log10 expression level of genes that were differentially expressed between myeloid cell states from 1123 

initial and recurrent IDH-wild-type and IDH-mutant tumors in GLASS that did not undergo a 1124 

subtype switch. Fractions on the right of each plot indicate the number of differentially expressed 1125 

genes (numerator) out of the number of genes inferred for that cell state’s profile in GLASS using 1126 

CIBERSORTx (denominator). (H) Upset plot depicting the intersection of significantly up-1127 

regulated genes in the myeloid-specific gene expression profiles from each transcriptional 1128 

subtype relative to normal brain cortex. Intersections between signatures are shown in the 1129 

combination matrix. Number of genes uniquely found in each set are indicated above each bar. 1130 

(I) Bar plot depicting the -log10(adjusted P-value) from a GO enrichment analysis for the genes in 1131 

the mesenchymal myeloid signature. The GO term “chemokine-mediated signaling pathway” has 1132 

been abbreviated to “chemokine-med. sign. pathway.” (J) Scatterplot depicting the association 1133 

between the mean mesenchymal myeloid signature expression in single myeloid cells and the 1134 

mesenchymal subtype score calculated from bulk RNAseq for each patient. (K) Bar plots depicting 1135 

the Spearman correlation coefficients measuring the association between the myeloid-specific 1136 

expression scores for the mesenchymal myeloid signature versus the presence of the four Ivy 1137 

GAP histological features in TCGA, as in (F). Abbreviations: IDH-wild-type (IDHwt) and IDH-1138 

mutant (IDHmut).  1139 

 1140 

Figure S6. Analysis of neoantigen-mediated T cell selection in glioma. Related to Figure 6. 1141 

(A) Scatterplots depicting the association between the T cell proportion and the neoantigen 1142 

depletion rate in initial and recurrent GLASS samples. (B) Box and ladder plots depicting the 1143 

difference in the number of neoantigens binding to the kept and lost allele. Points are colored 1144 

based on whether the sample was an initial or recurrent tumor. P-values were calculated using 1145 

the Wilcoxon signed-rank test. (C) Violin plots depicting the distribution of the somatic copy 1146 
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number alteration burden in initial and recurrent IDH-wild-type GLASS samples that did and did 1147 

not exhibit HLA LOH. P-values were calculated using the Wilcoxon rank-sum test. 1148 

 1149 

Methods 1150 

GLASS Datasets 1151 

Datasets added to GLASS came from both published and unpublished sources (Table S1). 1152 

Collectively, the newly added data consisted of exomes from 83 glioma samples (40 patients) and 1153 

RNA-sequencing data from 351 samples (184 patients). 1154 

 1155 

Newly generated whole exome data and RNAseq data was collected for a cohort of frozen 1156 

samples from Henry Ford Health System. From each sample, DNA and RNA was simultaneously 1157 

extracted using the AllPrep DNA/RNA Mini Kit from Qiagen (#80204). Exon capture was then 1158 

performed using the Agilent’s SureSelect XT Low-Input Reagent Kit and the V6 + COSMIC 1159 

capture library and the resulting reads were subjected to 150 base pair paired-end sequencing at 1160 

the University of Southern California using an Illumina NovaSeq 6000. RNA from these tissues 1161 

was processed and sequenced at Psomagen. New RNAseq data was also generated for cohorts 1162 

coming from Case Western Reserve University, the Chinese University of Hong Kong, and MD 1163 

Anderson Cancer Center. For Case Western Reserve University, RNA from frozen tissues was 1164 

processed at Tempus (Chicago, IL) using the Tempus xO assay and then sequencing using an 1165 

Illumina HiSeq 4000 platform. For the Chinese University of Hong Kong cohort, RNAseq libraries 1166 

were prepared with the KAPA Stranded mRNAseq kit (Roche) per manufacturer’s instructions 1167 

and then sequenced at The Jackson Laboratory for Genomic Medicine using an Illumina 1168 

HiSeq4000 platform generating paired end reads of 75 base pairs. For the MD Anderson cohort, 1169 

purified double-stranded cDNA generated from 150 ng of FFPE sample-derived RNA was 1170 

prepared using the NuGEN Ovation RNAseq System and subjected to paired-end sequencing 1171 

using a HiSeq 2000 or HiSeq 2500 Sequencing System.  1172 
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 1173 

The remaining datasets were generated as described in their respective publications. For most of 1174 

these cohorts, whole exome and/or whole genome sequencing data were downloaded and 1175 

processed as described during creation of the initial GLASS dataset (Barthel et al., 2019). 1176 

RNAseq fastq files from the Samsung Medical Center (SM) cohort were delivered via hard disk 1177 

and are available to download from the European Genome-Phenome Archive (EGA) under 1178 

accession numbers EGAS00001001041 and EGAS00001001880 (Kim et al., 2015b; Wang et al., 1179 

2016). RNAseq bam files for the original Henry Ford Health System (HF) and the University of 1180 

California San Francisco (SF) cohorts were downloaded from EGA under accession numbers 1181 

EGAS00001001033 and EGAS00001001255, respectively, and converted to fastq files for 1182 

subsequent processing using bedtools (Kim et al., 2015a; Mazor et al., 2015). RNAseq fastq files 1183 

for the University of Leeds (LU) cohort were downloaded from EGA under accession number 1184 

EGAS00001003790 (Droop et al., 2018). For the first Columbia cohort (CU-R), which consisted 1185 

of samples originally collected from the Istituto Neurologico C. Besta, RNAfastq files were 1186 

delivered via hard disk and are available to download at the Sequencing Read Archive (SRA) 1187 

under BioProject number PRJNA320312 (Wang et al., 2016). For the second Columbia cohort 1188 

(CU-P), which featured samples that had been treated with immune checkpoint inhibitors, raw 1189 

fastq reads for whole exome and RNAseq were obtained from SRA under BioProject number 1190 

PRJNA482620 (Zhao et al., 2019). RNAseq fastq files from the Low Grade Glioma (LGG) and 1191 

Glioblastoma Multiforme (GBM) projects in TCGA were obtained from the Genomic Data 1192 

Commons legacy archive (https://portal.gdc.cancer.gov/legacy-archive/) (Brennan et al., 2013; 1193 

Cancer Genome Atlas Research et al., 2015). 1194 

 1195 

Public Datasets 1196 

Processed RNAseq data from the TCGA glioma (GBMLGG) cohort was obtained from GDAC 1197 

FireHose (RNAseqV2, RSEM). Normalized gene-level fragments per kilobase million (FPKM) for 1198 

https://portal.gdc.cancer.gov/legacy-archive/
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the Ivy Glioblastoma Atlas Project (Ivy GAP) dataset were obtained from the Ivy GAP website 1199 

(https://glioblastoma.alleninstitute.org/static/download.html) (Puchalski et al., 2018). Processed 1200 

single-cell data and associated metadata for a set of 28 IDH-wild-type glioblastomas processed 1201 

using SmartSeq2 was obtained from the Broad Single Cell Portal (Study: Single cell RNA-seq of 1202 

adult and pediatric glioblastoma; 1203 

https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-1204 

pediatric-glioblastoma) (Neftel et al., 2019). Raw count data and clinical annotation data from a 1205 

set of glioma-derived cell populations purified using fluorescence activated cell sorting (FACS) 1206 

was obtained from the Brain Tumor Immune Micro Environment (BrainTIME) portal and converted 1207 

to counts per million (CPM) for downstream analysis (https://joycelab.shinyapps.io/braintime/) 1208 

(Klemm et al., 2020). 1209 

 1210 

Whole exome and whole genome analysis 1211 

Whole exome and genome alignment, fingerprinting, variant detection, variant post-processing, 1212 

mutation burden calculation, copy number segmentation, copy number calling, copy number-1213 

based purity, ploidy, HLA typing, and neoantigen calling were all performed using previously 1214 

described pipelines that were developed during the initial GLASS data release (Barthel et al., 1215 

2019). Briefly, whole exome and whole genome reads were aligned to the b37 genome 1216 

(human_g1k_v37_decoy) using BWA MEM 0.7.17 and pre-processed according to GATK Best 1217 

Practices with GATK 4.0.10.1. Fingerprinting on the resulting files was performed using 1218 

‘CrosscheckFingerprints’ to confirm all readgroups from a given sample and all samples from a 1219 

given patient match, with all mismatches being labelled and dropped from downstream analysis. 1220 

Somatic mutations were called using GATK4.1 MuTect2. Hypermutation was defined for all 1221 

recurrent tumors that had more than 10 mutations per megabase sequenced, as described 1222 

previously (Barthel et al., 2019). Copy number segmentation and calling was performed according 1223 

to GATK Best Practices as previously described. Copy number-based tumor purity and ploidy 1224 

https://glioblastoma.alleninstitute.org/static/download.html
https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma
https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma
https://joycelab.shinyapps.io/braintime/
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were determined using TITAN (Ha et al., 2014). Four-digit HLA class I types were determined 1225 

from the normal bams for each sample using OptiType v1.3.2 (Szolek et al., 2014). Neoantigens 1226 

were called from each patient’s somatic mutations and HLA types using pVACseq v4.0.10 1227 

(Hundal et al., 2016). Neoantigen depletion was calculated as described previously (Barthel et 1228 

al., 2019). Loss of heterozygosity (LOH) for each sample’s HLA type was called from their 1229 

respective matched tumor and normal bam files using LOHHLA run with default parameters and 1230 

a coverage filter of 10 (https://bitbucket.org/mcgranahanlab/lohhla/) (McGranahan et al., 2017). 1231 

HLA LOH was called if the estimated copy number for an allele using binning and B-allele 1232 

frequency was < 0.5 and the P-value for allelic imbalance was < 0.05 (paired t-test). 1233 

 1234 

RNA preprocessing 1235 

To ensure each RNAseq file matched to the DNA and RNAseq files from their respective sample 1236 

and patient, RNAseq fastq files were aligned to the b37 genome using STARv2.7.5 and the 1237 

resulting bams were then preprocessed using the same pipelines described for DNA sequencing 1238 

(Barthel et al., 2019). Fingerprinting was then performed on each bam at the readgroup and 1239 

patient levels using ‘CrosscheckFingerprints.’ For each patient-level comparison, each RNA bam 1240 

was compared to all other RNA and DNA bams coming from the same patient. All mismatches 1241 

were labelled and dropped from downstream analysis.  1242 

 1243 

RNAseq fastq files were pre-processed with fastp v0.20.0. Transcripts per million (TPM) values 1244 

were then calculated from each sample’s set pre-processed files using kallisto v0.46.0 inputted 1245 

with an index file built from the Ensemblv75 reference transcriptome. Strand-specific library 1246 

preparation information was obtained for each sample from the source provider or using 1247 

STARv2.7.5 quantMode set with the ‘GeneCounts’ parameter. The resulting TPM values for each 1248 

sample were combined into a transcript expression matrix for downstream analysis. To create a 1249 

https://bitbucket.org/mcgranahanlab/lohhla/
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gene expression matrix, transcript TPM values were collapsed and summed by their respective 1250 

gene symbols.  1251 

 1252 

Quality control 1253 

For DNA samples to be included in longitudinal downstream analyses, two samples from a given 1254 

patient had to pass a previously described quality control process based on fingerprinting, 1255 

coverage, copy number variation, and clinical annotation criteria (Barthel et al., 2019). The 1256 

resulting set of 243 whole exome or whole genome tumor pairs, known as the “gold set”, was 1257 

used in all downstream DNA-only analyses. For RNA samples to be included in longitudinal 1258 

downstream analyses, two samples from a given patient had to pass a patient-level fingerprinting 1259 

filter that ensured that the RNA samples matched each other and the patient’s respective DNA 1260 

samples if available, as well as a clinical annotation filter. The resulting set of 150 RNAseq pairs, 1261 

known as the “RNA silver set”, was used in all downstream RNA-only analyses. Across the gold 1262 

set and the RNA silver set, there were 101 tumor pairs that had DNA and RNA from the same 1263 

sample at both timepoints. This overlapping set of pairs, known as the “platinum set”, was used 1264 

in all downstream analyses that integrated DNA and RNA data.  1265 

 1266 

Bulk transcriptional subtype classification 1267 

Bulk transcriptional subtyping was performed on each GLASS or TCGA sample’s processed 1268 

RNAseq profile using the “ssgsea.GBM.classification” R package (Wang et al., 2017). This 1269 

method outputs an enrichment score quantifying the representation each of the three bulk glioma 1270 

subtypes in a sample as well as a P-value indicating the significance of this representation. For 1271 

each sample, the subtype with the lowest P-value was designated as that sample’s bulk 1272 

transcriptional subtype. In cases where there were ties between subtypes, the subtype with the 1273 

highest enrichment score was chosen. 1274 

 1275 
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Joint single-cell and bulk RNAseq dataset 1276 

Single-cell and bulk RNA sequencing data were generated and processed as previously 1277 

described (Johnson et al., 2021). Briefly, tumor surgical specimens were freshly collected, 1278 

minced, and partitioned into single-cell and bulk fractions from the same tumor aliquot. The 1279 

tissues aliquoted for single cell analyses were then mechanically and enzymatically dissociated 1280 

using the Brain Tumor Dissociation Kit (P) according to the manufacturer’s protocol (Miltenyi Cat. 1281 

No. 130-095-942). FACS was performed to select for viable single cells (Propidium Iodide-, 1282 

Calcein+ singlets) and enrich for tumor cells by limiting the proportion of non-tumor cells (e.g., 1283 

immune (CD45+) and endothelial (CD31+) cells). Sorted cells were then loaded on a 10X 1284 

Chromium chip using the single-cell 3’ mRNA kit according to the manufacturer’s protocol (10X 1285 

Genomics). A limitation of single-cell dissociation techniques is the exclusion of specific cell types, 1286 

including neurons, that are found in glioma and surrounding tissue. Prior publications have 1287 

estimated the neuronal content of central nervous system tumors to be less than 5% and therefore 1288 

likely represent a minor non-malignant cell population in our dataset (Grabovska et al., 2020). The 1289 

Cell Ranger pipeline (v3.0.2) was used to convert Illumina base call files to fastq files and align 1290 

fastqs to hg19 10X reference genome (version 1.2.0) to be compatible with our bulk sequencing 1291 

data. Data preprocessing and analysis was performed using the Scanpy package (1.3.7) (Wolf et 1292 

al., 2018) with batch correction performed using BBKNN (Polanski et al., 2020). RNA was 1293 

extracted for tissues with sufficient tissue and bulk RNAseq libraries were prepared with KAPA 1294 

mRNA HyperPrep kit (Roche). Bulk RNA sequencing data was processed with the same pipeline 1295 

as the GLASS samples. 1296 

 1297 

Deconvolution analyses 1298 

Cellular proportions and cell state-specific gene expression matrices were inferred from bulk 1299 

RNAseq gene expression matrices using CIBERSORTx (Newman et al., 2019). Reference 1300 

scRNAseq signature matrices were created from our internal 10x-derived scRNAseq dataset 1301 
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(Johnson et al., 2021) and a publicly available SmartSeq2-derived scRNAseq dataset (Neftel et 1302 

al., 2019) using the ‘Create Signature Matrix’ module on the CIBERSORTx webserver 1303 

(https://cibersortx.stanford.edu/) using default parameters and quantile normalization disabled. 1304 

The Ivy GAP signature matrix was downloaded from a prior publication (Puchalski et al., 2018). 1305 

The CIBERSORTx webserver currently recommends users input no more than 5,000 different 1306 

single-cell profiles when creating their signature matrix (Steen et al., 2020). To meet this 1307 

recommendation, our internal scRNAseq dataset, which is made up of 55,284 single cells, was 1308 

randomly downsampled to 5,000 cells using the ‘sample’ command in R with the seed set to 11. 1309 

The cells not included in signature matrix formation were then set aside for validation analyses. 1310 

 1311 

Single-cell-derived cellular proportions and cell state-specific gene expression profiles were 1312 

inferred from bulk RNAseq datasets using the CIBERSORTx High-Resolution docker container 1313 

(https://hub.docker.com/r/cibersortx/hires) following CIBERSORTx instructions. For all runs, the 1314 

bulk RNAseq dataset was input as the ‘mixture’ file and the respective signature matrix was input 1315 

as the ‘sigmatrix’ file. For runs using our 10x-derived internal scRNAseq signatures, batch 1316 

correction was done in ‘S-mode’ by setting the ‘rmbatchSmode’ parameter to TRUE, while for 1317 

runs using SmartSeq2-derived scRNAseq signatures batch correction was done in ‘B-mode’ by 1318 

setting the ‘rmbatchBmode’ parameter to TRUE. For each run, the inputted signature matrix’s 1319 

respective CIBERSORTx-created “source gene expression profile” was input for batch correction. 1320 

For all runs, the ‘subsetgenes’ parameter was set to a file containing the intersection of the gene 1321 

symbols between the run’s respective source gene expression profile and the bulk RNAseq matrix 1322 

that was being deconvoluted. For the run applying our internal scRNAseq dataset to the bulk 1323 

GLASS RNAseq matrix, the ‘groundtruth’ parameter was set to a ground truth FACS-purified 1324 

dataset that was generated as described below. Cellular proportions representing pre-created Ivy 1325 

GAP signatures were inferred using the ‘Impute Cell Fractions’ module on the CIBERSORTx 1326 

https://cibersortx.stanford.edu/
https://hub.docker.com/r/cibersortx/hires
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webserver set to relative mode with quantile normalization and batch correction disabled and 100 1327 

permutations for significance analysis. 1328 

 1329 

Immunofluorescence staining and image acquisition 1330 

Tissue samples used in multiplex immunofluorescence microscopy were formalin-fixed, paraffin-1331 

embedded and sectioned to a thickness of 5 μm unless otherwise stated. Tissue sections were 1332 

heated at 58°C for 10 minutes, dewaxed in Histoclear (National Diagnostics) for 20 min and 1333 

rehydrated in a graded series of alcohol (ethanol:deionized water 100:0, 90:10, 70:30, 50:50, 1334 

0:100; 5 min each). Heat-induced epitope retrieval (95°C) was conducted in citrate buffer (pH 6) 1335 

for 15 min using a BioSB TinoRetriever. After antigen retrieval, tissue sections were permeabilized 1336 

with PBS 0.1% Triton-X100, washed with PBS and consecutively treated with Fc Receptor Block 1337 

(Innovex bioscience) for 40 min + Background Buster (Innovex bioscience) for an additional 30 1338 

min. The sections were then stained with primary antibodies, diluted in PBS + 5% BSA overnight 1339 

at 4°C, and then washed and stained with the secondary antibodies at room temperature for 30 1340 

minutes. Afterwards, tissues were washed and secondary antibodies were saturated with rabbit 1341 

normal serum diluted at 1/20 in PBS for 15 minutes at room temperature. Tissues were then 1342 

stained with directly conjugated antibody mix for 1 hour at room temperature and washed.   Nuclei 1343 

were counterstained with 4',6-diamidino-2-phenylindole (1ug/mL) or SytoxBlue 1/3000 for 2 1344 

minutes. Tissues were then mounted in Fluoromount-G mounting media.  1345 

 1346 

Images were acquired on a Leica SP8 confocal microscope equipped with an automated 1347 

motorized stage. Spectral unmixing was achieved with combination of white light laser tuned laser 1348 

line for each specific fluorophore, tunable detection window for each marker and sequential 1349 

acquisition. Whole-slide scans were acquired with a dry 20x objective, while partial slide scans 1350 

for OSM and SNAP25 panels were acquired with a 40x oil immersion objective. Tiles were stitched 1351 

and max projected using Leica LAS X software. 1352 
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 1353 

Histo-cytometry 1354 

Quantification of single-cell protein expression from immunofluorescence scans was performed 1355 

using histo-cytometry as previously described (Gerner et al., 2012; Wang et al., 2018; Wu et al., 1356 

2018). Briefly, each whole slide tissue scan was segmented using Imaris software (version 9.0.2). 1357 

Using the “spot” function in Imaris, images were segmented using individual cells with a nucleus 1358 

equal or larger than 5 µm as a seeding point to extend each cells’ surface. The accuracy of the 1359 

segmentation was manually verified for each sample and adjusted if needed. Finally, for each 1360 

generated spot, x and y coordinates and mean intensity values for all channels were combined 1361 

and exported into a csv file for further analysis in R. 1362 

 1363 

Validation of cell state proportions 1364 

Cell state proportions derived from our internal scRNAseq dataset were validated using three 1365 

approaches. In the first approach, synthetic mixtures were made using the single-cell gene 1366 

expression profiles that had been left out of signature creation. Each synthetic mixture 1367 

represented the average expression profile of 5,000 single cells where the number of cells of one 1368 

cell state were manually set and the remaining cells were randomly sampled. Each cell state had 1369 

its level manually set in 11 mixtures, where it represented 0% of the cells in the first mixture and 1370 

then increased in 10% increments until reaching 100% in the final mixture. In cases where there 1371 

were fewer than 5,000 single cells of a given cell state, making 100% representation not possible, 1372 

the preset proportion instead represented the percent of available cells of that cell state rather 1373 

than the percent of cells in the mixture. Each synthetic mixture had its true proportions recorded 1374 

and the resulting mixtures were input into CIBERSORTx for deconvolution. Comparisons of the 1375 

true and inferred proportions were then performed through correlation analysis.  1376 

 1377 
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In the second approach, the cell state proportions inferred from bulk RNAseq data were compared 1378 

to the cell state proportions quantified by scRNAseq for each sample in our internal scRNAseq 1379 

dataset. Samples in the scRNAseq dataset were enriched for CD45- cells via FACS and therefore 1380 

precluded true cell state abundance when considering both malignant and non-malignant cells. 1381 

To address this, comparisons were restricted to the relative proportions of each malignant cell 1382 

state. Non-malignant cell proportions were removed, and malignant cells proportions were then 1383 

renormalized so that the sum of each malignant cell state proportion in each sample added up to 1384 

1.  1385 

 1386 

In the third approach, cell state proportions inferred from bulk RNAseq data were compared to 1387 

the cell state proportions quantified through multiplex immunofluorescence and histo-cytometry 1388 

analyses performed on whole tissue scans for a subset of samples in the GLASS cohort. To 1389 

determine the identity of each cell in a tissue scan, expression thresholds were set for each 1390 

marker based on the marker’s expression distribution across the dataset. For bimodal 1391 

distributions the threshold was set to the local minima between the two maxima, while for normal 1392 

distributions the threshold was set to the global maximum. Cells that were negative for all markers 1393 

were excluded from further analysis. To facilitate comparisons between expression and 1394 

immunofluorescence-based estimates, analyses were restricted only to the cell states identified 1395 

in both platforms, and the resulting fractions were renormalized so that the sum of each proportion 1396 

added up to 1. 1397 

 1398 

Annotation and validation of histological features 1399 

Digitized images of H&E slides were obtained for a subset of GLASS samples and stored centrally 1400 

on the Digital Slide Archive (https://styx.neurology.emory.edu/girder/). In a subset of samples for 1401 

which FFPE slides were available for multiplex immunofluorescence staining, representative 1402 

histological features were digitally outlined by a board-certified neuropathologist.  1403 

https://styx.neurology.emory.edu/girder/
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 1404 

Transcriptomic histological deconvolution was validated by comparing expression-based and 1405 

neuropathologist-based estimates of feature abundance. To accomplish this, a team of six 1406 

neuropathologists were instructed to estimate the proportion of the slide area occupied by 1407 

different histological features for 10 GLASS samples (5 primary-recurrent tumor pairs) where the 1408 

H&E slide was directly adjacent to the tumor region sent for RNA-sequencing. Neuropathologists 1409 

were blinded to the type of glioma in each slide and did not have knowledge of the expression-1410 

based scores prior to scoring. To standardize feature evaluation across neuropathologists, 1411 

common definitions for each feature were established. Definitions for features expected to be 1412 

observed in primary and recurrent tumors were loosely based on those used by Ivy GAP, while 1413 

recurrence-specific features were collaboratively defined by the neuropathologist team. During 1414 

the evaluation process, each evaluator received a template with these feature definitions and was 1415 

instructed to annotate the entire slide so that the total estimates for each sample summed to 100% 1416 

(Table S5). Consensus pathology estimates for each slide were then calculated as the mean 1417 

neuropathologist estimate of a given feature and were used for all downstream analyses. Results 1418 

for the necrosis feature samples were additionally reproduced using publicly available 1419 

neuropathologist estimates from TCGA H&E slides (Cooper et al., 2012). 1420 

 1421 

Validation of cell state gene expression profiles 1422 

Concordance between CIBERSORTx-inferred cell state-specific gene expression profiles and a 1423 

ground truth set of FACS-purified gene expression profiles was assessed using the ‘groundtruth’ 1424 

parameter in CIBERSORTx. The ground truth dataset used in this step was generated from a 1425 

previously released glioma dataset (Klemm et al., 2020) by collapsing all glioma-derived CD45- 
1426 

profiles into an average CD45- profile and all glioma-derived macrophage/microglia profiles into 1427 

an average myeloid cell profile. This dataset was input into CIBERSORTx using the ‘groundtruth’ 1428 

parameter during the run applying our internal scRNAseq signature matrix to the GLASS bulk 1429 
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RNAseq dataset. The resulting quality control files output during this run, primarily 1430 

“SM_GEPs_HeatMap.txt”, were then used to perform correlation analyses assessing the 1431 

similarity between the inferred malignant cell and myeloid profiles and the ground truth profiles.  1432 

 1433 

Analysis of cell state-specific gene expression profiles 1434 

To facilitate downstream analyses on each CIBERSORTx-inferred cell state-specific gene 1435 

expression profile, each of the resulting expression matrices were log10-transformed and all 1436 

genes that could not be imputed or had a variance of 0 across the dataset were removed. For 1437 

each cell state-specific gene expression matrix, Wilcoxon signed-rank tests were used to 1438 

determine the differentially expressed genes between initial and recurrent tumors and the 1439 

resulting P-values were corrected for multiple testing using the Benjamini-Hochberg procedure. 1440 

Signature scores in cell state-specific gene expression profiles and single-cell RNAseq profiles 1441 

were defined as the average expression of the genes in the signature. In cases where the 1442 

expression of some of the genes in the signature could not be determined, the intersection of the 1443 

signature and the available genes was taken when calculating the signature score. For GO 1444 

enrichment analyses on signatures derived from cell state-specific gene expression profiles, the 1445 

background gene set only included the genes CIBERSORTx was able to impute for the cell state 1446 

from which the signature was derived.  1447 

 1448 

Histological feature adjustment 1449 

For analyses examining how histological features influenced subtype switching, a tumor sample’s 1450 

cell state composition profile was adjusted to remove cell states that could be attributed to a 1451 

specific histological feature. To do this, the tumor sample’s proportion of a given histological 1452 

feature was multiplied by the average proportion of each cell state from all samples of that feature 1453 

in Ivy GAP. These numbers were then subtracted from their respective cell state’s proportion in 1454 

the tumor sample and the resulting profile was then renormalized so that all proportions summed 1455 



54 

 

to 1. In cases where the new cell state proportion was less than 0, the value was set to 0 before 1456 

renormalization.  1457 

 1458 

Statistical analysis 1459 

All data analyses were conducted in R 3.6.1 and PostgreSQL 10.6. GO enrichment analyses were 1460 

performed using the “classic” algorithm in the R package “topGO” v2.38.1. When comparing 1461 

variables between groups, t-tests were used for cell state proportions while non-parametric tests 1462 

were used for all other variables (i.e., gene expression, signature score, neoantigen number). 1463 

Clinical variables used throughout the study were defined as previously described in the 1464 

Supplementary Information of the original GLASS study (Barthel et al., 2019).  1465 

 1466 

Code and data availability 1467 

All custom scripts, pipelines, and code used in figure creation will be made available at the time 1468 

of publication on the project’s Github page. Processed data for the GLASS consortium is available 1469 

on Synapse (https://www.synapse.org/glass).  1470 
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