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Abstract

End-to-end automatic speech recognition (ASR) models

aim to learn a generalised speech representation. However,

there are limited tools available to understand the internal func-

tions and the effect of hierarchical dependencies within the

model architecture. It is crucial to understand the correla-

tions between the layer-wise representations, to derive insights

on the relationship between neural representations and perfor-

mance. Previous investigations of network similarities using

correlation analysis techniques have not been explored for End-

to-End ASR models. This paper analyses and explores the

internal dynamics between layers during training with CNN,

LSTM and Transformer based approaches using Canonical cor-

relation analysis (CCA) and centered kernel alignment (CKA)

for the experiments. It was found that neural representations

within CNN layers exhibit hierarchical correlation dependen-

cies as layer depth increases but this is mostly limited to cases

where neural representation correlates more closely. This be-

haviour is not observed in LSTM architecture, however there is

a bottom-up pattern observed across the training process, while

Transformer encoder layers exhibit irregular coefficiency corre-

lation as neural depth increases. Altogether, these results pro-

vide new insights into the role that neural architectures have

upon speech recognition performance. More specifically, these

techniques can be used as indicators to build better performing

speech recognition models.

Index Terms: End-to-End, speech recognition, analysis

1. Introduction

Traditionally, ASR frameworks have been developed using Hid-

den Markov Models (HMM) in combination with Gaussian

Mixture Models (GMM) to identify and map acoustic features

to phonemes. Recent work [1] has introduced deep neural net-

works to replace traditional approaches by factorising the sys-

tem into specialised modules, such as acoustic and language

models. The End-to-End approaches for ASR attempt to sim-

plify the pipeline and directly model the input features to char-

acters or phonemes [2]. This approach allows the development

of a complete ASR system without the requirement of expert

domain knowledge, while attempting to globally optimise the

training process. As the development and integration of End-to-

End approaches have become increasingly popular, many dif-

ferent architectures have been developed [3] [4] [5] [6]. Re-

search from [7] has shown that neural layer depth can attribute

to a richer neural representational capacity, but generalisation

or memorisation behaviour of the models remains elusive [8].

This hypothesis does not always translate to performance im-

provements in all cases [9] and has little exploration in the

End-to-End ASR domain. End-to-End architectures have inher-

ently complex internal dynamics and whether the model learns

to generalise from the training process, is imperative to yield

recognition performance improvements [10] [11]. Furthermore,

there is limited research with regard to the interactions between

the training dynamics of End-to-End models and speech data

and it is unclear how structural components or residual connec-

tions within the models contribute to more optimal represen-

tations. To explore this further, a window of observation into

the neural representations of the network architectures would

be required to provide information on the interaction between

the training structures and the data.

Current correlation analysis techniques from [12] and [13]

have been utilised to compare deep neural network representa-

tions. Comparing population representations has been explored

in several methods, however this is a non-trivial task as it not

clear which aspects of the representations the similarity index

should attempt to focus on. Canonical Correlation Analysis

(CCA) [14] and Centered-Kernel Alignment (CKA) [13] have

been used as tools to compare network representations, as they

enable the identification of shared structures across representa-

tions which are trivially dissimilar. The application of singular

value decomposition (SVD) before CCA, referred to as SVCCA

[12] has been used to compare representations across networks

and it was found that network solutions for image classifica-

tion, diverged predominantly in the intermediate neural layers.

SVCCA has also been used as a tool to show the evolution

of linguistic features as they were encoded in language mod-

els [15] and it has been observed, for an image classification

task, that as neural layer depth increased, the network similar-

ities decreased. Finally, the CKA approach demonstrated that

task trained neural layers developed more similar representa-

tions than layers that were randomised.

However, these approaches have not yet been used to anal-

yse neural representations of End-to-End architectures with

speech data for speech recognition. In this work, a comparative

study of neural representation analysis is provided with some

of the most prevalent End-to-End ASR networks. The analysis

focuses on understanding the similarity of the neural represen-

tations and answering questions such as: given the same in-

put, how similar are the learned representations across training?

Which model architectures have the highest impact upon sim-

ilarity? How does neural similarity correspond to model per-

formance? Using correlation analysis techniques from [13] and

[12], the key contributions are summarised as follows:

• Development of a framework for correlation analysis

across neural representations within state-of-the-art End-

to-End architectures, Section 3.1.

• A comparative analysis of similarity indexes upon an

ASR task for different architectures, Sections 3.2 and

3.3.

• Verification that internal representation analysis of End-

to-End network structures can be used to magnify patho-

logical components throughout model training, Section

3.3.

• Discussion of the distinctions regarding the representa-

tions of End-to-End architectures and possible further

work these observations can contribute to, Section 4.
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2. Similarity Indexes for End-to-End ASR

The End-to-End ASR task is to identify the acoustic input se-

quence X = {x1, ..., xT } of length T as a label sequence

Y = {y1, ..., yN} of length N and directly map to the pos-

terior distribution p(Y |X). Due to the undefined separation

of modules within End-to-End ASR networks, it is relatively

unclear which, what and where the traditionally separate ASR

system tasks are occurring, such as acoustic or language mod-

elling. The internal parameter dependencies upon the structures

of the model, and their effect upon the resulting performance,

are ambiguous and inherently complex.

Using statistical correlation analysis methods, it is possible

to relate two sets of observations within a network to find their

correlation relationship. For the dataset X = {x1, ..., xN}
and neuron i in layer l, the activation output vector zli =
(zli(x1), ..., (z

l
i(xN )). By conducting correlation analysis tech-

niques that are invariant to affine transforms, this enables com-

parisons between different neural networks and observations on

the dynamic behaviour.

2.1. SVCCA

SVCCA [12] is used to find bases w, s for two matrices such

that, when the original matrices are projected onto these bases,

their correlation is maximised:

wT
∑

XY
s

√

wT
∑

XX
w
√

sT
∑

Y Y
s

(1)

where
∑

XX
,
∑

XY
,
∑

Y Y
are the covariance and cross-

covariance. In the case of ASR neural networks, this is between

the neural layers for N data points where l1 = {zl11 , ..., zl1N1}
and l2 = {zl22 , ..., zl2N2}. The projected views of l1 and l2 are

reduced to the top 99% representative dimensions, using SVD,

in an attempt to reduce potential noise in the representations, to

form subspaces l′1 ⊂ l1, l
′

2 ⊂ l2. CCA [16] is then used to max-

imise the correlation of the projections of the linear transform

of l′1, l
′

2 by identifying vectors w, s to maximise:

ρ =
〈wT l′1, s

T l′2〉

||wT l′
1
|| ||sT l′

2
||

(2)

The correlations of ρ are higher when the representations have

encoded more similar information.

2.2. CKA

CKA, first introduced in [17], resembles CCA but is weighted

by the eigenvalues of the corresponding eigenvectors. It is also

similar in effect to SVCCA but incorporates the weighting sym-

metrically and doesn’t require matrix decomposition. Instead of

comparing multivariate features of the neural layers, the coef-

ficiency between every pair of examples in each representation

is measured, then the correlation computation is conducted. To

measure the similarity index between the internal representa-

tions, the inner product is taken:

〈vec(l1l
T
1 ), vec(l2l

T
2 )〉 = tr(l1l

T
1 l2l

T
2 ) = ||lT2 l1||

2

F (3)

where the elements of l1l
T
1 and l2l

T
2 are dot products be-

tween neural representations z(x1), ..., z(xT ), using calcula-

tions from [13]. The first half of Equation 3 measures the sim-

ilarity between examples while the second half has the same

result by measuring between features by taking the sum of the

squared dot products between every pair. For centered l1, l2:

1

(n− 1)2
tr(l1l

T
1 l2l

T
2 ) = ||cov(lT1 , l

T
2 )||

2

F (4)

The Hilbert-Schmidt Independence Criterion (HSIC) [18]

generalises Equations 3 and 4 to the inner products from the

kernel spaces, where the squared Frobenius norm of
∑

XY

becomes the squared Hilbert-Schmidt norm of the operator.

This is equivalent to calculating a distance covariance. Where

Kij = k(xi, xj) and Lij = l(yi, yj) where k and l are kernels,

the estimator of HSIC is defined as:

HSIC (K,L) =
1

(n− 1)2
tr(KHLH) (5)

where H is the centering matrix Hn = In − 1

n
11T . When

HSIC = 0, this suggests independence when k and l are uni-

versal kernels. However HSIC is not invariant to scaling until it

has been normalised:

CKA(K,L) =
HSIC (K,L)

√

HSIC (K,K)HSIC (L,L)
(6)

These properties limit the use of CKA to be conducted

across features rather than examples, for large models due to the

size and the dramatically large computational costs that would

be required.

3. Experiments & Results

3.1. Experimental Framework

To analyse the internal representations of the models on an

End-to-End ASR task, the experiments were done using the

ESPRESSO framework [19]. Each network was trained us-

ing the Switchboard dataset [20] with 300 hours of transcribed

speech. This enabled the development of consistent state-of-

the-art architectures and environment variables for End-to-End

ASR.

To investigate the time dependencies of the neural repre-

sentations within End-to-End models, SVCCA and CKA, de-

scribed in Section 2, were applied to the activation outputs of

each model layer across time. In order to conduct a compara-

ble correlation analysis for each network and analysis method,

several further steps were necessary: firstly, the network mod-

els were preserved at each epoch of the ASR task; and then

they were fed to a separately developed pipeline for the extrac-

tion of the activation embeddings for each neuron. To ensure

consistency, this was done by feeding in a controlled input of

100 speech frames to all architectures and extracting the acti-

vation output at each neuron, enabling the representation analy-

sis methods to be conducted concurrently. Linear interpolation

of the narrower layer to the same dimensionality as the wider

layer was conducted due to the different spatial dimensions of

the neural layers and thereby data-points, as both SVCCA and

CKA methods require representation vectors to be the same di-

mensions. To compare the coefficiency correlation across the

number of layers in the network, the spatial dimensions of the

activation outputs were flattened into the number of data-points,

in order to provide a spatial representation of each data-point.

3.2. Encoder-Decoder Neural Representation Analysis

The convolution network used in this work is a multi-layer

stacked 2-dimensional convolution, with kernel size (3,3) on

both the feature and the time axis from [21]. The final layer of
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Figure 1: The final converged correlation coefficiency across all

models with ascending CNN layers

the sequence-to-sequence model is then projected to an LSTM

decoder from [22], and context at each time-step is generated

with Bahdanau attention [23]. The encoder-decoder model

function can be described by:

ŷ
dec
u = LSTM(cu, yu−1, ŷ

dec
u−1) (7)

where ŷ is the hypothesised output by the model, cu is the con-

text vector obtained by the encoder output, calculated by the

attention mechanism.

This architecture allowed the observation of the layer-wise

representation analysis methods across scaled convolutional

layers within an ASR task. Comparison across layers allows

the observation of the converged layer correlations, while com-

parison across epochs shows the hierarchical representations

within the layers as the models train. Upon evaluation with

the Hub5’00 set [24], the word error rate performance of this

architecture is displayed in Table 1. Increasing the neural depth

improved accuracy slightly up to 3 layers but results varying

the spatial dimensions of each layer showed little improvement.

The performance was observed to be limited when varying the

amount of neurons in each layer across the variable sized CNN

architectures, with the best WER performance achieved with a

3 layer CNN. Upon comparing these coefficiency correlations

across the CNN architectures with varied layers, shown in Fig-

ure 1, the architectures with deeper spatial dimensions have

more variation in the neural representations than the architec-

tures that had the greater performance results, as suggested by

results in [13], except for the 6 layer CNN model which had

similar coefficiency but worse performance than the other mod-

els; this would require further investigation.

Table 1: Variable sized CNN layers for End-to-End ASR evalu-

ated on the Hub5’00 test set

CNN Architecture SWBD WER% Clhm WER%

6 layers 11.4 22.4

5 layers 10.7 21.3

4 layers 10.9 21.2

3 layers 10.5 20.8

2 layers 10.6 20.9

1 layer 11.6 22.5

Figure 2: CNN neural representations evaluated with SVCCA

(top) and CKA (bottom) through time as performance converges

Figure 3: LSTM correlation coefficients of neural representa-

tions through time as performance converges with SVCCA (top)

and CKA (bottom)

As the number of the layers increased, the coefficiency of

each layer approached 1, as shown in Figure 2. Using SVCCA

analysis, described in Section 2.1, to correlate the activations

across the epochs, it was observed that layers 1, 2 and 3 con-

verge together at epoch 17, whereas deeper layers (layers closer

to the output) converged slightly later but at the same point in

training.

Figure 2 also shows the CKA coefficiency, described in 2.2,

of the CNN architecture, where it can be generally observed

that the SVCCA analysis is more sensitive to the initialisation

parameters than CKA. With both strategies, a hierarchical cor-

relation within the layers across training can be observed, al-

though the CKA results suggest that there is some pathological

behaviour present in deeper layers; for example the small spikes

in coefficiency across layer 6. The CKA results potentially dif-

fer from the SVCCA results, due to the pruning of the SVD

component of SVCCA while also assuming that all the coeffi-

ciency vectors are equally important to the representation of the

ASR task.

The LSTM neural representations, within the encoder-

decoder framework, are displayed in Figure 3. Comparing the

SVCCA correlation results with the CKA results, it can be

observed that the variance is slightly under-estimated by the

SVCCA implementation, although both techniques display sim-

ilar attributes. By comparing the internal representations with
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Figure 4: Transformer correlation coefficients through time as

performance converges produced with SVCCA (top) and CKA

(bottom), the darker colour gradients are higher layer repre-

sentations, while the lighter the gradient the deeper the layer

SVCCA and CKA, the behaviour of the internal neural dynam-

ics of the architecture can be observed to be invariant to trans-

formations, in a robust method. The coefficiency across epochs

suggests that there is a bottom-up behaviour within the LSTM

representations, with convergence occurring around epoch 22.

3.3. Transformer Neural Representation Analysis

The Transformer architecture from [25] was trained using the

same dataset, with all 12 encoder blocks containing identical

spatial widths. Due to the size of this architecture, the train-

ing was conducted across 90 epochs, to ensure model conver-

gence. The Transformer model uses stacked self-attention and

point-wise, fully connected layers for the encoder and decoder.

Each block has a multi-head self-attention layer and feed for-

ward layer. To analyse the representations of the Transformer

encoder layers, the representations were unrolled across time

steps.

The Transformer layer encoder output representations,

shown in Figure 4, emphasise the attending mechanism pathol-

ogy present after the self-attention and linear operator. It can

be observed that the higher layers of the Transformer encoder

are less susceptible to the attention pathology than the deeper

layers, which don’t converge smoothly even after 80 epochs.

There is a more noticeable distinction that can be ascertained

from the CKA analysis, which retained more emphasised re-

sults, that there is similar overall hierarchical learning dynamics

as observed in the CNN architecture.

4. Discussion

By using SVCCA as a method of analysing the internal rep-

resentations for an End-to-End ASR framework, a window is

observed on the dynamics of the training behaviour, although

the top vectors pruned appear to under-represent the neural rep-

resentations compared to using CKA. This is partly due to the

assumption that all of the CCA vectors are equally important

to the neural representation but also the SVD component of the

SVCCA technique in Section 2.1 relies on the reflection of class

information, which, for End-to-End speech recognition, is a po-

tential limitation. By implementing the CKA analysis method

in Section 2.2 it is possible to visualise the pathology of neural

representations during training, particularly in the Transformer

model, Figure 4, which is indicative of the attention mechanism

augmenting context information, particularly for wider layers.

The techniques described in Section 2, allow the observa-

tion of hierarchical behaviour of CNN and Transformer neural

representations across training, Figures 2 and 4, whilst also pro-

viding insight on the bottom-up invariant behaviour dynamics

within the LSTM layers (without residual connections), shown

in Figure 3. The learning dependencies between layers across

time exhibit similar learning dynamics as language models [26].

The similarity indexes could also be used in future work to com-

pare the correlation of the trained neural layers of various archi-

tectures across different speech datasets, such as noisy or aug-

mented data, to observe how the neural layers respond dynami-

cally during the training process. These experiments could then

be directly correlated with the performance results.

Additionally, it has been noticed that scaling the depth of

the convolutional layers had a limited effect upon network per-

formance also in the case of End-to-End ASR, as shown in Table

1. Expanding the results from [27], Figure 1 provides some ev-

idence that better performing networks converged to similar so-

lutions across the layers, however the 6 layer CNN showed this

is not always the case. The poorer performance of the 6 layer

CNN could be attributed to an over-fitting issue and to inves-

tigate this further, the potential memorisation within the neural

representations would be need to be undertaken. These results

can be expanded to further develop and explore better architec-

ture solutions for End-to-End ASR performance, whilst gaining

some insight of the effect architecture changes have upon net-

work dynamics.

5. Conclusion

A comparative analysis of SVCCA and CKA has been under-

taken for an End-to-End task and pathological components have

been identified in CNN and Transformer models. Further inves-

tigation of the attributes for the pathology would be required,

for instance, do the unstable deeper layer neural representation

correlations correspond to noisy components within ASR task?

Furthermore, an extension to this work could be the analysis of

neural representations on out of domain data, as the structural

properties of the different layers could be beneficial to building

models for few-shot-learning in ASR.
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