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Structured abstract 

Background 

Extrapolation of survival data is a key task in health technology assessments (HTAs), which may be 

improved by incorporating general population mortality data via relative survival models. Dynamic 

survival models are a promising method for extrapolation which may be expanded to dynamic 

relative survival models (DRSMs), a novel development presented here. There are currently neither 

examples of dynamic models in HTA nor comparisons of DRSMs with other relative survival models 

when used for survival extrapolation 

 

Methods 

An existing appraisal, for which there had been disagreement over the approach to survival 

extrapolation, was chosen and the health economic model recreated. The sensitivity of estimates of 

cost-effectiveness to different model choices (standard survival models, DSMs and DRSMs) 

specifications was examined. The appraisal informed a simulation study to evaluate DRSMs with 

relative survival models based on both standard and spline-based (flexible) models. 

 

Results 

Dynamic models provided insight into the behaviour of the trend in the hazard function and how it 

may vary during the extrapolated phase. DRSMs led to extrapolations with improved plausibility for 

which model choice may be based on clinical input. In the simulation study, the flexible and dynamic 

relative survival models performed similarly and provided highly variable extrapolations. 

 

Limitations 

Further experience with these models is required to identify settings when they are most useful and 

the accuracy of their extrapolations. 

 



Conclusions 

Dynamic models provide a flexible and attractive method for extrapolating survival data and 

facilitate the use of clinical input for model choice. Flexible and dynamic relative survival models 

make few structural assumptions and can improve extrapolation plausibility, but further research is 

required into methods for reducing the variability in extrapolations.   



Introduction 

Health technology assessment (HTA) is the scientific evaluation of health technologies and informs 

decisions about if a health technology should be funded. For consistent decision making, all relevant 

costs and consequences associated with the appraised technology should be included in HTA. When 

the treatment impacts on survival it is important that lifetime outcomes are included in the 

assessment (1). Estimates of lifetime mean survival typically require extrapolations of incomplete 

survival functions. These estimates can be key drivers of estimates of cost-effectiveness, and hence 

funding decisions (2). This illustrates the importance of using appropriate methods for extrapolation. 

 

A recent review of methods for extrapolating survival data in cancer appraisals concluded that 

current approaches were “suboptimal”, with an over-reliance on common survival models, which 

may not adequately capture the complexities of hazard functions that are expected to arise from 

clinical trials (3). Dynamic survival models (DSMs) have recently been suggested as flexible models 

for the analysis and extrapolation of survival data (4). These may be viewed as relaxing the structural 

assumptions of common survival models by allowing their parameters to vary over time, with this 

temporal variation modelled by a time series. A particular advantage of DSMs is that extrapolations 

are based on all the data, whilst simultaneously giving more weight to more recent observations. 

This resolves the disagreement in the literature over how much evidence should be included when 

generating extrapolations(5-8). Despite these advantages of DSMs, there is a dearth of examples of 

their use in HTA. 

 

Another approach to improve extrapolations is via the incorporation of external long-term evidence, 

such as general population mortality data (9-13). In particular, additive relative survival models 

decompose the overall hazard function into the sum of disease-specific (or ‘excess’) hazards and 

general population hazards. Extrapolations are obtained for the former, and the additive structure 

ensures that the overall hazard function never falls below the general population hazards. Models 



for the disease-specific hazard function include standard parametric models and flexible spline-

based models (14-17). In addition, DSMs may be used, providing dynamic relative survival models 

(DRSMs), a novel method that has not previously been evaluated. 

 

This manuscript has two primary objectives. The first is to demonstrate the use of DSMs and DRSMs 

in HTA via a re-analysis of an existing NICE appraisal. For this appraisal estimates of cost-

effectiveness were sensitive to the choice of extrapolating model for overall survival (OS), and a key 

critique of the original extrapolations was that they fell below those of the age-matched general 

population. The second objective is to perform a simulation study, informed by the appraisal, to 

compare the performance of relative survival models. 

  

  



Methods 

The code used for both the case-study and simulation study is available online 

(https://github.com/BenKearns/RelativeSurvival) and provides additional information. 

 

Case study: squamous non-small-cell lung cancer 

The existing HTA was a submission to NICE as part of their TA programme (18). A NICE committee 

considers both the company submission and the independent evidence review group (ERG) critique 

of this as part of their decision-making process. The NICE committee provides recommendations on 

if the technology is judged to be cost-effective and hence whether the technology should be 

recommended for routine use. For this appraisal, the population of interest was people with 

previously treated locally advanced or metastatic (stage IIIB or IV) squamous non-small-cell lung 

cancer. The intervention was nivolumab and the sole comparator in the company’s submission was 

docetaxel. The main evidence source was the phase III trial CheckMate-017 (NCT01642004) which 

compared nivolumab (n = 135) against docetaxel (n = 137) for the population of interest (whose 

previous treatment was with platinum combination chemotherapy)(19). Patient follow-up was 

between 11 and 24 months. At the end of follow-up there had been 86 (63.7%) and 113 (82.5%) 

deaths in the nivolumab and docetaxel arms, respectively. The primary outcome measure was OS. 

Evidence on effectiveness came solely from this trial and there was no treatment switching in the 

data used in the company’s original submission. 

 

For both OS and progression-free survival (PFS), the company based their approach to extrapolation 

on the guidance in NICE TSD 14 (20). The assumption of proportional hazards was checked both 

visually and via significance tests. The company considered both standard survival models and 

Royston-Parmar models (RPMs) (21), with up to two internal knots modelled on the hazard, normal 

and odds scales (corresponding to extensions of the Weibull, lognormal and log-logistic models, 



respectively) and Akaike’s information criteria (AIC) for goodness of fit. For OS, the assumption of 

proportional hazards appeared to hold, with a log-logistic model used for docetaxel. The treatment 

effect for nivolumab was modelled as a fixed hazard ratio of 0.59. For PFS, the proportional hazards 

assumption was judged to be violated. Hence the company modelled both treatments using an RPM 

with two internal knots on the hazard scale. The probabilistic base-case incremental cost-

effectiveness ratio (ICER) arising from this approach was £86,000 (all ICERs discussed in this 

manuscript are given to the nearest £500 and are per QALY gained), with a survival gain of 1.31 years 

for nivolumab (18). This value was robust to alternative approaches to extrapolation for PFS, but not 

for OS. For example, when varying the hazard ratio across its plausible range the ICER varied from 

£55,000 to £169,000. 

 

The independent ERG were critical of the company’s OS extrapolations, in particular the fact that the 

extrapolated hazard eventually fell below that of the age-matched general population was deemed 

to be “wholly implausible, and inconsistent with any clinical evidence of treating metastatic disease” 

(22). The ERG contended that the extrapolated hazard for OS was likely to increase over time due to 

ageing. Despite this, they extrapolated a constant hazard over time (using an exponential model). 

This was fit from 40 weeks (9.2 months) of follow-up (a temporal subset of the data), with the ERG 

suggesting that this cut-off was supported by the data. The ERG’s approach to OS extrapolation 

increased the company’s base-case ICER from £86,000 to £132,000, whilst the estimated lifetime 

survival gain more than halved, from 1.31 to 0.64 years. In response, the company amended their 

extrapolation approach to cap the extrapolated hazard rate so that it never fell below that of the 

corresponding general population. The company’s revised base-case ICER was £92,000, with a 

survival benefit of 1.16 years (23). However, the ERG remained critical of the company’s revised 

approach as not reflecting an anticipated long-term increase in hazards due to the effect of ageing 

(24). 

 



Hence, the approach to extrapolating OS was identified as both a key area of uncertainty and a key 

driver of estimates of cost-effectiveness. The company fit survival models to all the available data 

and extrapolated a decreasing trend in the hazard. In contrast, the ERG fit a survival model to a 

subset of the available data and extrapolated a constant value (no trend), whilst also criticising the 

company’s original extrapolations for eventually falling below that of the age-sex matched general 

population. The company in turn criticised the ERG’s approach as ignoring the trend in the hazard 

observed in the trial and lacking robustness by not using all the available data. 

 

Case study: re-analysis of the clinical effectiveness data 

Data on OS were digitised from the pivotal trial publication (19) using Engauge digitiser (25). These 

digitised data were used to replicate the original individual patient data using the algorithm of Guyot 

and colleagues (26, 27). For consistency with the original company submission, initially both current 

practice and RPMs are considered for the docetaxel arm (providing the baseline hazard function), 

with DSMs introduced later. A fixed hazard ratio is used for the nivolumab treatment effect.  

 

Within-sample goodness of fit is measured using AIC (there were no substantial differences when 

using Bayesian information criteria). Another measure, the inverse evidence ratio (IER) is also used 

to facilitate model comparisons. The IER is a measure of how plausible a model is, relative to the 

`best' model (which has the minimum information criteria). Let 𝐼𝐶𝑚 be the information criteria value 

(such as AIC) for model 𝑚, with minimum value 𝐼𝐶∗. The IER for model 𝑚 is then exp⁡(−0.5 ∗[𝐼𝐶𝑚 − 𝐼𝐶∗]), and will be 100% for the best fitting model, whilst values for poorly  fitting models will 

be close to zero (28). Hence the IER provides an interpretable scale for comparing model fit. Values 

are shown in supplementary Tables 1 and 2 and demonstrate that the log-logistic model is the best-

fitting for both the standard models and the RPMs. Estimates of the hazard function from the 



second-best fitting RPM (four internal knots, odds scale, results not shown) were visually very similar 

to the log-logistic model for both the within-sample and extrapolated periods. 

 

Two DSMs are evaluated: a local trend and a damped trend model (see the supplementary material 

for model specification). Both may be viewed as modelling the log-hazard as a linear function of log-

time. They differ with regards to the behaviour of their extrapolations; a local trend model 

extrapolates the trend in the log-hazard indefinitely whilst for the damped trend model the 

extrapolated trend decreases as the extrapolation time horizon increases. Three DRSMs were 

evaluated: local trend, damped trend, and local level implementations (see the supplementary 

material for descriptions). As DRSMs formally incorporate external evidence on general population 

mortality they are anticipated to provide more plausible extrapolations than DSMs for this case-

study. 

 

To perform cost-effectiveness analyses, the company’s three-state partitioned survival analysis 

economic model was replicated in R, assuming a (lifetime) 20-year time horizon with a 1-week time 

cycle. Utility data and resource use were primarily taken from CheckMate-017 (18). The two alive 

health states of ‘stable’ and ‘progressed’ disease were assigned utilities of 0.750 and 0.592 (with 

standard deviations of 0.236 and 0.315), respectively. Everybody started in the stable health state. 

Results are based on a probabilistic sensitivity analysis with 2,000 iterations to account for non-

linearities in the model inputs. The model structure and inputs matched those reported in the 

original appraisal (18). Further details on the health economic model are provided in the 

supplementary material. 

 

Simulation study 

An additive hazards relative survival log-logistic model was used as the data-generating mechanism 

for the simulation study. To ensure that this mechanism was clinically plausible, it was obtained by 



fitting a log-logistic model to the case-study data (docetaxel arm), simulating from this model, and 

incorporating the (age-matched) general population hazard. For each individual, three times were 

simulated: a survival time from the log-logistic model; a survival time from the general population 

hazards (assuming a uniform distribution of deaths within a year); and a censoring time uniformly 

distributed between five and six years. This length of follow-up was chosen to ensure that there was 

sufficient data that included the turning-point in the hazard function. The observed survival time was 

set to the minimum of the three sampled times (with event status similarly set). For this study, 200 

simulations were performed, with each having a sample size of 300. Estimates of the ‘true’ hazard 

function were based on the mean of 10 million simulations. Five models were considered: a log-

logistic relative survival model, DRSMs with either a local or damped trend, and two flexible relative 

survival models. These both use cubic splines to model the excess hazard and vary with how the 

model is specified. One uses the specification introduced by Nelson and colleagues (hereafter 

‘Nelson relative survival’ [NRS]), the other may also be written as a flexible mixture cure (FMC) 

model; for both models further details are provided by Jakobsen and colleagues (15). 

 

The estimand was the mean of the natural logarithm of the time-varying hazard function. The 

primary performance measure used was the mean (of the) squared error (MSE), with bias as a 

secondary performance measure. For MSE smaller values indicate better model performance, for 

bias this is indicated by values closer to zero. To avoid results being unduly influenced by implausibly 

large extrapolations, hazard estimates were capped to not exceed one. Bias may be viewed as 

estimating how close to the truth estimates are on average, whilst MSE measures both bias and 

variability in estimates. Further details on the performance measures are available in the 

supplementary material. 

  



Results 

Case-study 

Estimates of the trend in the hazard function over time, along with the uncertainty in these 

estimates are shown in Figure 1 for the two DSMs. This is of particular importance as there was 

disagreement over the assumed trend at the end of follow-up, with the company modelling a 

decreasing trend and the ERG modelling no trend. The trend estimate from both DSMs is initially 

positive followed by a decrease. For both models the trend becomes negative at about half a year. 

For the local trend model the trend estimates continue to decrease, albeit with a large degree of 

uncertainty. For the damped trend model the trend is almost zero after half a year, suggesting that 

after this time the assumption of a constant hazard may be appropriate. Figure 1 suggests that 

models which assume monotonicity (such as the Weibull and Gompertz) are inappropriate. In 

contrast, use of a log-logistic or lognormal model may be acceptable, as the hazards from these can 

increase then decrease. Further, the confidence intervals from both models include zero at all time 

points, indicating that a constant hazard model cannot be ruled out. 

 

A visual comparison of the fit from the two DSMs along with the original company approach (log-

logistic) and ERG approach (hybrid exponential) is provided in Figure 2. The observed hazard is 

generally unimodal, albeit with large variability due to small patient numbers towards the end of 

follow-up. For extrapolations, estimates of the annual hazard of all-cause mortality for the age-

matched general population are also included based on 2016 UK data from the Human Mortality 

Database (29), assuming a starting age of 63 (the median age of participants in CheckMate 017). For 

the first year of follow-up estimates of the hazard function from the log-logistic and two dynamic 

models are visually similar, albeit the peak in the hazard is more pronounced for the log-logistic. At 

one year of follow-up there are only 30 people still at risk (22% of the starting sample); this small 

sample size may be driving the differences in model estimates after one-year. These differences 

continue into the extrapolated phase, with the largest decreases in the hazard function observed for 



the log-logistic model. In contrast, the damped trend model extrapolates almost constant hazards; in 

the short-term these estimates are very similar to those from the ERG approach, but they become 

increasingly smaller than the ERG extrapolations as the time horizon increases. Extrapolations from 

the local trend model lie between the log-logistic and damped trend models, eventually falling below 

age-matched general population estimates at approximately 15 years; hence potentially lacking face 

validity.  

 

Estimates from DRSMs are shown in Figure 3, along with the log-logistic model and ERG approach for 

comparison. Visually, the local level DRSM provides similar within-sample estimates to an 

exponential model and does not fit the data as well as the other models. Extrapolations from the 

local level and damped trend DRSMs are very similar to each other, illustrating that (as with the 

damped trend DSM) there is a pronounced dampening of the trend before the end of follow-up. 

After 20 years, hazards from all the DRSMs are greater than the general population estimates, 

implying that there is a non-negligible extrapolated excess hazard. After about ten years the local 

trend DRSM extrapolates an increasing hazard, suggesting that after this point the influence of 

ageing on the hazard function outweighs the extrapolated decrease in the excess hazard. 

 

Table S4 compares the replication with the original company submission (using their approach to 

extrapolation) with the replicated model. Given that the individual patient-level data were 

recreated, there is in general close agreement, albeit with some under-estimation of absolute costs. 

This is expected, as it was not possible to include a drug acquisition cost for the progressed disease 

health state. Cost-effectiveness results from the dynamic models are provided in Table 1. For 

comparison, three replicated analyses are also shown: 

• The company’s original submission (extrapolation with a log-logistic model) 

• Above, with extrapolated hazards capped by general population hazards. 



• The ERG’s hybrid approach (use Kaplan-Meier estimates up to 40 weeks, extrapolations 

based on an exponential fit to the remaining data). 

 

As shown in Table 1 and Figures 2 and 3, extrapolations can differ between the five dynamic models, 

which affects the cost-effectiveness results. The smallest ICER occurs for the local trend DSM 

(£113,000). The largest ICERs arise from both damped trend dynamic models and the local level 

DRSM (£140,000 to £143,000). These three models all extrapolate a near-constant hazard. Variation 

in ICERs across the three DRSMs (£122,500 to £143,000) was slightly greater than variation between 

the ERG approach (£125,000) and the company submission with a cap (£140,000). Advantages of the 

DRSMs are first that model choice may be guided by clinical input into the likely behaviour of the 

long-term excess hazard, and secondly that external evidence is formally included as part of the 

model fitting procedure, instead of via a post-hoc adjustment. Collectively this allows for a stronger 

emphasis on understanding the likely behaviour of the long-term excess hazard function and the 

plausibility of different assumptions about this long-term behaviour. As noted, an advantage of 

dynamic models over hybrid models is the avoidance of the subjective choice of which data to use 

for the extrapolating model. Estimates of cost-effectiveness can be sensitive to this choice, as 

illustrated in supplementary Figure S1. Dynamic models also use all the data; with the ERG approach 

only a third of the original sample (45 people) contribute to extrapolations. 

 

Simulation study 

A graph of the true hazard function and the simulations from this is provided in the supplementary 

material (Figure S2), whilst a visual comparison of model estimates with the truth is given in Figure 4. 

The correctly specified log-logistic relative survival model has the smallest variation in 

extrapolations, but there is a persistent over-estimation which becomes more pronounced as the 

extrapolation time increases. Of the two flexible models (NRS and FCM), the NRS tends to over-



estimate the true hazard function, whilst the FCM under-estimates it. Of the two dynamic models, 

the damped trend model has less variability in extrapolations, due to the dampening of the trend. 

However, this dampening means that often the decrease in the excess hazard is not captured, 

leading to over-estimation. All the flexible and dynamic relative survival models produce highly 

variable extrapolations, especially when compared with the log-logistic relative survival model. 

 

Summary MSE and bias values are provided in Table 2, with plots of these statistics over time 

provided in Figure S3. Consistent with Figure 4, the log-logistic model has the smallest variance, 

smallest bias, and lowest MSE values of all the relative survival models considered. Of the incorrectly 

specified models, MSE values were smallest for the NRS and trend-DRSM (values of 0.086 and 0.089, 

respectively) and largest for the FCM (0.202). The trend-DRSM had the smallest bias (0.127), 

however there was a lot of uncertainty in the bias estimates, with each model's confidence interval 

including the bias point-estimate for every other model (including the log-logistic). 

 

  



Discussion 

A motivating case-study introduced DRSMs and demonstrated the usefulness of relative survival 

models when extrapolating survival data. This case-study informed a simulation study which was 

used to compare different relative survival models. Flexible and dynamic relative survival models did 

not perform as well as the true model but are a potentially useful approach when the true survival 

model is unknown. The case-study illustrated several benefits of dynamic models. This includes 

combining flexible fit to the observed data with explicit modelling of the long-term trend, 

incorporating external data to inform extrapolations, and encoding clinical views on long-term 

survival via model specification. 

 

The clinical plausibility of extrapolations is very important. Additive relative survival models ensure 

that the extrapolated hazard function does not fall below that of the general population. This is not 

the only measure of extrapolation plausibility, but it is an important one that should be considered. 

Different model specifications are possible for DRSMs, reflecting different assumptions about the 

long-term behaviour of the excess hazard. The options included here were that the excess hazard 

was constant, the observed trend continued until the excess hazard became zero, or the observed 

trend continued in the short-term, with long-term constant values of the excess hazard. This 

flexibility in model specification and the direct interpretation of the extrapolations is a significant 

advantage of DRSMs when compared with other survival models and allows for the natural inclusion 

of clinical opinion about both the natural history of the disease and the likely mechanism of action of 

treatments. Basing model choice on clinical input into the natural history of the disease is of 

particular use, as good within-sample goodness of fit is not a predictor of good extrapolation 

performance (30). A further advantage of DRSMs is that it is straight-forward to extend these to 

incorporate time-varying treatment effects which act on the disease-specific (excess) hazard 

function (see supplementary material for specification). As the focus of the manuscript was on 

different relative survival models, this extension was not pursued further, but it is noted that 



modelling the treatment effect as applying to the overall hazard can lead to biased results as it 

includes the unrealistic assumption that treatment will reduce mortality that is unrelated to the 

disease(31). 

 

Recreated patient-level data was used in the case-study. The recreated company submission showed 

close agreement with the original submission, demonstrating the usefulness of using recreated data. 

One limitation was that it was not possible to explore the effects of covariates on survival. In 

particular, when estimating relative survival it has been demonstrated that including age can lead to 

increased accuracy (32).  

 

The case-study results from the DRSMs suggest that the ICER arising from the company’s original 

approach (£88,000) is likely to be too low; depending on the long-term prognosis of patients the 

ICER is likely to be between £122,000 and £143,000. This range of ICERs is above the acceptable 

threshold for end-of life-treatment, which is typically assumed to be £50,000. Following their original 

submission, the company offered a discount to the cost of their treatment to lower the ICER (and so 

improve the possibility of a positive recommendation). The magnitude of discount required to make 

the treatment cost-effective will be strongly affected by the extrapolation approach used. Of the 

approaches evaluated here, it is not possible to definitively state which would be the preferred base-

case analysis, but the use of a dynamic model which incorporates external evidence appears to be 

the most useful. Future research could identify the situations when the different DRSM 

specifications (including the modelling of the treatment effect) are the most appropriate. Relative 

survival models which do not bound the overall hazard by the general population hazard are also 

possible (16). There is uncertainty about if long-term extrapolated hazards should be bounded by 

the general population hazards (that is, if long-term survivors have a better prognosis than the 

general population) – long-term follow-up from trials would be able to provide insight into this.  

 



The correctly specified log-logistic relative survival model provided the best extrapolations of the 

models considered. Alternative standard parametric relative survival models were not considered, as 

these typically have strong parametric assumptions. For example, the Weibull model assumes that 

the excess hazard is monotonic which is known to be inadequate for the simulation study. In 

practice, the suitability of a model with monotonic hazards may be unknown; similar work on model 

choice for cure models has shown that for standard parametric models, extrapolations can be 

sensitive to model misspecification (11). The alternative relative survival models considered in the 

simulation study have very weak structural assumptions, and so model misspecification is less of an 

issue. However, these models can provide highly variable extrapolations. Further research into 

reducing the variability of these extrapolations will be very useful. This could involve use of other 

types of external evidence, such as registry data or previous trials for the disease of interest (33). 

Further research could also identify if there are certain situations when one or more of the models 

considered are of particular benefit. 

 

In conclusion, survival data describe the occurrence of deaths over time and so form a natural time 

series. This motivates the use of dynamic models, which can exploit the temporal evolution of the 

hazard function when generating extrapolations. These models combine flexible within-sample 

estimates with parsimonious models for extrapolations which have meaningful clinical 

interpretations. These models, along with relative survival models that incorporate external 

evidence on general population mortality, have potential advantages over the survival models 

currently used in HTA. In the simulation study of this manuscript, dynamic and flexible relative 

survival models had similar extrapolation performance. These models impose minimal structural 

assumptions and can provide good within-sample estimates. Further experience of these models  is 

required to provide more specific guidance about the role of both dynamic models and relative 

survival models in HTA. 
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Tables 

Table 1: Cost-effectiveness estimates from different extrapolation approaches 

 Absolute Value Incremental values ICER 

(per QALY)  QALYs Cost QALYs Cost 

Replicated submission (no cap)      

Nivolumab 1.29 £85,882 

0.74 £65,470 £87,926 

Docetaxel 0.55 £20,413 

Replicated submission (with 

cap) 

     

Nivolumab 0.95 £72,943 

0.39 £54,412 £139,958 

Docetaxel 0.56 £18,530 

Replicated ERG approach      

Nivolumab 0.66 £56,985 

0.33 £40,799 £124,807 

Docetaxel 0.34 £16,186 

Dynamic survival models      

Local trend      

Nivolumab 1.06 £75,060 

0.50 £56,699 £113,170 

Docetaxel 0.56 £18,361 

Damped trend      

Nivolumab 0.87 £67,328 

0.35 £49,600 £141,236 

Docetaxel 0.52 £17,728 

Dynamic relative survival 

models 

     

Local level      

Nivolumab 0.88 £67,880 0.36 £50,229 £139,657 



Docetaxel 0.52 £17,651 

Local trend      

Nivolumab 0.99 £72,990 

0.45 £54,847 £122,328 

Docetaxel 0.54 £18,143 

Damped trend      

Nivolumab 0.86 £66,899 

0.34 £49,196 £142,825 

Docetaxel 0.52 £17,702 

ERG = Evidence review group. ICER = incremental cost-effectiveness ratio = incremental costs / incremental 

QALYs. QALY = quality-adjusted life-years. 

 

Table 2: Mean squared error and bias values, averaged over time. 

Relative survival model Mean squared error: Mean 

(95% confidence interval) 

Bias: Mean (95% confidence 

interval) 

Log-logistic 0.022 (0.020, 0.023) 0.106 (0.017, 0.195) 

Nelson relative survival 0.086 (0.084, 0.089) 0.166 (0.031, 0.300) 

Flexible cure model 0.202 (0.194, 0.211) 0.174 (0.039, 0.309) 

Trend dynamic survival 0.089 (0.086, 0.092) 0.127 (0.059, 0.194) 

Damped dynamic survival 0.122 (0.121, 0.124) 0.176 (0.103, 0.249) 

 

 

  



Figures 

 

Figure 1: Estimates of the trend in the hazard function from two dynamic survival models 

[Footnote: Solid-blue line: point-estimates, with 95% confidence intervals in pale blue. Black line = 

no trend.] 

 

 

  



Figure 2: Hazard estimates without external data. Left: within-sample, right: extrapolations 

[Footnote: Black line: observed hazard. Red line: general population hazard.] 

 

  



Figure 3: Hazard estimates with external data. Left: within-sample, right: extrapolations 

[Footnote: Black line: observed hazard. Red line: general population hazard.] 

 

  



Figure 4: Relative survival model estimates of the hazard function and true values (black lines) 

 

FCM: Flexible cure model. NRS: Nelson relative survival. 


