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Automated Movement Detection with Dirichlet

Process Mixture Models and Electromyography

Navin Cooray1, Zhenglin Li2, Jinzhuo Wang3, Christine Lo3, Mahnaz Arvaneh2, Mkael Symmonds4,

Michele Hu3, Maarten De Vos5, and Lyudmila S Mihaylova2

Abstract—Numerous sleep disorders are characterised by
movement during sleep, these include rapid-eye movement sleep
behaviour disorder (RBD) and periodic limb movement disorder.
The process of diagnosing movement related sleep disorders
requires laborious and time-consuming visual analysis of sleep
recordings. This process involves sleep clinicians visually in-
specting electromyogram (EMG) signals to identify abnormal
movements. The distribution of characteristics that represent
movement can be diverse and varied, ranging from brief moments
of tensing to violent outbursts. This study proposes a framework
for automated limb-movement detection by fusing data from
two EMG sensors (from the left and right limb) through a
Dirichlet process mixture model. Several features are extracted
from 10 second mini-epochs, where each mini-epoch has been
classified as ’leg-movement’ or ’no leg-movement’ based on
annotations of movement from sleep clinicians. The distributions
of the features from each category can be estimated accurately
using Gaussian mixture models with the Dirichlet process as a
prior. The available dataset includes 36 participants that have all
been diagnosed with RBD. The performance of this framework
was evaluated by a 10-fold cross validation scheme (participant
independent). The study was compared to a random forest
model and outperformed it with a mean accuracy, sensitivity,
and specificity of 94%, 48%, and 95%, respectively. These
results demonstrate the ability of this framework to automate
the detection of limb movement for the potential application of
assisting clinical diagnosis and decision-making.

Index Terms—Dirichlet Process, REM sleep behaviour disor-
der, RBD, movement detection, Gaussian mixture model

I. INTRODUCTION

Ongoing research into sleep continues to highlight its

significance to mental and physical well being [1]. Studies

of numerous sleep disorders appear to preempt the onset

of numerous neurological disorders. This includes rapid-eye

movement (REM) sleep behaviour disorder (RBD), where

mounting evidence suggests that this parasomnia predicts

Parkinson’s disease (PD) by years, potentially decades [2],

[3]. This predictive ability provides an opportunity to explore

preventative medicine and better understand how neurodegen-

erative disorders develop over time. PD is the second most

prevalent neurodegenerative disease worldwide, affecting more

than four million people [4]. Beyond the major impact to
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quality of life and increased mortality, the chronic nature and

growing disability of PD incurs major healthcare expenses

that will only continue to escalate in countries with an ageing

population [5], [6]. More work is required to understand the

development of this disorder so that preventative measures can

be devised. RBD represents one potentially promising early

predictor for a large part of PD sufferers, possibly providing

a clear avenue to target remedies before the onset of PD.

Characteristic muscle activity associated with RBD includes

complex and simple limb movements. For sleep studies, limb

movement activity is captured using EMG sensors, which are

within the electrostatic categorisation of sensing technology

[7]. Clinicians are taught to visually identify EMG activity

without a clear and precise definition. Visually identifying

muscle activity to describe limb movement is also critical

in diagnosing restless leg syndrome (RLS) and periodic limb

movement disorder (PLMD). RLS has been found to be one

of the most common sleep disorders in the United States of

America [8], [9]. One study suggests RLS and PLMD are

associated with cardiovascular disease and hypertension [10],

while another has found a link between secondary RLS (occurs

secondary to other medical conditions) and cardiovascular

disease [11].

The AASM has defined RLS as an urge to move the legs,

which must begin or worsen at rest, be partially or totally

relieved when in movement, and occurs predominantly at

night [12]. These movements must not by accounted for by

another conditions such as leg cramps, arthritis, or positional

discomfort. PLMD is far less common and is characterised by

periodic episodes of repetitive limb movement during sleep

and is distinct from RBD or RLS.

With the prevalence of sleep disorders continually increas-

ing and the growing demand to better understand sleep and its

implications on physiology (for example in RBD and RLS),

the burden placed on sleep clinics is great and their efforts

often hampered by manually-laborious diagnostic procedures.

As a result researchers are keen to explore the viability of auto-

mated diagnostic support-tools to increase efficiency, accuracy,

and productivity. Furthermore, the utility of automated sleep

analysis, provides the opportunity to better understand sleep

and its association with neurodegenerative and cardiovascular

diseases.

The rest of this paper is organised as follows. Section II

presents an overview of related work, Section III details the

problem formulation for the automated movement detection

with Dirichlet process models and how fusion of EMG data



from the left and right leg movement is performed.

II. RELATED WORK

Numerous studies aim to provide automated techniques

to identify various sleep disorders, sleep stages, or even

specific sleep characteristics. A select few algorithms look at

automating the detection of abnormal movement during sleep

using EMG signals from the chin. The AASM stipulates at

least a single EMG sensor to be placed on the chin in order

to clinically analyse sleep and specifically identify abnormal

muscle movement [12]. Diagnosing bruxism requires the ev-

idence of teeth grinding during sleep, as such a few studies

exist detailing a portable device to detect bruxism episodes

[13], [14]. These two studies focused on using a simple EMG

amplitude threshold in combination with heart rate elevation

(measured from an ECG sensor) to identify bruxism episodes.

This study demonstrated the predictive ability of an algorithm

to aid in identifying bruxism, however the degree of variation

and complexity of sleep disorder movements would mean that

a simple threshold would not suffice for applications in PLMD

and RBD. As a result the concept of automated movement de-

tection algorithm lends itself towards a non-parametric model

that can incorporate numerous sensors and compensate for

movement which can vary greatly in magnitude and severity.

A handful of other studies demonstrate this through limb

movement detection in participants with RBD and PLMD

[15]–[17].

In one study, Cesari et al. (2018), demonstrated the utility

of a non-parametric probabilistic model to distinguish leg-

movement from resting EMG mini-epochs [15]. From a dataset

containing 27 healthy controls and 36 participants diagnosed

with PLMD, this study was able to utilise this semi-supervised

approach to detect PLMD participants with 82%. As an exten-

sion of this study, Cesari et al. (2019), applied this technique

on a mixed cohort of 27 healthy controls, 36 individuals

diagnosed with PLMD, and 29 participants diagnosed with

RBD [17]. While these studies didn’t explore the performance

of limb-movement detection (as manual annotations of limb

movement are rare), it did validate its utility in distinguishing

RBD and PLMD participants from healthy individuals. In a

follow-up study this technique was expanded to a German

sleep study that was able to assess the performance of limb-

movement detection through the PLMS-index [16] using three

EMG sensors (from the chin, left tibia, and right tibia). This

German dataset contained 240 participants that were healthy

controls or diagnosed with combinations of PD, PLMD, and

RBD [16]. Each participant was given a PLMS-index score

which details the average number of limb movements per

hour of sleep. Using the aforementioned techniques [15],

[17], this study demonstrated an automated classification of

participants with PLMD and RBD with an accuracy of 88.75%

and 84.17%, respectively [16]. Once more this study was

able to assess the performance of limb movement detection

by achieving an automated PLMS-index score that correlated

to the manual score by 84.99% and only had a slight bias

towards over-predicting the PLMS-index [16]. However, these

studies are limited in that they provide a proxy to individual

event detection of limb movement (the PLMS-index) without

exploring the limb-movements as seen or annotated by sleep

clinicians. Nonetheless these studies have demonstrated the

utility and potential of limb movement detection in the auto-

mated identification of specific sleep disorders.

III. PROBLEM FORMULATION

In a previous study, Li et al. 2020 demonstrated the utility

of a Dirichlet Process (DP) mixture model to automate the

detection of sleep apnea segments and motivated movement

detection in this study [18]. The advantage of this framework is

in the data-driven approach to learn number of clusters within

the mixture models. The DP is defined as a distribution over

distributions [19]. Namely, where each observation of xi is

generated from a distribution with parameter(s) θi, which itself

is generated from a prior distribution G:

θi | G ∼ G for each i (1)

xi | θi ∼ F (θi) for each i, (2)

where F (θi) is the distribution of xi given parameter(s) θi
(note that differing θis are not necessarily distinct values).

Consider a measurable space and any finite partitions

{T1, ...., TK} of it. If G ∼ DP (α,G0), then:

(G(T1), ..., G(TK)) ∼ Dir(αG0(T1), ..., αG0(TK)). (3)

where G0 is defined as the base distribution with a concentra-

tion parameter α.

The DP can be constructed by considering a unit length stick

that is divided into an infinite number of segments represented

by πk, in the following manner:

βk ∼ Beta(1, α) (4)

πk = βk

k−1
∏

j=1

(1− βj) = βk

(

1−
k−1
∑

l=1

πl

)

. (5)

where π = {πk}
∞

k=1
is a sequence of mixture weights

and k denotes the index of the component. Finally a DP is

constructed in the following way:

θ∗

k
∼ G0 (6)

G =

∞
∑

k=1

πkδθ∗

k
(7)

G ∼ DP(α,G0), (8)

where {θ∗k}
∞

k=1
are independent and identically distributed

(i.i.d.) random variables drawn from the base distribution G0

along with draws for weights (πk) as expressed in (5).

Consider features extracted from the i-th segment as xi, its

distribution can be expressed as follows:

p(xi) =

K
∑

k=1

πN (xi;θ
∗

k
), (9)



where N (.) denotes the Gaussian distribution and the param-

eters of the k-th component are denoted by θ∗

k

∆
= {µ∗

k
,Σ∗

k
}.

The mean vector and variance matrix of the k-th Gaussian

component are represented by µ∗

k
and Σ∗

k
, respectively.

Mixture model theory assumes that each xi is generated

by first choosing a cluster, indexed by an assignment variable

zi according to a categorical distribution of π = [π1, ..., πK ]
[19], [20]. The xi observations are then generated from the

chosen component with the parameter θi = θ∗

zi
. Because the

number of components, K, and the distribution weights, π, are

unknown and are solved using the available observsations. The

framework of the DP allows to solve this problem and when

combined with the stick-breaking process (detailed before) the

generative model can be described as follows:

zi ∼ π (10)

xi ∼ N (θ∗

zi
), (11)

where {θ∗

k}
∞

k=1
are distinct values of the parameters θ∗

ks,

sampled independently from the base distribution G0(θ
∗ | λ)

(detailed in (6), where λ is the hyperparameter of G0) and the

distribution of π is given in (5).

Suppose the parameters θ∗

k
s and βks are denoted as Θ =

{θ∗

k
}∞k=1

and β = {β}∞k=1
, respectively. The random variables

β are drawn independently from a Beta distribution as defined

in (4). Let z = {zi}
N
i=1

be the cluster assignments of N

training features X = {xi}
N
i=1

and W = {β,Θ, z} be the

collection of all latent parameters. Often in clustering problems

the predictive density is calculated, and given the features X

for training and a new sample x′ for testing, the probability of

x′ being generated from the trained model can be expressed

using the product-rule:

p(x′ | X)

=

∫

p(x′ | z′,W ,X)p(z′ | W ,X)p(W | X)dz′dW (12)

=

∫

p(x′ | z′,β,Θ, z,X)p(z′ | β,Θ, z,X)p(W | X)dz′dW

(13)

=

∫

p(x′ | z′,Θ)p(z′ | β)p(W | X)dz′dW (14)

=

∫

p(x′ | θ∗

z′)p(z
′ | β)p(W | X)dz′dW (15)

where z′ is the cluster assignment of the testing data x′.

From (15) we can observe the first term, p(x′ | θ∗

z′), can

be calculated from (9) and (11), while the second term,

p(z′ | β) can be solved by (5) and (10). However, the last

term, p(W | X), is intractable but can be approximated

using a variational distribution. A variational distribution is

designed as a family of factorised distributions as described

by meanfield variational inference [21]:

q(W ;φ) =

K
∏

k=1

[

q(βk;φ
β
k)q(θ

∗

k
;φθ∗

k )
]

N
∏

i=1

q(zi) (16)

where q(zi)s are categorical distributions, φ
β
k and φθ∗

k are

parameters of distributions of q(βk) and q(θ∗

k
), with φk =

{φβ
k , φ

θ∗

k }. Through variational inference these parameters are

updated iteratively to find a minima, details of the derivation

are detailed in [22]. As a result (15) can be rewritten as:

p(x′ | X) =

∫

p(x′ | θ∗

z′)p(z
′ | β)q(W ;φ)dz′dW (17)

=

∫

p(x′ | θ∗

z′)p(z
′ | β)

K
∏

k=1

[

q(βk;φ
β
k)q(θ

∗

k
;φθ∗

k )
]

N
∏

i=1

q(zi) dz
′ dβ dθ∗ dz (18)

which can be calculated analytically. In this study, the DP

Gaussian mixture model (DPGMM) was applied in the context

of leg-movement detection in order to aid clinicians identify

abnormal segments of sleep.

Sleep medicine in its current form demands clinicians labo-

riously analyse polysomnography (PSG) recordings in order to

make diagnostic decisions. These logistical bottle-necks often

hinder epidemiological studies to better understand the link

between sleep disorders and physiology, where RBD is just

a single example. This study aims to utilise sleep recordings

from RBD participants that contain annotated notes of limb-

movement to assess a supervised probabilistic model of limb

movement detection.

IV. POLYSOMNOGRAPHY DATA

The John Radcliffe (JR) hospital retains PSG recordings

as part of National Health Service (NHS) routine care for

individuals suspected of having RBD. This study applied

through the Clinical Trials and Research Governance (CTRG)

to access anonymised case records for patients who were

suspected of having RBD and later confirmed through these

recordings. In addition to complete PSG data, these records

included: age, sex, diagnosis (recorded by clinical staff) and

treatment received at time of recording. PSG recordings were

anonymised by those who had authority to access the data.

In total 36 participants were included in the PSG recordings

and are summarised in Table I. This dataset provided two

nights of full PSG recordings for each participant. Please

note the male bias in the dataset, which is representative of

the male predominance of RBD [23]. This study complied

with the requirements of the Department of Health Research

Governance Framework for Health and Social Care 2005 and

was approved by the Oxford University hospitals National

Health Service (NHS) Trust (HH/RA/PID 11957).

TABLE I: Dataset used for this study provided from the John

Radcliffe hospital.

Cohort # Female Male Age (years)

RBD Participants 36 2 34 64.3± 7.96

All PSG recordings include an EMG of the submentalis

muscle (chin) and are annotated by sleep experts that detail



TABLE II: A list of descriptors detailing movement in the

polysomnography recordings. Text in bold are identified as

leg limb movement based on text.

Descriptors

1. Arousal 26. mouthing and arm movements
2. EVENT 6 27. move arms
3. EVENT5 28. move both arms
4. Event 11 29. move foot
5. Event 15 30. move hands
6. Event 16 31. move head
7. Event 17 32. move head and legs
8. Event 19 33. move head and right arm
9. Event 20 34. move head from side to side
10. Event 21 35. move left
11. Event 22 36. move left arm
12. Event 4 37. move legs
13. Event 7 38. move limb
14. Event 9 39. move right arm
15. Limb Movement 40. moveing arm
16. arm 41. moving hands
17. arm movements 42. moving head
18. event 23 43. shft positon
19. fine movements of head 44. shift legs
20. good range o jerks 45. shift position
21. good range of jerks 46. shifting limbs
22. hand fiddling 47. shifting position
23. head moves from side to side 48. small twitches leading to leg jerk
24. head twitch 49. straighten legs
25. lwg twitch 50. twichy hands

the sleep stage for every 30 second epoch. Datasets that were

annotated using the Rechtschaffen and Kales rules [24] were

converted to AASM sleep stages (S3 and S4 were combined

and interpreted as N3), which include wake, REM, N1, N2,

and N3 [12].

Included with these recordings are annotations, that pro-

vide movement descriptions along with a timestamp. The

descriptors provided are inconsistent and entirely dependent

on each sleep technician, they even include spelling errors.

All recordings are provided with EMG electrodes placed

on the left and right tibias (TIBL and TIBR, respectively).

Consequently, this study focused on descriptors that detail leg

movements, where examples of text are detailed in bold in

Table II.

V. DATA PROCESSING AND MODEL TRAINING

A. Signal Preprocessing

All EMG signals from participants were re-sampled at

256Hz and filtered between 10 and 100Hz (as this is the

expected EMG frequency spectrum [25]), using an 8th-order

bandpass filter. Finally a 10th-order 50Hz notch filter was also

used to suppress noise from mains supply.

B. Movement Window Size

While this dataset provided manual annotations of limb

movements with a given time-stamp, there is no detail on

the duration of the movement. The AASM ascribes limb

movement duration varies between 0.50 and 10 seconds [12].

Motivated by a data-driven approach, this study sought to

identify all unique annotations during REM sleep and to

manually verify annotations that clearly describe leg limb

movements. A distribution of absolute amplitude values 10
seconds before and after the annotation indicated that the

majority of activity occurred on average two seconds before

and 10 seconds after the annotated time-stamp. As a result

features extracted for the purposes of this study in order to

detect leg-movement focused on 10 second windows.

C. Feature Extraction

From each 10 second window numerous features were

calculated in order to train models to understand leg-movement

and the absence of leg-movement. These include commonly

used features that describe visual characteristics, such as

maximum amplitude (Amax), mean amplitude (Amean), stan-

dard deviation (Astd), variance, and the 75th percentiles.

Another popular feature used was the average power between

10 − 50Hz, which was calculated by integrating (rectangular

method) the power spectral density function. EMG energy,

as described by Liang et al. 2012, was also extracted and

measures the mean absolute amplitude over each mini-epoch

in order to quantify body movement [26]. The entropy of each

mini-epoch was also calculated, which measures the variability

of the distribution of the amplitude values [27]. The EMG rel-

ative spectral power (RSP) was also calculated for frequencies

between 10-12Hz (RSP alpha), 12-30Hz (RSP beta), and 30-

40Hz (RSP gamma). Additional features included commonly

used metrics for evaluating EMG signals to detect the absence

of atonia.

These features included the spectral edge frequency, defined

as the frequency below which 95% of the signal power is

contained [28]. The atonia index was also calculated for each

mini-epoch, which has been associated with RBD identifica-

tion since 2008 and was further improved in 2010 [29], [30].

The quantified motor activity (QMA) technique was also used

to extract the QMA amplitude, QMA baseline, QMA duration,

and the QMA percentage from each mini-epoch. The fractal

exponent was also extracted, which measures signal complex-

ity by fitting a linear line to a double logarithmic graph of

spectral power density versus frequency [31]. Our previous

work has demonstrated the utility of the fractal exponent in

RBD detection [32]. Finally the manually annotated sleep

stage was also added as a feature to focus models to identify

movement during REM stages of sleep.

D. Feature Selection

It was prudent to utilise feature selection algorithms to

identify the most parsimonious set of features to train an effec-

tive leg-movement detection classification model. This study

employed the minimum redundancy - maximum relevance

(mRMR) feature selection algorithm, through the calculation

of mutual information [33].

E. Classification

This study chose a Dirichlet Process (DP) mixture model to

classify leg-movements based on EMG features. This section

details the DP framework and how extracted features are used



to form two distributions, describing leg-movement and no leg-

movement. These distributions ares modelled by two Gaussian

mixture models (GMM), with a DP as a prior. This work was

inspired by the success of this classification in the sleep apnea

detection using oxygen saturation data as detailed by Li et al.

2019 [18].

1) Movement Detection from a Dirichlet Process Mixture

Model: A selected number of features, as described in Section

V-D, are extracted from segments that have leg-movement and

no leg-movement. The classification of these segments can

be analysed by comparing the probability of each segment

being generated from models of ’leg-movement’ and ’no leg-

movement’.

The distributions of features from ’leg-movement’ and ’no

leg-movement’ segments can be modelled by two Gaussian

mixture models (GMMs), as a GMM can approximate any

distribution accurately by setting an appropriate number of

components and adjusting parameters. For this study the two

GMM models are the same but are trained using different seg-

ments, those from ’leg-movements’ and ’no leg-movements’.

Training data, X , consisted of features from ’leg-

movements’, X1 = {x1
i }

N1

i=1
, and ’no leg-movements’, X0 =

{x0
i }

N0

i=1
. The probability of training data, x′, being generated

from either model can be calculated using (18). Finally a mini-

epoch can be classified as ’leg-movement’ by:

log
p(x′ | X1)

p(x′ | X0)
≥ c. (19)

where c is the threshold for classification, influencing the

balance of sensitivity and specificity. This was shown to be

effective in a study on apnea detection [18]. While the idea of

independently control for each limb seems trivial, the literature

on independent limb movement is not definitive. Studies

in human locomotion have demonstrated various degrees of

dependence and relative independence [34]. This is further

compounded by the question of independent limb movement

during sleep, but for the purposes of this study we have

assumed that they are independent. Therefore, features derived

from the left and right limb electromyogram sensors can be

considered independent sources and the log-likelihood can be

expressed as follows:

p(x′ | X) = p(l′, r′ | L,R) (20)

= p(l′ | L) · p(r′ | R) (21)

log
p(l′ | L1)

p(l′ | L0)
+ log

p(r′ | R1)

p(r′ | R0)
≥ c. (22)

where training data L and R, consisted of features from left

and right limb sensors, respectively. While testing data l′ and

r′ are from left and right sensors, respectively. Using cross-

fold validation the c threshold was optimised based on the

F1-score.

VI. RESULTS & DISCUSSION

Using the LEMG and REMG signals available in the PSG

recordings described in Section IV, an overlay of all limb-

movement annotations are detailed in Figure 1 (ten seconds

before and after an annotation). From this figure we can

observe that most amplitude activity occurs two seconds before

and eight seconds after an annotation of leg-movement. This

attribute informed the decision to extract features from 10

second mini-epochs. These features were used to train and

test the DPGMM to detect mini-epochs with leg-movements

through a 10-fold cross-validation scheme.

The results of ’leg-movement’ detection using the DPGMM

are detailed in Table III along with classification from a ran-

dom forest model. The DPGMM provides superior precision

and F1-score, but achieves a smaller sensitivity compared to

the random forest model. The relatively low sensitivity might

be due to the wide distribution of features for mini-epoch with

and without leg-movement. As a result the trained model be-

comes sensitive to mini-epochs with strong activity indicative

of leg-movement and was unsuccessful at classifying mini-

epochs with small segments of movement activity. Nonethe-

less, the DPGMM was able to achieve a mean precision of

0.25 and a mean specificity of 0.95. While this performance

might not be able to identify all leg-movements, its precision

and specificity might mean this technique is effective at de-

tecting movement for the purposes of RBD identification and

diagnosis. As instances of leg-movement have a wide spectrum

with respect to EMG amplitude activity (for each episode and

for every participant), this becomes the underlying cause of

misclassification. The DPGMM outperforms the random forest

model because it can take into account the features describing

different levels of activity when estimating distributions and

their Gaussian components based on training data. Once more

the features that optimised the DPGMM can be analysed to

identify important features in leg-movement detection. While

movement during REM sleep constitutes a major criteria for

diagnosing RBD, leg movement, specifically, might not be

the most frequent [35], [36]. However, this application of

targeting leg movement for RBD participants provides a proof-

of-concept that could be applied to other limbs and sleep

disorders.

TABLE III: Results of leg-movement detection using a random

forest (RF) model compared to the Dirichlet process Gaussian

mixture (DPGMM) model.

Accuracy Sensitivity Specificity Precision F1

RF 0.90± 0.028 0.79, 0.12 0.90± 0.03 0.17± 0.058 0.27± 0.082

DPGMM 0.94± 0.033 0.48± 0.19 0.95± 0.037 0.25± 0.14 0.30± 0.15

During the feature selection process (part of cross-

validation), the number of instances when each feature was

included (’votes’) in the trained model are detailed in Figure 2

as a proxy for feature importance. It is clear to see similarities

between the importance of left and right limb features, where

the annotated sleep stage was the most important for both

models of the left and right limbs. This is not surprising that

the leg-movement annotations were only identified for REM

sleep, resulting in a model focused on the feature of annotated

sleep stage. In this study manually annotated sleep staging was



Fig. 1: This figure illustrates the signal amplitude from the left and right limb electromyogram in the period ten seconds before

and after a leg-movement annotation (provided by sleep clinicians).

already provided, but remains an arduous and time-consuming

process, which would hamper any automated process to detect

leg-movements and in-turn individual with RBD or PLMD.

Additionally, important features also included the atonia index,

motor activity (duration), and fractal exponent. These features

are prominent because they are able to quantify EMG activity

effectively and are more robust to noise.

A visual representation of the DPGMM leg-movement de-

tection algorithm is depicted in Figure 3. It is clear to see

from this example the left and right leg EMG signals provides

information to detection leg-movement. However, from this

example we can also observe how slight perturbations in the

EMG signal can cause false-positives, reducing the precision

of the algorithm.

This study could be further validated by incorporating

additional data from healthy control participants and those

with other sleep disorders. Furthermore, these leg-movement

detection results could provide metrics to identify individuals

with specific sleep disorders such as RBD and PLMD. While

annotated data for sleep movement is limited and difficult

to source, the potential to explore unsupervised methods

and the application of transfer learning may prove fruitful.

Furthermore the utilisation of GMMs provides the ability

to analyse uncertainty assessments, which would provide an

interesting future extension of this work. Future work might

also look towards including video data [37] or utilising non-

contact ultrasound Doppler sensors [38] for the purposes of

leg-movement detection or more general movement detection.

A further extension of this work could look to incorporate

automatic sleep staging to avoid time-consuming and laborious

manual sleep staging, providing a much more viable automated

diagnostic tool.

VII. CONCLUSION

The proposed framework described in this study was able

to effectively identify leg-movement activity in a dataset of

participants diagnosed with RBD by fusing EMG sensors

from the left and right limb. To classify leg-movement mini-

epochs, four GMMs are trained using features from left and

right sensors and from mini-epochs containing ’leg-movement’

and ’no leg-movement’. All parameters are derived from the

training data by setting the prior of the GMMs as DPs. The

most important features as determined by the mRMR feature

selection algorithm was the annotated sleep stage, atonia index,

motor activity (duration), and the fractal exponent. Future

work will look to utilise these models to identify participants

with specific sleep disorder, while incorporating additional

datasets, and the inclusion of other features from video data.
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