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Comparative Proteomics Reveals
Evidence of Enhanced EPA Trafficking
in a Mutant Strain of Nannochloropsis
oculata

Wan Aizuddin Wan Razali 1,2, Caroline A. Evans 1 and Jagroop Pandhal 1*

1Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom, 2Faculty of Fisheries and

Food Science, Universiti Malaysia Terengganu, Terengganu, Malaysia

The marine microalga Nannochloropsis oculata is a bioproducer of eicosapentaenoic acid

(EPA), a fatty acid. EPA is incorporated into monogalactosyldiacylglycerol within N. oculata

thylakoid membranes, and there is a biotechnological need to remodel EPA synthesis to

maximize production and simplify downstream processing. In this study, random

mutagenesis and chemical inhibitor-based selection method were devised to increase

EPA production and accessibility for improved extraction. Ethyl methanesulfonate was

used as the mutagen with selective pressure achieved by using two enzyme inhibitors of

lipid metabolism: cerulenin and galvestine-1. Fatty acid methyl ester analysis of a selected

fast-growing mutant strain had a higher percentage of EPA (37.5% of total fatty acids) than

the wild-type strain (22.2% total fatty acids), with the highest EPA quantity recorded at

68.5 mg/g dry cell weight, while wild-type cells had 48.6 mg/g dry cell weight. Label-free

quantitative proteomics for differential protein expression analysis revealed that the wild-

type andmutant strains might have alternative channeling pathways for EPA synthesis. The

mutant strain showed potentially improved photosynthetic efficiency, thus synthesizing a

higher quantity of membrane lipids and EPA. The EPA synthesis pathways could also have

deviated in the mutant, where fatty acid desaturase type 2 (13.7-fold upregulated) and lipid

droplet surface protein (LDSP) (34.8-fold upregulated) were expressed significantly higher

than in the wild-type strain. This study increases the understanding of EPA trafficking in N.

oculata, leading to further strategies that can be implemented to enhance EPA synthesis in

marine microalgae.

Keywords: Nannochloropsis, eicosapentaenoic acid (EPA), ethyl methanesulfonate (EMS) random mutagenesis,

cerulenin, galvestine-1, label-free quantitative (LFQ) proteomic analysis

INTRODUCTION

Eicosapentaenoic acid (EPA) is an omega-3 long-chain polyunsaturated fatty acid (LC-PUFA) found
in fish oils and well documented to provide multiple benefits for human health (Shi et al., 2021).
However, the use of fish oils as a source of EPA has many issues, including declining fish stocks,
contamination by heavy metals and organic pollutants, unpleasant smells, and unsuitability for
vegetarian markets (Kaye et al., 2015; Shi et al., 2021). Therefore, there is a drive to obtain omega-3
(ω-3) directly from their primary source, microalgae. Microalgae are well-known sources of various
high-value bioactive compounds, including LC-PUFA, carotenoids, proteins, polyphenols,
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phytosterols, hormones, and vitamins (Levasseur et al., 2020).
Due to their metabolic capacity and relatively simple structures,
microalgae are considered the most efficient “plants” on Earth in
capturing sunlight energy (Vecchi et al., 2020), growing up to five
to ten times faster than land plants (Adamczyk et al., 2016) and
enhancing biological carbon fixation by utilizing carbon dioxide
in the atmosphere (Kumar et al., 2010). A few microalgae species
have been identified to synthesize relatively high amounts of LC-
PUFA, although efforts to increase titers are increasingly sought
to improve economic viability.

Nannochloropsis species are relatively small (2–4 µm
diameter) unicellular microalgae that contain ovoid- or cup-
shape chloroplasts (Iwai et al., 2015). Reports demonstrate
species with a relatively high concentration of ω-3 EPA of up
to 40 mg/g dry cell weight (DCW) (Chini Zittelli et al., 1999; Kent
et al., 2015). In an N. oceanica strain, 30% of total fatty acids
(TFA) were quantified as ω-3 EPA (Kaye et al., 2015), while an N.
oculata strain produced the highest reported percentage at 40%
EPA of TFA (Renaud et al., 1991). However, in order to increase
EPA production in microalgae, it is important to understand its
synthesis from a metabolic and spatial perspective.

Fatty acid (FA) synthesis occurs in chloroplasts, producing up
to 18 carbon chain lengths, whereafter EPA is reportedly
elongated in the endoplasmic reticulum (ER) prior to being
imported back into the chloroplasts for incorporation into the
thylakoid membrane polar lipid, monogalactosyldiacylglycerol
(MGDG) (Sayanova et al., 2017). The initial synthesis of FAs is
catalyzed by fatty acid synthase (FAS) and acetyl CoA carboxylase
(Chaturvedi and Fujita, 2006). Ketoacyl-acyl carrier protein
(ACP) synthase (KAS) is responsible for the elongation of
medium-chain FAs up to C16:0 in the chloroplasts (Nofiani
et al., 2019). The elongation of C18:0 to EPA in
Phaeodactylum consists of two routes, while one route is
suggested for N. gaditana (Dolch et al., 2017). The main
suggested route for N. gaditana is via the ω-6 pathway
(Janssen et al., 2020). The process consists of step-wise
conversion from C16:0 to C18:0, C18:1 Δ9, C18:2 Δ9,12 (linoleic
acid), C18:3 Δ6,9,12 (γ-linolenic acid), C20:3 Δ8,11,14 (dihomo-γ-
linolenic acid), C20:4 Δ5,8,11,14 (arachidonic acid), and C20:
5 Δ5,8,11,14,17 (EPA) via the actions of Δ0-elongase (ELO),
stroma stearoyl-ACP Δ9-desaturase (SAD), or an ER fatty acid
desaturase (ERΔ9FAD), Δ12FAD, ERΔ6FAD, Δ6-ELO,
ERΔ5FAD, and ERω3FAD, respectively (Dolch et al., 2017).

A study on N. oceanica found that during the exponential
growth phase, MGDG, phosphatidylcholine (PC), and
phosphatidylglycerols (PG) are the main membrane polar
lipids (Han et al., 2017). However, in the thylakoid
membranes, MGDG contributes approximately 40–50% to
these membrane lipids. A study in the same strain found that
60% of MGDG is enriched EPA (Junpeng et al., 2020). In a related
strain, N. gaditana, it was found that EPA resides in membrane
polar lipids during the exponential phase but translocates to
neutral lipids, triacylglycerols (TAG), toward the end of batch
growth (Janssen et al., 2019). An attempt to discover the
relationship between EPA and membrane polar lipids in N.
gaditana demonstrated that MGDG production relies on EPA
supplied from the ER to the chloroplast (Dolch et al., 2017).

Hence, EPA synthesis and translocation is a highly regulated and
complex process. This means that cell engineering approaches to
increase EPA content in microalgae have resulted in limited
success. Gene overexpression studies in N. oceanica included
targeting Δ12 desaturase (Kaye et al., 2015), Δ6 desaturase (Yang
F. et al., 2019), Δ6 elongase (Shi et al., 2021), and combined Δ5,
Δ9, and 12Δ desaturase (Poliner et al., 2018). Most of these
genetically engineered strains showed a slight increase in the EPA
content compared to the wild-type strain, although
overexpression of Δ6 desaturase even reduced the EPA
percentage of TFA in total lipids compared to the wild type
(Yang F. et al., 2019).

When highly regulated metabolic pathways are involved or
genetic tool kits for engineering specific strains are not
available, random mutagenesis with selection or screening is
an attractive option to generate desirable phenotypes. Gamma-
ray (Park et al., 2021), UV ray (Bougaran et al., 2012), 137Cs–γ
nuclear radiation (Lu et al., 2020), atmospheric and room
temperature plasma (ARTP) (Zhang et al., 2014), heavy-ion
irradiation-mediated mutagenesis (Song et al., 2018), and
chemicals (Chaturvedi et al., 2004; Wu et al., 2019) are
mutagens that have successfully been used to generate
genetic diversity in microalgae. The challenge then becomes
the implementation of successful selection strategies. Enzyme
inhibitors have shown increasing promise as a strategic
selection method following random mutagenesis
(Chaturvedi et al., 2004; Chaturvedi and Fujita, 2006; Li
et al., 2015; Fu et al., 2016). This is because enzyme
inhibitors can limit the function of a single targeted enzyme
without influencing the operation of other enzymes (Kukorelli
et al., 2013; Arora et al., 2020).

FAS inhibitors have been used previously to select microbial
strains with re-wired metabolism that have enhanced the
accumulation of specific FAs. For example, cerulenin, a FAS
inhibitor, and an oxidant triphenyl tetrazolium chloride (TTC)
were used in combination to screen Mortierella alpina mutant
cells to select strains with higher arachidonic acid (ARA)
content, an omega-6 component that has the same carbon
length as EPA (Li et al., 2015). TTC is an oxidant that can be
ingested and oxidized to a red molecule by living cells.
Cerulenin changed the FA composition by affecting FA
degradation in a Colwellia psychrerythraea strain, where
C16:1 was reduced by 12.6% of TFA, and DHA increased
by 7.8% of TFA (Wan et al., 2016). Mutants with a standard
growth rate in the presence of cerulenin were identified as
having higher FAS activity than wild-type species (Li et al.,
2015). Cerulenin was also reported to interfere with the lipid
metabolism, which caused the increase in ARA in Mortierella

alpina from 39 to 45.6% of TFA (Li et al., 2015). Cerulenin is
also effective in inhibiting β-ketoacyl-ACP synthase (KAS I,
KAS II, and KAS III) (Meng et al., 2018). Cerulenin was also
reported as the first treatment followed by N-methyl-N-nitro-
nitrosoguanidine (NTG) mutagenesis in Shewanella
electrodiphila, where the EPA increased from 20 to 30 mg/g
DCW (Zhang and Burgess, 2017). However, equivalents are
not known for selecting long-chain FA changes in microalgae
species. Another inhibitor previously tested to screen for N.
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oculata mutants with elevated lipid content was acetyl-CoA
carboxylase (ACCase) inhibitor Quizalofop. The quantity of
EPA in the mutant was not measured; however, the level of
ARA in the mutant was considerably higher than the wild-type
strain (Moha-León et al., 2019). Considering the EPA content
in MGDG; MGDG synthase inhibitors could also be used as
selective agents. MGDG synthase inhibitors include citraconic
anhydride, N-ethylmaleimide, ortho-phenanthroline,
S-nitroso-N-acetyl penicillamine, and galvestine-1 (Coves
et al., 1988; Marechal et al., 1995; Boudière et al., 2012).
Although galvestine-1 was shown to effectively inhibit
MGDG synthase, reducing MGDG quantity in Arabidopsis
thaliana (Botté et al., 2011), no previous research has been
conducted to investigate the effect of galvestine-1 on MGDG
synthesis in microalgae.

In this study, N. oculata was selected as it can synthesize
relatively high levels of EPA content compared to other
microalgae species (Adarme-Vega et al., 2012), and
previous studies have successfully applied random
mutagenesis in this strain (Chaturvedi et al., 2004;
Chaturvedi and Fujita, 2006). Moreover, N. oculata is one
of the most widely used microalgae in aquaculture hatcheries
demonstrating industrial robustness (Babuskin et al., 2014).
This work reports a random mutagenesis approach by
chemical mutagen ethyl methanesulfonate (EMS),
combined with the combined use of two specific enzyme
inhibitors of lipid metabolism, cerulenin, and galvestine-1,
for the first time, for screening the mutants. The initial aim
was to develop an improved N. oculata strain that is able to
produce enhanced EPA levels compared to wild-type cells
without comprising growth rates and subsequently apply
cross-species quantitative proteomics to generate specific
hypotheses on how metabolism has been re-wired to
generate the phenotype.

MATERIALS AND METHODS

Algal Strain and Culture Conditions
N. oculata (849/1) was provided by the Culture Center of Algae
and Protozoa (CCAP, Scotland) and was cultured in modified
f/2 medium composed of the following: 33.5 g/L artificial
seawater salt (Ultramarine Synthetic Sea Salt, Waterlife,
United Kingdom), 75 mg/L NaNO3, 4.35 mg/L
NaH2PO4.2H2O, enriched with trace elements (4.16 mg/L
Na2EDTA, 3.16 mg/L FeCl3.6H2O, 0.01 mg/L CuSO4.5H2O,
0.022 mg/L ZnSO4.7H2O, 0.01 mg/L CoCl2.6H2O, 0.18 mg/L
MnCl2.4H2O, and 0.006 mg/L Na2MoO4.2H2O) and vitamins
(0.1 mg/L thiamine HCl (B1), 0.005 mg/L cyanocobalamin
(B12), and 0.0005 mg/L biotin). The stock culture was
maintained in a 500 ml conical flask and bubbled with
0.22 µm filtered air for aeration and mixing. The incubation
temperature was 20°C, and the light intensity was 100 to
110 μmol m−2 s−1 range for 12-h light/dark cycles. The stock
culture was refreshed every week to maintain the culture in the
exponential growth phase. All the chemicals used in this study
were purchased from Sigma–Aldrich, unless otherwise stated.

Mutagenesis and Selection of
EPA-Overproducing Mutant Strains
Cells in the early exponential phase (7 × 106 cells/ml) were
refreshed with sterile f/2 medium and centrifuged at 3,488 × g
for 5 min, and EMS was added to make a final concentration of
100, 200, and 300 mM. The cells were mutagenized for 60 min,
washed three times with sterile f/2 medium, and allowed to
grow for seven days before initiating selection. The sub-lethal
chemical concentrations were determined by measuring
optical density (OD) at 595 nm using a GENios Tecan plate
reader (TECAN, Germany) (Supplementary Figures S1A,

S1B). Equal cell numbers (2 × 107 cells/ml) were spread
uniformly on f/2 medium plates (1.5% w/v) containing
50 µM of cerulenin. After three weeks of incubation at 20°C,
the number of resistant colonies from each plate was counted.
The countable plate was selected, and each colony was
inoculated in a 3 ml f/2 medium containing 50 µM of
cerulenin in 24-well plates placed under light (130 μmol m−2

s−1). The absorbance was measured at 595 nm on the plate
reader for ten days. The mutant colonies with a higher optical
density at 595 nm than wild-type N. oculata were selected and
cultured in f/2 media containing a higher concentration of
cerulenin, 60 µM. The three fastest-growing mutants were
selected for the next stage using an MGDG synthase
inhibitor, galvestine-1 (Botté et al., 2011; Boudière et al.,

FIGURE 1 | Schematic diagram of experimental cultivation system for

selecting two-time points for LFQ proteomics experiments. All experiments

were conducted at room temperature at 20°C and illuminated under

130 μmol μmol m−2 s−1 under a 12-h/12-h (day/night) cycle. The

cultures were subjected to continuous filtered aeration and bubbled at

2 L/min.
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2012). The mutants were cultured in f/2 media containing
10 µM of galvestine-1, and the fastest-growing mutant was
selected for further studies. The growth rate (µ/day) was
calculated as follows:

μ �

ln(Wf/Wi)

Δt
,

where Wf and Wi were the final and initial OD at 595 nm,
respectively, and Δt was the cultivation time in the day (Chiu
et al., 2009). The mutant with the fastest growth and EPA content
was selected for further studies.

Photobioreactor Setup for Selecting
Two-Time Points for Label-Free
Quantification Proteomics Experiments
N. oculata cultures were set up in triplicates using a 1-L flask
photobioreactor system (Figure 1). The starting optical
density at 595 nm was 0.3. All flasks were maintained at a
temperature of 20 °C and illuminated under
130 μmol μmol m−2 s−1 under a 12-h/12-h (day/night)
cycle. Cultures were subjected to continuous filtered
aeration and bubbling at 2 L/minute. The algal culture was
aerated and mixed in the same way as the pre-culture. The
optical density at 595 nm, and pH was monitored using a
portable pH meter LAQUA B-712 (Horiba, Moulton Park,
United Kingdom) every day throughout the experiments over
a 12-day period. The samples were taken on days 3, 5, 7, 9, and
12 for wild-type N. oculata and days 2, 5, 7, 9, and 12 for the
selected mutant N. oculata. The sample was taken on day 2,
considering that the selected mutant grew faster than the
wild-type N. oculata. Then 5 ml culture was taken for each
analysis of DCW, proteins and chlorophylls, lipids, and EPA.
A sample volume of 50 ml was taken for LFQ proteomics
analysis. The samples were collected in three biological
replicates for all analyses. All the sampling was done
during the dark period, 2 h before the light period started.
Harvested cells pellets (centrifuge at 4,415 × g for 5 min) were
washed with phosphate-buffered saline and centrifuged
(11,337 × g for 2 min) prior to storage at −20°C, while
proteomic samples were kept at −80°C until further analysis.

Analytical Methods
Cell pellets were freeze-dried for 24 h by using a freeze drier
(LyoQuest, Telstar, United Kingdom), and the DCW was
measured using a microbalance (CPA2P, Sartorius, OH,
United States).

Chlorophylls and proteins were quantified by using the
spectrophotometric method in triplicate (Chen and Vaidyanathan,
2013). In brief, cell pellets were lysed by glass bead-beating using a cell
disruptor (DISRUPTOR GENIE®, United States). The samples were
saponified by heating at 100°C for 30min (Digital Drybath, Thermo
Fisher Scientific, United Kingdom). An aliquot was used for protein
assay, and the remaining sample was mixed with chloroform and
methanol (ratio 2:1, v/v), vortexed (2min), centrifuged (12,000 × g,
2 min), and the top aqueous phase was used for chlorophyll assays.

Methods for quantification of nitrate (Collos et al., 1999) and
phosphate (Strickland and Parsons, 1972) in an f/2 medium were
adapted from previous studies. The supernatants from the
harvested samples were kept after filtration through a 0.22 µm
syringe filter (Millex, United Kingdom). The concentrations of
nitrate and phosphate were determined for each sampling day by
measuring the absorbance values at 220 and 885 nm, respectively.

Determination of Fatty Acid Methyl Ester
The method for determining fatty acid methyl ester (FAME) was
adapted from a previous study with slight modifications (Griffiths
et al., 2010). In brief, 300 µl toluene was added to the 2 ml
Eppendorf tube containing wet microalga biomass. The
Eppendorf tube then vortexed for 2 min and continued by
adding 300 µl of sodium methoxide. The mixture was then
transferred into the 2 ml glass vial and incubated at 80°C for
20 min. After that, the vials were kept a while at room
temperature for cooling. 300 µl boron trifluoride was added to
the vial and incubated again at 80°C for 20 min. In the meantime,
300 µl HPLC-grade water and 600 µl hexane were added to other
prepared empty 2 ml Eppendorf tubes. The mixture in the vial
was transferred to the prepared Eppendorf tube containing water
and hexane and then centrifuged at 7,916 × g for 10 min. Then,
750 µl organic phase (upper hexane-toluene layer) was
transferred to a new labeled Eppendorf tube. The extract was
then dried using inert nitrogen gas and stored at −20°C until
further analysis.

A measure of 80 µl of toluene was added to the extracted
sample and vortexed to ensure that all the extracts were well-
mixed. The mixture was then centrifuged at 11,337 × g for 2 min.
A quantity of 35 µl FAME was transferred into a GC vial and was
identified and quantified using a Thermo Finnigan TRACE
1300 GC-FID System (Thermo Fisher Scientific,
United Kingdom) onto a TR-FAME capillary column (25 m ×
0.32 mm × 0.25 µm). Then 1 µl of Supelco 37 Component FAME
Mix standard was injected as a reference and 1 µl of sample
volume was injected in split injection mode at 250°C. The split
flow was 75 ml/min. The GC was operated at a constant flow of
1.5 ml/min helium. The temperature program was started at
150°C for 1 min, followed by temperature ramping at 10°C/
min to a final temperature of 250°C, and held constant at
250°C for 1 min. The total analysis time was 15 min, and the
standard 37 FAME was injected for all 24 samples to ensure that
the system was working correctly.

The peak identities were ascertained for data interpretation
and analysis using external Supelco 37 Component FAME Mix
standard, C16, C18, and C20:5 standards. The peak areas were
integrated using a chromatography data system, Chromeleon 7
software (Thermo Fisher Scientific, United Kingdom). Based on
the known amount value of 37 FAME components, C16, C18, and
C20:5 standards, a ratio was established between the area and the
amount. The amount of unknown components in the microalgal
extract was then determined by their peak areas and calculated in
mg/g DCW.

The quantification of FAME within TAG and polar lipids was
adapted from a previous study with modifications (Janssen et al.,
2019). In brief, total lipids were extracted from wet microalgae
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biomass using a standard Folch method (Axelsson and Gentili,
2014). C17:0 PC and C17:0 triheptadecanoin were added to the
samples prior to the extraction of total lipids. Then 2 ml of
methanol was added to the samples and homogenized for 1 min
using a homogenizer Ultra-Turrax® T 25 (Ultra-Turrax,
Germany), followed by the addition of 4 ml of chloroform and
further homogenization for 2 min. The total lipid solution was
filtered through a 0.22-µm filter (SLS, United Kingdom). The cell
debris were rinsed with 2 ml fresh solvent (chloroform and
methanol, ratio 2:1, v/v) and combined with the previous
filtrate. 2 ml of potassium chloride solution (8.8 g/L) was
added, and the mixture vortexed for 1 min. The top solvent
layer was discarded, and the bottom solvent was evaporated
using a centrifugal evaporator (Jouan, United States). The total
lipid extract was dissolved in chloroform and spotted onto a thin
liquid chromatography (TLC) plate along with TAG and polar
lipid standard. The mobile phase used was iso-hexane, ether, and
formic acid (80:20:2, v/v/v) to separate the TAG and polar lipids.
The TAG and polar lipid fractions were removed by scraping the
silica into test tubes, followed by re-extraction using iso-hexane
and ether (1:1, v/v) and chloroform, methanol, and distilled water
(5:5:1, v/v/v), respectively. A total of 1 ml of toluene and 2 ml of
1% sulfuric acid in methanol were added for transesterification,
and the samples were incubated at 50°C for 16 h. Then 5 µl FAME
sample was identified and quantified using a GG, Agilent 6890
model (Agilent Technologies, United States), onto a CP-Wax (52
CB) GC column (30 m × 0.25 mm × 0.15 µm). In total, 1 µl of
FAME standard (Nu-Chek Prep, United States) was injected as a
reference, and 1 µl of sample volume was injected in split
injection mode at 230°C. The GC was operated at a constant
flow of 1 ml/min hydrogen. The temperature programwas started
at 170°C for 3 min, followed by temperature ramping at 4°C/min
to a final temperature of 220°C and held constant at 220°C for
10 min. Peak areas were integrated using a chromatography data
system, Agilent Chemstation software (Agilent Technologies,
United States). The EPA of TFA in TAG and polar lipids were
determined by their peak areas and quantified against the added
internal standard.

Statistical Analysis for Growth Profiles
Statistical differences for all growth profiles data, percentages, and
quantification of EPA were performed by Student’s t-test, with
three replicates (n = 3). Array 1 was for wild-type N. oculata, and
array 2 was for the selected mutant N. oculata; 2-tails and type 1
were set using Microsoft® Excel® for Microsoft 365 MSO
(Washington, United States). The data were considered
significant when the p-value was at least <0.05.

Protein Extraction and Quantification
In total, 50 ml microalga samples were harvested at early
exponential phase on day 2 and late exponential phase on
day 12 for the selected mutant N. oculata, and at early
exponential phase on day 3 and late exponential phase on
day 12 for wild-type N. oculata in triplicates via
centrifugation at 4,000 g for 15 min at 4°C. The supernatants
were discarded, and the samples were kept at −80°C until further
use. Crude proteins were extracted as described previously

(Posch, 2014). A measure of 1 ml of lysis buffer (2% sodium
dodecyl sulfate (SDS), 40 mM Tris base, and 60 mM
dithiothreitol (DTT)) and 10 µL Halt™ protease inhibitor
cocktail (Thermo Fisher Scientific, United Kingdom) were
added to the samples pellets and put on ice for thawing.
500 µl glass beads having sizes 425–600 µm were added to
the sample tubes. The samples were vortexed for 20 cycles
(30 s vortexed and then 30 s cooled on ice). Lysed samples
were centrifuged at 18,000 × g for 5 min at 4°C. The samples
were kept on ice for 30 min until the foam subsided. The
supernatants (crude protein) were transferred to 1.5-ml
protein LoBind Eppendorf tubes and stored at −80°C.

Two sets of samples were purified from lipids, pigments, and
other contaminants by using a protein 2D clean-up kit (GE
Healthcare, United States) by following the manufacturer’s
protocols. The 2D cleaned-up protein pellets were resuspended
in 100 µl urea buffer (8 M urea, 100 mM Tris–HCl (pH 8.5), and
5 mM DTT) for 1D SDS-PAGE and in-solution digestion,
respectively. The samples were incubated in a sonication bath
for 5 min to dissolve protein into the urea buffer. Then, the
proteins samples were quantified using a NanoDrop™ 2000
(Thermo Fisher Scientific, United Kingdom)
spectrophotometer. The spectrophotometer setting was set as
1 mg/ml equals to 1 optical density reading at 280 nm. BSA was
used to create a standard curve with urea buffer (1, 0.8, 0.6, 0.4,
0.2, 0.1 mg/ml) (Supplementary Figures S2A, S2B).

In-Solution Digestion
A measure of 50 µg protein was transferred to a sterile protein
LoBind Eppendorf tube. Protein samples were diluted to 10 µl
with urea buffer and incubated at 37°C for 30 min. Then 1 µl
100 mM iodoacetamide was added and incubated in the dark for
30 min at 20°C to S-alkylate the protein samples. A measure of
2 µg Trypsin/Lys-C mix (Promega, United States) was added to
the protein solutions and incubated for 3 h at 37°C; 75 µl
(50 mM Tris–HCl (pH 8.5), 10 mM CaCl2) was added to the
protein solution and incubated overnight (16–20 h) at 37°C for
trypsin digestion (Hitchcock et al., 2016); 5 µg of protein
samples were run via 1D SDS-PAGE to confirm that the
protein was digested; 4.8 µl (5% of the total protein solution)
of 10% TFA was added to the protein solution to stop the
digestion process. Pierce® C18 spin columns (Thermo Fisher
Scientific, United Kingdom) were used for desalting the samples
by following the manufacturer’s protocols; and 60 µl purified
protein samples were collected from the spin columns. The
samples were dried using a vacuum evaporator (Concentrator
plus, Eppendorf, Germany) and stored at −80°C for further mass
spectrometry analysis.

LC-MS/MS for Proteomics
LC-MS/MS was performed and analyzed by nano-flow liquid
chromatography (U3000 RSLCnano, Thermo Fisher Scientific,
United Kingdom) coupled to a hybrid quadrupole-orbitrap mass
spectrometer (Q Exactive HF, Thermo Fisher Scientific,
United Kingdom). Peptides were separated on an Easy-Spray
C18 column (75 μm × 50 cm) using a 2-step gradient from 3%
solvent A (0.1% formic acid in water) to 10% B over 5 min and
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then to 50% solvent B (0.1% formic acid in 80% acetonitrile) over
180 min at 300 nl min-1, 40°C. The mass spectrometer was
programmed for data-dependent acquisition with 10 product
ion scans (resolution 30,000, automatic gain control 1e5,
maximum injection time 60 ms, isolation window 1.2 Th,
normalized collision energy 27, and intensity threshold 3.3e4)
per full MS scan (resolution 120,000, automatic gain control 1e6,
maximum injection time 60 ms) with a 20-s exclusion time. Each
sample was run in triplicate.

Protein Identification and Generation of
Label-Free Quantification Quantitative
Proteomic Data
Mass spectrometry data in *.raw format were processed using
MaxQuant v. 1.6.17 integrated with the MaxLFQ algorithm.
Proteins were identified by searching the MS data files against
an in-house constructed Nannochloropsis proteome database.
The proteome database is a combination of Nannochloropsis
strains downloaded from NCBI (December 2020), UniProt
(December 2020), and extracted from the MSPnr100 database
(Tran et al., 2016). The total number of protein sequences in
the combined Nannochloropsis proteome database was
16,270 proteins. A 1% FDR was applied, and default
settings were applied. Search parameters specified tryptic
cleavage, carbamidomethyl-Cys (fixed modification), Met
oxidation, and protein N-terminal acetylation (variable
modifications) with a maximum of two missed cleavages.
In total, seven amino acids were set at the minimum peptide
length.

Statistical Analysis of Label-Free
Quantification Quantitative Proteomic Data
Statistical analyses were performed using LFQ-Analyst (https://
bioinformatics.erc.monash.edu/apps/LFQ-Analyst/), whereby
the LFQ intensity values were used for protein quantification.
The missing values were replaced by values drawn from a normal
distribution of 1.8 standard deviations and a width of 0.3 for each
sample (Perseus-type). Differential expression analysis was
performed using protein-wise linear models combined with
empirical Bayesian statistics using the Bioconductor package
limma. The Benjamini–Hochberg method of FDR correction
was used. The adjusted p-value cutoff was set at 0.05, and the
log2 fold change cutoff was set at 1.

RESULTS AND DISCUSSION

Growth Profiles of Wild-Type and M1
Mutant N. oculata
Mutants of wild-type N. oculata were randomly generated
using EMS, and desirable phenotypes were first screened using
the FAS inhibitor, cerulenin, with the hypothesis that traits
such as alternative mechanisms or increased synthesis of EPA
and TAG would be selected. A total of 82 colonies were
counted on f/2 medium agar plates with 200 mM EMS and

50 µM cerulenin after three weeks of incubation
(Supplementary Figure S3B); 100 and 300 mM EMS
concentrations generated too many or no mutants,
respectively (Supplementary Figures S3A, S3C). Finally,
200 mM EMS was selected as the concentration to generate
mutants. All 82 colonies from the 200 mM EMS agar plate
were isolated and grown in 24-well plates in f/2 media
containing 50 µM cerulenin and cultivated under
130 μmol m−2 s−1 illumination (12-h light/dark cycle) at
20°C. After ten days, 20 mutants were recorded with a
higher OD (595 nm) than the wild-type N. oculata cells
(Figure 2A). These 20 mutants were subsequently
cultivated in f/2 media containing a higher cerulenin
concentration, 60 μM, and three mutants (labeled M1, M18,
and M45) that reached the highest OD (595 nm) were further
selected for the next stage of screening using galvestine-1
(Figure 2B). The selected three mutants were cultured for
ten days in an f/2 medium containing 10 µM galvestine-1, the
sub-lethal concentration for wild-type N. oculata. M1 and
M18 mutants’ growth rate per day were statistically
significantly higher than wild-type cells, with a p-value less
than 0.01 (Figure 3). The FA profile of M1, M18, and M45
mutant strains showed elevated levels of EPA compared to the
wild-type strain (Supplementary Figures S4, S5). M1 mutant
recorded the highest EPA (33.6%) of TFA in total lipids
compared to other mutants and the wild-type strain.
Hence, M1 mutant N. oculata was selected for further
growth and FAME analysis before LFQ proteomics analysis.

Wild-type and M1 mutant N. oculata cells were cultivated in
1-L flasks in triplicate at 150 μmol m−2 s−1 under a 12-h/12-h
(day/night) cycle for 12 days. The growth performance, nutrient
uptake, and changes of FAME profiles were monitored in order to
select two-time points where EPA and TAG synthesis were at an
optimum level and where differential protein expression analysis
would provide insight into novel cellular adaptations. Even
though the M1 mutant showed a higher growth rate than
wild-type cells during screening in 24-well plates, and despite
a higher final DCW in the mutant strain (day 12), no statistical
significance was observed (Figures 4A,B). However, chlorophyll
a in the M1 mutant was statistically significantly higher than
wild-type cells from day 7 onward (Figure 4C), suggesting more
efficient light-harvesting and photosynthetic capability than the
wild-type.

The pH was recorded around 7–8.5 for both the wild-type and
M1 mutant cultures, suggesting that the aeration was sufficient to
control the pH at the optimum conditions. A pH of 8.5 was
previously reported to be optimal for Nannochloropsis sp. growth
(Khatoon et al., 2014).

Nitrate and phosphate concentrations in the f/2 medium were
also monitored during growth. Although these macronutrients
are essential for microalgae growth (Hu and Gao, 2006), their
uptake rates could affect the FA profiles (Rasdi and Qin, 2015).
Nitrate was rapidly consumed until day 5 and was below
detection limits by day 9 of culturing (Figure 4D). The M1
mutant displayed a faster nitrate uptake, with the nitrate
concentration decreasing in the media from 330 to 255 μM
during two days of culturing, whereas the nitrate in the wild-
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type N. oculata flasks reduced from 330 to 299 μM within
three days. Nitrate limited condition in the f/2 medium after
day 9 could trigger the synthesis of neutral lipids, as observed in

several oleaginous microalgae (Burch and Franz, 2016; Tran et al.,
2016; Remmers et al., 2017).

Similarly, phosphate concentrations reduced to below
detectable limits during growth within 2 and 3 days for M1
mutant and wild-type cells, respectively (Figure 4D). Overall,
the nitrate and phosphate results suggested that the wild-type and
M1 mutant strains had completed their batch growth over
nine days of culturing.

Fatty Acid Methyl Ester Profiles
The compositions of FAME in wild-type and M1 mutant N.
oculata cells were measured by GC-FID analysis. In terms of
percentage composition (Figures 5A,B), the major FAME
observed in both wild-type and M1 mutant strains were C16:0
(palmitic acid), C16:1 (palmitoleic acid), and C20:5 (EPA). The
other FAMEs identified were C14:0 (myristic acid), C18:0 (stearic
acid), C18:1 (oleic acid), C18:2 (linoleic acid), C18:3 (α/γ-
linolenic-acid), and C20:4 (arachidonic acid/eicosatetraenoic
acid). At the early exponential phase, the percentage of EPA
was highest at 37.5 and 22.2% for M1 mutant and wild-type N.
oculata, respectively (Figures 5A,B). This percentage of EPA in
M1 mutant N. oculata was considerably higher than quantified at
the mid-exponential phase in a previous N. oceanica study
(Poliner et al., 2018). The higher percentage of EPA of TFA in

FIGURE 2 | Biomass density of N. oculatamutants after eight days of growth in f/2 medium containing cerulenin. The initial optical density of 595 nm was 0.15 at

day 0 (A) Optical density of 82 N. oculata mutants in 50 µM cerulenin. (B) Optical density of 20 N. oculata mutants containing 60 µM cerulenin. The cultures were

incubated at 130 μmol m−2s−1, 20°C, under a 12-h/12-h (light/dark) cycle. The green rectangle and blue line represent the biomass density of the wild-type N. oculata.

FIGURE 3 | Growth rate per day comparisons of mutants M1, M18,

M45, and wild-type N. oculata, incubated at 130 μmol m−2s−1, 20°C, under a

12-h/12-h (light/dark) cycle and 160 RPM shaking for ten days. Mean ±

standard deviation is shown (n = 3) and t-tests determine the statistical

significance (p < 0.05 [*]; p < 0.01 [**]; and p < 0.001 [***]) of the M1 mutant

strain compared to the wild-type strain.
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total lipids at the early exponential phase in both strains suggested
that EPA synthesis prefers favorable growth conditions. A
previous study showed the chlorophyll a was directly
proportional to MGDG quantity, where day 8 (exponential

phase) had a higher chlorophyll a and MGDG quantity than
day 12 in N. salina (Koh et al., 2019).

Total FAME amounts (mg/g DCW) were calculated by
referring to the standard FAME intensity, as shown in Figures

FIGURE 4 | Growth profiles for wild-type and M1 mutant N. oculata cultivated in 1-L flasks under 150 μmol m−2 s−1, 20°C, and aerated bubbling for mixing and

carbon source for 12 days. (A)Growth curves illustrated by optical density at 595 nm and (B) DCW. Comparison of wild-type and M1mutant N. oculata over 12 days of

culturing for (C) chlorophyll concentration and (D) phosphate (P) and nitrate (N) uptake profiles. Mean ± standard deviation is shown (n = 3) and t-tests determine the

statistical significance (p < 0.05 [*]; p < 0.01 [**]; and p < 0.001 [***]) of the M1 mutant strain compared to the wild-type strain.

FIGURE 5 | Percentages (%) of fatty acids at day 12. (A)Wild-type and (B)M1 mutant N. oculata. Quantification (mg/g) of fatty acids at day 12. (C)Wild-type and

(D)M1 mutant N. oculata. Mean ± standard deviation is shown (n = 3) and t-tests determine the statistical significance (p < 0.05 [*]; p < 0.01 [**]; p < 0.001 [***]) for EPA

content in the M1 mutant strain compared to the wild-type strain.
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5C,D. The EPA concentration increased gradually after day 2 and
reached the highest (68.5 mg/g DCW) on day 12 for M1 mutant
N. oculata. In contrast, the wild-type strain showed the highest
EPA of 48.6 mg/g DCW on day 5. The EPA quantity recorded in
M1 mutant was considerably higher than those in previous
studies. Shi et al. (2021) recorded EPA at 40 and 45 mg/g
DCW on day 4 for a wild-type N. oceanica strain and a Δ6
elongase overexpression strain, respectively. Yang et al. (2019a)
described a Δ6 desaturase overexpression N. oceanica strain with
62.35 mg/g DCW on day 10, which decreased to around 50 mg/g
DCW on day 13, while the wild-type strain had approximately
40 mg/g DCW on day 10, which increased to around 60 mg/g
DCW on day 13.

An increase in neutral lipids (C16:0 and C16:1) was observed
during batch growth in both strains and, as predicted, were
inversely proportional to the nutrients level in the f/2 medium.
The percentage of neutral lipids gradually increased for both
wild-type and M1 mutant strain and reached the highest (35 and
27%, respectively) on day 12. Nutrient limitation is known to
induce TAG accumulation as a stress response, and a previous
study showed that C16:0 reached the maximum of around 40% of
TFA under these conditions (Wei and Huang, 2017). In order to
further investigate the increase in EPA content, two time-points
were chosen based on the FAs profiles between TAG and EPA,
EPA percentages, and absolute EPA quantifications. The two
most significant time points were when the EPA content was
measured at the highest and the lowest level compared to C16:0

and C16:1 components. Hence, the early exponential phase (days
2 and 3) and late exponential phase (day 12) were chosen as two-
time points for LFQ proteomics analysis.

LFQ Proteomic Overview
LFQ proteomics was conducted at two-time points, early and late
exponential phase, in order to investigate differential protein
expression patterns that could contribute to higher EPA synthesis
in ourM1mutantN. oculata strain. Days 2 and 3 were selected for
the early exponential phase in M1 mutant and wild-type N.
oculata, respectively, while day 12 was selected for the late
exponential phase.

MS/MS scans for LFQ experiments for wild-type and M1
mutant N. oculata in early exponential phase and end of
exponential phase samples are shown in Supplementary Table

S1. The UniProt proteome database (December 2020) contains
only 219 proteins for N. oculata, although there are 15,363
proteins for Nannochloropsis gaditana. Hence, for this study, a
Nannochloropsis genus proteome database was created by
combining sequences from UniProt, NCBI, and MSPnr100
(Tran et al., 2016; Wang and Jia, 2020). The combined
proteome database of the Nannochloropsis genus consisted of
16,270 protein sequences, and our identification process relied on
matching identical peptide sequences.

A PCA plot for sample clustering and volcano plots
displaying significantly differentially quantified proteins
are shown in Figure 6. The number of protein groups with

FIGURE 6 | PCA plots show 12 samples clustered by biological replicates: (A)Wild-type N. oculata samples day 3 (light blue) and day 12 (pink) and (B)M1mutant

N. oculata samples day 2 (light blue) and day 12 (pink). Volcano plots show the significant protein distributions in wild-type (C) and M1 mutant (D) N. oculata.
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at least two peptides was 422 and 434 for wild-type and M1
mutant N. oculata, respectively. The numbers of significant
proteins (> 2-fold changes and p-value < 0.05) were 123 and
103 for the wild-type and M1 mutant strain, respectively
(Supplementary Tables S2, S3). Differential protein analyses
will be discussed in relation to growth and stress,
photosynthetic systems, FA, TAG and EPA synthesis, and
membrane remodeling. The data were analyzed by comparing
the early versus late exponential phase for the wild-type strain
and subsequently the same switch in the growth phase in the
mutant strain, following a discussion on how these differed.

Photosynthetic System
Photosynthesis is the process where microalgae convert and store
solar energy as energy-rich organic molecules as a source of
energy for microalgae cell growth. Cell growth is associated with
cell division and complex biochemical processes, including cell
cycle machinery, cytoskeletal elements, chromosomes, and
membranes (Kagıalı et al., 2017). In this study, cell division
protein was a 10.4-fold increased in abundance in the M1

mutant strain from early to late exponential phase, while 7-
fold upregulated in the wild-type strain. The higher cell
division protein level in the M1 mutant could be related to
faster cell division in the M1 mutant than in the wild-type
strain. During autotrophic growth, microalgae cells utilize light
energy harvested by chlorophyll molecules and convert carbon
dioxide and water to carbohydrates and oxygen. Photosynthetic
(rates) are different across microalgae species and culture
conditions (Costache et al., 2013). The photosynthetic
mechanism is organized in organelles, thylakoids, and stroma
in chloroplasts. Different species of microalgae have specific
preferences for the chlorophyll-binding group. For example,
Chl a/b-binding proteins found in Viridiplantae (LHCA/
LHCB), fucoxanthin Chl a/c-binding protein (FCP or LHCF)
in diatoms, and LHCR in red algae (Carbonera et al., 2014). N.
oculata has only chlorophyll a as a primary photosynthetic
pigment and one plastid (Szabó et al., 2014). Maximizing the
light absorption of light-harvesting antennae is a sustainable way
to increase the growth rate and biomass production of microalgae
cells (Szabó et al., 2014). Photosynthetic proteins in the M1

FIGURE 7 | Diagram of enzyme regulations from day 3 to day 12 for carbon fixation toward TAG biosynthesis pathways for wild-type N. oculata. The diagram

shows the pathways and their relation to fatty acid synthesis pathways. Significant quantified proteins are shown in the green and red boxes for upregulated and

downregulated proteins, respectively.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83844510

Wan Razali et al. Enhanced EPA Trafficking in N. oculata



mutant were mostly upregulated from the early to late
exponential phase, including photosystem I iron–sulfur center
(22.3-fold increase), photosystem I subunit III (15.7-fold
increase), chlorophyll A-B-binding protein (13.6-fold increase),
photosystem II 12 kDa extrinsic protein (12.9-fold increase),
photosystem II 11 kDa protein (12.4-fold increase),
photosystem II CP43 reaction center protein (5.6-fold
increase), chloroplast light-harvesting protein isoform 4 (5.5-
fold increase), photosystem I reaction center subunit IV (5.2-
fold increase), and photosystem I reaction center subunit XI (4.6-
fold increase). The only photosynthetic protein found to increase
significantly in the wild-type strain during the period of
exponential phase was photosystem I reaction center subunit
IV (3-fold increase). The results suggest that a faster
photosynthetic efficiency was achieved in the M1 mutant. This

increase in photosynthetic proteins led to the hypothesis that
more NADPH could be available for reductive synthesis
processes in the M1 mutant, hence contributing to the high
efficiency of EPA synthesis. This is because the availability of
NADPH has previously been shown to increase the reaction
velocity of NADPH-requiring enzymes involved in FA synthesis
such as acetyl-CoA carboxylase (ACCase) and ATP citrate lyase
(ATP: CL) (Mühlroth et al., 2013). In N. salina, the increase in
NADPH has recently been linked to higher FA synthesis (Jeon
et al., 2021).

Rieske (2f3-2s) region protein and ferredoxin are common
proteins involved in electron transfer chains in the mitochondria
and chloroplast for NADPH generation (Fukuyama, 2004;
Kameda et al., 2011). Rieske (2f3-2s) region protein was 52-
fold upregulated, and ferredoxin was 29.7-fold upregulated in the

FIGURE 8 | Diagram of enzyme regulations from day 2 to day 12 for carbon fixation toward TAG biosynthesis pathways for M1 mutant N. oculata. The diagram

shows the pathways and their relation to fatty acid synthesis pathways. Significant quantified proteins are shown in the green and red boxes for upregulated and

downregulated proteins, respectively.
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M1 mutant strain, from early exponential to late exponential
phase. However, Rieske (2f3-2s) region protein and ferredoxin
were not significantly regulated in wild-type strain over the same
growth phase.

FA, TAG, and EPA Synthesis
The proteomic data highlighted the differences in the relative
expression of key enzymes associated with the synthesis of FAs,
TAG, and EPA. Lipid droplet surface protein (LDSP) was
identified as one of the most differentially expressed proteins
in both wild-type and M1 mutant N. oculata. LDSP are novel
proteins associated with lipid droplets in Nannochloropsis sp.,
previously linked to the TAG storage compartment (Vieler et al.,
2012). Moreover, lipid droplet structure is highly dynamic and
involved in various cellular processes, such as regulation of energy
homeostasis, remodeling of membranes and signaling
(Zienkiewicz and Zienkiewicz, 2020). LDSP was 8.5-fold
upregulated from day 3 to day 12 in wild-type N. oculata

(Figure 7). However, LDPS was 34.8-fold upregulated in M1
mutant N. oculata from day 2 to day 12 (Figure 8). The increase
in LDPS in wild-type cells was expected where the C16:0 quantity
(mg/g DCW) had a 2.7-fold increase at the late exponential phase.
This level of change was seen previously in N. oculata cells (Tran
et al., 2016), where LDSP was 2.4-fold upregulated after 11 days of
cultivation. However, the much larger fold change LDSP in the
M1mutant strain implies a major alteration in cell regulation that
leads to an increase in FAs.

In contrast, acyl-coenzyme A dehydrogenase (ACAD) had a
35-fold increase in the wild-type strain compared to a smaller 9.2-
fold increase in theM1mutant. ACAD is responsible for FA beta-
oxidation in mitochondria (Tan and Lee, 2016), and therefore a
reduced rate of FA degradation in the mutant relative to the wild-
type appears probable. Acetyl CoA carboxylase (ACCase)
converts acetyl-CoA to malonyl-CoA and serves as a carbon
donor for FA chain extension in the plastid (Li et al., 2014). 3-
hydroxyacyl-CoA dehydrogenase (HCDH) is involved in FA
metabolism and catalyzes the reduction of 3-hydroxyacyl-CoA
to 3-oxoacyl-CoA. Short- andmedium-chain HCDH reside in the

mitochondrial matrix, while long-chain HCDH is part of the
membrane-associated multifunction protein in the mitochondria
and peroxisome (Xu et al., 2014). HCDH had a 23.6-fold increase
in the M1 mutant, significantly higher than the increase observed
in wild-type N. oculata (3.7-fold). Although several enzymes are
involved in FA elongation, for example, 3-oxoacyl-reductase, 3-
hydroacyl-CoA dehydratase and enoyl-CoA reductase (process
palmitic acid (C16:0) to stearic acid (C18:0)) (Kapase et al., 2018),
these proteins were not detected here.

Fatty acid desaturase type 2 (FAD2) was 13.7-fold upregulated
in theM1mutant strain, whereas it was not significantly regulated
in the wild-type strain. FAD2 enzyme is part of integral
membrane protein in ER, responsible for the biological switch
from oleic acid (C18:1) to linoleic acid (C18:2) (Dar et al., 2017).
This finding suggests that FAD2 protein may be actively involved
in EPA synthesis in the ER. On the contrary, 3-ketoacyl-
mitochondrial was 6.5-fold upregulated in wild-type and not
differentially expressed in the M1 mutant. With reference to the
UniProt database and gene ontology functions, 3-ketoacyl-CoA
thiolase and 3-ketoacyl-mitochondrial share a similar function
that enables acetyl-CoA C-acyltransferase activity. 3-ketoacyl-
CoA thiolase enzyme is involved in FA beta-oxidation, whereas
acetyl-CoA is catalyzed in the chloroplast for FA synthesis
(Osumi et al., 1992; Kechasov et al., 2020). Another protein
with a potential role is 3-ketoacyl-ACP synthase (KAS), an
important enzyme involved in FA elongation in plastids
(Chaturvedi and Fujita, 2006; Morales-Sánchez et al., 2016).

Three possible spatial routes have been previously suggested for
EPA synthesis (Mühlroth et al., 2013): 1) chloroplast→ acetyl-CoA
→ ER → membrane lipids, 2) chloroplast → mitochondrion →

acetyl-CoA→ ER→membrane lipids, and 3) chloroplast→ citrate
→ acetyl-CoA → ER → membrane lipids. Due to the nature of
proteomics data with missing proteins, it is difficult to confirm
which route is likely for N. oculata wild-type and M1 mutant cells.
However, based on differential protein expression, it is possible that
wild-type N. oculata undertook the first or second route when 3-
ketoacyl-mitochondrial was 6.5-fold upregulated in the
chloroplast–mitochondria pathway. In the M1 mutant, EPA

FIGURE 9 | Fatty acid content. (A) EPA percentages (%) of TFA in polar lipids and TAG at day 2 (M1 mutant), day 3 (wild-type), and day 12 (wild-type and M1

mutant) N. oculata. (B) Polar lipid (PL):TAG quantity ratio (mg/g) at day 2 (M1 mutant), day 3 (wild-type), and day 12 (wild-type and M1 mutant) N. oculata. Mean ±

standard deviation is shown (n = 3) and t-tests determine the statistical significance (p < 0.05 [*]; p < 0.01 [**]; p < 0.001 [***]) for EPA content in the M1 mutant strain

compared to the wild-type strain.
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synthesis may be maximized outside the chloroplast; in the cytosol
and ER. The EPAmay be incorporated intomembrane lipids during
the exponential phase. The highest EPA was quantified on day 12
with 68.5 mg/g DCW, suggesting that EPA could be translocated
frommembrane lipids to TAG at the end exponential phase period.

Membrane Lipid Remodeling
Lipidomic analyses have shown increased accumulation of neutral
lipids during nitrogen-deprived conditions, in addition to a decrease
in the level of membrane lipids (Han et al., 2017; Liang et al., 2019).
This implies that cellular responses responsible for TAG
accumulation are related to the modification of membrane lipids.
Under nitrogen constraint,MGDGwas the predominantmembrane
lipid component that was reduced in N. oceanica, which was
proposed as a protective mechanism to prevent the degradation
of the thylakoid and chloroplast envelope membranes (Han et al.,
2017). The membrane lipid composition was also remodeled under
phosphate starvation in the same strain, where phospholipids were
replaced by betaine lipids (Murakami et al., 2020). Ourmethodology
of combined mutagenesis and selection with galvestine-1 also
remodeled membrane lipids in N. oculata. A high level of LDSP
expression in M1 mutant N. oculata cells suggests that the
membrane lipids were modified and converted to TAG at
significantly higher levels, and hence EPA that is usually enriched
in membrane lipids were transported to TAG. Both biomass growth
and FA synthesis compete for the same substrates, acetyl-CoA and
NADPH; hence substrate availability is a rate-limiting step in
balancing growth rate and FA accumulation (Tan and Lee, 2016).
Acetyl-CoA conversion is derived from the glycolytic process, and
pyruvate kinase (PK) and enolase are identified as primary
photosynthate (Tran et al., 2016). Carbohydrates in the form of
pyruvate are converted to acetyl-CoA to supply the cell with energy
and reduced carbon (Mühlroth et al., 2013). Acetyl-CoA also is a key
metabolite in both the TCA cycle in the mitochondrion and FA
synthesis in the chloroplast (Mühlroth et al., 2013).
Phosphoglucomutase is involved in chrysolaminarin synthesis
and functions as a critical node in sharing the carbon precursors
between carbohydrate and lipid metabolism (Yang Y.-F. et al., 2019)
and had an 11.5-fold increase in the M1mutant cells, whereas it was
only 4-fold upregulated in the wild-type strain. A higher
carbohydrate metabolic process in M1 mutant might suggest a
higher quantity of membrane lipids is present in M1 mutant
cells, which could be used to facilitate higher EPA quantities,
than in the wild-type strain.

Identifying protein changes that contribute to membrane lipid
composition remains challenging because a relatively small
number of membrane proteins have been sequenced and
studied in algae (Garibay-Hernández et al., 2017). MGDG and
DGDG are the major lipids of the photosynthetic membrane,
where MGDG is synthesized in the chloroplast (Dolch et al.,
2017), and DGDG is synthesized in both chloroplast and ER
(Cecchin et al., 2020). The formation of membrane polar lipids is
intrinsically linked to photosynthesis, for example, there is
evidence to suggest that the light-harvesting complex may
stabilize the MGDG component in thylakoids membranes
(Han et al., 2017). A greater membrane lipid content in M1
mutant could be due to more efficient light-harvesting within

photosynthesis. As a result, during the early exponential phase
growth, more EPA might be produced. When the mutant cells
approached the end of the exponential phase, the lower MGDG
led to more EPA being translocated outside the membrane lipid,
resulting in a greater overall EPA level. The cell wall architecture
of N. oculata is primarily composed of polysaccharides, with 68%
as glucose subunits (Scholz et al., 2014). Through glycolysis,
glucose sourced from the cell wall can be oxidized to generate
energy that can be diverted to FA synthesis. In a recent study,
during nitrogen starvation, the N. oceanica cell wall altered from
two layers with a thickness of 32.9 nm to a one-layer cell wall with
a thickness of 37.8 nm (Roncaglia et al., 2021). This implied that
the cell wall degradation might also contribute to FA synthesis.

Cellular Location of EPA
The absolute quantity and percentage composition of FAME were
also investigated within the TAG and polar lipid cellular components,
as the proteomic data implied the EPA inM1mutantN. oculata could
be translocated outside the chloroplast. The ratio of polar membrane
lipids to TAG (Figure 9B) decreased on day 12, indicating that TAG
was accumulated in both wild-type andM1 mutant strains at the end
of 12 days of culturing. In theM1mutant, the EPApercentage in TAG
was 1.9-fold higher than the wild-type strain (Figure 9A). This
provided additional evidence for the enhanced translocation of
EPA to TAG in the M1 mutant strain and could be linked to the
elevated abundance of LDSP in this strain. The EPA percentage inM1
mutant was 2-fold and 3.7-fold increased at the early and late
exponential phase, respectively, compared to the wild-type strain.
The enhanced EPA quantity in the M1 mutant is likely linked to the
relatively high synthesis of polar lipids, particularly MGDG. A high
MGDG content was preserved until the late exponential phase and
could be due to the abundance of polar lipids synthesized in the M1
mutant compared to the wild-type strain. Hence, the EPA could be
partially translocated to TAG at day 12 in M1 mutant, while in the
wild-type strain, the EPA and MGDG could be converted to TAG,
resulting in a lower EPA. In the FAs pathways, membrane lipids were
previously observed to translocate to TAG, especially under limited
nutrient conditions (Janssen et al., 2020). Hence, the EPA could be
translocated with membrane lipids to TAG with a structural
modification to saturated FA. On the contrary, the EPA could be
directly translocated to TAG from the ER (Ma et al., 2016); however,
this mechanism is less studied in the literature.

CONCLUSION

A novel strategy to increase EPA productivity in N. oculata was
devised using a combination of EMS-induced random
mutagenesis and screening with FAS chemical inhibitors,
which have not been applied together previously. LFQ
proteomic analysis was conducted and highlighted metabolic
pathways that could contribute to enhance EPA synthesis and
alternative translocation routes between a selected mutant strain
and the wild-type strain. Overall, the developed method could be
used as an alternative to genetic engineering methods for
increasing EPA production, although cell engineering targets
were highlighted for further improvement studies. Increasing

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83844513

Wan Razali et al. Enhanced EPA Trafficking in N. oculata



EPA productivity in industrially relevant microalgal strains
increases the sustainable manufacturing of this LC-PUFA.
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