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ABSTRACT
Ulcerative colitis (UC) is a complex immune-mediated disease in which the gut microbiota 
plays a central role, and may determine prognosis and disease progression. We aimed to 
assess whether a specific microbiota profile, as measured by a machine learning approach, can 
be associated with disease severity in patients with UC. In this prospective pilot study, 
consecutive patients with active or inactive UC and healthy controls (HCs) were enrolled. 
Stool samples were collected for fecal microbiota assessment analysis by 16S rRNA gene 
sequencing approach. A machine learning approach was used to predict the groups’ separa-
tion. Thirty-six HCs and forty-six patients with UC (20 active and 26 inactive) were enrolled. 
Alpha diversity was significantly different between the three groups (Shannon index: p-values: 
active UC vs HCs = 0.0005; active UC vs inactive UC = 0.0273; HCs vs inactive UC = 0.0260). In 
particular, patients with active UC showed the lowest values, followed by patients with 
inactive UC, and HCs. At species level, we found high levels of Bifidobacterium adolescentis 
and Haemophilus parainfluenzae in inactive UC and active UC, respectively. A specific micro-
biota profile was found for each group and was confirmed with sparse partial least squares 
discriminant analysis, a machine learning-supervised approach. The latter allowed us to 
observe a perfect class prediction and group separation using the complete information (full 
Operational Taxonomic Unit table), with a minimal loss in performance when using only 5% of 
features. A machine learning approach to 16S rRNA data identifies a bacterial signature 
characterizing different degrees of disease activity in UC. Follow-up studies will clarify whether 
such microbiota profiling are useful for diagnosis and management.
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Introduction

Ulcerative colitis (UC) is a chronic disorder 
characterized by inflammation of the gastroin-
testinal tract, with relapsing and remitting 
phases, and is associated with a reduced quality 
of life.1–3 The pathogenesis is partially under-
stood, but it has been hypothesized that it 
arises from dysregulation of the innate and 
adaptive immune systems,4 leading to an 
abnormal inflammatory response to commensal 
bacteria in a genetically susceptible individual.5 

Therefore, a perturbation of the structure of 
the gut microbiota seems to play a key role in 
determining intestinal inflammation.

Recent investigations based on 16S rRNA gene 
sequencing showed significant differences between 
the microbiota of patients with inflammatory bowel 
disease (IBD) and healthy controls, suggesting 
a potential role of gut microbiota not only in the 
development, but also in determining prognosis 
and disease progression.6 In particular, the dysbio-
sis associated with UC is characterized by reduced 
bacterial diversity, a decline in Firmicutes such as 
Faecalibacterium prausnitzii and other short chain 
fatty acid (SCFA)-producing bacteria, and an 
increase in Proteobacteria.7–9 Despite technological 
advancements in microbiota analysis, such as next- 
generation sequencing, high-throughput omics 
data generation, and molecular networks opening 
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up new horizons in microbial research, the complex 
relationship between the gut microbiota and IBD is 
poorly understood.10 Indeed, although a potential 
role of gut microbiota dysbiosis has been widely 
recognized in IBD, causality is yet to be established. 
In addition, data on the composition of the gut 
microbiota in patients with IBD vary widely 
among studies.11–13 Thus, most have failed to 
observe a specific microbiota signature in associa-
tion with either IBD type or severity.14

Recently, machine learning models have 
grown in popularity among microbiome 
researchers because they can effectively account 
for the interpersonal microbiome variations and 
the ecology of disease.15 However, data in the 
field of IBD remain limited. A machine learning 
approach could assist in both the diagnosis and 
prediction of disease course of patients with 
IBD. Also, it could also be used to predict 
response to therapy and drug-related adverse 
effects.16 In addition, machine learning could 
be applied to profile stool samples revealing 
specific microbiota signatures to further study 
a disease specific causal link.16

Therefore, we decided to perform a pilot, 
monocentric, prospective study to assess whether 
a specific microbiota profile was associated with 
disease severity in patients with UC. Thus, also 
with the application of the available machine 
learning approaches, we investigated how the 
microbiota profile could be used as 
a noninvasive marker for monitoring and pre-
dicting outcomes in IBD.

Methods

Study populations, sample and data collection

We recruited consecutive patients with 
a histologically confirmed diagnosis of UC for 
at least 6 months, both with inactive and active 
disease, from the IBD Unit of Padova Hospital 
(Italy) from April 2019 to February 2020. 
Moreover, data about an historical control 
group of healthy controls (HCs) was used for 
analysis comparison.9 Inclusion and exclusion 
criteria are reported in Box 1.

For each patient, a stool sample was collected 
for fecal microbiota assessment analysis and for 
fecal calprotectin (FC) analysis. For patients 
with inactive UC, fecal samples were collected 
at home on the evening before or the morning 
of each visit and stored at 4°C. Upon arrival at 
the hospital, samples were frozen at −80°C, in 
all cases within 24 hours of defecation, for the 
analysis of microbiota. Similarly, fecal samples 
of HCs were collected at home on the evening 
before, or the morning of, its delivery to our 
laboratory, again within 24 hours of defecation. 
For patients with UC with moderately- 
to–severely active disease, fecal samples were 
collected at home if they were not hospitalized, 
or were collected within 24 hours of hospitali-
zation in the case of hospitalized patients.

The following data were recorded for each 
patient with UC at baseline: age, gender, age 
at diagnosis, disease duration, disease location 
and extent, previous biological treatments, and 
presence of extraintestinal manifestations. 
Clinical activity was measured using a total 
and partial Mayo (p-Mayo) score, while the 
Mayo endoscopic subscore was used to assess 

Box 1. Inclusion and exclusion criteria.
Healthy Controls Inclusion Criteria: 

The Healthy controls enrolled were subjects of both sexes, aged ≥18 
years, of Italian nationality, with no relatives with UC, and who did not 
present evidence of illness on the basis of the anamnestic data 
collected.

Patients with Inactive Disease Inclusion Criteria
● Patients with inactive disease were subjects of both sexes
● Inactive disease was assessed by clinical evaluation and endoscopy 

with biopsies
● Patients with a total Mayo score <3 or partial Mayo score <2, with 

Mayo endoscopic subscore of 0-1 and inactive histological disease 
(according to Robarts index), and with fecal calprotectin <250 µg/g.

Patients with Active Disease Inclusion Criteria
● Patients with active disease were subjects of both sexes
● Active disease was assessed by clinical evaluation and endoscopy with 

biopsies
● Patients with total Mayo score >10 or partial Mayo score >7, with Mayo 

endoscopic subscore of 3 and active histological disease (according to 
Robarts index), and with fecal calprotectin ≥250 µg/g.

UC Patients (Both Active and Inactive) Exclusion Criteria
● Under 18 years of age
● Pregnancy
● Prior proctocolectomy
● Presence of stoma
● Concomitant treatment with antibiotics, prebiotics, steroids, biological 

therapies, thiopurines or methotrexate, or anticoagulant drugs. Only 
treatment with mesalazine was allowed.
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endoscopic activity. For the purpose of the 
study, all endoscopic examinations were per-
formed within 3 to 5 days of stool collection.

Sample processing and sequencing

For the microbiota analysis, the stool samples were 
solubilized and stabilized by degradation in 
Xpedition Buffer (Zymo Research) and stored at 
−80°C until analysis. Sequencing protocol was per-
formed at BMR Genomics srl. Briefly: V3–V4 
regions of 16S rRNA gene were amplified using the 
primers Pro341F: 5′-CCTACGGGNBGCASCAG-3′ 
and Pro805R: Rev 5′- 
GACTACNVGGGTATCTAATCC-3′.17 Primers 
were modified with forward overhang: 5′- 
TCGTCGGCAGC 
GTCAGATGTGTATAAGAGACAG [locus-specific 
sequence]-3′ and with reverse overhang: 5′- 
GTCTCGTGGGCTCGGAGATGTGTA 
TAAGAGACAG [locus-specific sequence]-3′ neces-
sary for dual-index library preparation, following 
Illumina protocol https://web.uri.edu/gsc/files/16s- 
metagenomic-library-prep-guide-15044223-b.pdf. 
Samples were normalized, pooled, and run on 
Illumina MiSeq with 2 × 300 bp approach.

Fecal calprotectin levels were determined using the 
ELISA Buhlmann fCAL Turbo (Buhlmann 
Laboratories AG, Schonenbuch, Switzerland), known 
to perform with high sensitivity and specificity.18,19

Bioinformatic analysis and statistics

The raw reads underwent a filtering procedure per-
formed within QIIME2 analysis framework (ver-
sion 2020.2).20 The primer removal was done via 
cutadapt plugin, while the quality filtering, denois-
ing and chimera checking steps were performed 
using DADA2 plugin. Alpha diversity was evalu-
ated on rarefied counts (Richness, Shannon, and 
Pielou indices; rarefaction level: 28,366), while 
beta diversity was calculated on normalized counts 
(Bray-Curtis, Jaccard, Canberra, Weighted and 
Unweighted Unifrac; counts normalized with 
GMPR).21 The diversity analysis was conducted in 
R (version 3.6.3) using DiversitySeq package, and 
the statistical tests (Kruskal-Wallis) on differences 
in alpha diversity indices distributions between 
groups were performed using base R functions.

A permutational analysis of variance 
(PERMANOVA) test on Bay-Curtis dissimilarity 
was used to test for differences in the microbiota 
composition between disease status groups (vegan 
package). The ANCOM2 package was then used to 
perform differential abundance analysis at all taxo-
nomic levels (a conservative detection threshold for 
differentially abundant taxa of 0.8 was chosen).22 

Supervised and unsupervised machine learning algo-
rithms were applied to normalized data to explore 
the possibility of grouping and classifying samples, 
and to identify the most important taxa for class 
discrimination. To this aim, we performed the fol-
lowing analyses: hierarchical clustering using Ward 
algorithm on Canberra distance, non-metric multi-
dimensional scaling (NMDS) on Bray-Curtis dis-
tance, random forests (training set: 62 patients; test 
set: 20 patients) and sparse partial least squares dis-
criminant analysis (sPLS-DA).

Machine learning approaches were also run in R, 
using stats, phyloseq,23 randomForest24 and 
mixOmics25 packages. With the SPLS-DA, 
a supervised machine learning approach, it is possible 
to discriminate Amplicon Sequence Variants (ASVs) 
that best characterize each group. sPLS-DA analysis 
identified a subset of discriminant ASVs: for each 
ASV, a loading value that represents the discriminant 
power of that ASV in explaining differences among 
the three different examined conditions (active UC, 
inactive UC, and HCs) was obtained.

Using a one-way analysis of variance 
(ANOVA) test we tested data for a possible asso-
ciation between disease status and FC values in 
patients to see whether FC levels could be con-
sidered as an identifier for disease groups and 
their associated microbiota. A post-hoc test 
(Tukey) was then performed to attribute the 
observed difference to sub-comparisons between 
disease statuses.

Finally, we compared demographic, clinical, and 
biochemical data between inactive and active UC 
using SPSS for Windows (version 24.0 SPSS Inc., 
Chicago, IL, USA). In particular, continuous variables 
were reported as medians with ranges, and categorical 
variables as frequencies and percentages. Comparison 
between the two groups was carried out using Mann- 
Whitney tests for numerical data and χ2 test for cate-
gorical data. A p-value ≤0.05 was considered statisti-
cally significant.
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Ethical statement

The study was approved by University of Padova’s 
Ethics Committee as part of a larger study aimed to 
evaluate disease course and characteristics of patients 
with IBD from the introduction of biologics in clin-
ical practice (N.3312/AO/14). Written informed 
consent was obtained from all eligible participants, 
or their legal representatives, before participation.

Results

Stool samples were collected from 46 patients with 
UC (20 active UC and 26 inactive UC) and 36 HCs at 
IBD Unit of Padua University (Italy). Detailed demo-
graphic and clinical characteristics of patients with 
UC are reported in Table 1. Included HCs had 
a median age of 37 years, with a male to female 
ratio of 1:1.

Pre-processing: from reads to Annotated Amplicon 
Sequence Variant (ASV) table

A total of 6.724.392 reads (mean: 82,442.02; SD: 
31,275.40) were obtained from the sequencing pro-
cedure. After the filtering, denoising and chimera 
checking steps, a total of 3.647.949 (mean: 
44,831.48; SD: 11,765.93) non-chimeric reads were 
retained. Details on read loss at each step can be 

found in Supplementary Table 1. The resulting 
ASV table collected 3754 ASVs belonging to 14 
phyla, 25 classes, 42 orders, 81 families, 189 genera, 
and 302 species.

Metataxonomics results

At phylum level, we found that Tenericutes, 
Verrucomicrobia, Euryarchaeota (Archaea) and 
Cyanobacteria characterized the HCs. In particu-
lar, Tenericutes phylum was increasingly reduced 
with more active disease, while Verrucomicrobia 
phylum was absent in active UC. Conversely, 
Actinobacteria was significantly more abundant 
in patients with both active and inactive UC, 
and higher levels of Proteobacteria were detected 
consistently in a subset of patients with active 
UC. Interestingly, in the active UC group there 
were five patients with a dissimilar microbiota 
profile compared with the other patients in the 
same group; demonstrating very high levels of 
Proteobacteria (Figure 1). A more detailed spe-
cies barplot is provided as Supplementary 
Figure 1.

At class, order, genus, and species levels we 
observed differences in microbiota composition 
between the three groups, summarized in 
Table 2.

Table 1. Characteristics of study population.
Patients with active UC (N = 20) Patients with inactive UC (N = 26) P value *

Male, n (%) 14 (70.0) 13 (50.0) 0.21
Age (median and range) 40 (20–77) 56.5 (28–75) 0.01
Age at diagnosis (median and range) 26 (17–71) 38 (13–62) 0.01
Smoker, n (%) 4 (20.0) 6 (23.1) 0.90
BMI (median and range) 23.6 (15.8–27.8) 23.7 (16.3–39.2) 0.65
Disease localization 

-Proctitis or proctosigmoiditis 
-Left-sided colitis 
-Extensive colitis

1 (5.0) 
7 (35.0) 

12 (60.0)

2 (7.7) 
12 (46.1) 
12 (46.1)

0.64

Fecal calprotectin µg/g (median and range) 1456.5 (204–3800) 60.0 (2–744) <0.001
Disease activity (p-Mayo), n (%) 

-Remission 
-Mild 
-Moderate 
-Severe

–1 (5.0) 
19 (95.0)

22 (84.6) 
4 (15.4)–

<0.001

Endoscopic Mayo 
-Remission 
-Mild 
-Moderate 
-Severe

–2 (5.0) 
18 (95.0)

24 (92.3) 
2 (7.7)–

<0.001

Previous abdominal surgery, n (%) 1 (5.0) 2 (7.7) 0.74
Previous steroids, n (%) 17 (85.0) 22 (84.6) 0.92
Naïve to biological drugs, n (%) 5 (25.0) 3 (11.5) 0.21

* We used Mann-Whitney tests for numerical data and χ2 test for categorical data.
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Alpha diversity analysis

Alpha diversity results (ASV richness, Shannon 
index, and Pielou index) showed a marked differ-
ence among the three groups (Figure 2a, 2b and 2c). 
In particular, patients with active UC had the low-
est values for all the indexes, followed by inactive 
UC, and HCs. The detected differences were statis-
tically significant for all the pairwise comparisons, 
both for richness (p-values: active UC vs HCs = 

0.0009; active UC vs inactive UC = 0.05; HCs vs 
inactive UC = 0.008) and for Shannon index 
(p-values: active UC vs HCs = 0.0005; active UC 
vs inactive UC = 0.03; HCs vs inactive UC = 0.03). 
Regarding the Pielou index, the pairwise compar-
isons were statistically significant between active 
UC and HCs (p = .004) and between active and 
inactive UC (p = .05), although the comparison 
between HCs and patients with inactive UC was 
not statistically significant (Table 3).

Figure 1. Microbiota composition (Phylum level) in the three different groups of patients (active UC, inactive UC, HCs).

Table 2. Bacteria at phylum, class, order, genus, and species level increased and decreased in stool samples of healthy controls, 
and patients with inactive or active UC.

Healthy Controls Inactive UC Active UC

Increased p__Cyanobacteria 
p__Tenericutes 
c_Alphaproteobacteria 
o__Clostridiales 
g__Butyricimonas 
s__Akkermansia muciniphila 
s__Coprococcus eutactus

g__Holdemania 
s__Eubacterium dolichum 
s__Blautia producta 
s__Ruminococcus gnavus 
s__Bifidobacterium adolescentis

c_Gammaproteobacteria 
g__Granulicatella 
s__Haemophilus parainfluenzae 
s__Streptococcus anginosus 
s__Clostridium symbiosum

Decreased g__Blautia 
g__Dorea 
s__Clostridium celatum 
s__Eubacterium dolichum

p__Tenericutes 
p__Verrucomicrobia 
g__Lachnospira 
g__Oscillospira

UC: ulcerative colitis; p_: phylum level; c_: class; o_: order level; g_: genus level; s_: species level.
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Figure 2 and Supplementary Figure 2 show diver-
sity plots for microbiota patient samples (plots of 
Richness, Shannon index, and Pielou index, respec-
tively) according to disease activity status (based on 
Mayo Endoscopic score) and fecal calprotectin values, 
respectively.

After performing the ANOVA test, FC values were 
statistically significantly different among the three 
groups (p < .001). Post-hoc, with the Tukey test, we 
demonstrated that there were statistically significant 
differences between HCs and active UC (p < .001) and 
between patients with inactive and active UC 
(p < .001). Conversely, no differences were found 
between HCs and patients with inactive UC (p = .86).

Beta diversity analysis

The PERMANOVA analysis based on Bray-Curtis 
dissimilarity showed that the composition of the 
microbiota at the ASV level was statistically 

significantly different among the three groups 
(p < .001). A hierarchical clustering using Ward 
algorithm on Canberra distance was performed 
(Supplementary Figure 3). As shown in the figure, 
cutting the tree at level 1.15, four different clusters 
were visible: the first one consisted mainly of HCs; 
the second consisted of five patients with active UC; 
the third mainly of patients with inactive UC; and 
the final cluster consisting of stool samples belong-
ing to all groups (active and inactive UC and HCs) 
demonstrating similar microbial composition.

Non-metric multidimensional scaling

After the ASV table construction, an ordination gra-
phical analysis was performed to represent the high-
est possible fraction of the complete information into 
a bidimensional plot (NMDS) based on the Bray- 
Curtis distance between samples (Figure 3). Beta- 

Figure 2. Alpha diversity analysis results for richness (a), Shannon (b), and Pielou (c) indices. Points were colored corresponding to 
Mayo endoscopic subscores. Thus, we combined each metric quantitative information with endoscopic activity.
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diversity based on Bray-Curtis distances showed 
a marked disease-associated pattern, with samples 
from patients with active UC located furthest from 
HCs and patients with inactive UC. These last two 
groups, again, were slightly separated from each 
other in the graph. Interestingly, the aforementioned 
five patients with active UC, and with a very dissim-
ilar microbiota composition, were placed furthest 
from other patients in the same group.

sPLS-DA (Sparse partial least squares discriminant 
analysis) and random forest analyses

The sPLS-DA analysis allowed us to observe 
a perfect class prediction and group separation 
using the complete information (full ASV table) 

(Figure 4a), with a minimal loss in performance 
when using only the 5% of most important features 
(Figure 4b). Interestingly, the majority of the fea-
tures selected by the sPLS-DA algorithm were the 
ones marked as differentially abundant among 
groups. The host trait predictive potential of the 
microbiota was also confirmed by a Random Forest 
analysis (Supplementary Table 2).

Discussion

Bacterial dysbiosis is one of the most widely pro-
posed etiological factors in IBD,26 with variations 
affecting the α-diversity and abundance of phyla, 
families and genera.26 However, it remains unclear 
whether alterations in the intestinal microbiota are 

Figure 3. Non metric multidimensional scaling (NMDS) plot of Beta diversity (Bray-Curtis distance matrix). Each point represented the 
gut microbiota of a patient while colors represent each clinical status (healthy, inactive UC, active UC). Patients with similar microbiota 
composition tended to be in the same area of the graph, while points far apart from each other represent patients with dissimilar 
microbiota.

Table 3. ASV Richness, Shannon index, Pielou index comparisons.
Richness Shannon index Pielou index

Comparison p-value* Comparison p-value* Comparison p-value*

Active UC-Healthy 0.0009 Active UC-Healthy 0.0005 Active UC-Healthy 0.004
Active UC-Inactive 0.05 Active UC-Inactive 0.03 Active-Inactive UC 0.05
Healthy–Inactive UC 0.008 Healthy-Inactive UC 0.03 Healthy-Inactive UC 0.14

*Kruskal Wallis pairwise test

GUT MICROBES e2028366-7



Figure 4. Sparse Partial Least Squares Discriminant Analysis (SPLS-DA), a machine learning-supervised approach using all ASVs (a) and 
5% of all ASVs (b).
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a cause or an effect of inflammation in IBD, as well 
as how the microbiota changes based on intestinal 
inflammation. In our study, we aimed to assess 
whether a specific microbiota profile, as measured 
by a machine learning approach, was associated 
with disease severity in patients with UC. We also 
aimed to verify if it could be used as a noninvasive 
marker for IBD monitoring, as well as a predictor of 
outcome before it become clinically manifested.

Overall, in our study, fecal microbiota alpha 
diversity (ASV richness, Shannon index, and 
Pielou index) was significantly reduced in patients 
with UC compared with HCs, and this difference 
remained statistically significant between patients 
with active and inactive disease. The gut microbiota 
of the HCs, at phylum level, was characterized by 
high levels of Tenericutes, Verrucomicrobia, 
Euryarchaeota, and Cyanobacteria. While, 
Actinobacteria were significantly more abundant 
in patients with both active and inactive UC and 
higher levels of Proteobacteria were detected in 
a consistent subset of patients with active UC. Of 
the microbial species found to be significantly 
increased in HCs, there were Akkermansia muchi-
niphila and Coprococcus eutactus, which were prac-
tically absent in active UC. On the other hand, 
among the microbial species found to be signifi-
cantly higher in active UC, there were Haemophilus 
parainfluenzae, Clostridium symbiosum, 
Clostridium perfringens, and Streptococcus angino-
sus. In addition, at genus level, we found high levels 
of Granulicatella. Regarding inactive UC, we 
observed higher levels of Ruminococcus gnavus, 
Blautia producta, Eubacterium dolichum, and 
Bifidobacterium adolescentis. Moreover, at genus 
level, in inactive UC Holdemania was significantly 
increased. The application of sPLS-DA, a machine 
learning-supervised approach, allowed us to 
observe a perfect class prediction and group separa-
tion using the complete information, with 
a minimal loss in performance when using only 
5% of features. Overall, machine learning 
approaches highlighted a disease-state signature 
that agreed well with differential abundance analy-
sis results.

Numerous studies have supported evidence for 
intestinal dysbiosis in IBD patients compared with 
healthy controls,11,12 and our results confirmed this 
finding. As our results also show, current literature 

reports that the gut microbiota of healthy indivi-
duals is dominated at phylum level by the bacterial 
phyla Firmicutes and Bacteroidetes, and to a lesser 
extent by Proteobacteria, Actinobacteria, and 
Verrucomicrobia.13 In fact, a relevant abundance 
of Akkermansia muchiniphila, belonging to 
Verrucomicrobia phylum, was found in our con-
trols, whereas it was very low in our patients with 
UC, especially those with active disease. 
Interestingly, we did not find a statistically signifi-
cant difference in Faecalibacterium prausnitzii in 
patients with UC compared with healthy controls, 
or between active and inactive UC, in contrast with 
current literature.27 Fecal samples of patients with 
active UC had a lower abundance of F. prausnitzii, 
but this difference was not statistically significant.

Several studies using meta-genomics analysis 
have demonstrated that members of the phylum 
Firmicutes are less abundant in patients with UC 
or CD.11,28,29 Among Firmicutes, Clostridium clus-
ters XIVa and IV are largely underrepresented in 
the gut of patients with IBD. Clostridium cluster 
XIVa comprises species belonging to the 
Clostridium, Ruminococcus, Lachnospira, 
Roseburia, Eubacterium, Coprococcus, Dorea, and 
Butyrivibrio genera.30–32 We found that 
g_Ruminococcus was lower in UC, mostly in those 
with active disease, compared with controls. 
Likewise, Coprococcus eutactus was statistically 
higher in HCs compared with patients with UC. 
Previous studies have evaluated microbial differ-
ences between patients with active and inactive 
IBD.27 A decrease in the Clostridium family was 
found in active UC compared with inactive UC and 
healthy controls.33 Furthermore, a decrease of 
Clostridium coccoides and Clostridium leptum was 
reported in the feces of patients with active com-
pared with inactive UC.34 Interestingly, in patients 
with active UC we found high levels of Clostridum 
perfringens and symbiosum compared with patients 
with inactive UC and controls. Several microbiome 
analyses have revealed there is an expansion of the 
Proteobacteria phylum in patients with IBD.11,28 In 
keeping with these findings, we demonstrated 
a relevant and significant increase of 
Proteobacteria in patients with active UC. In parti-
cular, we observed high levels of Hemophilus para-
influenzae, a Gammaproteobacteria, at class level. It 
is worth of noting that our samples demonstrated 
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a specific signature even in patients with inactive 
UC, who demonstrated higher levels of 
Ruminococcus gnavus, Blautia producta, 
Eubacterium dolichum, and g_Holdemania, all 
belonging to Firmicutes phylum, and 
Bifidobacterium adolescentis, belonging to 
Actinobacteria phylum. Another recent study by 
Clooney et al. applied a machine learning approach 
to stool samples of patients with both active and 
inactive IBD. They recruited 303 patients with CD, 
228 with UC, and 161 controls, and demonstrated 
that machine learning separated IBD from controls, 
and active from inactive IBD, when consecutive 
time points were modeled.16

Our study had some limitations. First, the 
sample size is relatively small. However, this 
drawback is balanced by the fact that we 
enrolled a study population as homogeneous as 
possible. In particular, we tried to limit the 
influence of ongoing treatments on microbiota 
characterization and we divided our patients 
based on their disease activity. Indeed, we 
included patients who were taking only mesala-
zine, and not biological drugs or immunosup-
pressants. In addition, although our cohort is 
homogeneous because it belongs to a single cen-
ter, a validation cohort from multiple sites will 
be required in future studies to determine the 
quality of the machine learning. However, we 
are aware that also dietary factors, which we 
did not consider, could lead to microbiota varia-
bility in patients with IBD and controls. Another 
limitation is the cross-sectional design of the 
study, with a lack of longitudinal data to further 
support our findings. Moreover, we only 
assessed the fecal microbiota profile, without 
examining the microbiota adherent to the colo-
nic mucosa. Finally, we did not match the 
microbiota of both active and inactive patients 
based on characteristics such as diet or smoking 
or alcohol consumption. On the other hand, we 
considered as exclusion criteria the medications 
(antibiotics and probiotics) known to influence 
the microbiota assessment in such patients.

However, despite these limitations, the distinct 
signatures observed for the gut microbiota in active 
and inactive UC could have several implications. 
Firstly, these results further strengthen the association 
between dysbiosis and IBD and have given a proof-of- 

concept for a potential correlation between disease 
severity and degree of dysbiosis. Secondly, since the 
accuracy of diagnosis in IBD is key to commencing 
prompt and effective treatment, there is an urgent 
need to develop a novel classification technique that 
can expedite IBD diagnosis, before intestinal damage 
ensues. In our study, we used supervised and unsu-
pervised machine learning algorithms on an IBD 
associated metagenomics data, which might improve 
diagnostic accuracy and elucidate which subsets of 
microbiota are most informative to identify these 
patients. Potentially, all of this could enable the iden-
tification of individuals who will develop IBD before 
symptoms, using their microbiota. Finally, finding 
a specific microbiota signature will represent an 
opportunity for personalized prognostics or thera-
peutics based on microbiota manipulation.

In conclusion, in our study, the application of 
sPLS-DA, a machine learning-supervised approach, 
allowed us to observe a perfect class prediction and 
group separation using the complete information (full 
OTU table), with a minimal loss in performance when 
using only 5% of features. In addition, the majority of 
the features selected by the sPLS-DA algorithm were 
the ones marked as differentially abundant between 
groups. Our data support the concept that imple-
menting current 16S rRNA data will be helpful to 
improve management of IBD patients. Further fol-
low-up studies will aim to clarify whether such micro-
biota profiling also predicts disease outcomes.
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