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Abstract—Human emotions can be presented in data
with multiple modalities, e.g. video, audio and text.
An automated system for emotion recognition needs
to consider a number of challenging issues, including
feature extraction, and dealing with variations and
noise in data. Deep learning have been extensively
used recently, offering excellent performance in emotion
recognition. This work presents a new method based
on audio and visual modalities, where visual cues
facilitate the detection of the speech or non-speech
frames and the emotional state of the speaker. Different
from previous works, we propose the use of novel
speech features, e.g. the Wavegram, which is extracted
with a one-dimensional Convolutional Neural Network
(CNN) learned directly from time-domain waveforms,
and Wavegram-Logmel features which combines the
Wavegram with the log mel spectrogram. The system
is then trained in an end-to-end fashion on the SAVEE
database by also taking advantage of the correlations
among each of the streams. It is shown that the proposed
approach outperforms the traditional and state-of-the
art deep learning based approaches, built separately
on auditory and visual handcrafted features for the
prediction of spontaneous and natural emotions.

Keywords: Deep learning, convolutional neural

networks, emotion recognition, audio and visual data.

I. INTRODUCTION

Emotion recognition is the process of identifying

human emotions, typically from facial expressions,

via computational methods. Unlike humans who are

capable in recognizing emotions, computational ap-

proaches are limited in recognizing low-level and

high-level feature from different modalities, such as

audio, images, and videos, in a human-like manner.

The research area of human emotion recognition is

increasingly active over the past few years. However,

recognizing emotions in real acoustic environments

and under different speech production conditions re-

mains a key challenge. Numerous unimodal and mul-

timodal emotion recognition methods have been pro-

posed and widely used as a pre-processor in speech-

related applications, for example, human-computer

interaction [1], robots [2], mobile services [3], call

centers [4], computer games [5], and psychological

assessment [6] [7]. A number of survey papers for

human emotion recognition have been published in

recent years. Among these survey papers, Ververidis

and Kotropoulos [8], Ayadi et al., [9], Koolagudi and

Rao [10], and Basu et al. [11] are the well-known

articles that discussed the use of speech modality for

human emotion recognition. Despite of these exten-

sive works, the recognition performance of existing

methods is still limited in real-world settings.

Apart from conventional approaches, data-driven

deep learning (DL)-based solutions, which are

gradient-based neural architectures, have proven use-

ful in overcoming some limitations of conventional

emotion recognition frameworks. With the recent

development of DL algorithms in behavioral signal

processing and affective computing, the DL-based

emotion recognition algorithms have received signif-

icant attention. Notable DL-based emotion recogni-

tion approaches include Long-Short Time Memory

architectures [12] [13] [14]), deep neural network

(DNN) [15], convolutional neural network (CNN)

[16] [17] [18], and bidirectional long short-term

memory (BLSTM) [19]. Among the DL-based mod-

els, CNNs have been shown to be effective in de-

tecting emotions, due to its capability in characteriz-

ing local temporal-spectral structures of speech and

audio signals, as well as its generalisation ability

and recognition accuracy. In recent years, multimodal

DL frameworks (i.e., audio-visual (AV) and audio-

text) have been utilized to learn multiple levels of

representations that correspond to different levels

of abstraction, where each level forms a hierarchy

of emotions. Notable DL-based multimodal emotion

recognition approaches include Ouyang et al [20],

Zhang et al. [21], Kansizoglou et al. [22], Ma et al.

[23], Wang et al. [24], and Schoneveld et al. [25].

Despite the state-of-the-art performance achieved

by DL models for emotion recognition, DL models

are viewed as deterministic functions [26], and as a



result are unable to understand the model behaviour,

a critical part of any predictive system’s output. This

can have disastrous consequences, especially when

the output of such models is then fed into higher-level

decision-making procedures. These include emotion

recognition and recommendation systems in the med-

ical domain, autonomous vehicles, and marketing.

In these scenarios, quantifying model to adapt the

subsequent decision-making process might be key to

preventing unintended behaviour.

The initial step in any AV emotion recognition

system is to pre-process the visual data to detect

the face followed by the removal of background and

non-facial areas. The Viola-Jones (VJ) face detector

[27] is a well-known and commonly used method for

near-frontal face identification that is both robust and

computationally simple. Although face identification

is the only process required to enable feature learning,

subsequent face alignment utilising the coordinates

of localised landmarks can improve the AV emo-

tion recognition performance significantly. Because

different face detectors often output distinct face

bounding boxes with varied sizes and centre shifts,

there still remains uncertainty whether a facial land-

mark recognition algorithm could produce reliable

findings without relying heavily on the face detection

results. Moreover, we notice that while identifying

the boundary boxes, there are still ambiguities. In

this paper, we extend the AV emotion recognition

research and proposed a new bounding box regres-

sion loss for learning bounding box transformation

and localisation variance simultaneously for robust

emotion recognition performance in unseen/real-time

environments. The new learned localisation variance

manages to merge neighbouring bounding boxes to

further enhance localisation efficiency and improves

the AV emotion recognition accuracy. In this work,

we employ a deep neural-based multimodal (AV)

architectures to estimate emotion states.

Our main contributions in this paper are the fol-

lowing:

1. An audio-visual framework for emotion recog-

nition is proposed based on intermediate level fusion

of audio and image features.

2. To improve audio representation, we used

the PANNs system to generate the Wavegram

and log-mel spectrogram audio features, where

the PANNs [28] system was pre-trained on Au-

dioSet [29], a large scale audio dataset containing

2,063,839 audio clips, designed originally for audio

tagging tasks.

3. A hybrid feature extraction and learning method

is proposed to fuse efficiently the audio and video

features for the purposes of emotion recognition. The

framework combines hand-crafted speech features,

such as Mel-frequency cepstral coefficient (MFCC),

log MFCC (logMFCC) with Wavegram and log-mel-

Wavegram features for robust emotion recognition.

The remainder of the paper is divided into the

sections below. Section 2 discusses related work on

unimodal and audio-visual emotion recognition using

deep neural networks. Section 3 presents a detailed

description of the proposed DL-based AV emotion

recognition framework. Section 4 presents the results

and finally Section 5 concludes this work.

II. RELATED WORK

A. Unimodal Emotion Recognition

The majority of research related to emotion recog-

nition primarily concentrate on six facial emotions,

such as, happy, sorrow, disgust, anger, fear, and

surprise. The recognition of these basic facial ex-

pressions was based on Ekman’s long study [30],

which showed that these basic facial expressions are

universally seen by humans across cultures. However,

non-basic emotions account for the majority of emo-

tion manifestations in human-to-human communica-

tion. Furthermore, the majority of existing emotion

recognition systems are unimodal: the system only

processes speech data or face images [31]. In recent

years, multimodal affect analysis has received a lot of

attention, however, a very limited research has been

done to exploit the audio-visual cues for emotion

recognition tasks.

B. Multimodal Emotion Recongition

Many recent multimodal emotion recognition ex-

periments have taken advantage of a synergistic

combination of different modalities. The majority of

recent research has focused on fusing audio-visual

(AV) data for automatic emotion recognition, such

as merging voice and facial expression. For exam-

ple, a combination of audio and visual features are

studied by Ngiam et al. [32] using a Multimodal

Deep Autoencoder (MDAE) framework. The MDAE

model was fine-tuned to minimise the reconstruction

error of both modalities after a bimodal deep belief

networks (DBNs) was learned to initialise the deep

autoencoder. Hu et al. [33] introduced the Recurrent

Temporal Multimodal Restricted Boltzmann Machine

(RTMRBM) as a temporal multimodal network to

represent AV sequences. Gesture recognition is an-

other job for which DNNs have been utilised. The

authors of [34] detect motions using skeletal informa-

tion and RGB-D pictures. DBNs are used to process

skeletal features, while a 3D CNN is used to handle

the RGB-D data. A Hidden Markov Model (HMM)

is stacked to exploit the temporal information in

the data.

A combined analysis of speech and facial expres-

sions studied by De Silva et al. [35] and Chen et al.

[36] by developing a rule-based decision level fusion

technique. Further, boosting approaches were utilised



Figure 1: Block Diagram of Conventional Deep

Learning-based Audio-Visual Emotion Recognition

Framework

by Huang et al. [37] to compute adaptive weights for

audio and visual features automatically. An emotion-

specific comparison of feature-level and decision-

level fusion was reported by Busso et al. [38], by

utilising an AV database including four emotions, i.e.

grief, rage, happiness, and neutral mood, all of which

were purposely posed by an actor. They discovered

that feature-level fusion was better at distinguishing

between angry and neutral mood in their corpus,

whereas decision-level fusion performed better for

happiness and sadness. The authors in [38] came

to the conclusion that the best fusion approach is

determined by the application. Apart from speech

and facial expression, the thermal distribution of

infrared images is also integrated into a multimodal

recognition system [39] by taking into account the

fact that infrared images are relatively unaffected

by lighting conditions, which is one of the major

challenges in facial image analysis.

III. PROPOSED METHOD

The overall architecture of the proposed system

is shown in Fig. 1. In this section, we first briefly

discuss the audio and visual modules and how these

modules are trained independently to acquire the

corresponding representation for audio and visual

modalities. Next, we discuss how to jointly optimise

the AV framework for emotion recognition using a

customized loss function.

A. Audio Network

Extracting features from data is one of the crucial

steps in typical machine learning algorithms. For au-

dio features, we extracted Wavegram and Wavegram-

Logmel features as described in [28] which were

initially proposed for AudioSet tagging. A Wavegram

is a type of feature learned directly from speech

waveforms using a one-dimensional CNN, which can

be considered as a time-frequency representation of

speech, with time axis representing the time frames,

while frequency axis representing the frequencies

derived from the channels in CNN. Sounds with

various pitch shifts can belong to the same class,

hence frequency patterns are significant for emotion

pattern recognition. A Wavegram can help capture

such frequency information, thus may outperform

hand-crafted log mel spectrograms. Wavegrams may

thus be used as input features, instead of log mel

spectrograms, resulting in a Wavegram-CNN system.

The Wavegram can also be combined with the log

mel spectrogram, leading to the Wavegram-Logmel-

CNN system, as illustrated in Fig. 2.

As described in [28], a one-dimensional CNN

is applied to a time-domain waveform to create a

Wavegram. The wavegram first reduces the size of the

input waveform by applying a convolutional layer of

filter length 11 and stride 5. This instantly reduces the

length of the inputs by a factor of 5 to save memory.

Following that, three convolutional blocks are used,

each of which is comprised of two convolutional

layers with dilations of 1 and 2, respectively, to en-

hance the receptive field of the convolutional layers.

A downsampling layer with stride 4 follows each

convolutional block. We downsample a 48 kHz audio

waveform to 32 kHz to generate 32000/5/4/4/4= 100

frames of features per second to have a similar

configuration as described in [28]. The size of the

output of the one-dimensional CNN is T x C, where

T is the number of frames and C is the number

of channels. We transform this output into a T -

dimensional tensor by dividing C channels into C/F
groups, each with F frequency bins. This tensor is

known as a Wavegram. By inserting F frequency bins

in each of the C/F channels, the Wavegram learns

frequency information. For AV emotion recognition,

we combine the Wavegram and Wavegram-Logmel

features of audio with the visual network as described

in next section, with bounding box regression to

compare the Wavegram and log mel spectrogram

based systems equitably.

B. Visual Network

Besides auditory information, the proposed system

also exploits visual information to get not only high-

level information about speech and non-speech (i.e.,

silence) regions of an utterance, but also fine-grained

information about mouth articulation. Although im-

provements were shown for all AV emotion recogni-

tion systems, emotions that are easier to distinguish

visually were the ones that improved the most with

an AV-SE system. Different from previous works,

which utilizes traditional face recognition pipeline to

detect subjects faces using bounding boxes and uses

the pixel intensities from the cropped faces/bounding

boxes in combination with audio to jointly train

a model for emotion prediction. The current work

utilizes a bounding box regression method to quantify

transformation at the classification stage.

The visual network pipeline is divided into two

steps. The Faster R-CNN was proposed to lower

the computational cost of proposal generation. It is

made up of two modules. The first module, known

as the Regional Proposal Network (RPN), is a fully

convolutional network that generates object proposals



Figure 2: Block Diagram of Proposed Audio-visual (AV) Emotion Recognition Framework

that are input into the second module, i.e. the Fast R-

CNN detector, whose aim is to refine the proposals.

The main concept is that the RPN and Fast R-CNN

detectors share the same convolutional layers up to

their own fully connected layers. The image is now

just processed by the CNN once to generate and

then refine object recommendations. More crucially,

because convolutional layers may be shared, a very

deep network (e.g., ResNet [40]) can be used to create

high-quality object proposals.

The convolution layers of a pre-trained network are

followed by a 3 x 3 convolutional layer in the RPN.

This refers to converting a large spatial window or

receptive field in the input picture (e.g., 228 x 228

for VGG16) to a low-dimensional feature vector at

a centre stride (e.g., 16 for VGG16). Then, for the

classification and regression branches of all spatial

windows, two 1 x 1 convolutional layers are added.

The classifier in this case determines the likelihood of

a proposal containing the target object and the regres-

sion is used for regressing the proposal coordinates.

C. Training the Proposed Audio-Visual Emotion

Recognition Model

Initially, two separate networks can be trained

to update the parameters of the audio and visual

networks, producing more discriminative audio and

visual features. We then merge the outputs of the

audio and visual networks as the input to the fusion

network, such as Fi = [Ai, Vi]. To train the fusion

network, the outputs of the audio and visual networks

are integrated to learn the joint representation, such as

Fi = [Ai, Vi], where Ai and Vi are the audio and vi-

sual features. The integrated features are subsequently

forwarded to fully-connected (FC) layers to predict

the emotion labels.

The audio network is optimised with a binary

cross-entropy loss function La, which is defined as

La = −(yi log(pi) + (1− yi) log(1− pi)), (1)

where yi is the ground truth label of class i and pi is

the predicted probability that the emotion belongs to

class i. Different from the audio network, the visual

network which is based on a Faster R-CNN [41]

architecture, combines the classification loss Lcls

with the bounding box regression loss Lbb.

The network for visual features extraction has

a cost function Lv which combines the losses of

classification Lcls and bounding box regression Lcls:

Lv = Lcls + Lbb (2)

The overall loss function Lv can also be written as

follows [41]

Lv =
1

Mcls

∑

i

Lcls(pi, yi) +
λ

Mbb

∑

i

yiL1(yi, pi)

(3)

over an Mcls number of classes in the faster R-CNN

and Mbb classes from the regression bounding boxes,

L1 is the regression loss, with λ being a weighting

coefficient allowing to give different importance to

one of the two loss functions.

Optimising directly the loss shown in Eq. (3) can

result in certain emotions being wrongly recognised

into polarity-opposite groups. We formulate a more

general loss function Loss in this work. The proposed

model is trained in an end-to-end manner, as shown in

Fig. 1. The model is initially optimized using a single

loss function, and next we add the audio and video



loss functions with a regularisation term to obtain the

final results with the following loss function

During the fusion process, the intended training

objective can be expressed as a sum of losses from all

conceivable combinations of modality-specific mod-

els:

Loss = L(a,v) + αLa + βLv, (4)

where L(a,v) is the combined loss of audio and visual

framework as shown in Eq. (1) and Eq. (2), and α
and β are the weights for the regularisation terms,

respectively.

IV. PERFORMANCE VALIDATION AND

EVALUATION

A. Experimental Setup

We evaluate the performance of the proposed sys-

tem using the Surrey Audio-Visual Expressed Emo-

tion (SAVEE) database [42], which was created for an

automated emotion recognition system. The dataset

contains 480 British English utterances recorded by

four male actors in seven distinct emotion, such

as anger, disgust, fearful, happy, neutral, sad and

surprised, respectively. We chose 410 utterances to

train the frameworks and 10 random utterances from

each emotion category to test the performance of the

framework. For each emotion, the sentences were

taken from the normal TIMIT corpus and phoneti-

cally balanced. The data was captured, analysed, and

labelled with high-quality audio-visual equipment

where the speaker was facing the camera.

To analyse human facial expressions and emotions,

facial landmark annotation is initially prepared to

detect human faces with greater accuracy. It mainly

employs facial landmark points to determine the

density of an object inside a given area which aids

in a better understanding of each point motion in

the movement trajectory of the targeted object. Since

SAVEE did not provide any information regarding

face annotation and facial landmarks, we annotated

human faces and bounding boxes using landmark

annotation tools. Because the speakers were filmed

from the front with only frontal pose, a number of

APIs and annotation tools can be used to detect their

faces and label bounding boxes.

For the SAVEE dataset, we label the bounding

boxes for the recognizable face using Dlib [43] face

detection libraries which returns the top-left corner

with width and height of the region of interest (ROI).

These ROI coordinates are used as the true bounding

box labels to fine-tune the bounding boxes using

Faster R-CNN. The annotations were prepared in a

similar way to the PASCAL VOC dataset [44] where

additional flags, such as blur, expression, illumina-

tion, occlusion, pose, and invalid, were set to 0. More

details about flags can be found in [44].

B. Baseline Systems

To evaluate the effectiveness of the proposed

model, we first compare the performance of audio-

and visual-only emotion recognition systems. We

then developed two simple multimodal systems for

performance comparison: (i) a conventional AV emo-

tion recognition framework without face detection

trained end-to-end, and (ii) a multimodal baseline

framework with face detection to only use cropped

images of the speaker face as an input to the visual

network alongside the audio network. In addition,

two state-of-the-art end-to-end frameworks, such as

DNN-based multimodal emotion recognition model

[45] and the attention-based AV model [46], were

trained for emotion recognition as baseline systems.

C. Performance Comparison

First, we compare the performance of unimodal

systems i.e., audio- and visual-only, for emotion

recognition under speaker-independent conditions.

Table 1 lists the accuracy of different CNN-based

audio-only and visual-only frameworks. For audio

network, we adapted a pre-trained PANNs for emo-

tion recognition. As described in [28], PANNs was

originally proposed for audio-tagging and was trained

using a large Audioset tagging dataset (527-classes)

[29] which can easily be adapted to a variety of

audio pattern recognition tasks [28]. Instead of train-

ing PANNs from scratch, we fine-tuned a PANNs

framework for an emotion recognition task, where

all PANNs parameters, except the final FC layer, are

initialised from the PANNs, and we fine-tuned the

framework by adding three additional FC layers for

an emotion recognition task (7-classes).

The PANNs is used to calculate the embedding

features of audio waveforms. The embedding features

are then fed into a classifier, such as a fully-connected

neural network, as input. The settings of the PANNs

are frozen and not trained when the emotion recog-

nition system is trained. Only the parameters of the

embedding features-based classifier are learned. The

PANNs is used to extract features. The extracted

embedding features are used to create a classifier. For

visual network, we utilised the MMdetection toolbox

[47] training pipeline to train and evaluate the Faster

R-CNN for face detection. As a backbone, a ResNet-

50 [40] was employed without the last FC layer.

Table I first presents the performance compari-

son of audio- and visual-only systems for emotion

recognition. For these systems, CNN frameworks are

trained using distinct audio and visual features. For

example, CNNWavegram-Logmel and CNNWavegram were

trained using combined Wavegram and Wavegram-

Logmel, and Wavegram features, respectively. Simi-

larly, CNNfd for visual network was trained by only

considering facial landmark region. From Table I,



Table I: PERFORMANCE COMPARISON OF AUDIO-

AND VISUAL-ONLY SYSTEMS.

Modality Framework Accuracy

CNN 59.3
Audio CNNwavegram 62.2

CNNWavegram-Logmel 65.5

CNN 39.1
Visual CNNfd 31.9

Faster R-CNN 33.8

we can see that audio-only CNN framework con-

sidering Wavegram and Wavegram-Logmel features

performed exceptionally well. On the other hand,

CNN framework trained for visual-only modality

considering the whole image performed well com-

pared to the CNN’s with face detection (CNNfd) and

Faster R-CNN. Table II shows the comparison of

our proposed AV system with baseline systems. The

results are highly dependent on the extracted audio

and visual features and also on the testing data sets.

The baseline systems were originally proposed for

regression task where the goal was to determine

arousal and valence. In this work, we modified the

baseline systems to accommodate them for emotion

classification task utilising the same configuration re-

ported in [46] and [45]. It is noted that the audio net-

work in Table II was trained using combined Wave-

gram and Wavegram-Logmel features which proved

effective for emotion recognition. When comparing

overall performance, we can see that the proposed

AV emotion recognition system with bounding box

regression achieved comparable performance to one

of the baseline systems (VAANet [48]) and outper-

formed other baseline systems and CNN-based AV

emotion recognition systems with reasonable margin.

V. CONCLUSIONS

We have presented an end-to-end emotion recog-

nition approach based on audio and visual data.

Different from conventional audio and visual emo-

tion recognition framework, we used Wavegram and

Wavegram-LogMel features to train an audio net-

work, and a Faster R-CNN for visual network in an

end-to-end manner with a customised loss function.

The Faster R-CNN not only improved the localisation

performance while estimating the bounding boxes

during face detection, but also increased the overall

accuracy of the AV emotion recognition system. The

proposed framework was trained using the SAVEE

dataset with a modified cross-entropy loss, and the

results show that the proposed system outperforms

state-of-the art AV emotion recognition approaches.

In the future, we will use additional loss functions

to improve the performance of the proposed AV

emotion recognition for larger datasets and speaker

independent conditions, and evaluate the proposed

Table II: PERFORMANCE COMPARISON OF THE PRO-

POSED AV SYSTEM WITH BASELINE SYSTEMS.

Modality Framework Accuracy

Baseline DNN 49.8
(A + V) VAANet 63.8

CNN 59.3
A + V CNNfd 61.4

Faster R-CNNbb(Ours) 63.1

system under different uncertainties (noises, adversar-

ial attacks both in the audio and in the video data).
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