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Abstract—Tracking manoeuvring targets often relies on com-
plex models with non-stationary parameters. Gaussian process
(GP) based model-free methods can achieve accurate perfor-
mance in a data-driven manner but face scalability challenges.
Aiming to address such challenges, this paper proposes a dis-
tributed GP-based tracking approach able to learn the kernel
hyperparameters in an online manner, to improve the tracking
performance and scalability. It caters to the inherent distributed
feature of sensor networks and does not need measurements
to be transmitted among sensors for target states predictions.
Theoretical upper confidence bounds about the tracking error are
derived within the regret bound setting. Through this theoretical
analysis, the tracking error per time step is upper bounded as a
function of predictive variances from local sensors. The theoret-
ical results are supported by simulation based ones over a case
study for tracking over wireless sensor networks. With evaluation
on challenging target trajectories, a comparison on state-of-the-
art centralised and distributed GP approaches, numerical results
demonstrate that the proposed approach achieves competitively
high and robust tracking performance.

Index Terms— Distributed Tracking, Gaussian Process

Methods, Product of Experts, Sensor Networks, Uncertainty

Quantification

I. INTRODUCTION

Tracking the object trajectory in sensor networks is a funda-

mental task for various applications including sea surveillance,

autonomous vehicles, and traffic management. To achieve supe-

rior tracking performance, numerous model-based approaches

have been proposed. However, these approaches rely on well-

defined motion models, which can be inaccurate when the target

undergoes non-stationary evolution or mixed manoeuvrings

behaviours. Although the multiple-model method [1] can

capture complex behaviours, it suffers from high computational

complexity, and therefore, is not efficient when a large number

of models are involved.

A. Related Work

Tracking with multiple models can be achieved by Gaus-

sian process (GP)-based model-free methods, which, as non-

parametric methods, can learn unknown functions directly from

noisy data. In [2], one-dimensional temporal GP regression

models were reformulated as linear-Gaussian state-space mod-

els, which can be solved exactly with classical Kalman filtering

methods. The state-space model representation was also used

in spatial-temporal GPs [3] and non-Gaussian likelihood [4] to

derive computationally efficient infinite-dimensional Kalman

filtering and smoothing methods.

There are also works studying using GP to represent the

state-space model [5]. GP was used to learn the whole or

part of the state-space model and the learned functions can

be integrated into a particle filter or extended Kalman filter

[6]–[8]. Inference and learning for GP state-space model were

also discussed with theoretical bounds derived in [9]. Moreover,

recently, different GP approaches were developed by assuming

temporal and spatial correlation in the target trajectory and

shape, and the state-space model was directly learned from the

measurements [10]–[12].

Most of the existing GP-based tracking methods assume that

the sensor measurements are collected in a centralised manner

and filters are built upon the aggregated measurements. This

framework has given rise to an inherent limitation of compu-

tational complexity. This is due to that the complexity of the

standard GP-based tracking methods increases cubically in the

number of measurements due to the inversion and determinant

of the kernel covariance matrix. Therefore, state estimation

based on a standard GP with extensive measurements faces

numerical challenges in real-time tracking tasks. Extensive

works have studied how to derive sparse approximations of

the original kernel matrix [13], [14], which can greatly reduce

the complexity. However, most of them are still centralised

methods which do not match up with the feature of distributed

tracking systems where transmitting data among sensors can be

expensive or even infeasible due to the limited communication

capabilities of sensors.

Inspired by the divide-and-conquer method [15], local GP

approximation methods have been proposed to improve the

scalability of the standard GP method, which has been applied

to problems such as the received signal strength-based location

fingerprinting map construction [16], [17]. These distributed

algorithms build local GPs (which are referred to as the

local experts) with different subsets of data and can make

independent local predictions. Based on local experts, a variety

of aggregation methods have been designed to achieve a more

accurate global prediction only using local predictions [18]

rather than exchanging local measurements among sensors.

This type of distributed GP (DGP) methods can greatly reduce

the computational complexity of standard GP regression from

O(N3) to O(Nn2) (n ≪ N ), where N and n represent the



total number of data and the number of local data, respectively.

Particularly, it is a viable solution for distributed target tracking

since sensors can make independent predictions and the global

prediction can be made even some of the sensors fail to transmit

their predictions. Therefore, DGP strengthens the scalability and

robustness of standard GP and the aforementioned limitations

can be overcome.

B. Contributions

This paper has four main contributions: 1) it proposes a DGP-

based tracking (DGPT) approach, which enables distributed

point target tracking in an online manner and inherits the

uncertainty quantification capability from standard GP; 2) the

hyperparameters of the DGPT algorithm are learned online

based on a sliding window of sensor measurements data to

provide high accuracy and scalability of the proposed approach.

For the training input, both temporal and spatial-temporal

inputs are used for DGP training; 3) an upper confidence

bound (UCB) of the tracking error is derived for the proposed

DGPT approach; 4) the performance of the DGPT is carefully

evaluated with challenging target trajectory scenarios and

different levels of measurement noise.

The remainder of this paper is organized as follows. Back-

grounds of GP and DGP are given in Section II. Section

III describes the proposed DGPT approach followed by the

theoretical analysis in Section IV. Numerical results are

presented and discussed in Section V. Section VI concludes

this paper.

II. BACKGROUND

A. Overview of Standard GP

The non-linear mapping between the current input x ∈ R
d

and the object one-dimensional state f(x) ∈ R can be modelled

as a GP which can be written as

f(x) ∼ GP(m(x), k(x,x′)), (1)

m(x) = E [f(x)] , (2)

k(x,x′) = E [(f(x)− x) (f(x′)− x
′)] , (3)

where x and x
′ are either the training or the testing input data,

m(x) and k(x,x′) denote the mean and covariance functions,

respectively.

A GP regression problem with noisy observations from the

unknown function can be written as

z = f(x) + ǫ, ǫ ∼ N (0, σ2), (4)

where z represents the measurements and ǫ represents the iden-

tical independently distributed (i.i.d.) zero-mean measurement

noise with variance σ2.

Given a training data set of input-output pairs D = {X, z}
with X = {x1,x2, · · · ,xn} and z = {z1, z2, · · · , zn}, define

K = K(X,X) as the covariance matrix for the training input

and K∗ = K(X,x∗) as the covariance between the training

input X and any testing input point x∗, the GP regression

equations at this new input x∗ can be written as

µ∗ = m(x∗) +K⊺

∗
Σ−1(z−m(x∗)), (5)

σ2
∗
= k(x∗,x∗)−K⊺

∗
Σ−1K∗, (6)

where Σ = K+σ2I . µ∗ and σ2
∗

denote the posterior predictive

mean and variance of the unknown function at input x∗,

respectively.

B. Distributed GP Approaches

This section discusses two types of DGP schemes. The first

type is the product of expert (PoE). The idea of this approach

is to multiply the independent local predictive distributions for

aggregation. Since the product of these Gaussian predictions

is proportional to a Gaussian distribution, the closed form

of the aggregated predictive mean and variance can be

easily calculated. The PoE model provides a straightforward

way to aggregate local predictions and sidesteps the weight

assignment problem in other local approximated GP models

such as the mixture-of-expert [19]. However, this model can

be overconfident when making predictions in regions without

any training data. The generalised product-of-experts (GPoE)

model [20] improved PoE by adding weights β that represent

the contributions of different experts. For example, it can be

calculated as the difference in the differential entropy between

the prior distribution p(f(x∗)) and the posterior predictive

distribution p(f(x∗) | x∗,D), which can be written as

βi = 0.5
(

log σ2
∗∗

− log σ2
i (x∗)

)

, (7)

where σ2
∗∗

represents the variance of the prior distribution

p(f(x∗)) and σ2
i (x∗) denote the predictive variance of GP

expert i, which can be calculated based on (6).

Given the data D(i) collected by sensor i, the GPoE predicts

a function value f(x∗) at a test input x∗. The predictive

distribution and the closed forms of the aggregated predictive

mean and variance of GPoE can be written as

p(f(x∗) | x∗,D) =
∏M

i=1
pβi

i (f(x∗) | x∗,D
(i)), (8)

µGPoE
∗

= (σGPoE
∗

)2
∑M

i=1
βiσ

−2
i (x∗)µi(x∗), (9)

(σGPoE
∗

)−2 =
∑M

i=1
βiσ

−2
i (x∗), (10)

where M is the number of GP experts and represents the

number of sensors in the tracking system. Moreover, µi(x∗)
represents the predictive mean of GP expert i, which can be

calculated based on (5).

Alternatively, the Bayesian committee machine (BCM) [21]

proposed to aggregate the experts’ predictions from another

view by imposing a conditional independence assumption

of D(i) and D(j) given f(x∗) which means an independent

common prior p(f(x∗) | x∗) for the experts. In [22], a robust

Bayesian committee machine (RBCM) was designed which

combines both the features of the GPoE and BCM models.

The predictive distribution and aggregated predictive mean and

variance of the RBCM can be written as

p(f(x∗) | x∗,D) =

∏M
i=1 p

βi

i (f(x∗ | x∗,D
(i))

p
∑

i
βi−1(f(x∗) | x∗)

, (11)

µRBCM
∗

= (σRBCM
∗

)2
∑M

i=1
βiσ

−2
i (x∗)µi(x∗), (12)



(σRBCM
∗

)−2 =
∑M

i=1
βiσ

−2
i (x∗) + (1−

∑M

i=1
βi)σ

−2
∗∗

, (13)

where the denominator in (11) plays the role of a correction

term that helps to recover the GP prior when leaving regions of

existing data. All the models discussed in this section work in

a distributed way. However, these are still offline schemes that

cannot be directly applied for tracking, therefore, two schemes

are introduced in Section III which enable the batch-based

offline distributed GP methods to work online for real-time

tracking.

C. Hyperparameter Estimation

The hyperparameters of GP need to be learned from the

data. As a standard GP, maximum likelihood estimation (MLE)

is applied to learn the hyperparameters by maximising the log

marginal likelihood which can be written as

log p(z|X, θ) = −
1

2
z
⊺Σ−1

z−
1

2
log|Σ| −

n

2
log 2π, (14)

where θ represents the set of hyperparameters.

For DGP, assuming the local GPs are independent of each

other, the marginal likelihood can be factorised as

log p(z|X, θ) ≈
∑M

i=1
log pi(z

(i)|X(i), θ). (15)

As compared to (14), the factorised marginal likelihood can

potentially be maximised in a decentralised manner due to the

fact that it is a summation of local marginal likelihood functions.

In addition, after solving (15), the learned hyperparameters are

shared by all the local experts for automatic regularization to

avoid overfitting.

III. DISTRIBUTED GP-BASED TRACKING

The proposed DGPT approach works in an online way. At

each time step, local experts are maintained at each sensor

with optimized hyperparameters from the previous time step.

Each local expert predicts the target state based on its own

measurements and then local predictions are aggregated to reach

an overall prediction following different aggregation methods

discussed in Section II-B. Notice having this aggregation

process does not mean an extra central node is necessary. The

aggregation process can be implemented on any capable sensor

with highly limited communication overhead, therefore the

proposed approach is fully distributed. In this section, several

improvement schemes are designed to help integrate DGP for

efficient distributed online target tracking.

A. Temporal and Spatial-temporal GP

To make a state prediction of a target, it is reasonable to

assume that there is a temporal correlation in the motions of the

target, and the temporal correlation with input data in distant

past is weaker than in more recent data. Therefore, the target

state can be represented as a function of the time step, which

can be used as the input data for training DGP and making

state predictions. In this case, we have x = t, where t represent

the time step.

Fig. 1. A distributed point tracking system with 4 sensors. The length of
sliding window in this example is 5 time steps

Based on the temporal GP, the tracking problem in (1) can

be reformulated as

f(t) ∼ GP(m(t), k(t, t′)), (16)

z = f(t) + ǫ, ǫ ∼ N (0, σ2). (17)

Furthermore, inspired by [23] that uses GP regression to learn

the state transition function, the spatial correlation can also be

involved for state prediction by including the target state of

the previous time step into the input data, namely x = (r, t),
where r represents the target state. The spatial-temporal GP

based tracking problem can be formulated as

f(r, t) ∼ GP(m(r, t), k(r, t; r′, t′)), (18)

z = f(r, t) + ǫ, ǫ ∼ N (0, σ2). (19)

The next subsection describes the proposed sliding windows

based GP approach.

B. Sliding Window-based Tracking

Although DGP is designed for complexity reduction of the

standard GP, training GPs locally can still be computationally

intense when local sensors collect extensive data. To address

this challenge, assume there are temporal correlations among

target motions, and weaker motion correlations in distant past

time steps cannot contribute to training and prediction as

much as the recent steps, since the target motion can be a

mixed manoeuvring behaviour with time-varying parameters.

Therefore, the distant measurements are abandoned in DGPT

and only the recent measurements are utilized for training,

which can be treated as using a sliding window to select

valid measurements. Based on the sliding window, a sensor

without valid measurements is excluded from aggregation at

the current time step. Eventually, both the number of experts

and measurements can be further reduced, which can ease the

computational burden of GP training and improve the tracking

accuracy. The framework of the proposed sliding window-based

DGPT approach is represented in Fig. 1.



C. Hyperparameter Online Learning in the DGPT

Since the target motion can be time-varying and the sliding

window is designed to keep valid measurements for training

and tracking, the hyperparameters of DGP should be learned

online to capture the non-stationary features. Hence, in the

proposed DGPT approach, MLE (based on the factorised

marginal likelihood (15)) is solved at every time step to

update the hyperparameters, which brings extra computational

costs due to the non-convexity of (15). To accelerate the

hyperparameter learning process, optimised hyperparameters

at the previous update step is designed to be set as the initial

value of hyperparameters of MLE at the current step, which

can significantly reduce the iterations needed for MLE and

makes the learning process close to a recursive one.

Benefiting from the proposed sliding window design and

the online learning properties, the DGPT can provide accurate

target state estimations with newly collected measurements.

IV. THEORETICAL PERFORMANCE ANALYSIS

In this section, the tracking error of the proposed DGPT

approach is analyzed. An UCB is derived to quantify the error

between the predictive state and the real state. This begins

by presenting that the deviation between the true state and

predictive state can be upper bounded by a scaled version of

the predictive variance. Then we use this bound to generate

the error bound for the aggregated prediction.

Lemma 1: (Lemma 5.1 of [24]) Based on (5) and (6), given

a trained local GP based on data set D = {X, z}, for any test

point x∗ ∈ X , the probability that the predictive mean µ(x∗)
deviates from the true function value by more than a certain

amount can be upper bounded as

Pr
{

|f(x∗)− µ(x∗)| > γ1/2σ(x∗)
}

≤ e−γ/2, (20)

where γ is a positive constant.

Lemma 1 proposes an UCB of the probability that the deviation

between the true function value and the predictive mean of

the function at is larger then a scaled version of the estimated

variance function. Based on this lemma, the error bound of

DGP can be derived.

Theorem 1: (One-step error bound of GPoE) Consider a

DGP system with M local GPs, Based on (9) and (10), with

probability at least 1 −
∑M

i=1 e
−γi/2, the deviation between

the true function value at x∗ and the aggregated predictive

mean value made by the GPoE method (8)-(10) can be upper

bounded as

Pr















|f(x∗)− µ(x∗)| ≤

M
∑

i=1

γ
1/2
i σ−1

i (x∗)

M
∑

i=1

σ−2
i (x∗)















≥ 1−
M
∑

i=1

e−
γi
2 .

(21)

Proof: Define Ai as the event in which the error between the

predictive object state of local expert i and the true state is

larger than a quantity, which can be written as

Ai =
{

|f(x∗)− µi(x∗)| > γ
1/2
i σi(x∗)

}

. (22)

Define the union of events {A1, A2, · · · , AM} as A. Apply-

ing the union bounds over M events and based on Lemma 1,

the probability of the complement of A can be upper bounded

as

Pr(Ā) = Pr

{

M
⋂

i=1

Āi

}

,

= Pr

{

M
⋂

i=1

|f(x∗)− µi(x∗)| ≤ γ
1/2
i σi(x∗)

}

,

≥ 1−
M
∑

i=1

e−γi/2. (23)

where µi(x∗) and σi(x∗) represent the predictive mean and

standard deviation of local GP i at input x∗, respectively.

According to (9) and (10), the deviation between the true

function value and the aggregated predictive mean by GPoE

can be written as
∣

∣

∣

∣

f(x∗)− µGPoE
∗

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x∗)−

∑M
i=1 βiσ

−2
i (x∗)µi(x∗)

∑M
i=1 βiσ

−2
i (x∗)

∣

∣

∣

∣

,

=

∑M
i=1 βiσ

−2
i (x∗)|f(x∗)− µi(x∗)|

∑M
i=1 βiσ

−2
i (x∗)

,

≤

∑M
i=1 βiγ

1/2
i σ−1

i (x∗)
∑M

i=1 βiσ
−2
i (x∗)

, (24)

which completes the proof. Notice that the tracking error bound

of RBCM can be derived as well following a similar process.

Theorem 1 proposes a theoretical error bound for the tracking

performance. Define the highest predictive variances made by

the local expert as σ2
H, the bound can be further approximated as

1−
M
∑

i=1

e−γi/2

≤ Pr

{

|f(x∗)− µGPoE
∗

| ≤

∑M
i=1 βiγ

1/2
i σ−1

i (x∗)
∑M

i=1 βiσ
−2
i (x∗)

}

,

≤ Pr

{

|f(x∗)− µGPoE
∗

| ≤

∑M
i=1 βiγ

1/2
i σ−1

i (x∗)

Mσ−2
H (x∗)

∑M
i=1 βi

}

.

(25)

This bound demonstrates that, given all other local GPs fixed,

when one of the local GP makes a highly uncertain prediction

which is reflected as a larger predictive variance, the upper

bound of the deviation will increase, which means the overall

prediction is exacerbated by this poor GP expert.

V. SIMULATION RESULTS

A. Simulation Setup

The proposed DGPT is tested on three scenarios and each

with 100 Monte Carlo (MC) runs. There are three noise levels

generated by adding zero-mean Gaussian noise to each of the

target states with standard deviations of 1, 2, and 4. There are

200 sensors uniformly implemented in the interest of area, so

part of the trajectory can be outside of the sensor coverage.



0 200 400 600 800 1000

x coordinate, [m]

0

200

400

600

800

1000
y
 c

o
o

rd
in

a
te

, 
[m

]

Sensor location

Sensing range

Object trajectory
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Fig. 3. Trajectory S2

The sensing range is 50 meters and the sampling period is one

second, both of which are identical for every sensor. Moreover,

this paper assumes that local predictions can be aggregated

without any information loss.

Notice in this paper, we are estimating the location of the

target so two GPs are needed at one sensor for the X-coordinate

and Y -coordinate, respectively. For the GP setting, a zero-mean

function is used which means no extra knowledge is utilised

for tracking. Besides, the covariance function is selected to be

the squared exponential (SE) kernel which is demonstrated to

perform well in a wide range of motion models [25]. The SE

kernel can be represented as

k(x,x′) = σ2
m exp







−
1

2

d
∑

j=1

(xj − x′

j)
2

l2j







, (26)

where σm is the amplitude parameter and lj is the length scale

parameter.

B. Benchmarks

Since this paper focuses on the model-free approaches, the

standard GP-based centralised tracking approach is simulated as

the benchmark. This scheme relies on solving the MLE (14) to

learn the hyperparameters, and the learning process requires the

measurements to be transmitted in the sensor network. To make

fair comparisons, the standard GP-based centralised tracking

approach is trained with the same sensor measurements in
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Fig. 4. Trajectory S3

the sliding window, which means this approach use the same

amount of data for model training and hyperparameter learning

as well as the DGPT approach.

To study the impact of different aggregation methods on

the DGPT approach, both RBCM and GPoE are simulated. In

addition, DGPT based on both temporal and spatial-temporal

input data is evaluated, respectively. For the temporal case, a

set of time steps which is in the sliding window is used as the

input data. For the spatial-temporal case, both the current time

step and the target state of the previous time step are used as

input. Notice in the online tracking problem, the real target

state is not available. Therefore, the predictive state acquired

by the DGPT in the previous time step is used.

C. Target Trajectories

To evaluate the proposed algorithm and the benchmarks, two

challenging scenarios are built following different models. The

trajectories and the sensors are depicted in Fig. 2, 3, and 4.

• S1) Similar to [26], the trajectory is generated based on

the nearly constant velocity model in the straight line,

and the abrupt velocity change at each pre-defined turning

point.

• S2) The target trajectory is generated by the Singer

acceleration model. The maximum possible acceleration

is 50 m/s2, the probability of non-acceleration is 0.4.

• S3) The target trajectory is generated by the sharp

coordinated turns model (turning rate 30◦/s for 9 s) and

the target can go both left and right. This model can

represent highly manoeuvrable motions.

D. Tracking Performance

The average normalised root mean squared error (NRMSE)

of temporal and spatial-temporal DGPT approaches are pre-

sented in Table I and II. The lengths of sliding windows

in different trajectories are carefully tuned to be different

for optimal performance. At each time step, both the state

prediction of the next step and the updated state estimation of

the current step involving the new measurements are presented.

According to the results, the updated NRMSEs are always

lower than the predictive NRMSEs, which shows that GP-based

approaches can refine the learned predictive distribution when



TABLE I
PREDICTIVE AND UPDATED NRMSES ON THREE TRAJECTORIES AND THREE NOISE LEVELS: TEMPORAL GP

Noise Level 1 Noise Level 2 Noise Level 3
Scenario Approach Updated NRMSE Predictive NRMSE Updated NRMSE Predictive NRMSE Updated NRMSE Predictive NRMSE

X Y X Y X Y X Y X Y X Y

Standard GP 1.30% 1.70% 1.95% 2.56% 1.41% 1.07% 2.09% 1.65% 0.95% 1.05% 1.42% 1.59%
S1 DGPT-RBCM 0.27% 0.28% 0.53% 0.62% 0.41% 0.48% 0.72% 0.89% 0.62% 0.74% 1.00% 1.24%

DGPT-GPoE 0.31% 0.33% 0.83% 1.64% 0.50% 0.59% 0.83% 1.67% 0.86% 0.95% 1.02% 1.76%

Standard GP 1.19% 0.74% 1.63% 1.06% 1.08% 0.68% 1.51% 0.99% 1.37% 0.77% 1.87% 1.11%
S2 DGPT-RBCM 0.90% 0.82% 1.52% 1.38% 1.16% 0.99% 1.88% 1.61% 1.73% 1.21% 2.59% 1.59%

DGPT-GPoE 1.13% 0.88% 1.52% 1.45% 1.50% 1.13% 1.68% 1.52% 2.36% 1.56% 2.44% 1.81%

Standard GP 6.35% 5.45% 9.76% 8.25% 6.39% 6.09% 9.93% 9.33% 6.32% 6.31% 9.77% 9.66%
S3 DGPT-RBCM 5.55% 6.39% 10.58% 10.46% 6.00% 6.63% 11.21% 10.77% 5.81% 6.63% 11.10% 10.85%

DGPT-GPoE 5.38% 6.57% 7.19% 8.15% 5.86% 6.79% 8.00% 8.52% 5.69% 6.79% 7.94% 8.57%

TABLE II
PREDICTIVE AND UPDATED NRMSES ON THREE TRAJECTORIES AND THREE NOISE LEVELS: SPATIAL-TEMPORAL GP

Noise Level 1 Noise Level 2 Noise Level 3
Scenario Approach Updated NRMSE Predictive NRMSE Updated NRMSE Predictive NRMSE Updated NRMSE Predictive NRMSE

X Y X Y X Y X Y X Y X Y

Standard GP 0.40% 0.95% 1.02% 3.72% 0.57% 0.67% 1.25% 3.32% 0.76% 1.77% 1.35% 4.15%
S1 DGPT-RBCM 0.27% 0.28% 1.08% 4.41% 0.41% 0.48% 1.17% 4.55% 0.67% 0.76% 1.51% 5.33%

DGPT-GPoE 0.30% 0.33% 1.00% 3.58% 0.50% 0.60% 1.00% 3.60% 0.86% 0.97% 1.20% 4.02%

Standard GP 1.26% 0.81% 1.81% 1.20% 1.00% 0.79% 1.50% 1.21% 1.73% 0.95% 2.73% 1.42%
S2 DGPT-RBCM 0.87% 0.82% 1.40% 1.40% 1.10% 1.02% 1.76% 1.71% 1.73% 1.21% 2.73% 2.03%

DGPT-GPoE 1.11% 0.94% 1.58% 1.49% 1.46% 1.26% 1.71% 1.84% 2.73% 1.57% 3.65% 2.00%

Standard GP 3.07% 20.55% 7.79% 33.41% 3.08% 19.40% 7.32% 31.55% 3.58% 19.13% 7.80% 30.98%
S3 DGPT-RBCM 3.79% 4.93% 8.41% 8.32% 3.93% 4.85% 8.48% 8.34% 4.05% 4.81% 8.84% 8.55%

DGPT-GPoE 5.60% 8.51% 10.46% 12.95% 5.73% 8.65% 10.60% 13.15% 5.64% 8.75% 10.63% 13.36%

new measurements are collected. Particularly, the proposed

DGPT approach performs competitively well and even out-

performs the centralised approach in some scenarios. This is

due to that in DGP, different weights can be assigned to the

local predictions during the prediction aggregation process,

so the final aggregated predictions are closer to the expert

who makes more confident predictions. In the centralised

method, all the data is aggregated before training without

any difference. Moreover, the results demonstrate that using

RBCM for prediction aggregation can achieve lower NRMSEs

than GPoE in most cases, which justifies that adding the

common prior into the aggregation process can improve the

tracking performance. Finally, comparing the NRMSEs in two

tables, we can find that considering spatial input data can

help to improve the tracking accuracy, especially in the more

challenging scenarios where the speed of the target keeps

changing or the target keeps manoeuvring (scenario S2 and S3).

E. Impact of Uncertainties on Tracking

In Fig. 5 and 6, the updated state estimations of spatial-

temporal DGPT and the real target locations are presented. The

results are collected in S1 under noise level three. The shaded

areas represent the 3σ intervals of the predictive distributions

which can reflect the level of tracking confidence. From the

figures, we can find that the updated estimation is close to the

ground truth. There are several periods that the estimation is

relatively far from the true location, since the target is out of the

sensing range and no measurements are collected for updating

the predictive distributions in these steps. Notice that whenever

a relatively poor estimation is made, a higher uncertainty can

be observed, which is in line with the real tracking situation.

Moreover, the standard deviations of 100 RMSEs (collected

from 100 MC runs) under noise level one are illustrated in Fig.

7. spatial-temporal DGPT has comparable performance in all

three scenarios and on both coordinates. Particularly, DGPT

using RBCM as the prediction aggregation method achieves

the lowest standard deviation among multiple scenarios, which

demonstrates that this approach can ensure robust tracking in

a distributed way.

Fig. 5. Tracking uncertainty in X coordinates

VI. CONCLUSIONS

In this paper, a new DGP-based model-free learning and

tracking approach is proposed to solve distributed point tracking

problems. The developed approach overcomes the limitations of

standard GP-based tracking methods from a different perspec-

tive via distributed GP. A theoretical derivation is presented for

the UCB of the tracking error of the proposed approach, which

characterises the trustworthiness of the proposed approach.



Fig. 6. Tracking uncertainty in Y coordinates
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Fig. 7. Standard deviation of RMSE in both coordinates

The estimates are acceptable when the derived UCB is within

certain pre-specified limits. Numerical experiments demonstrate

that the proposed approach performs competitively well and

can deal with varying motion models and noise levels. Future

work will focus on involving data association in distributed

tracking solutions and deriving UCBs for them.
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