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Fluid-attenuated inversion recovery magnetic
resonance imaging textural features as
sensitive markers of white matter damage in
midlife adults

Maria-Eleni Dounavi,1* Audrey Low,1* Graciela Muniz-Terrera,2 Karen Ritchie,2,3

Craig W. Ritchie,2 Li Su,1,4 Hugh S. Markus5 and John T. O’Brien1

* Maria-Eleni Dounavi and Audrey Low are joint first authors.

White matter hyperintensities are common radiological findings in ageing and a typical manifestation of cerebral small vessel disease.

White matter hyperintensity burden is evaluated by quantifying their volume; however, subtle changes in the white matter may not be

captured bywhite matter hyperintensity volumetry. In this cross-sectional study, we investigated whethermagnetic resonance imaging

texture of both white matter hyperintensities and normal appearing white matter was associated with reaction time, white matter hy-

perintensity volume and dementia risk in a midlife cognitively normal population. Data from 183 cognitively healthy midlife adults

from the PREVENT-Dementia study (mean age 51.9+5.4; 70% females) were analysed.White matter hyperintensities were segmen-

ted from 3 Tesla fluid-attenuated inversion recovery scans using a semi-automated approach. The fluid-attenuated inversion recovery

images were bias field corrected and textural features (intensity mean and standard deviation, contrast, energy, entropy, homogeneity)

were calculated in white matter hyperintensities and normal appearing white matter based on generated textural maps. Textural fea-

tures were analysed for associations with white matter hyperintensity volume, reaction time and the Cardiovascular Risk Factors,

Aging and Dementia risk score using linear regression models adjusting for age and sex. The extent of normal appearing white matter

surrounding white matter hyperintensities demonstrating similar textural associations to white matter hyperintensities was further

investigated by defining layers surrounding white matter hyperintensities at increments of 0.86 mm thickness. Lower mean intensity

within white matter hyperintensities was a significant predictor of longer reaction time (t=−3.77, P,0.01). White matter hyperin-

tensity volume was predicted by textural features within white matter hyperintensities and normal appearing white matter, albeit in

opposite directions. A white matter area extending 2.5 – 3.5 mm further from the white matter hyperintensities demonstrated similar

associations. White matter hyperintensity volume was not related to reaction time, although interaction analysis revealed that parti-

cipants with high white matter hyperintensity burden and less homogeneous white matter hyperintensity texture demonstrated slower

reaction time.Higher Cardiovascular Risk Factors, Aging, andDementia score was associatedwith a heterogeneous normal appearing

white matter intensity pattern. Overall, greater homogeneity within white matter hyperintensities and a more heterogeneous normal

appearing white matter intensity profile were connected to a higher white matter hyperintensity burden, while heterogeneous intensity

was related to prolonged reaction time (white matter hyperintensities of larger volume) and dementia risk (normal appearing white

matter). Our results suggest that the quantified textural measures extracted from widely used clinical scans, might capture underlying

microstructural damage and might be more sensitive to early pathological changes compared to white matter hyperintensity

volumetry.
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Graphical Abstract

Introduction
White matter hyperintensities (WMHs) are common radio-

logical findings in the brains of older people, appearing on

T2-weighted magnetic resonance imaging (MRI), especially

fluid-attenuated inversion recovery (FLAIR) scans, which

are typically acquired as part of clinical MRI examinations,

as patchy areas of increased intensity. WMHs represent

microvascular lesions in the brain thought to be caused by lo-

calized changes in tissue composition and, although they

may be due to several different pathologies, are considered

a key indicator of cerebral small vessel disease (SVD).1

Importantly, these white matter lesions are associated with

poorer cognitive outcomes, incident dementia, stroke and
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mortality.2,3 Furthermore, WMHs are associated with slo-

wed reaction time which is considered as an early feature

of SVD4,5 and is also a feature of Alzheimer’s disease and

mild cognitive impairment.6

The WMH burden can be assessed by visual rating scales

or by quantifying WMH volume from brain MRI

T2-weighted or FLAIR images. However, MRI scans have

the potential to provide further information about under-

lying tissue characteristics. Volumetry uses the intensity of

every voxel in the image to reach a decision on whether the

voxel belongs or does not belong in a particular structure

or tissue class (in this case the WMH). A core missed aspect

when such approaches are used, has to do with the intensity

value of the voxel per se. In particular, in each FLAIR scan

individual voxel intensities are related to the underlying tis-

sue properties. However, intensity variations within tissue

classes are not captured by typical volumetric measurements.

Textural analysis has emerged as amethod to provide add-

itional insight on the tissue state, through the analysis of spa-

tial variations in intensity, quantifying properties such as

image contrast and homogeneity. Several image textural ana-

lysis methods have been proposed in the literature and ap-

plied in MRI analysis and are nicely reviewed in Kassner

and Thornhill.7 Statistical textural features examine spatial

relationships of voxel intensities.8 One of the most popular

methods for textural analysis is the grey level co-occurrence

matrix (GLCM) method developed by Haralick et al.,9 with

the generated features belonging to the category of

second-order statistical features. Among them, energy (hav-

ing higher values when there is higher intensity uniformity),

entropy (higher entropy is connected with more random-

ness), homogeneity (higher homogeneity is connected to

less differences in intensity) and contrast (higher contrast is

connected with larger intensity variations; Fig. 1).10

Brain textural analysis has been used to study among

others brain tumours,11 multiple sclerosis,12 stroke13 and

Alzheimer’s disease14 based mainly on T1- and T2-weighted

MRIs. Texture of FLAIR scans has been analysed in relation

to blood–brain barrier integrity in stroke patients, where tex-

tural homogeneity was increased after administration of

gadolinium in patients with increased SVD burden.13 In sub-

jects with SVD, textural features predicted conversion to de-

mentia and correlated with cognition.15 Textural features

have also been shown to differentiate between developing

and non-developing normal appearing white matter

(NAWM).16 Textural analysis has proved to be sensitive in

evaluation of the aetiology (ischaemic versus demyelinating)

ofWMH.17 In the contextofWMH, textural analysis has also

been used to quantify numerous features which are then typ-

ically used in a machine learning framework to predict pro-

gression of WMH.16 Overall, textural analysis has shown

sensitivity in detecting damaged tissue and areas or regres-

sion/progression in the SVD, multiple sclerosis and brain tu-

mour literature, suggesting that textural features capture

underlying tissue damage.

In the present study, our aim was to evaluate whether tex-

tural features from FLAIR scans, which were quantified

based on a novel approach for textural map generation,

were a more sensitive predictor of reaction time compared

with WMH volume and the relation of the features to

WMH volume and dementia risk. Furthermore, this novel

approach allowed us to evaluate the spatial extent of the

area surrounding WMH for which the textural features re-

lated to reaction time and WMH volume in a manner similar

to WMH per se. Our overarching aim was to identify textural

features relating to WMH pathology and the peri-WMH area

demonstrating similar textural patterns to WMH. A small

number of comprehensive first-order (mean intensity, standard

deviation) and second-order (contrast, energy, entropy and

homogeneity) statistical textural features were quantified with-

in WMH and NAWM; the latter ones based on generated tex-

tural maps. Our hypotheses were that: (i) textural features

would relate to reaction time, (ii) textural features would con-

vey additive information toWMH volume when predicting re-

action time, (iii) textural features would be better predictors of

WMH burden compared with demographic factors, (iv) a

peri-WMH area would demonstrate a distinct textural profile

compared with both WMH and NAWM and (v) WMH and

NAWM textures (NAWMT) would relate to future dementia

risk, such that a more heterogeneous textural pattern would

be associated with a higher dementia risk.

Materials and methods

Study cohort

Data from the baseline visit of 183 participants from the

West London site of the PREVENT-Dementia study were

used. PREVENT-Dementia is a longitudinal observational

multi-site study in the UK and Ireland.18 The protocol of

the PREVENT-Dementia study has been described in detail

previously.18 Cognitively healthy, midlife (age 40–59) parti-

cipants were recruited through multiple sources. Initially,

participants were identified from the dementia register data-

base held at West London Mental Health National Health

Service (NHS) Trust, which holds information on patients

with dementia and cognitive impairment who have con-

sented to be approached for clinical research and their

carers (often offspring). Other participants were recruited

via the Join Dementia Research website (https://www.

joindementiaresearch.nihr.ac.uk/), or by registering their

interest through the PREVENT-Dementia website (https://

preventdementia.co.uk/) and public presentations and en-

gagement sessions. The study was approved by the

London-Camberwell St Giles National Health Service

Ethics Committee (REC reference: 12/LO/1023), which op-

erates according to the Helsinki Declaration of 1975 (and as

revised in 1983). All subjects provided written informed

consent. The Cardiovascular Risk Factors, Aging and

Dementia (CAIDE) risk score incorporating information

for age, sex, hypertension, education, activity, body mass in-

dex, cholesterol and apolipoprotein e4 genotype was calcu-

lated for all participants.19
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MRI protocol

All participants underwent structural MRI acquired on a 3T

Siemens Verio scanner. As part of a multi-modal imaging

protocol images acquired included three-dimensional

T1-weighted MPRAGE [parameters were: 160 slices, repeti-

tion time (TR)= 2300 ms, echo time (TE)= 2.98 ms, flip

angle= 9°, voxel size= 1× 1× 1 mm3] and axial FLAIR

(parameters were: 27 slices, TR= 9000 ms, TE= 94 ms,

flip angle= 150°, voxel size= 0.43× 0.43× 4 mm3).

T1-weighted image processing

Information from the T1-weighted image was used to calcu-

late brain volumes and to retain grey matter (GM) and white

matter (WM) maps in the T1 space. In particular, estimated

total intracranial volume (eTIV), WM and GM volumes

were quantified based on the FreeSurfer version 7 pipeline.20

The Freesurfer outcome was visually checked and manual

corrections were applied in the brainmask or by addition

of control points. eTIV was used to normalize the WM,

GM as well as the calculated WMH volumes. In the rest of

the manuscript when WMH, WM and GM volumes are

mentioned, they refer to the normalized values. WM masks

in T1 space were generated using SPM12 and were subse-

quently registered to the FLAIR space using FSL FLIRT.21

Quantification of white matter
hyperintensity volume

WMH lesion maps were obtained using an automated script

on the Statistical Parametric Mapping 8 (SPM8) suite

(http://www.fil.ion.ucl.ac.uk/spm/) on FLAIR MRI; details

on the procedures involved have been described previous-

ly.22 T1-weighted scans were segmented into GM, WM and

A

C

B

Figure 1 Grey level co-occurrence matrix (GLCM) generation for example image patches. Analyses for these patches are run by

examining voxel distances of one voxel, eight directions and eight intensity levels. InA, a relatively heterogeneous 4× 4 intensity patch is shown,

whereas inB, a more homogeneous intensity patch. For caseA, the values in thematrix are more scattered comparedwithB, where the entries of

the matrix are non-zero mainly around the diagonal and for specific intensity pairs. These differences are captured by all quantified textural

properties. In C, two patches with the exact same entropy and energy are shown, but for which homogeneity and contrast are very different.

Homog, homogeneity.

4 | BRAIN COMMUNICATIONS 2022: Page 4 of 13 M.-E. Dounavi et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
c
o
m

m
s
/a

rtic
le

/4
/3

/fc
a
c
1
1
6
/6

5
8
0
6
8
3
 b

y
 g

u
e
s
t o

n
 2

7
 M

a
y
 2

0
2
2



cerebrospinal fluid (CSF) based on prior probability maps

using SPM8. Brain masks were generated using GM and

WMmaps, which were used to perform the removal of non-

brain matter from FLAIR scans. WMH segmentation was

then conducted in FLAIR native space. Initial WMH maps

were generated using threshold-based segmentation at a

threshold of 1.2 times the median pixel intensity. All

WMH maps were reviewed by a single experienced rater

blinded to all clinical information, and used as starting

points for manual WMH delineation. WMH volumes were

normalized by eTIV to account for individual differences in

head size [(WMH/eTIV)× 100%] and transformed using

cube-root transformation due to skewness.

Definition of NAWM mask

To investigate how textural properties differ betweenWMH

and NAWM, a NAWM mask was created reflecting tissue

without visible WMH. GM, WM and CSF were segmented

from the FLAIR scans using SPM12. A WM mask was de-

rived by multiplying the FLAIR-WM mask and the

T1-weighted WM mask, registered as described in the previ-

ous step to FLAIR space to ensure that the WM class did not

include any non-WM tissue. Finally, the NAWM mask was

obtained by subtracting the WMH from the WM mask

and further eroding the image using a 2× 2 square kernel

to limit partial volume effects from GM and CSF.

Textural analysis

FLAIR images were bias field corrected using Advanced

Normalization Tools—ANTsN4.23The brain was extracted

from the FLAIR scans using FSL’s brain extraction tool.24

Textural analysis of the FLAIR skull-stripped images was

conducted using MATLAB R2019b (The MathWorks, Inc.,

Natick, MA, USA). First-order statistical textural features

extracted for WMH and NAWM were the mean

(WMHTmean, NAWMTmean) and standard deviation

(WMHTstd, NAWMTstd) of the image intensities. These

were measured following normalization of the image inten-

sities by subtracting the minimum and dividing with the

range of non-zero values present in the image.

Second-order statistical textural features were quantified

using the GLCM method9 and in particular an in-house

adaptation of a voxel-wise textural analysis technique pro-

posed byMaani et al.25 based on theMATLAB built-in func-

tions graycomatrix and graycoprops.

The GLCMmethod essentially measures co-occurrence of

intensity pairs in multiple directions in an image and con-

structs an occurrence table which is used for textural feature

quantification. In particular, the image is quantized in N le-

vels (N being typically a power of two, for example eight).

The algorithm subsequently measures how many times

each individual pair of intensities (for example 2–3, 3–8,

1–6) occurs in the image in a number of directions defined

by the user of the algorithm (for example eight directions

to take into account all eight voxels touching a voxel of

interest in a two-dimensional analysis). The distance separat-

ing the pixels of interest can be also an input in the algorithm.

Subsequently, an N×N table (GLCM matrix) is filled with

the number of times each pair occurred. Following this

procedure, the GLCM is normalized and textural features

are calculated using formulas detailed in the seminal

GLCM paper by Haralick et al.9 A pictorial example of

quantized image patches, theGLCMmap and calculated tex-

tural features is shown in Fig. 1. When the intensity levels

within a region are very different between adjacent voxels,

the values tend to be higher far from the diagonal of the con-

structed GLCM, which gives rise to higher contrast. When

the intensity is more homogeneous, higher values in the ma-

trix are recorded close to the diagonal. A higher image energy

will be given by numbers being higher for a small number of

entities. When there is a lot of randomness (entropy), then

each table entry tends to have a similar value, meaning that

there is not a dominant pattern in the observed intensity

combination. Typically, a region of interest (ROI) in an

image is selected and the GLCM analysis is run within this

region.26

The textural analysis pipelineweopted for is an adaptation

of the voxel-based GLCM on three orthogonal planes 3D

(VGLCM-TOP-3D) technique,25 which proposes to run

this analysis within a small neighbourhood of voxels in

each plane separately (axial in our case). Each voxel is as-

signed the textural values generatedbasedon its closest neigh-

bours (eight in the present implementation). Hence, this

method allows for textural images to be generated. As a re-

sult, the extraction of measurements from ROIs can follow

the generation of textural maps (Fig. 2) and not vice versa

as is customary (i.e. definition of ROIs and application of

the textural analysis within the ROI; Supplementary Fig. 1).

For our analysis, we have used a quantization level of eight

(eight intensity levels in the image), a radius of one voxel sur-

rounding the voxel of interest, thus 3× 3 voxel analysis

patches and eight directions. For every 3× 3 patch,

GLCMs from all eight directions were summed. Haralick

features were quantified based on this final GLCM matrix

at a voxel-wise level by assigning to each voxel the calcu-

lated textural values based on the analysis run in its local

3× 3 voxel neighbourhood. This procedure is summarized

in Fig. 2. Following generation of textural maps, the

following textural features were quantified (equations in

Supplementary Material) within WMH and NAWM:

energy (WMHTenergy, NAWMTenergy), entropy (WMHTentropy,

NAWMTentropy), homogeneity (WMHThomog, NAWMThomog)

and contrast (WMHTcontrast, NAWMTcontrast).

We opted for the generation of textural maps and ex-

traction of mean values rather than running the whole

textural analysis pipeline within each individual defined

ROI, in order to avoid issues that arise due to ROI selec-

tion and GLCM analysis and relate to the maximum and

minimum values within the defined ROIs (Supplementary

Fig. 1).27

All textural measures were transformed using cube-root

transformation due to skewness.

White matter texture and risk factors BRAIN COMMUNICATIONS 2022: Page 5 of 13 | 5
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Reaction time

Slowing of behavioural reaction time is a well-documented

clinical characteristic of SVD4 and Alzheimer’s disease.6 A

simple reaction time task was administered through a

touchscreen which records responses and response latencies,

as part of the COGNITO battery.28 Participants were re-

quired to respond by tapping on the screen when a stimulus

appeared, and the mean reaction time across 12 successful

trials was computed.

Statistical analysis

To examine differences in textural parameters between

WMH tissue and NAWM tissue, paired t-tests were used.

To test the associations between texture, (i) WMH volume

and (ii) reaction time, linear regression models were fitted,

adjusting for sex and age. Multiple comparisons were ac-

counted for by using the false discovery rate (FDR) method

which was applied to (i) and (ii) separately.29 We further

added WMH volume*texture as interaction terms to test

the interaction betweenWMH volume and separate textural

features in predicting reaction time. We additionally tested

whether WMH volumes were associated with reaction

time. To examine associations between risk of future demen-

tia (CAIDE score) and MRI textural features at midlife, lin-

ear regressionmodels were used. To identify the layers where

WM started deviating from the NAWM pattern, we used

paired t-tests between textural measures in NAWM and

the individual layers. Associations of textural features within

WMH and NAWM were tested with Spearman correlation.

In all regression models, predictors were mean centred.

Statistical analyses were conducted using R v4.0 (www.R-

project.org/) and MATLAB.

Spatial extent of the observed associations

As a further exploratory analysis, we sought to identify the

spatial extent of the region surrounding WMH, demonstrat-

ing similar textural associations to reaction time and WMH

volume with WMHT. For this purpose, we defined 10 layers

surrounding the WMH using a two-voxel circular dilation

kernel in MATLAB for each axial slice.30,31 Thus, WMH

maps were dilated using kernels between 2 and 20 voxels

with a 2-voxel increment (i.e. 0.86 mm, distance up to

A

B

Figure 2 Pipeline for textural map generation. (A) The bias field corrected FLAIR image is brain extracted and the intensity levels are

quantized to eight levels (minimum intensity 1, maximum 8). Subsequently in small 3× 3 patches the grey level co-occurrence matrices (GLCM)

are calculated based on eight directions as shown by the arrows. (B) Following that, Haralick features are calculated based on Matlab functions and

associated textural maps are generated whereby the intensity of every voxel captures the textural profile of the 3× 3 voxel neighbourhood

centred at every voxel.
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8.6 mm). Each layermaskwasmultipliedwith theWMmask

to ensure that non-WM was not included and was exclusive

of its previous layer. For each of the identified significant as-

sociations from the previous step between WMHT and ei-

ther reaction time or WMH volume, we have used linear

regressionmodels to determine whether the same association

persisted in the considered layers using age and sex as add-

itional covariates. FDR was applied for each observed asso-

ciation separately over the 11 ROIs considered.

Data availability

The data that support the findings of this study are available

from the corresponding author, upon reasonable request.

Results
Sample characteristics are summarized in Table 1.

In separate linear regression models, the CAIDE dementia

risk scorewas associatedwith second-orderNAWMtextural

features but not first-order features: NAWMTcontrast

(t= 4.72, P, 0.01, PFDR, 0.01), NAWMTentropy (t= 4.64,

P, 0.01,PFDR,0.01) and lowerNAWMTenergy (t=−4.73,

P, 0.01, PFDR, 0.01) and NAWMThomog (t=−4.83, P,

0.01, PFDR,0.01). Only oneWMH textural feature was as-

sociated with CAIDE score: WMHstd (t= 2.32, P= 0.02,

PFDR= 0.05). In a further exploratory model with age, sex,

years of education, diabetes, smoking and hypertension sta-

tus, several associations were observed and are reported in

Table 2.

Textural differences between WMH
and NAWM

Compared with NAWM, WMH demonstrated a pattern of

highermean intensity, higher standard deviation, higher con-

trast, higher entropy, lower energy and lower homogeneity

(P, 0.001). Examination of textural properties within the

10 defined layers revealed a distinctive change in first-order

textural features (i.e. mean and standard deviation) between

the boundaries of WMH and the first layer of NAWM (i.e.

layer closest to the WMH), while changes in second-order

textural features (contrast, energy, entropy and homogen-

eity) demonstrated graduated changes moving from WMH

to NAWM (Fig. 3). Paired t-tests between WMH textural

features and texture within the layers revealed that the tex-

tural profile of each layer was different to WMH texture.

The same association was observed for texture within the

layers and texture within the whole NAWM. Associations

between textural features within WMH and NAWM were

examined with Spearman correlations (Supplementary Fig.

2). Within WMH, WMHTmean and WMHTstd were moder-

ately associated, WMHTenergy, WMHThomog and

WMHTentropy were strongly associated between them and

moderately associated with WMHTcontrast and first- and

second-order features were weakly moderately associated.

WithinNAWM, first- and second-order features were not as-

sociated. NAWMTmean and NAWMTstd were moderately

associated and second-order textural features were perfectly

associated (Supplementary Fig. 2), with this difference be-

tween WMHT and NAWMT textural associations likely re-

lated to the extent of the considered regions.

Associations between texture and
WMH volume

General linear models adjusting for sex and age showed that

total WMH volume was associated with higher WMHTstd,

higher WMHTenergy, lower WMHTentropy and greater

WMHThomog as well as higher NAWMTcontrast, lower

NAWMTenergy, higher NAWMTentropy and lower

NAWMThomog (Table 3).

Association between textural
features and reaction time

In a general linear model adjusting for sex and age, WMH

volume was not associated with reaction time. Among tex-

tural features, only WMHTmean was significantly related to

reaction time (t=−3.77, P,0.01, PFDR, 0.01), whereby

higher mean intensities were related to lower reaction time.

This association remained significant with the addition of

WMH volume, diabetes, smoking and hypertension as a fur-

ther covariates (t=−3.79, P,0.01).

Interaction analysis in general linear models adjusting for

sex and age, revealed that total WMH volume interacted

with WMHTenergy (t=−2.06, P= 0.04, PFDR= 0.21) and

WMHThomog (t=−2.06, P= .04,PFDR= 0.21) to predict re-

action time, whereby greater WMH volume was related

to prolonged reaction time in cases of low WMHTenergy

and WMHThomog (Fig. 4).

Table 1 Sample characteristics

Sample (n= 183)

Demographics

Age (years) 51.9+ 5.4

Sex (% female) 69.9%

Education (years) 16.0+ 3.4

APOE4 (% carriers) 37.7%

eTIV (cm3) 1485.1+ 150.2

Imaging measures (% of eTIV)

Total WMH volume 0.11+ 0.16

Grey matter volume 42.0+ 2.0

White matter volume 30.5+ 1.6

Clinical measures

Reaction time (ms) 341.0+ 38.5

CAIDE score 5.8+ 2.9

Diabetes (%) 0.02

Smoking (%) 0.05

Hypertension (%) 14.2

Values are shown as mean+ standard deviation or percentages.

APOE, apolipoprotein; CAIDE, Cardiovascular Risk Factors, Aging and Dementia; eTIV,

estimated total intracranial volume; WMH, white matter hyperintensities.
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Extent of area demonstrating similar
textural associations to WMH

For the identified effects, we further investigated the extent

of the area immediately surrounding the WMH demonstrat-

ing similar textural associations with reaction time or total

WMH volume as WMHT, by examining the same associ-

ation within the 10 defined layers. Results are shown in

Fig. 5. In this exploratory analysis, we found that mean in-

tensity was associated negatively to reaction time, up to an

area extending until Layer 4 (3.44 mm). Standard deviation

of WMH was positively associated with WMH volume.

Extending further from the WMH (distance .0.86 mm),

the association turned negative for the majority of the layers.

Energy, entropy and homogeneity remained significantly as-

sociated with the WMH volume until Layer 3 (2.58 mm).

The pattern of association between WMH volume and

WMHTenergy, WMHTentropy and WMHThomog reverted

after layer 5 (4.3 mm).

Discussion
Texture analysis as a means to capture spatial patterns of in-

tensity variations allows to capitalize on the fact that the

MRI pixel intensity is a reflection of the underlying tissue

properties. In the present study, we have shown that in this

midlife cohort with a lowWMH burden, textural properties

of both WMH and NAWM were associated with reaction

time (mean intensity), dementia risk and WMH burden

(standard deviation, second-order textural features) and in-

teracted withWMHvolume to predict reaction time (energy,

homogeneity). We further demonstrated the potential of tex-

tural analysis of FLAIR images to capture early patterns of

textural alterations in a peri-WMH area. Hence, as hypothe-

sized, textural features confer additive information over

WMH volume and might have the potential to be used as

markers of WM damage.

Reaction time, a cognitive domain known to be influenced

in SVD and Alzheimer’s disease, was not associated with

WMH volume; however, it was associated with

WMHTmean. The lack of direct associations between

WMH volume and reaction time may be due to the relatively

low cerebrovascular burden in this healthy midlife cohort.32

Despite this, textural features demonstrated significant asso-

ciations with reaction time, suggesting that FLAIR texture

may be capturing additional information and might be

more sensitive compared with WMH volume. The finding

that slower reaction time was connected to more hypoin-

tenseWMHwas a counterintuitive one. In a study evaluating

an intensity-based metric of WM damage, WMHs of lower

intensity were associated with more pronouncedWMH pro-

gression as defined based on WMH volumetry in stroke pa-

tients.33A potential explanation could be that a higher mean

intensity is associated with newer WMH, whereas a lower

WMH intensity is associated with long-standing WMH.

For instance, brighter lesions in multiple sclerosis have

been thought to reflect more recent events and potentially ac-

tive inflammation with the temporal evolution of lesion in-

tensity being viewed as a possible marker of reparative

capacity.34 In particular, longitudinal hyperintense signal re-

ductions are thought to reflect tissue reparative efforts/re-

myelination.35 A longitudinal study of the evolution of the

textural properties of the examined lesions and changes in

performance in the reaction time task would thus shed fur-

ther light into the association betweenWMHTmean and reac-

tion time.

Although unrelated to reaction time when considered in-

dependently, interactions of textural measures with WMH

volume revealed that a higher WMH volume, when accom-

panied by lower WMHThomog and lower WMHTenergy,

was associated with higher reaction time. In a post-mortem

study of multiple sclerosis patients, it was found that de-

creased lesion textural homogeneity was associated with

completely demyelinated lesions.36 In another study, a com-

bination of WMH features extracted from T1-weighted

Table 2 Associations of textural features in WMH and NAWM with cardiovascular risk factors

Sex Age Educ Diabetes Smoking Hypertension

WMH texture

Mean −0.75; 0.45 0.67; 0.51 −0.25; 0.81 −0.70; 0.48 0.24; 0.81 0.08; 0.93

Standard deviation 0.97; 0.33 1.60; 0.11 −0.17; 0.86 0.03; 0.98 1.04; 0.30 2.18; 0.03

Contrast 2.44; 0.02* 0.43; 0.67 −0.64; 0.52 −0.12; 0.91 0.47; 0.64 1.74; 0.08

Energy −2.51; 0.01* 1.61; 0.11 −0.06; 0.96 −0.55; 0.58 0.15; 0.88 0.70; 0.49

Entropy 2.47; 0.01* −1.66; 0.10 0.04; 0.97 0.76; 0.45 −0.24; 0.81 −0.88; 0.38

Homogeneity −2.43; 0.02* 1.20; 0.23 0.47; 0.64 −0.30; 0.77 0.20; 0.84 0.14; 0.89

NAWM texture

Mean 0.23; 0.82 0.25; 0.80 −0.96; 0.34 −0.99; 0.32 −0.27; 0.79 0.52; 0.61

Standard deviation −2.60; 0.01* −2.41; 0.02* 1.63; 0.11 1.77; 0.08 0.16; 0.87 −0.97; 0.33

Contrast −5.11; ,0.01* 3.17; ,0.01* −0.83; 0.41 0.02; 0.98 0.63; 0.53 1.33; 0.18

Energy 4.31; ,0.01* −3.04; ,0.01* 0.57; 0.57 0.07; 0.95 −0.50; 0.62 −1.18; 0.24

Entropy −4.27; ,0.01* 2.95; ,0.01* −0.53; 0.59 −0.06; 0.95 0.54; 0.59 1.14; 0.26

Homogeneity 5.15; ,0.01* −3.28; ,0.01* 0.87; 0.38 −0.01; 0.99 −0.61; 0.54 −1.39; 0.17

The values are presented as t-value; P-value, resulting from the applied linear regression models. Positive sign in sex indicates higher values in females, in diabetes higher values in

diabetes patients, in smoking higher values in smokers and in hypertension, higher values in hypertensive patients. Bold is used to indicate significant findings at a level of P, 0.05 and

asterisks indicate findings surviving FDR at a level of 0.05.
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images (among themWMHvolume, contrast and lesion pos-

ition) was used to classify individual into different classes

capturing distinct WMH severity.37 In this latter study, the

class with the higher WMH burden comprised participants

who were older, with higher blood pressure, higher

Framingham risk score and were less active. WMH within

that class were less myelinated (T1/T2 mapping) with rela-

tively high contrast,37 although it needs to be mentioned

A

D

B C

Figure 3Variation of texture properties with an increasing radius extending from theWMH per se to 10 layers surrounding the

WMH (two-voxel dilation kernel). (A) Raw FLAIR image. (B) WMH lesion maps were generated based on a semi-automated pipeline.

(C) Ten layers surrounding the WMH based on a two-voxel dilation kernel and confined within normal appearing white matter. (D) Textural

values within the whole NAWM are shown in the last column of the boxplots as a reference. Boxplots (horizontal lines within the boxes

correspond to the median, the upper and lower ends of the boxes to the 25th and 75 percentiles, crosses indicate outliers and whiskers cover the

range of data points not considered outliers) are based on the raw textural values from the 183 participants. NAWM, normal appearing white

matter; WMH, white matter hyperintensities.
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that the notion that the T1/T2 ratio is a good proxy for mye-

lination has been challenged.38 Taken together, characteris-

tics of the intensity profile of WMH might be defining how

WMHs impact reaction time, especially in young or

middle-aged cohorts with a relatively low WMH burden,

where the effect of WMH, as captured by WMH volumetry

is not yet prominent in cognition.

The WMH volume was associated with several textural

features of bothWMHandNAWM, although notably in op-

posite directions, such that higher WMH volumes were ob-

served in subjects with more homogeneous WMH and less

homogeneous NAWM textural profiles. WMHTstd,

WMHTenergy and WMHThomog were positively associated

with WMH volume, whereas WMHTentropy had a negative

association. On the contrary, NAWMTentropy and

NAWMTcontrast were positively associated with WMH

volume, whereas NAWMTenergy and NAWMThomog were

negatively associated. A potential explanation is that a high-

er WMH volume is related to more recent ischaemic events

which would explain the higher homogeneity as explained

previously. Further to that though, more homogeneous

WMH concomitant with higher volume could relate to

more developed or severe WM damage. Our finding of in-

creased textural homogeneity with a higher WMH volume

is in line with previous reports of positive associations be-

tween the Fazekas score and textural homogeneity within

WMH.13 More heterogeneous NAWMT could potentially

allude to microstructural alterations happening in NAWM,

which could relate to a more severe WMH burden, or in-

creased prevalence of other cerebrovascular pathologies in

individuals with higher WMH volume. Associations be-

tween textural properties, WMH volume, reaction time

and CAIDE may imply that texture indirectly measures

WMH severity more accurately than WMH segmentation

and volumetry on FLAIR MRI, or that textural measures

may be measuring microstructural changes beyond WMH.

The negative association between NAWMTstd and WMH

volume persisted for all the examined layers extending

from the WMH apart from the closest layer (0.86 mm

from the WMH).

As a further subanalysis, we examined the extent of the

area surroundingWMH that demonstrated a similar textural

profile to that of WMHT, by analysing incremental layers of

NAWM in which textural associations resembled associa-

tions observed in WMH. We have shown that an area of

around 3.44 mm surrounding the WMH and classified as

NAWM demonstrates similar textural associations to the

volume of WMH and reaction time as WMHT.

The spatial extent of the peri-WMH area is similar to the

extent of penumbras determined in studies using less readily

available MRI sequences such as diffusion tensor imaging

(DTI; 2–10 mm),39 although studies using arterial spin

Table 3 Association between WMH volume and

textural properties

t-value P-value

WMH texture

Mean 1.75 0.08

Standard deviation 5.48 ,0.01*

Contrast −0.41 0.68

Energy 6.60 ,0.01*

Entropy −7.22 ,0.01*

Homogeneity 5.30 ,0.01*

NAWM texture

Mean 0.74 0.46

Standard deviation −1.89 0.06

Contrast 2.90 ,0.01*

Energy −2.79 0.01*

Entropy 2.71 0.01*

Homogeneity −3.01 ,0.01*

t-statistic and P-values for the conducted linear regression analyses.

WMH, white matter hyperintensities; NAWM, normal appearing white matter .

*Survive FDR correction at a level of P, 0.05.

Figure 4 Plot of estimated marginal means of reaction time depicts a significant interaction between white matter

hyperintensity (WMH) volume and texture on reaction time for the 183 participants.Higher reaction time (in milliseconds) indicates

poorer performance. In legend, moderate represents mean homogeneity/energy, while high and low homogeneity/energy was defined as+1 SD

from mean. WMH volume as a percentage of total intracranial volume was cube root transformed for normality.
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labelling have identified larger penumbras (7–10 mm).30

Hence, our technique might demonstrate sensitivity similar

to that of DTI in the definition of WMH penumbras, though

a direct comparison of the sensitivity of the techniques has

not yet been made. The clinical implication of this is that tex-

tural properties from conventional FLAIR images obtained

in clinical MRI examinations may be sufficiently sensitive

tomicrostructural changes that are undetectable with the hu-

man eye and are not captured by volumetry. While the ad-

vantage of using FLAIR over DTI lies in its availability,

DTI metrics have the advantage of being adjusted for the in-

fluence of free water, which cannot be done in FLAIR at pre-

sent. Similar efforts to generate meaningful measures ofWM

damage utilizing image intensity information have been con-

ducted in the past. In particular, it has been shown that a

metric quantifying relative intensity differences between

WMH and NAWM was more associated with visual rating

scales compared with WMH volume.33

We have further investigated how the CAIDE score, cap-

turing genetic and lifestyle risk factors for dementia was re-

lated to textural features. CAIDE was associated with a

heterogeneous intensity pattern in NAWM, a finding which

further supports the hypothesis that WM textural analysis

might be capturing subtle microstructural alterations in clin-

ical scans. In this same cohort, previous analysis using the

T1-weighted images suggested limited areas of atrophy in

subjects with a higher CAIDE.40 In the past, it has been

shown that entropy and contrast of T1 images relate to tau

burden in the neocortex.41A further analysis with cardiovas-

cular risk factors, age and sex as predictors unveiled that fe-

males had a different textural profile compared with males in

both WMH (more heterogeneous textural profile) and

NAWM (less heterogeneous), with ageing mainly related to

textural alterations in NAWM (more heterogeneous).

From the considered cardiovascular risk factors only hyper-

tension was related to a higher WMHTstd, a finding which

did not remain significant following FDR correction.

Overall, we have shown that textural features extracted

from images typically used in clinical settings can reveal fur-

ther information pertaining to damage ofWMabove and be-

yond that captured by the volume ofWMH.We propose that

intensity information from the FLAIR scans holds additional

clinical value and could be considered as a marker of WMH

severity. It is worth noting that the running time of textural

analysis for the FLAIR scans was approximately 8 minutes

per subject.

Strengths of our study include generation of textural maps

and subsequent extraction of textural values from defined

ROIs, rather than running a separate textural analysis within

each ROI which renders the quantized intensity values de-

pendent on ROI definition. To achieve this, we have extrapo-

lated a method developed for texture-based morphometry in

Figure 5 Extent of the area surrounding WMH where the observed relationships between reaction time and texture, and

WMH volume and texture persisted. For the majority of the examined metrics, the association persisted until layer 3, which corresponds to

an area of around 2.6 mm surrounding the WMH. The association between reaction time and mean intensity persisted until Layer 4 (3.44 mm).

Plots are based on the full sample of 183 individuals and demonstrate the t-statistic from linear regression models with age and sex as additional

predictors in the y-axis, the layer number on the x-axis and asterisks depict the level of significance of the observed association—if any on the

respective data points. * P, 0.05; ** P, 0.01. Dark asterisks indicate associations that survived FDR correction, whereas light asterisks are used

for associations that did not survive the correction for multiple comparisons.
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T1-weighted images and applied it in FLAIR space using a

two-dimensional approach. This allowed for the quantized

intensity levels to be stable across our analysis. Absence of

associations between WMH volume and reaction time al-

lowed us to evaluate the sensitivity of the employed tech-

nique to detect potential subtle underlying damage. The

advantage of investigating cognitively healthy midlife adults

stems from the ability to detect early preclinical changes

years before the onset of dementia, allowing us to identify

earlier and more sensitive predictors of future cognitive im-

pairment. On the other hand, results obtained in our midlife

cohort may not extend to elderly cohorts, and future replica-

tion in older samples will be needed. Other limitations of this

study relate to its cross-sectional nature, which does not al-

low us to assess the sensitivity of textural parameters in

WMH progression. In addition, a single MRI modality was

used and sequences such as T2 relaxometry, which are sensi-

tive in capturing microstructural damage42 were not in-

cluded in the protocol. The applied normalization step for

the first-order textural features does not correct for potential

acquisition-related intensity variations. In addition, the con-

founding effect of other SVD pathologies was not considered

in this study. Furthermore, we chose to focus on a limited

number of well-defined, easily perceived textural features;

in the future, a further set of textural features (statistical

and spectral) could be considered.

In conclusion, we have shown that textural properties of

FLAIR images are associated with reaction time in a midlife

cohort, while WMH volume was not associated with it.

Textural properties of WMH interacted with WMH volume

to predict reaction time, revealing that a less homogeneous

intensity profile associates with worse performance in the re-

action time task. Future dementia risk was also associated

with NAWM textural properties. Thus, textural features

could potentially convey valuable clinical information in

terms of the severity of WMH and could be a sensitive meas-

ure of SVD. This could imply that limitations associated with

the one-dimensional approach of using WMH volume as a

measure of investigating WMH pathology can be partly cir-

cumvented by incorporating textural features in the analysis.

Acknowledgements
The authors acknowledge the Cambridge National Institute

for Health Research Biomedical Research Center, the

PREVENT-Dementia participants and the DeNDRoN spe-

cialty within the Clinical Research Network.

Funding
The PREVENT-Dementia program is funded by the

Alzheimer’s Society (grant numbers 178 and 264),

Alzheimer’s Association (grant number TriBEKa-17–519007)

and philanthropic donations. AL is supported by scholarships

from Fitzwilliam College (University of Cambridge) and the

Tan Kah Kee Foundation. LS is supported by the NIHR

Cambridge Biomedical Research Center and Alzheimer’s

Research UK (ARUK-SRF2017B-1). HSM is supported by a

National Institute for Health Research Senior Investigator

award. JOB and HSM receive infrastructural support from

the NIHR Cambridge Biomedical Research Center.

Competing interests
The authors report no conflicts of interest related to this

work. Unrelated to this work, JOB has received honoraria

for work as DSMB chair or member for tauRx, Axon,

Eisai, has acted as a consultant for Roche, and has received

research support from Alliance Medical and Merck.

Supplementary material
Supplementary material is available at Brain

Communications online.

References
1. Wardlaw JM, Smith EE, Biessels GJ, et al.Neuroimaging standards

for research into small vessel disease and its contribution to ageing

and neurodegeneration. Lancet Neurol 2013;12(8):822–838.

2. Debette S, Markus HS. The clinical importance of white matter hy-

perintensities on brain magnetic resonance imaging: Systematic re-

view and meta-analysis. BMJ 2010;341:c3666–c3666.

3. Alber J, Alladi S, Bae H-J, et al.Whitematter hyperintensities in vas-

cular contributions to cognitive impairment and dementia (VCID):

Knowledge gaps and opportunities. Alzheimers Dement Transl Res

Clin Intervent 2019;5(1):107–117.

4. Jouvent E, Reyes S, De Guio F, Chabriat H. Reaction time is a mark-

er of early cognitive and behavioral alterations in pure cerebral

small vessel disease. J Alzheimers Dis 2015;47(2):413–419.

5. Richards E, Bayer A,Hanley C,Norris JE, Tree JJ, Tales A. Reaction

time and visible white matter lesions in subcortical ischemic vascu-

lar cognitive impairment. J Alzheimers Dis 2019;72:859–865.

6. Andriuta D, Diouf M, Roussel M, Godefroy O. Is reaction time

slowing an early sign of Alzheimer’s disease? A meta-analysis.

Dement Geriatr Cogn Disord 2019;47(4-6):281–288.

7. Kassner A, Thornhill RE. Texture analysis: A review of neurologic

MR imaging applications. Am J Neuroradiol 2010;31(5):809.

8. Aggarwal N, Agrawal RK. First and second order statistics features

for classification of magnetic resonance brain images. J Signal Inf

Process 2012;3(2):146–153.

9. Haralick RM, Shanmugam K, Dinstein I. Textural features for im-

age classification. IEEE Trans Syst Man Cybern 1973;SMC-3(6):

610–621.

10. Zayed N, Elnemr HA. Statistical analysis of Haralick texture fea-

tures to discriminate lung abnormalities. Int J Biomed Imaging

2015;2015:267807.

11. Zacharaki EI,Wang S, Chawla S, et al.Classification of brain tumor

type and grade using MRI texture and shape in a machine learning

scheme. Magn Reson Med 2009;62(6):1609–1618.

12. Loizou CP, Petroudi S, Seimenis I, Pantziaris M, Pattichis CS.

Quantitative texture analysis of brain white matter lesions derived

fromT2-weightedMR images inMS patients with clinically isolated

syndrome. J Neuroradiol 2015;42(2):99–114.

13. Hernández M, González-Castro V, Chappell FM, et al. Application

of texture analysis to study small vessel disease and blood-brain bar-

rier integrity. Front Neurol 2017;8(JUL).

12 | BRAIN COMMUNICATIONS 2022: Page 12 of 13 M.-E. Dounavi et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
c
o
m

m
s
/a

rtic
le

/4
/3

/fc
a
c
1
1
6
/6

5
8
0
6
8
3
 b

y
 g

u
e
s
t o

n
 2

7
 M

a
y
 2

0
2
2



14. Cai JH, He Y, Zhong XL, et al.Magnetic resonance texture analysis

in Alzheimer’s disease. Acad Radiol 2020.

15. Tozer DJ, Zeestraten E, Lawrence AJ, Barrick TR, Markus HS.

Texture analysis of T1-weighted and fluid-attenuated inversion re-

covery images detects abnormalities that correlate with cognitive

decline in small vessel disease. Stroke 2018;49(7):1656–1661.

16. Shao Y, Chen Z, Ming S, et al. Predicting the development of normal-

appearingwhitematterwith radiomics in the aging brain: a longitudinal

clinical study. Front Aging Neurosc 2018;10(November):1–9.

17. Leite M, Rittner L, Appenzeller S, Ruocco HH, Lotufo R.

Etiology-based classification of brain white matter hyperintensity

on magnetic resonance imaging. J Med Imaging 2015;2(1):

014002–014002.

18. Ritchie CW, Ritchie K. The PREVENT study: A prospective cohort

study to identify mid-life biomarkers of late-onset Alzheimer’s dis-

ease. BMJ Open 2012;2(6):e001893.

19. Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H,

Tuomilehto J. Risk score for the prediction of dementia risk in 20

years among middle aged people: A longitudinal, population-based

study. Lancet Neurol 2006;5(9):735–741.

20. Fischl B. FreeSurfer. NeuroImage 2012;62(2):774–781.

21. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimiza-

tion for the robust and accurate linear registration and motion cor-

rection of brain images. NeuroImage 2002;17(2):825–841.

22. FirbankMJ, Minett T, O’Brien JT. Changes in DWI andMRS asso-

ciated with white matter hyperintensities in elderly subjects.

Neurology 2003;61(7):950–954.

23. Tustison NJ, Avants BB, Cook PA, et al.N4ITK: Improved N3 bias

correction. IEEE Trans Med Imaging 2010;29(6):1310–1320.

24. Smith SM. Fast robust automated brain extraction. Hum Brain

Mapp 2002;17(3):143–155.

25. Maani R, Yang YH, Kalra S. Voxel-based texture analysis of the

brain. PLoS One 2015;10(3):e0117759.

26. LarrozaA,BodíV,MoratalD.Texture analysis inmagnetic resonance im-

aging: Review and considerations for future applications. In:

Constantinides C, ed. Assessment of cellular and organ function and dys-

function using direct and derivedMRImethodologies. IntechOpen; 2016.

27. Brynolfsson P, Nilsson D, Torheim T, et al. Haralick texture features

from apparent diffusion coefficient (ADC) MRI images depend on im-

aging and pre-processing parameters. Sci Rep 2017;7(1):1–11.

28. Ritchie K, de Roquefeuil G, Ritchie CW, et al. COGNITO:

Computerized assessment of information processing. J Psychol

Psychother 2014;04(02):136–136.

29. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J R Stat Soc

Ser B (Methodological) 1995;57(1):289–300.

30. Wu X, Ge X, Du J, et al. Characterizing the penumbras of white

matter hyperintensities and their associations with cognitive func-

tion in patients with subcortical vascular mild cognitive impair-

ment. Front Neurol 2019;10:348.

31. Promjunyakul NO, Dodge HH, Lahna D, et al. Baseline NAWM

structural integrity and CBF predict periventricular WMH expan-

sion over time. Neurology 2018;90(24):e2119–e2126.

32. Low A, Su L, Stefaniak JD, et al. Inherited risk of dementia and the

progression of cerebral small vessel disease and inflammatory mar-

kers in cognitively healthy midlife adults: The PREVENT-Dementia

study. Neurobiol Aging 2020.

33. Valdes Hernandez MDC, Chappell FM, Munoz Maniega S, et al.

Metric to quantify white matter damage on brain magnetic reson-

ance images. Neuroradiology 2017;59(10):951–962.

34. Meier DS, Weiner HL, Guttmann CRG. Time-series modeling of

multiple sclerosis disease activity: A promising window on disease

progression and repair potential? Neurotherapeutics 2007;4(3):

485–498.

35. Rovira A, Auger C, Alonso J. Magnetic resonance monitoring of le-

sion evolution in multiple sclerosis. Ther Adv Neurol Disord 2013;

6(5):298–310.

36. Zhang Y, Jonkman L, Klauser A, et al. Multi-scale MRI spectrum

detects differences in myelin integrity between MS lesion types.

Mult Scler 2016;22(12):1569–1577.

37. Jung KH, Stephens KA, Yochim KM, et al. Heterogeneity of cere-

bral white matter lesions and clinical correlates in older adults.

Stroke 2021;52(2):620–630.

38. Arshad M, Stanley JA, Raz N. Test-retest reliability and concurrent

validity of in vivo myelin content indices: Myelin water fraction and

calibrated T(1) w/T(2) w image ratio.HumBrainMapp 2017;38(4):

1780–1790.

39. Maniega S M, Meijboom R, Chappell FM, et al. Spatial gradient of

microstructural changes in normal-appearing white matter in tracts

affected by white matter hyperintensities in older age. Front Neurol

2019;10:784.

40. Liu X, Dounavi ME, Ritchie K, et al.Higher midlife CAIDE score is

associated with increased brain atrophy in a cohort of cognitively

healthymiddle-aged individuals. J Neurol 2021;268(5):1962–1971.

41. Lee S, Kim KW. Alzheimer’s disease neuroimaging I. Associations

between texture of T1-weighted magnetic resonance imaging and

radiographic pathologies in Alzheimer’s disease. Eur J Neurol

2021;28(3):735–744.

42. Brandhofe A, Stratmann C, Schüre J-R, et al. T(2) relaxation time of

the normal-appearing white matter is related to the cognitive status

in cerebral small vessel disease. J Cereb Blood Flow Metab 2021;

41(7):1767–1777.

White matter texture and risk factors BRAIN COMMUNICATIONS 2022: Page 13 of 13 | 13

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
c
o
m

m
s
/a

rtic
le

/4
/3

/fc
a
c
1
1
6
/6

5
8
0
6
8
3
 b

y
 g

u
e
s
t o

n
 2

7
 M

a
y
 2

0
2
2


	Fluid-attenuated inversion recovery magnetic resonance imaging textural features as sensitive markers of white matter damage in midlife adults
	Introduction
	Materials and methods
	Study cohort
	MRI protocol
	T1-weighted image processing
	Quantification of white matter hyperintensity volume
	Definition of NAWM mask
	Textural analysis
	Reaction time
	Statistical analysis
	Spatial extent of the observed associations

	Data availability

	Results
	Textural differences between WMH and NAWM
	Associations between texture and WMH volume
	Association between textural features and reaction time
	Extent of area demonstrating similar textural associations to WMH

	Discussion
	Acknowledgements
	Funding
	Competing interests
	Supplementary material
	References


