

This is a repository copy of *What are mycorrhizal traits?*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/187402/

Version: Accepted Version

Article:

Chaudhary, V. Bala, Holland, E. Penelope, Charman-Anderson, Suw et al. (16 more authors) (2022) What are mycorrhizal traits? Trends in Ecology & Evolution. pp. 573-581. ISSN: 0169-5347

https://doi.org/10.1016/j.tree.2022.04.003

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedowr

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Trends in Ecology and Evolution

What are mycorrhizal traits? --Manuscript Draft--

Manuscript Number:	TREE-D-22-00005R1		
Article Type:	Opinion		
Keywords:	symbiosis; Community Ecology; Ecosystem function; fungal traits; plant traits; mycorrhizas		
Corresponding Author:	Bala Chaudhary Dartmouth College Hanover, NH UNITED STATES		
First Author:	V. Bala Chaudhary		
Order of Authors:	V. Bala Chaudhary		
	E. Penelope Holland		
	Suw Charman-Anderson		
	Aidee Guzman		
	Lukas Bell-Dereske		
	Tanya E. Cheeke		
	Adriana Corrales		
	Jessica Duchicela		
	Cameron Egan		
	Manju M. Gupta		
	S. Emilia Hannula		
	Rachel Hestrin		
	Shabana Hoosein		
	Amit Kumar		
	Genet Mhretu		
	Lena Neuenkamp		
	Pushpa Soti		
	Yichun Xie		
	Thorunn Helgason		
Abstract:	Traits are inherent properties of organisms, but how are they defined for organismal networks such as mycorrhizal symbioses? Mycorrhizal symbioses are complex and diverse belowground symbioses between plants and fungi that have proved challenging to fit into a unified and coherent trait framework. We propose an inclusive mycorrhizal trait framework that classifies traits as morphological, physiological and phenological features that have functional implications for the symbiosis. We further classify mycorrhizal traits by location - plant, fungus, or the symbiosis - which highlights new questions in trait-based mycorrhizal ecology designed to charge and challenge the scientific community. This new framework is an opportunity for researchers to interrogate their data to identify novel insights and gaps in our understanding of mycorrhizal symbioses.		

1

What are mycorrhizal traits?

V. Bala Chaudhary^{1*}, E. Penelope Holland², Suw Charman-Anderson³, Aidee Guzman⁴, Lukas 2 3 Bell-Dereske⁵, Tanya E. Cheeke⁶, Adriana Corrales⁷, Jessica Duchicela⁸, Cameron Egan⁹, Maniu 4 M. Gupta¹⁰, S. Emilia Hannula¹¹, Rachel Hestrin¹², Shabana Hoosein¹³, Amit Kumar¹⁴, Genet Mhretu¹⁵, Lena Neuenkamp^{16,17}, Pushpa Soti¹⁸, Yichun Xie¹⁹, Thorunn Helgason² 5 6 7 ¹Department of Environmental Studies, Dartmouth College, Hanover, NH, USA 8 ²Department of Biology, University of York, York YO10 5DD, UK 9 ³Finding Ada Network, Bournemouth, UK 10 ⁴Department of Environmental Science, Policy, and Management, University of California, 11 Berkeley, Berkeley, CA 94720 USA 12 ⁵Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of 13 Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic 14 ⁶School of Biological Sciences, Washington State University, Richland, WA, USA 15 ⁷Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias 16 Naturales, Universidad del Rosario, Bogotá, Colombia 17 ⁸Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Ecuador 18 ⁹Department of Biology, Okanagan College, 1000 KLO Rd, Kelowna, BC, Canada V1Y 4X8 ¹⁰University of Delhi, Sri Aurobindo College, Delhi, India 19 20 ¹¹Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands 21 ¹²Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, 22 CA, 94550, USA

23 ¹³Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 24 USA ¹⁴Institute of Ecology, Faculty of Sustainability, Leuphana University of Lüneburg, 21335 25 26 Lüneburg, Germany 27 ¹⁵Mekelle University, Ethiopia 28 ¹⁶University of Bern, Institute of Plant Sciences, Switzerland 29 ¹⁷Department of Ecology & Multidisciplinary Institute for Environment Studies "Ramon 30 Margalef", University of Alicante, Spain 31 ¹⁸Biology Department, University of Texas Rio Grande Valley, Edinburg, TX, USA 32 ¹⁹School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR 33 *Corresponding author, email: bala.chaudhary@dartmouth.edu, Twitter: @balachaudhary 34 Keywords: symbiosis, community ecology, ecosystem function, fungal traits, plant traits, 35 mycorrhizas 36 37 38

Abstract

Traits are inherent properties of organisms, but how are they defined for organismal networks such as mycorrhizal symbioses? Mycorrhizal symbioses are complex and diverse belowground symbioses between plants and fungi that have proved challenging to fit into a unified and coherent trait framework. We propose an inclusive mycorrhizal trait framework that classifies traits as morphological, physiological and phenological features that have functional implications for the symbiosis. We further classify mycorrhizal traits by location - plant, fungus, or the symbiosis - which highlights new questions in trait-based mycorrhizal ecology designed to charge and challenge the scientific community. This new framework is an opportunity for researchers to interrogate their data to identify novel insights and gaps in our understanding of mycorrhizal symbioses.

Fitting mycorrhizal symbioses into existing trait-based ecological frameworks

A **trait** (see Glossary) is defined as a measurable characteristic (morphological, physiological, phenological, behavioral, or cultural) of an individual organisms that is measured at either the individual or other relevant level of organization [1, 2]. Plants and animals typically have many distinguishable morphological traits and, after decades and/or centuries of research, their life histories are generally well described. As a result, conceptual frameworks for trait-based ecology were developed for and are primarily applied to plants [3, 4] and animals [5, 6] with a proportionate number of plant- and animal-trait databases emerging to support these efforts [7].

Trait-based approaches are increasingly applied broadly across disciplines within ecology and evolution. Advantages include the ability to make ecological inferences across temporal, spatial, and organizational scales and a predictive understanding of communities and ecosystem processes [8, 9]. Commonly used methods employ species traits in order to understand mechanisms behind responses of species to variation in environmental conditions (i.e. response traits) and traits that link species to patterns in ecosystem processes and functioning (i.e. effect traits) [10]. For microbes, a trait-based approach to ecological studies is particularly crucial as many individuals and species are not easily identifiable or culturable for in-depth laboratory studies [11]. Trait-based approaches are a key to solving 'big picture' problems in ecology such as community responses to anthropogenic global change [5, 12] that depend on complex interactions between species and environments, both above and belowground [13, 14].

Mycorrhizal symbioses (synonymous with "mycorrhizas") are close associations between roots and certain fungi [15] and, in terrestrial ecosystems, the dominant belowground structures responsible for shuttling the resources (e.g. nutrients, water) that drive primary productivity [16]. In mycorrhizal symbioses, plants provide photosynthetically derived carbon to fungal partners in exchange for increased access to soil resources such as nitrogen, phosphorus, and water, though the degree of mutual benefit is context dependent [17]. Mycorrhizal symbioses are most well known for their role in nutrient exchange, but are also recognized for their key roles in ecosystems across a range of organizational scales such as promoting plant establishment, plant pathogen protection, plant resistance to heavy metals, drought tolerance,

interspecific community interactions, soil aggregation, and global carbon cycling [18].

Mycorrhizal symbioses represent the interface between two different types of modular lifeforms; in nature, most plant roots are associated with more than one mycorrhizal fungus. Furthermore, one mycorrhizal fungus can be associated with multiple plants to form non-random assemblages of physical networks of hyphae that are connected belowground [19, 20]. As such, mycorrhizal symbioses are root-mycelial networks of modular lifeforms with varying degrees of complexity ranging from one plant-one fungus to multiple plant-fungal connections.

Applying concepts from, and drawing parallels to, trait-based ecological theory developed for individual organisms with more definable traits can be challenging for symbioses that are inherently defined as associations between multiple organisms. Traits are often defined for the purpose of a specific study, so terminology, semantics and interpretations vary across datasets [7, 21], even for well-studied and easily identifiable organisms. For organisms with high species-level diversity but few distinguishable morphological traits such as fungi [22], trait-based ecology often takes a more mechanistic approach, particularly for species that are cryptic or microscopic [23, 24]. For symbioses that are not discrete species units but in fact emergent properties of complex root-mycelial networks such as mycorrhizal symbioses (but see also [25]), trait-based ecology poses an even greater challenge.

Prior morpho-physio-phenological trait definitions for mycorrhizas

Mycorrhizal ecologists, whether invoking the word 'trait' or not, have long studied various

mycorrhizal traits to gain insight into predictors or proxies of mycorrhizal performance [26]. Table 1 lists examples of previously used definitions of morphological, physiological, or phenological traits that have led to considerable advances in our understanding of mycorrhizal ecology. Mycorrhizal type is an emergent property of the plant and fungal taxa involved in the symbiosis and likely the most commonly studied mycorrhizal trait. The major types of mycorrhizas - arbuscular mycorrhizas (AM), ectomycorhizas (EcM), ericoid mycorrhizas (ErM), and orchid mycorrhizas (OrM) - are similar in that they are all symbiotic root-mycelial networks of fungi and plants with varying degrees of complexity. However, mycorrhizal types vary substantially with respect to plant and fungal taxa involved in the association, morphological form, ecophysiological function, and their comparative roles in biogeochemical cycling [16, 27]. Research on mycorrhizal type, among other mycorrhizal traits, is increasingly being conducted with large global databases (e.g. MycoDB, FungalRoot, FUNFUN, FungalTraits) aimed at making broad inferences about the biogeography and functioning of mycorrhizas [24, 28-31].

The application of existing ecological conceptual frameworks has also led to advances in trait-based mycorrhizal ecology, in particular the application of Grime's C-S-R (competitor, stress tolerator, ruderal) framework [32, 33]. A fungal-centric perspective characterizes variation in AM fungal traits such as hyphal growth rate, hyphal turnover rate, **spore** phenology, and dispersal ability as alternative competitive strategies for different AM fungal species [34]. Efforts have also been made to classify AM fungi into edaphophilic or rhizophilic guilds related to differential allocation to soil hyphae or root colonization, respectively, and how that relates to mycorrhizal function [35, 36]. In EcM fungi, previous work has defined mycorrhizal traits as

differences in morphology and physiology of mycelial [37] and reproductive structures [38] that produce differences in species' capacity for carbon storage, enzymatic activity, nutrient uptake and translocation, dispersal, and habitat colonization [27, 39-42]. Alternatively, plant-centric perspectives have shown how mycorrhizal symbioses explain significant variation in plant life history strategies [43] and multivariate root trait space [44] accounting for different C-S-R and resource utilization strategies of plants across the globe.

Methodological limitations (e.g. culturing bias) certainly impair empirically derived knowledge of mycorrhizal traits [45], but disparate definitions across a diversity of trait-based mycorrhizal research efforts also hinder productive scientific discourse. Often, different definitions of mycorrhizal traits are specific to mycorrhizal type, focused on either a plant- or fungal-centric perspective, or borrowed from existing ecological theories based on distinct unitary organisms that cause confusion for network-based symbioses between modular organisms. A unified language for mycorrhizal traits that spans mycorrhizal types and morpho-physio-phenological characteristics is sorely needed.

Controversy and disagreement in what constitutes mycorrhizal traits

Thus far, the body of research on trait-based mycorrhizal ecology has used different definitions of traits with organismal divides that stem from different morphological metrics that are a proxy for functions, direct measures of functions, or measures of mycorrhizal plant and/or mycorrhizal fungal growth that may also approximate function. In many ways, these organismal

perspectives [46, 47]. A plant-centric perspective can result in studying different types of traits and the use of varied vocabularies that don't easily translate to those using a fungal-centric perspective (and vice versa). Many microbes have relatively few measurable or easily observable features and thus functional measures are translated into traits. For example, the presence or abundance of saprotrophic fungi may be correlated with litter decomposition rates. Plant traits on the contrary are observable but their relevance for the ecosystem functioning may be ambiguous. For example, specific leaf area can be an indication of plant longevity and thus biomass turnover and photosynthetic rates [10].. Geographic region of study can also drive miscommunication as certain regions of the world, particularly the tropics, are comparatively understudied [48] resulting in a greater need to incorporate local terminologies into globally-accepted paradigms. Indeed, inconsistencies in terminology surrounding traits are as diverse as trait ecologists suggesting the need to keep trait definitions broad, malleable, and identified independently from the environment [2].

Divides also exist between researchers that primarily work in EcM-dominated systems compared to those working in AM or ErM-dominated systems. Certain systems have also been studied for longer, as EcM symbioses were identified in the 1880s [15], but the functional significance of the AM symbioses was not discovered until the 1950s [49]. Less is known about AM symbioses compared to other mycorrhizal groups [50] resulting in a lack of the basic biological and taxonomic framework to integrate ecological research with general mycology. This affects the study of mycorrhizal symbioses as there are significant differences in the focus

of AM vs EcM studies which hampers the generation of a unified language to describe them [11, 47]. Applying trait-based methods to highly context-dependent mycorrhizal symbioses without a standardized vocabulary is challenging and can result in "locked-in debates" among researchers that hinder scientific advances [51].

175

176

171

172

173

174

An inclusive and unified framework for mycorrhizal traits

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

It is the opinion of the authors that a common framework and standardized vocabulary will help to further our understanding of the trait-based ecology of mycorrhizal symbioses. As traits are characteristics of organisms, mycorrhizal traits must be inclusive of all organismal components that make up mycorrhizal symbioses, recognizing that the mycorrhizal functions we observe in nature are the imprint of all mycorrhizal traits working together. Therefore, mycorrhizal traits are morphological, physiological or phenological characteristics of mycorrhizal fungi, plants, and mycorrhizal associations that have functional implications for the mycorrhizal symbiosis. Because this definition is based on symbiotic function and the inherent root-mycelial network nature of all mycorrhizas, it is applicable across all mycorrhizal types. Our definition emphasizes traits that have functional implications for the mycorrhizal symbiosis to further a mechanistic understanding of mycorrhizal performance and fitness. We aim to link trait-based mycorrhizal ecology to the work of defining mycorrhizal niches and understanding the mechanisms of community assembly [9]. Some mycorrhizal traits are functions (e.g. plant productivity response to mycorrhizal symbiosis)), but some are functional markers, traits that don't measure a function directly but instead are indicators of mycorrhizal

functions (e.g. hyphal production by mycorrhizal fungi that influences soil aggregate formation)[11, 52].

Although there are benefits to using inclusive terminology, an overly broad definition of mycorrhizal traits can also cause confusion during scientific discourse when researchers universally refer to "mycorrhizal traits" but mean different things. We propose to further qualify mycorrhizal traits using language that references their physical location within mycorrhizal networks (Table 2). Therefore, mycorrhizal traits fall into one of three categories: plant mycorrhizal traits (plant-MT), fungal mycorrhizal traits (fungal-MT), and symbiotic mycorrhizal traits (symbiotic-MT).

<u>Plant-MT</u> are mycorrhizal traits that are largely driven by the morphological, physiological, or phenological characteristics of the plant partner. Many root traits, for example, represent important plant-MTs as they have functional implications for the symbiosis [44]. <u>Fungal-MT</u> are mycorrhizal traits that are dependent on the morphological, physiological, or phenological characteristics of the mycorrhizal fungal partners. Both fungal response and fungal effect traits [23], particularly physiological traits relating to fungal ecosystem functions, are components of fungal-MT. Finally, <u>symbiotic-MT</u> are morphological, physiological, or phenological characteristics that lie at the intersection of both partners and are dependent on both the plant and fungal partners present. Figure 1 diagrams examples of plant-MT, fungal-MT, and symbiotic-MT across morphological, physiological, and phenological traits.

This framework both accommodates existing trait-based research and identifies gaps in knowledge due to data limitations. For example, considerably more research has been conducted on morphological mycorrhizal traits than on physiological mycorrhizal traits with phenological traits by far the least studied. More research into how plant-MT, fungal-MT, and symbiotic-MT shift with seasons or ontogeny will give greater insight into the range of variation in traits. This trait-based framework also highlights how little we understand about interspecific and intraspecific variation as well as plasticity in many mycorrhizal traits, particularly at the physiological level. Computational methods linking genes to traits [53] could be employed to explore relationships between plant-MT, fungal-MT, and/or symbiotic-MT and either plant or mycorrhizal fungal gene frequencies. Further exploration of relationships between traits, particularly those that illuminate symbiotic partner resource sharing and connections between mycorrhizal form and function, is warranted as mycorrhizas are models for studying resource exchange and stability in symbioses [54].

Concluding remarks

There is already consensus across scientists using traits in ecology that standardized definitions and data structures are required to make the most of trait data and to address challenges at the community and ecosystem levels [7, 21]. Microorganisms influence almost all ecosystem processes, and a common framework for researching how microbial processes affect ecosystem-level function is crucial for advancing our understanding [55]. Mycorrhizal symbioses occupy a unique and complex position in ecological communities with a pivotal role in the maintenance of ecosystem function [56], and will be fundamental to meeting United Nations Sustainable Development Goals in the medium to long term [57].

The Cha-Cha-Cha theory suggests that scientific discoveries can be classified as Charge, Challenge or Chance [58]. Charge problems are obvious to the observer, but require a new way of thinking to devise a solution, Challenge problems require us to devise a new theory to bring unexplained and diverse anomalies together, and Chance discoveries require a "prepared mind" to recognize the importance of something that happens by chance. Our framework for mycorrhizal traits raises numerous Outstanding Questions as Charges and Challenges to the ecological community in order to be better prepared to recognize future Chance discoveries. By acknowledging how our position of observation flavors our analyses and understanding of mycorrhizal traits through the very language we use to pose research questions [59], we can, as a community of scientists, be better prepared to recognize serendipitous discoveries. A common framework for mycorrhizal traits may engage scientists around the world to collect more trait-based data, especially in understudied areas, generating Chance discoveries. It is the authors' opinion that a common framework for mycorrhizal trait-based ecology will facilitate the next generation of discoveries in this field. This paper describes only a small portion of the exciting work tackling Charges at the present time. Shared terminology allows us to better identify synergy between studies approaching similar questions from different angles and take on the Challenges.

ACKNOWLEDGEMENTS

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

Concepts for this paper were conceived during iCOMET, a workshop and international

Collaboration On Mycorrhizal Ecological Traits held virtually in March 2020. The authors are

grateful to Linh Anh Cat and Natasa Sibanc for contributing to initial discussions and to Alastair

Fitter for providing helpful comments on the manuscript. We thank Pierre-Luc Chagnon, C. Guillermo Bueno, and two anonymous reviewers for constructive comments that greatly improved the manuscript. We also appreciate and recognize research that could not be included in this paper due to space limitations. The iCOMET workshop was supported by the Natural Environmental Research Council [grant number NE/S008543/1]. VBC is supported by the National Science Foundation (award DEB-1844531). **LIST OF ELEMENTS** Table 1: Previously published and highly varied definitions of "mycorrhizal traits" Table 2: An inclusive and unified framework for mycorrhizal traits including definitions and examples. Box 1 Figure 1: Schematic diagram of plant mycorrhizal traits, fungal mycorrhizal traits, and symbiotic mycorrhizal traits with graphical depictions of example morphological, physiological, and phenological traits for each. Glossary

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277 Table 1. Examples of previously published and highly varied definitions of "mycorrhizal traits"

Definitions of mycorrhizal traits	Relevant citations	
Traits as the type of mycorrhizal symbiosis (e.g. AM, EcM, ErM) or frequency of occurrence (e.g. obligate, facultative) of mycorrhizal symbiosis in a plant species.	Wang and Qiu [60], Hempel et al. [61], Moora [62], Soudzilovskaia et al. [31], Bergmann et al. [44], Shi et al. [63], Bueno et al. [64]	
Traits as the context dependent benefits that plants derive from mycorrhizal symbioses.	Hoeksema et al. [17], Johnson et al. [65]	
Traits as spore morphology (e.g. size, shape, color) of mycorrhizal fungi	Norros et al. [66], Pringle et al. [67], Deveautour et al. [68], Chaudhary et al. [69]	
Traits as root and/or soil colonization strategies of mycorrhizal fungi, including fungal biomass allocation and hyphal production.	Agerer [70], Hart and Reader [71], Ekblad et al. [72], Powell et al. [73], Weber et al. [36]	
Traits as soil aggregation and stabilization capabilities of mycorrhizal symbioses	Rillig et al. [74], Lehmann et al. [75]	
Traits as C-S-R characteristics of mycorrhizal fungi	Chagnon et al. [34], Treseder and Lennon [76]	
Traits as mycorrhizal fungal behaviors such as movement, communication, and decision making.	Bielčik et al. [77], Aleklett and Boddy [78]	
Traits as mycorrhizal symbiosis properties related to nutrient flux and ecosystem functioning	Van Der Heijden and Scheublin [79], Phillips et al. [80], Behm and Kiers [81]	

Table 2. An inclusive and unified framework for mycorrhizal traits. Examples given are categorized as morphological, physiological, or phenological traits; the framework is intended to stimulate thought and discussion, so dynamic classifications are encouraged.

	Plant mycorrhizal traits (Plant-MT)	Fungal mycorrhizal traits (Fungal-MT)	Symbiotic mycorrhizal trait (Symbiotic-MT)
Definition	Mycorrhizal traits dependent on	Mycorrhizal traits dependent on the	Traits that lie at the organismal
Deminition	the morphological, physiological,	morphological, physiological, or	intersection of mycorrhizal symbioses
	or phenological characteristics of	phenological characteristics of the	and are dependent on both plant and
	plant partners	fungal partners	fungal partners
	-Root characteristics (e.g.	-Fruiting body (e.g. size, shape,	-Mycorrhizal type (AM, EcM, ErM,
Morphological	diameter, architecture, surface	color)	OrM, NM, Dual)
traits (form)	area:volume, root hair density)	-Spores (e.g. size, color, shape,	-Colonization intensity (e.g. abundance
	-Root:shoot ratio	ornamentation, wall thickness)	of inter- and intracellular structures)
	-Growth form (e.g. tree, grass)	-Mantle (e.g. color, cell morphology)	-Structures induced by colonization
	-Resource allocation (e.g.	-Hyphae (e.g. specific length,	(e.g. Hartig net, arbuscules, vesicles,
	root:shoot).	architecture)	Paris vs Arum form)
	-Seed size	- Biomass allocation strategy (e.g.,	-Species-specificity between plant and
	-Phylogenetic history	rhizophilic, edaphilic)	fungal symbionts
		-Culturability	-Network indices (e.g. nestedness,
			modularity, connectivity)
	-Plant mycorrhizal status	-Hyphal/spore productivity and	-Plant mycorrhizal response (e.g.
Physiological	(obligate vs. facultative)	turnover	increased productivity or nutrient
traits (function)	-Photosynthetic pathway	-Nutrient acquisition strategy (e.g.	status)
	-Immune responses (e.g.	inorganic vs organic sources,	-Exchange rates for resources (e.g. N,
	herbivores induced responses)	extracellular enzyme production,	P, C, H ₂ O)
	-Growth and transpiration rates	acid exudation)	-Gene expression changes induced by
	-Quantity and quality of root	-Melanin content	symbiosis
	exudates	-Carbohydrate metabolism and	-Plant-fungal influences on metabolic
	-Plant nutrient requirements	conversion	products
		-Facilitative/antagonistic interactions	-Functional specificity between plant

		with microorganisms	and fungal symbionts
	-Life history (e.g. annual,	-Temporal dynamics in production of	-Shifts in mycorrhiza type over plant
Phenological	perennial)	fruiting bodes, spores, and hyphae	lifespan
traits	-Flowering time and seed	-Hyphal/spore persistence and	-Temporal shifts in colonization
	production	longevity	structures and/or symbiotic exchange
	-Changes in root exudate quality	-Temporal dynamics in fungal	
	and quantity	community structure	

Glossary

<u>Arbuscular mycorrhiza (AM)</u> – Mycorrhizal association where plant roots display intracellular colonization by fungi of the subphylum Glomeromycotina.

<u>Arbuscule</u> - A specialized mycorrhizal structure present inside plant cells and the common site of nutrient exchange in arbuscular mycorrhizas (AM). Other nutrient exchange sites in arbuscular mycorrhizas include hyphal coils.

<u>Dual colonization</u> - Colonization of plant roots by two different mycorrhizal types (i.e. AM and EcM), generally demonstrating ontological shifts in particular plant species (e.g. *Quercus* sp., *Salix* sp., *Populus* sp.).

<u>Ectomycorrhiza (EcM)</u> – Mycorrhizal association between plant roots and fungi characterized by an intercellular interface consisting of a branched hyphal lattice and mantle.

<u>Ericoid mycorrhiza (ErM)</u> – Mycorrhizal association between plants in the family Ericaceae and certain fungi characterized by intracellular coils.

Functional markers - Traits that don't measure a function directly but instead are indicators of functions (e.g. hyphal production by mycorrhizal fungi that influences soil aggregate formation).

Hyphae - The branching filaments of mycorrhizal fungi that make up the mycelium and conjoin to plant roots either intra or extracellularly. Hyphae differ with respect to morphology, environmental persistence, and function (e.g. nutrient absorption versus transport).

<u>Mantle</u> - Sheath of fungal hyphae enveloping plant roots in EcM associations.

<u>Mycorrhizas</u> - Symbiotic associations between plant roots and certain fungi. Synonym: mycorrhizal symbioses.

<u>Mycorrhizal fungi</u> - The fungal symbiotic partners of mycorrhizal associations.

<u>Mycorrhizal traits</u> - morphological, physiological or phenological characteristics of mycorrhizal fungi, plants, and mycorrhizal associations that have functional implications for the symbiosis.

<u>Orchid mycorrhiza (OrM)</u> - Mycorrhizal association between plants in the family Orchidaceae and certain fungi characterized by intracellular coils called pelotons.

<u>Paris/Arum</u> - Alternative root colonization strategies in arbuscular mycorrhizas. Paris-type is characterized by coiled hyphae that spread intracellularly from plant cortical cell to cell while Arum-type spreads in the plant root cortex via intercellular hyphae.

<u>Spore</u> - Fungal cells specialized for asexual or sexual reproduction and dispersal. Can be born from specialized fungal fruiting bodies or directly from mycelial networks.

Symbiosis – association between organisms that live in close physical contact

<u>Trait</u> - Any measurable characteristic (morphological, physiological, phenological, behavioral, or cultural) of an individual organism that is measured at either the individual or other relevant level of organization.

Box 1

Our framework for mycorrhizal traits can be applied to easily incorporate trait-based methods into empirical and theoretical ecological research. Adopting a trait-based framework for mycorrhizal symbioses benefits ecologists from a variety of disciplinary backgrounds.

Plant Ecologist

Plant ecologists use existing frameworks for measuring traits and incorporating trait-based methods into ecological studies [32, 82, 83]. Plant ecologists already measure many plant mycorrhizal traits (plant-MT; Table 2) such as root architecture, photosynthetic pathway, and phenology. By also including symbiotic mycorrhizal traits (symbiotic-MT) such as colonization intensity, plant mycorrhizal response, or resource exchange rates, plant ecologists could further increase their understanding of plant functioning. For instance, examining mycorrhizal colonization intensity in plant roots would facilitate inferences about carbon and nutrient transfer between plant and fungal symbionts, with links to functioning such as plant productivity or pathogen resistance [54, 84].

Fungal Ecologist

Fungal ecologists have long used traits to categorize fungi according to guilds, and continue to use trait-based perspectives to research the numerous functional roles that fungi play in ecosystems [24]. As methodologies to assess fungi *in situ* continue to improve, we can better measure many fungal mycorrhizal traits (fungal-MT; Table 2) such as mycelial traits and enzyme activity [11]. Many fungal-MT can be measured using standard laboratory equipment (e.g. centrifuge, filters, microscope) that researchers already have access to. For example, spore size is an indicator of AM fungal aerial dispersal ability and thus could improve predictions of landscape management impacts on local AM fungal diversity and composition [69]. Just as leaf traits have expanded knowledge of plant life-history strategies [85], the incorporation of important fungal-MT such as spore morphology will expand our understanding of life history strategies of mycorrhizal fungi.

Data Synthesizer

Large team science to compile and analyze global ecological datasets increase our understanding of biodiversity and ecosystem functioning. Ecologists examining ecological phenomena across spatial and temporal scales can incorporate mycorrhizal traits to improve understanding of global trends in mycorrhizal symbioses. For example, merging data on symbiotic mycorrhizal traits (symbiotic-MT) like mycorrhizal type or plant mycorrhizal response from FungalRoot [31] or MycoDB [29] into other ecological synthesis efforts could reveal novel ways to predict global ecological biodiversity and ecosystem function. Furthermore, because many ecological data comprise repeated sampling (e.g. LTER, NEON), they represent an opportunity to monitor understudied phenological mycorrhizal traits, such as shifts in mycorrhizal type or mycorrhizal influences on plant reproductive phenology.

REFERENCES

1 Violle, C., et al. (2007) Let the concept of trait be functional! *Oikos* 116, 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

2 Dawson, S.K., et al. (2022) The traits of "trait ecologists": An analysis of the use of trait and functional trait terminology. *Ecology and Evolution* 11, 16434–16445.

https://doi.org/10.1002/ece3.8321

3 Funk, J.L., et al. (2008) Restoration through reassembly: Plant traits and invasion resistance. Trends in Ecology & Evolution 23, 695-703. https://doi.org/10.1016/j.tree.2008.07.013

4 Grime, J.P. and Hunt, R. (1975) Relative growth-rate: Its range and adaptive significance in a local flora. *Journal of Ecology* 63, 393-422. https://doi.org/10.2307/2258728

5 Ryding, S., et al. (2021) Shape-shifting: Changing animal morphologies as a response to climatic warming. *Trends in Ecology & Evolution* 36, 1036-1048.

https://doi.org/10.1016/j.tree.2021.07.006

6 Stearns, S.C. (1989) Trade-offs in life-history evolution. *Functional Ecology* 3, 259-268. https://doi.org/10.2307/2389364

7 Kearney, M.R., et al. (2021) Where do functional traits come from? The role of theory and models. Functional Ecology 35, 1385-1396. https://doi.org/10.1111/1365-2435.13829 Laughlin, D.C. (2014) The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology 102, 186-193. https://doi.org/10.1111/1365-2745.12187

9 McGill, B.J., et al. (2006) Rebuilding community ecology from functional traits. *Trends in Ecology & Evolution* 21, 178-185. 10.1016/j.tree.2006.02.002

10 Lavorel, S. and Garnier, E. (2002) Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the holy grail. *Functional Ecology* 16, 545-556. https://doi.org/10.1046/j.1365-2435.2002.00664.x

11 Lekberg, Y. and Helgason, T. (2018) In situ mycorrhizal function—knowledge gaps and future directions. *New Phytologist* 220, 957-962. 0.1111/nph.15064

12 Harvey, B.P., et al. (2022) Predicting responses to marine heatwaves using functional traits. Trends in Ecology & Evolution 37, 20-29. https://doi.org/10.1016/j.tree.2021.09.003

13 Freschet, G.T., et al. (2021) Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. *New Phytologist* 232, 1123-1158. https://doi.org/10.1111/nph.17072

14 Laughlin, D.C., et al. (2021) Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. *Nature Ecology & Evolution* 5, 1123-1134. 10.1038/s41559-021-01471-7

15 Frank, B. (2005) On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an english translation of ab frank's classic paper of 1885). *Mycorrhiza* 15, 267-275. 10.1007/s00572-004-0329-y

16 Smith, S.E. and Read, D.J. (2008) Mycorrhizal symbiosis. Elsevier

17 Hoeksema, J.D., et al. (2018) Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. *Communications Biology* 1, 116. https://doi.org/10.1038/s42003-018-0120-9

- 18 Delavaux, C.S., et al. (2017) Beyond nutrients: A meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. *Ecology* 98, 2111-2119. https://doi.org/10.1002/ecy.1892
- 19 van der Heijden, M.G., et al. (2015) Mycorrhizal ecology and evolution: The past, the present, and the future. *New Phytol* 205, 1406-1423. 10.1111/nph.13288
- 20 Davison, J., et al. (2011) Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. *FEMS Microbiology Ecology* 78, 103-115. 10.1111/j.1574-6941.2011.01103.x
- 21 Schneider, F.D., et al. (2019) Towards an ecological trait-data standard. *Methods in Ecology and Evolution* 10, 2006-2019. https://doi.org/10.1111/2041-210X.13288
- 22 Hawksworth, D.L., et al. (2017) Fungal diversity revisited: 2.2 to 3.8 million species.

Microbiology Spectrum 5, 5.4.10. doi:10.1128/microbiolspec.FUNK-0052-2016

- 23 Crowther, T.W., et al. (2014) Untangling the fungal niche: The trait-based approach. *Frontiers in Microbiology* 5, 1-12. 10.3389/fmicb.2014.00579
- 24 Zanne, A.E., et al. (2019) Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. *Biological Reviews* 95, 409-433. https://doi.org/10.1111/brv.12570
- 25 Ellis, C.J., et al. (2021) Functional traits in lichen ecology: A review of challenge and opportunity. *Microorganisms* 9, 766. https://doi.org/10.3390/microorganisms9040766
- 26 Koide, R.T. and Mosse, B. (2004) A history of research on arbuscular mycorrhiza. *Mycorrhiza* 14, 145-163. 10.1007/s00572-004-0307-4
- 27 Tedersoo, L. and Bahram, M. (2019) Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. *Biological Reviews* 94, 1857-1880.

https://doi.org/10.1111/brv.12538

28 Bueno, C.G., et al. (2017) Plant mycorrhizal status, but not type, shifts with latitude and elevation in europe. Global Ecology and Biogeography 26, 690-699.

https://doi.org/10.1111/geb.12582

- 29 Chaudhary, V.B., et al. (2016) Mycodb, a global database of plant response to mycorrhizal fungi. *Scientific Data* 3, 160028. 10.1038/sdata.2016.28
- 30 Põlme, S., et al. (2020) Fungaltraits: A user-friendly traits database of fungi and fungus-like stramenopiles. *Fungal Diversity* 105, 1-16. 10.1007/s13225-020-00466-2
- 31 Soudzilovskaia, N.A., et al. (2020) Fungalroot: Global online database of plant mycorrhizal associations. *New Phytologist* 227, 955-966. https://doi.org/10.1111/nph.16569
- 32 Grime, J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. *The American Naturalist* 111, 1169-1194. https://doi.org/10.2307/2258728
- 33 Treseder, K.K., et al. (2018) Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework. *Journal of Ecology* 106, 480-489. https://doi.org/10.1111/1365-2745.12919
- 34 Chagnon, P.-L., et al. (2013) A trait-based framework to understand life history of mycorrhizal fungi. *Trends in Plant Science* 18, 484-491.

https://doi.org/10.1016/j.tplants.2013.05.001

35 Phillips, M.L., et al. (2019) Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. *Fungal Ecology* 40, 107-117. https://doi.org/10.1016/j.funeco.2019.01.002

- 36 Weber, S.E., et al. (2019) Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecology 40, 62-71. https://doi.org/10.1016/j.funeco.2018.11.008 37 Fernandez, C.W. and Kennedy, P.G. (2018) Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. Journal of Ecology 106, 468-479. https://doi.org/10.1111/1365-2745.12920
- 38 Agerer, R. (2006) Fungal relationships and structural identity of their ectomycorrhizae. *Mycological Progress* 5, 67-107. 10.1007/s11557-006-0505-x
- 39 Courty, P.-E., et al. (2010) The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. *Soil Biology and Biochemistry* 42, 679-698. https://doi.org/10.1016/j.soilbio.2009.12.006
- 40 Hobbie, E.A. and Agerer, R. (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. *Plant and Soil* 327, 71-83. 10.1007/s11104-009-0032-z
- 41 Peay, K.G., et al. (2012) Measuring ectomycorrhizal fungal dispersal: Macroecological patterns driven by microscopic propagules. *Molecular Ecology* 21, 4122-4136. 10.1111/j.1365-294X.2012.05666.x
- 42 Lilleskov, E.A., *et al.* (2011) Conservation of ectomycorrhizal fungi: Exploring the linkages between functional and taxonomic responses to anthropogenic n deposition. *Fungal Ecology* 4, 174-183. https://doi.org/10.1016/j.funeco.2010.09.008
- 43 Bauer, J.T., et al. (2017) Ecology of floristic quality assessment: Testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness. *AoB PLANTS* 10, plx073. 10.1093/aobpla/plx073
- 44 Bergmann, J., et al. (2020) The fungal collaboration gradient dominates the root economics space in plants. *Science Advances* 6, eaba3756. doi:10.1126/sciadv.aba3756
- 45 Ohsowski, B.M., et al. (2014) Where the wild things are: Looking for uncultured glomeromycota. *New Phytologist* 204, 171-179. 10.1111/nph.12894
- 46 Brundrett, M. and Tedersoo, L. (2019) Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. *New Phytologist* 221, 18-24. https://doi.org/10.1111/nph.15440
- 47 Bueno, C.G., et al. (2019) Misdiagnosis and uncritical use of plant mycorrhizal data are not the only elephants in the room. New Phytologist 224, 1415-1418. 10.1111/nph.15976 48 Pagano, M.C. and Lugo, M.A. (2019) Mycorrhizal fungi in south america. Springer 49 Mosse, B. (1953) Fructifications associated with mycorrhizal strawberry roots. Nature 171, 974-974. 10.1038/171974a0
- 50 Fitter, A.H., et al. (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: Implications for sustainable agriculture. Fungal Biology Reviews 25, 68-72. https://doi.org/10.1016/j.fbr.2011.01.002
- 51 Norberg, J., et al. (2022) Failures to disagree are essential for environmental science to effectively influence policy development. Ecology Letters n/ahttps://doi.org/10.1111/ele.13984 52 Garnier, E. and Grigulis, K. (2016) Plant functional diversity: Organism traits, community structure, and ecosystem properties. Oxford University Press
- 53 Romero-Olivares, A.L., et al. (2021) Linking genes to traits in fungi. *Microbial Ecology* 82, 145-155. 10.1007/s00248-021-01687-x

- 54 Kiers, E.T., et al. (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880-882. doi:10.1126/science.1208473
- 55 Malik, A.A., et al. (2020) Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal 14, 1-9. 10.1038/s41396-019-0510-0 56 Leake, J., et al. (2004) Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany 82, 1016-1045. 10.1139/b04-060
- 57 Field, K.J., et al. (2021) Mycorrhizal mediation of sustainable development goals. PLANTS, PEOPLE, PLANET 3, 430-432. https://doi.org/10.1002/ppp3.10223
- 58 Koshland, D.E. (2007) The cha-cha-cha theory of scientific discovery. Science 317, 761-762. 10.1126/science.1147166
- 59 Smith, F.A. and Smith, S.E. (2015) How harmonious are arbuscular mycorrhizal symbioses? Inconsistent concepts reflect different mindsets as well as results. New Phytologist 205, 1381-1384. https://doi.org/10.1111/nph.13202
- 60 Wang, B. and Qiu, Y.-L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299-363. 10.1007/s00572-005-0033-6
- 61 Hempel, S., et al. (2013) Mycorrhizas in the central european flora: Relationships with plant life history traits and ecology. Ecology 94, 1389-1399. https://doi.org/10.1890/12-1700.1
- 62 Moora, M. (2014) Mycorrhizal traits and plant communities: Perspectives for integration.
- Journal of Vegetation Science 25, 1126-1132. https://doi.org/10.1111/jvs.12177
- 63 Shi, Z., et al. (2020) The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology 43, 100877. https://doi.org/10.1016/j.funeco.2019.100877
- 64 Bueno, C.G., et al. (2021) Towards a consistent benchmark for plant mycorrhizal association databases. New Phytologist 231, 913-916. https://doi.org/10.1111/nph.17417
- 65 Johnson, N.C., et al. (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytologist 205, 1473-1484. https://doi.org/10.1111/nph.13172
- 66 Norros, V., et al. (2014) Do small spores disperse further than large spores? Ecology 95, 1612-1621. 10.1890/13-0877.1
- 67 Pringle, A., et al. (2015) The shape of fungal ecology: Does spore morphology give clues to a species' niche? Fungal Ecology, 213-216. https://doi.org/10.1016/j.funeco.2015.04.005
- 68 Deveautour, C., et al. (2019) Biogeography of arbuscular mycorrhizal fungal spore traits along an aridity gradient, and responses to experimental rainfall manipulation. Fungal Ecology, 100899. https://doi.org/10.1016/j.funeco.2019.100899
- 69 Chaudhary, V.B., et al. (2020) Trait-based aerial dispersal of arbuscular mycorrhizal fungi. New Phytologist 228, 238-252. https://doi.org/10.1111/nph.16667
- 70 Agerer, R. (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11, 107-114. 10.1007/s005720100108
- 71 Hart, M.M. and Reader, R.J. (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist 153, 335-344. https://doi.org/10.1046/j.0028-646X.2001.00312.x
- 72 Ekblad, A., et al. (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: Role in carbon cycling. Plant and Soil 366, 1-27. 10.1007/s11104-013-1630-3

73 Powell, J.R., et al. (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. *Proceedings of the Royal Society of London B: Biological Sciences* 276, 4237-4245. https://doi.org/10.1098/rspb.2009.1015
74 Rillig, M.C., et al. (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. *New Phytologist* 205, 1385-1388. https://doi.org/10.1111/nph.13045

75 Lehmann, A., et al. (2020) Fungal traits important for soil aggregation. Frontiers in Microbiology 10, 1-13. 10.3389/fmicb.2019.02904

76 Treseder, K.K. and Lennon, J.T. (2015) Fungal traits that drive ecosystem dynamics on land. *Microbiology and Molecular Biology Reviews* 79, 243-262. doi:10.1128/MMBR.00001-15 77 Bielčik, M., et al. (2019) The role of active movement in fungal ecology and community assembly. *Movement Ecology* 7, 36. https://doi.org/10.1186/s40462-019-0180-6 78 Aleklett, K. and Boddy, L. (2021) Fungal behaviour: A new frontier in behavioural ecology. *Trends in Ecology & Evolution* 36, 787-796. 10.1016/j.tree.2021.05.006

79 Van Der Heijden, M.G.A. and Scheublin, T.R. (2007) Functional traits in mycorrhizal ecology: Their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. *New Phytologist* 174, 244-250.

https://doi.org/10.1111/j.1469-8137.2007.02041.x

80 Phillips, R.P., et al. (2013) The mycorrhizal-associated nutrient economy: A new framework for predicting carbon—nutrient couplings in temperate forests. *New Phytologist* 199, 41-51. https://doi.org/10.1111/nph.12221

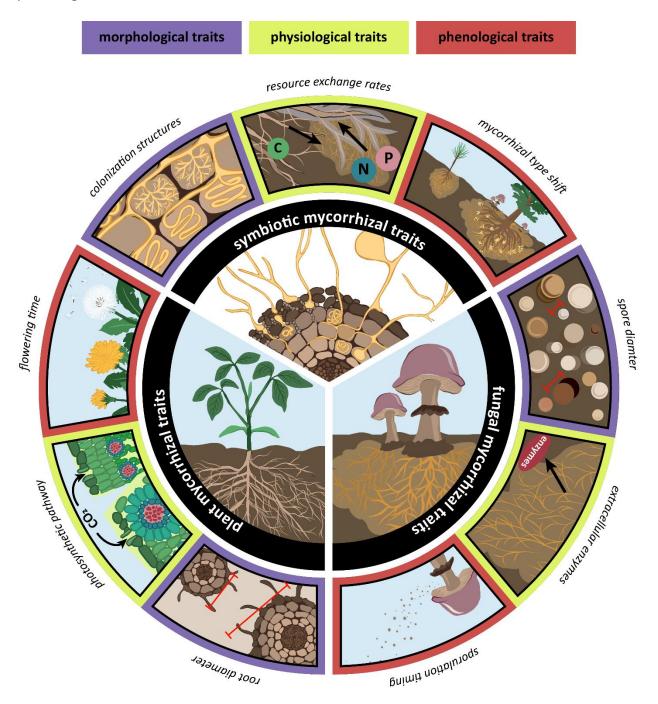
81 Behm, J.E. and Kiers, E.T. (2014) A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits. *Journal of Ecology* 102, 315-327. https://doi.org/10.1111/1365-2745.12194

82 Garnier, E., et al. (2016) Plant functional diversity: Organism traits, community structure, and ecosystem properties. Oxford University Press

83 Kattge, J., et al. (2011) Try – a global database of plant traits. Global Change Biology 17, 2905-2935. 10.1111/j.1365-2486.2011.02451.x

84 Maherali, H. and Klironomos, J.N. (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. *Science* 316, 1746-1748. 10.1126/science.1143082 85 Wright, I.J., et al. (2004) The worldwide leaf economics spectrum. *Nature* 428, 821-827. 10.1038/nature02403

Highlights

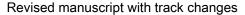

- Applying trait-based approaches to ecological research on mycorrhizal symbioses
 broadens ecological inferences, but a single unified framework is lacking to unite
 disparate language, terminology, and methods across the multitude of multidisciplinary
 scientists studying mycorrhizas.
- We propose an inclusive framework for trait-based mycorrhizal ecology aimed to stimulate scientists around the world to collect and use more mycorrhizal trait data, particularly in understudied areas. This would widen our understanding regarding the ecological role of mycorrhizal symbioses at individual, species, community, and ecosystem scales.
- Analyzing how mycorrhizal symbioses fit within existing trait definitions highlights
 significant theoretical and empirical knowledge gaps, novel questions, and new research
 directions to improve our understanding of trait-based mycorrhizal ecology.

Outstanding Questions

- Where are the research gaps in trait-based mycorrhizal ecology? What new ecological knowledge about mycorrhizal symbioses can be generated by examining multiple mycorrhizal traits across multiple categories, plant-MT, fungal-MT, and symbiotic-MT.
 Future theoretical and empirical work must consider traits inclusive of all components of mycorrhizal root-mycelial networks that are relevant to the ecological question at hand.
- Can a trait-based framework drive novel approaches to linking plant and fungal measurements that are meaningful for the biology of mycorrhizal symbioses? What new experimental systems can be imagined to better measure mycorrhizal traits and understand mycorrhizal ecology in situ? What accessible (and affordable) methods can be broadly used across systems to fill knowledge gaps, particularly in understudied regions of the world?
- What is the relationship between form and function in mycorrhizal symbioses? Do
 morphological traits of mycorrhizal plants, mycorrhizal fungi, or the symbiosis predict
 mycorrhizal functions or behaviors?
- Are mycorrhizal traits positively or negatively related to each other? Are tradeoffs more
 likely to exist between traits belonging to the same mycorrhizal trait category? A trait
 framework helps differentiate the origins of trade resources, which can reveal tradeoffs
 that may exist between traits with shared resource allocation strategies.
- Temporal changes in plant traits are well studied, but how do fungal-MTs and symbiotic-MTs interact with plant-MT phenology? How do relationships between mycorrhizal traits vary temporally? Certain mycorrhizal traits shift phenologically, but temporal

- patterns are underexplored for most mycorrhizal traits, particularly in long-lived plants, long-lived fungi, and their mycorrhizal associations.
- Are plant-MT, fungal-MT, and symbiotic-MT phylogenetically conserved? What is the degree of interspecific and intraspecific variation in mycorrhizal traits and can mycorrhizal function be predicted by plant or fungal partner phylogeny?
- Can knowledge of mycorrhizal traits influence the conservation and management of
 mycorrhizal symbioses in natural and managed ecosystems? Using traits to predict
 mycorrhizal species distributions, dispersal, and survival will improve our ability to
 protect and restore these important interaction networks in a changing world.

Figure 1. Schematic diagram of plant mycorrhizal traits, fungal mycorrhizal traits, and symbiotic mycorrhizal traits with graphical depictions of example morphological, physiological, and phenological traits for each.

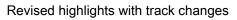


Original Figure File

Click here to access/download

Original Figure File

TREE mycorrhizal figure (for publishing).tif



Click here to view linked References

Click here to access/download

Manuscript - Editors Comments

Chaudhary et al_TREE_Revision_trackchanges_4-2-22.docx

Click here to view linked References

Click here to access/download

Manuscript - Editors Comments

Highlights_revised_trackchanges_3-30-22.docx

Revised questions with track changes

Click here to view linked References

Click here to access/download

Manuscript - Editors Comments

Outstanding Questions_revised_trackchanges_4-222.docx