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Signal Modulation Classification Based on the

Transformer Network
Jingjing Cai, Fengming Gan, Xianghai Cao and Wei Liu, Senior Member, IEEE

Abstract—In this work, the Transformer Network (TRN) is
applied to the automatic modulation classification (AMC) prob-
lem for the first time. Different from the other deep networks,
the TRN can incorporate the global information of each sample
sequence and exploit the information that is semantically relevant
for classification. In order to illustrate the performance of the
proposed model, it is compared with four other deep models
and two traditional methods. Simulation results show that the
proposed one has a higher classification accuracy especially at
low signal to noise ratios (SNRs), and the number of training
parameters of the proposed model is less than those of the
other deep models, which makes it more suitable for practical
applications.

Index Terms—Automatic modulation classification, trans-
former network, deep learning.

I. INTRODUCTION

MODULATION classification plays a significant role in

wireless spectrum monitoring [1], [2]. In the early

stage, it usually relied on experts to provide decisions on

modulation types based on the parameters of measured signals.

However, this approach is not practical in crowded electro-

magnetic environments due to its slow response. Nowadays,

various automatic modulation classification (AMC) techniques

have been proposed, which are more suitable for scenarios

encountered in modern warfare for its swift response [3], [4],

[5], [6], [7]. There are mainly two categories of approaches

for AMC: the likelihood based approaches and feature based

ones.

For the first category, it is usually based on the hypothesis

testing theory and constructs a judgment criterion by analyzing

statistical characteristics of signals [8]. The ALRT (Average

Likelihood Rate Test) algorithm was proposed in [9], which

can distinguish BPSK (Binary Phase Shift Keying) and QPSK

(Quadrature Phase Shift Keying) signals by employing the

decision-theoretic approach based on Bayesian theory. The

same approach was adopted in [10] to identify varieties of

analog and digital signals, and a classifier based on qLLR
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(quasi-Log-Likelihood Ratio) rule was proposed in [11]. As

the computational cost increases substantially in a complex

signal environment due to an increasing number of parameters,

a classifier based on Bayesian theory was developed for fast

modulation classification in [12]. Prior knowledge about the

signal model is essential for the likelihood based approaches,

which limits their practical applications.

For the second category, feature based approaches mainly

rely on discriminative features extracted from the raw signal

data. These features mainly contain the following types, such

as spectrum features [13], cumulants and moments [14], [15],

[16], [17], [18], [19], and zero crossing features [3]. However,

the above methods may not work well at low SNR since

the derived features may not provide enough discriminat-

ing information. To reduce adverse effects of noise, wavelet

transform was introduced in [20], which requires no prior

information of the received signal such as signal sampling

rate or carrier frequency. By fully considering the noise factor,

further methods have been developed, such as the correntropy

coefficient based algorithm [21]. However, the hand-crafting

features may make it difficult to apply to new modulation types

in non-cooperative scenarios [22].

With the fast development of deep learning techniques [23],

[24], [25], [26], [27], the modulation classification problem

has reached a new solution, and some algorithms have been

proposed in this direction. In [28], the CNN (Convolutional

Neural Network) based modulation classification approach

has achieved significant performance improvement compared

with the traditional methods, especially for low SNR cases.

The deep model in [29] can still have a high classification

accuracy when the length of the signal is larger than the

designed CNN input length. In [30], [31], the RNN (Recurrent

Neural Network) was applied to modulation classification

with a satisfactory classification performance achieved. As

CNNs lack the time sensitivity of RNNs and RNNs lack the

lightness of CNNs, some algorithms combining CNNs and

RNNs together were proposed [22], [32], which outperform

the CNN based or RNN based algorithms. The STN (Spatial

Transformer Network) can be incorporated into an existing

CNN architecture, explicitly allowing spatial manipulation of

data within the network [26], and it was also applied to

modulation classification to improve performance [33], [34],

[35].

Processing a long sequence will incur a high computational

complexity for deep learning based networks. The Transformer

Network (TRN) was first proposed in [36] and widely used

for natural language processing [37], which is suitable for a

long sequence input. The TRN can be seen as an extension of
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the RNN by removing sequential computation with improved

performance [38], [39], [40]. Many efficient TRNs have been

proposed, which can process long sequences efficiently and

take a small storage space [41], [42], [43]. TRNs were also

applied to other research areas [44], [45], [46], such as image

classification and the performance is comparable to CNNs

[47].

In this paper, the TRN is applied to the modulation classifi-

cation problem for the first time by constructing a TRN-based

model with IQ data input. The TRN has the ability to exploit

the correlation of IQ sequences and capture powerful features

of the signals, which may lead to improved performance.

Simulation results show that the TRN-based model has the

best performance on classification accuracy compared with the

other four deep models, i.e. CNN, LSTM (Long Short-Term

Memory), SCRNN (Sequential Convolutional Recurrent Neu-

ral Network) and STN, and two traditional methods, i.e. KNN

(K-Nearest Neighbor) and SVM (Support Vector Machine),

especially at low SNRs, and the number of parameters of the

proposed model is less than that of the other deep models.

The paper is organized as follows. In Section II, the TRN-

based model is provided, including motivation and detailed

construction of the proposed model. Simulation results are

presented in Section III, where the proposed model is com-

pared with the other deep models and traditional methods,

and impact of various settings for the proposed model is also

studied. Conclusions are drawn in Section IV.

II. THE TRANSFORMER NETWORK BASED MODEL

A. Motivation

The CNN is one of the most popular networks, which was

proposed for image classification and then widely used in

many other classification problems. The TRN is proposed for

language transformation, which is then gradually used in a

few other applications, such as image classification. There is

a big difference between these two networks: the TRN is based

on the attention mechanism, while the CNN is not. It causes

some feature differences between these two networks, which

are listed as below:

(1) Correlations between elements of the input sequence

play an important role in the TRN, while they are not exploited

directly in the CNN.

(2) The TRN establishes a long-distance dependence, so

more powerful features can be extracted by incorporating the

global information, while the CNN concentrates on the local

information, and the contextual information of the input cannot

be fully exploited for feature capturing.

(3) The global information can be integrated easily by

the TRN without stacking any extra layers, and thus fewer

parameters are needed. However, the CNN extracts the global

information from the local one by continuously stacking

convolutional layers, which dramatically increases the number

of parameters of the whole network.

The RNN is also widely used in language transformation,

but there is a feature difference between it and the TRN. The

RNN uses sequential computation which causes the vanishing

gradient problem, while the TRN uses parallel computation,

so it can be trained more easily and may be more suitable for

practical applications.

The STN is a learnable module, which can be incorporated

into an existing model, such as CNN [26]. The feature differ-

ences between STN and TRN are presented as follows:

(1) The STN is usually embedded into a CNN, leading to

a greater number of training parameters and higher computa-

tional complexity. This problem does not exist in TRN as it

is an independent network.

(2) The TRN concentrates on temporal relations of the input,

while the STN focuses on spatial information of the input.

From this point of view, it may be more beneficial to employ

the TRN for input signal processing than the STN.

As a result, for signal modulation classification with the IQ

sequence input, the TRN may be a more suitable choice, as

demonstrated by computer simulations later.

B. Overview of the TRN-based model

The architecture of the TRN-based model is shown in Fig.

1. It can be roughly divided into two parts: preprocessing

and TRN. There are mainly three parts in TRN, including

the Linear Projection Layer, the Transformer Encoder and the

Multi-Layer Perception (MLP) Head.

The process of signal modulation classification based on

the TRN-based model can be summarized as follows: the

IQ signal is transformed into sequences by the preprocessing

stage, which are then embedded into linear sequences in the

Linear Projection Layer; an additional learnable “classification

token” with position embedding is added before being fed

into the Transformer Encoder; the output of the Transformer

Encoder is then served as the input of the MLP Head, which

consists of several fully connected layers and dropout layers;

the output of the MLP Head is the final classification result.

Details of the above process are provided in the next three

subsections.

These parts play different roles in the process of signal

modulation classification. In general, the preprocessing stage

processes the IQ data before being fed into the TRN, the

Linear Projection Layer projects the data linearly to retain the

most discriminating features of the signal, the Transformer En-

coder extracts several more powerful features of the signal, and

then the MLP Head makes the final decision for modulation

classification.

C. IQ data preprocessing

The IQ data of the signal can not be directly applied to

the TRN, as the TRN requires several sequences as its input,

while the original data of the IQ signals are in two sequences.

As the in-phase and quadrature data is sampled in a pair, they

should be combined together in a patch to serve as one of

the input sequences of the TRN, which makes the feature of

the signal clearer. So we divide the long IQ signal sequences

into multiple shorter sequences with equal lengths, and then a

group of shorter IQ signal sequences is obtained as the input

of the TRN. The preprocessing steps are shown in Fig. 2 and

detailed steps are listed as follows.
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Fig. 1. The architecture of the TRN-based model.
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Eq. (2)

Eq. (5)

...

...

...

Eq. (3)

Fig. 2. The process for data preprocessing.

(1) Combine the I and Q signal sequences into one vector

x.

The I and Q signal sequences are defined as xI =
[x̄1, x̄2, . . . , x̄Len] and xQ = [x̂1, x̂2, . . . , x̂Len], respectively,

where Len is the length of the original data, and they are

combined as

x = [x̄1, x̄2, . . . , x̄Len, x̂1, x̂2, . . . , x̂Len] (1)

(2) Transform x into an N ×M matrix R.

Suppose 2Len = N ×M , and the vector x is restructured

into an N ×M matrix R

R =















x̄1 . . . x̄M

x̂1 . . . x̂M

...
. . .

...

x̄Len−M+1 . . . x̄Len

x̂Len−M+1 . . . x̂Len















=











r1,1 . . . r1,M
r2,1 . . . r2,M

...
. . .

...

rN,1 . . . rN,M











(2)

(3) Divide R into Z P ×Q patches Rz1,z2 .

Suppose Z = NM/PQ, Z1 = N/P and Z2 = M/Q are

all integers.

R =







R1,1 . . . R1,Z2

...
. . .

...

RZ1,1 . . . RZ1,Z2






(3)

with

Rz1,z2 =











r(z1−1)P+1,(z2−1)Q+1 . . . r(z1−1)P+1,z2Q

r(z1−1)P+2,(z2−1)Q+1 . . . r(z1−1)P+2,z2Q

...
. . .

...

rz1P,(z2−1)Q+1 . . . rz1P,z2Q











z1 = 1, . . . , Z1, z2 = 1, . . . , Z2

(4)

(4) Transform the patches Rz1,z2 into 1×PQ sequences r̂z1,z2 .

r̂z1,z2 =
[

Rz1,z2(1, :),Rz1,z2(2, :), . . . ,Rz1,z2(P, :)
]

(5)

where Rz1,z2(i, :) is the i-th row of the patch matrix.

The sequences r̂z1,z2 are then used as the input of TRN.
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D. The Linear Projection Layer

The Linear Projection Layer is the first part of the TRN and

it is the link between the preprocessed data and the Trans-

former Encoder. The processing steps are listed as follows

[47].

(1) Linearly project the sequences r̂z1,z2 and construct the

matrix Ṙ.

Suppose E is an embedding projection matrix with dimen-

sion PQ ×D, where D is the size of the vector used in the

Transformer Encoder. The 1×D vector r̄z1,z2 is defined as

r̄z1,z2 = r̂z1,z2E (6)

Then, the matrix Ṙ is constructed by combining all the

sequences r̄z1,z2 as

Ṙ = [r̄1,1; . . . ; r̄1,Z2
; . . . ; r̄Z1,1 . . . ; r̄Z1,Z2

]

= [ṙ1; . . . ; ṙ(z1−1)Z2+z2 ; . . . ; ṙZ1Z2
]

(7)

(2) Construct R̂ by adding the learnable class token vector

c to Ṙ.

The vector c = [c1, c2, . . . , cD] is firstly initialized random-

ly and then updated during the training process. The matrix

R̂ with dimension (Z1Z2 + 1)×D is constructed as

R̂ = [c; Ṙ] (8)

(3) Construct the matrix R̆ by adding a learned position

encoding matrix Epos to the sequence R̂.

Suppose Epos is a (Z1Z2 + 1) × D matrix and then R̆ is

given by

R̆ = R̂+Epos (9)

R̆ is the input of the Transformer Encoder.

E. The Transformer Encoder

The Transformer Encoder consists of a stack of L same

layers, and each layer is mainly composed of an MLP block

and a Multihead Attention (MHA). The MLP is a simple

fully connected feed-forward network, while the MHA is more

complicated. The Layernorm (LN) is applied to residual con-

nections after every block, which can mitigate the vanishing

gradient problem due to a deeper depth of the neural network.

The structure of the MHA is shown in Fig. 3. The Scaled

Dot-Production attention, called attention for short in the

following, is the most important part of MHA. The attention

can be described as mapping a query and a set of key-value

pairs to an output and linking different positions of a single

sequence, which integrates information across the entire input

data.

Denote the number of times of performing the attention

operation in the MHA as Ho, and the process for attention

operation can be described as follows [36].

(1) Embed the input R̆ of the Transformer Encoder by the

D × dmodel embedding matrix W.

Q̄ = K̄ = V̄ = R̆W (10)

where Q̄, K̄ and V̄ are the resultant matrices.

Linear

Scaled Dot-Production Attention

Concat

Linear

Linear Linear

Ho

V K Q

Fig. 3. Structure of the Multihead Attention.

(2) Calculate the query matrix Qi, the key matrix Ki and

the value matrix Vi, separately.

Qi = Q̄W
Q
i , Ki = K̄WK

i , Vi = V̄WV
i (11)

where W
Q
i , WK

i , and WV
i , i = 1, 2, 3, . . . , Ho are the

matrices with dimensions dmodel × dk, dmodel × dk and

dmodel × dv , separately.

(3) Calculate headi by the operation Attention(·) as

follows

headi = Attention(Qi,Ki,Vi) (12)

with

Attention(Qi,Ki,Vi) = softmax

(

QiK
T
i√

dk

)

Vi (13)

(4) Construct the matrix Head by multiplying the vector

headi with the matrix W0

Suppose W0 is an Hodv × dmodel matrix. we have

Head = [head1, . . . ,headHo
]W0 . (14)

(5) Obtain the output Z̄ of the MHA by adding the matrix

R̆ with Head.

Z̄ = Head+ R̆ (15)

The output of the Transformer Encoder is obtained by

inputting Z̄ into the MLP block. If there are more than one

layers in the Transformer Encoder, consider the output of the

former layer as the input of the next and follow steps described

above. Then, choose the first row of the final output of the

Transformer Encoder as the input of the MLP Head, and the

output of the MLP Head is the final classification result.

III. SIMULATIONS AND ANALYSES

In this section, the classification performance of the TRN-

based model is compared with the other four deep models

and two traditional methods, which are CNN-based model,

LSTM-based model, SCRNN-based model, STN-based model,

KNN and SVM, respectively. Three benchmark datasets used

for the simulations are introduced firstly, and the impact

of different settings of the parameters for the TRN-based
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(a) QPSK (b) 8PSK (c) WBFM (d) AM-DSB

Fig. 4. The in-phase signal samples of the four modulation types at 10dB SNR.

model is studied to find the best set of values. Then, some

implementation details and the classification results of the

deep models and traditional methods on the three benchmark

datasets are presented.

A. Datasets

Three datasets are used in our simulations, RML2016.04C

and RML2016.10 and RML2018.01a, which are generated by

GNU Radio [48], [49]. RML2016.10a is an upgraded version

of RML2016.04C, which considers more effects of the real

electromagnetic environment. RML2018.01a is a more robust

dataset with a larger amount of data than the other two

datasets.

The parameters of these three datasets are listed in Table

I and in-phase signal samples of the four modulation types

are presented in Fig. 4. It can be seen that the modulations

QPSK and 8PSK are easy to be confused, while WBFM and

AM-DSB also look similar to each other.

TABLE I
PARAMETERS OF THE BENCHMARK DATASETS.

Dataset RML2016.04C, RML2016.10a, RML2018.01a

Modulations

8 Digital Modulations: BPSK, QPSK, 8PSK,
16 QAM, 64 QAM, GFSK, CPFSK, and PAM4
3 Analog Modulations: WBFM, AM-SSB,
and AM-DSB
(RML2016.04C, RML2016.10a)
19 Digital Modulations: OOK, 4ASK, 8ASK,
BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK,
32APSK, 64APSK, 128APSK, 16QAM, 32QAM,
64QAM, 128QAM, 256QAM, OQPSK, GMSK
5 Analog Modulations: AM-SSB-WC, FM
AM-SSB-SC, AM-DSB-WC, AM-DSB-SC
(RML2018.01a)

Signal format In-phase and quadrature (IQ)

Signal dimension

2 × 128 per sample
(RML2016.04C, RML2016.10a)
2 × 1024 per sample
(RML2018.01a)

SNR range

-20dB:2dB:18dB
(RML2016.04C, RML2016.10a)
-20dB:2dB:30dB
(RML2018.01a)

Total number of samples

162060(RML2016.04C)
220000(RML2016.10a)
2555904(RML2018.01a)

Extra added effects for
RML2016.10a and
RML2018.01a

Selective fading
Sample rate offset (SRO)
Center frequency offset (CFO)
Noise (AWGN)

The categorical cross entropy is adopted as the loss function,

which can be written as:

Floss = −
1

Nbatch

Nbatch
∑

i=1

yi · log (ŷi) . (16)

where yi represents the ground truth in the form of one-hot

encoding, ŷi is the prediction and Nbatch is the training batch

size set as 32.

At each SNR, there are two sample sets, the training set

(90%) and the test set (10%). The Adam optimizer with a

learning rate of 0.01 is utilized. All trainings and predictions

are implemented in Tensorflow [50].

B. Comparisons with deep models and traditional methods

Four deep models and two traditional methods are used to

compare with the TRN-based model for signal modulation

classification, and their settings are introduced briefly one by

one in the following. For all the deep models, the softmax

activation function is used in the last layer, and the Adam

optimizer and sparse entropy loss function are applied in the

deep models.

The first one is the CNN-based model [28]. It contains four

layers, where two layers are convolutional layers and the other

two are dense layers. Each hidden layer utilizes the Rectified

Linear Unit (ReLU) activation function.

The second one is the LSTM-based model [31]. Two parts

are included in this model: the first part contains two 128-unit

LSTM layers while the last part is a 11-unit dense layer. The

first LSTM layer returns the full sequences while the second

one returns the last state.

The third one is the SCRNN-based model [22]. It combines

the speed and lightness of the CNN and temporal sensitivity

of RNN, and can be divided into three parts: the first part

contains two convolutional layers with 128 filters and ReLU

activation functions, the second part are two 128-unit LSTM

layers with ReLU activation functions, and the last part is a

dense layer.

The fourth one is the STN-based model [34], which contains

two parts. The first one is STN, which is composed of

Localisation Network, Grid Generator and Sampler. The last

one is CNN which is composed of two convolutional neural

layers, each layer followed by a max pooling layer, and two

dense layers at the final stage.

The fifth one is the SVM [51]. It maps the input data

into a high-dimensional feature space, where a linear decision
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surface is constructed. Different types of classes are located

on different sides of the decision surface.

The last one is the KNN [52], which follows the nearest

decision rule, and assigns an unclassified sample point to the

nearest classified set.

C. Parameter analyses

As the classification accuracy varies with the parameter

settings, it is necessary to fine-tune the TRN-based model.

The impact of the parameters of the TRN-based model on

the classification performance is investigated below, including

patch size, the MLP size, the layer number, the attention

number, the batch size, the training epoch, the test set size

and the optimizer.

The patch size related result is shown in Fig. 5. It can

be seen that the classification accuracy is the highest when

the patch size is 4. The classification performance of the

TRN is sensitive to the length of the sequence, and an

inappropriate length will cause position embedding and posi-

tion information confusion, which may lead to unsatisfactory

classification performance. For the MLP size, as shown in Fig.

6, the classification accuracy is the highest when the MLP

size is 256. When the MLP size is smaller than 256, the

generalization ability of the TRN is poorer, which leads to

worse classification performance. However, with the MLP size

greater than 256, the classification accuracy drops due to the

overfitting problem.
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Fig. 5. Classification performance of the TRN-based model with a varying
patch size.

The layer number and attention number related results are

given in Fig. 7a and Fig. 7b. It can be seen that the best

result is achieved when the layer number is 5 and the attention

number is 16. The depth of the proposed model increases

as the number of layers and attentions increases, and the

attention distance increases as the depth of the proposed model

increases. The attention distance of the TRN is similar to the

size of the receptive field of the CNN, and the larger the

attention distance the stronger its ability to extract features.

However, if these parameters are too large, the classification

accuracy may drop due to the overfitting problem.

The batch size result in Fig. 8 indicates that the classification

performance is the best when the batch size is 32. Normally,

the greater the batch size the better the performance, but
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Fig. 6. Classification performance of the TRN-based model with a varying
MLP size.
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Fig. 7. Classification performance of the TRN-based model with a varying
(a) layer number, (b) attention number.

the performance will degrade when the batch size exceeds

a threshold value [53].

The impact of the training epoch is demonstrated in Fig.

9, where it can be seen that the epoch 15 provides the best

performance. As the loss is reduced after each epoch, if the

epoch is too small, it may lead to an unsatisfactory classifi-

cation performance. Furthermore, the model will converge if

the epoch exceeds a threshold value.

Splitting the dataset is also an important step before training.

The test set size directly affects the classification accuracy

of the model and a proper test set size promotes the model

training. The impact of the test set size is shown in Fig. 10
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Fig. 8. Classification performance of the TRN-based model with a varying
batch size.

-16 -14 -12 -10 -8 -6 -4 -2 0 2

SNR(dB)

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

Epoch: 5

Epoch: 10

Epoch: 15

Epoch: 20

Fig. 9. Classification performance of the TRN-based model with a varying
training epoch.

and it can be seen that the best performance corresponds to

a test set size of 10%. If the test set size is too small and

the training set size is too big, the model may suffer from the

overfitting problem; otherwise, it may lead to the underfitting

problem.
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Fig. 10. Classification performance of the TRN-based model with a varying
test set size.

The optimizer plays an important role in the training pro-

cess. An appropriate optimizer makes the network converge

quickly. There are some popular optimizers, such as Adam,

SGD, AdaGrad and so on. The classification accuracies with

different optimizers are provided in Fig. 11. It can be seen

that the Adam optimizer is the best choice.
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Fig. 11. Classification performance of the TRN-based model with a varying
optimizers.

D. Performance comparisons

The data with SNR ranging from −16dB to 10dB is

chosen from the datasets RML2016.04C RML2016.10a and

RML2018.01a, separately. The settings of the TRN-based

model are provided in Table. II. The parameters of the four

compared deep models and the two traditional methods are

all set for their best performance. The classification results

are presented in Figs. 12, 13 and 14.

TABLE II
PARAMETERS FOR THE TRN-BASED MODEL.

Parameters Value

Patch size 4× 4

MLP size 256

Layer number 5

Attention number 16

Batch size 32

Training epoch 15

Test set size 10%

Optimizer Adam

The classification performance of the deep models and

traditional methods based on the first dataset is presented in

Fig. 12. It can be seen that the proposed model performs

the best in the whole SNR range. Compared with the CNN-

based and STN-based models, the proposed one outperforms

them by nearly 15% and 10% at lower SNRs, from −16dB

to −12dB, respectively. The STN-based model outperforms

the CNN-based one, which implies that by making the model

spatially-invariant, robustness of the model is enhanced against

various adverse effects. Furthermore, the proposed model has

better performance than those of LSTM-based and SCRNN-

based models, implying that more powerful features can be

extracted by the TRN-based model. Besides, The classification

performance of the STN-based and CNN-based models are

close to that of the TRN-based one with SNR ranging from

0dB to 10dB, but there is a gap of about 5% and 6%
between the SCRNN-based and LSTM-based models and the

TRN-based model, respectively. Compared with the traditional
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method SVM, the proposed model outperforms it by nearly

10% at lower SNRs and 5% at higher SNRs, while KNN has

the worst performance.
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Fig. 12. Classification performance of the deep models and the traditional
methods based on RML2016.04C.

The classification performance based on the second dataset

is presented in Fig. 13. It can be seen that the proposed model

still performs the best. The TRN-based model outperforms the

STN-based and CNN-based ones by nearly 2% and 4% in the

whole SNR range, respectively. The STN-based model still

has a better classification performance than that of the CNN-

based model. Furthermore, the proposed model outperforms

the LSTM-based and SCRNN-based models by nearly 2% at

lower SNRs and 10% at higher SNRs, and the performance

of the TRN-based model is better than that of the SVM

by nearly 5% at lower SNRs and 15% at higher SNRs.

The KNN again has the worst performance in the whole

SNR range. Generally, the classification performance based

on RML2016.10a drops a lot compared to that based on

RML2016.04C. As the signals of the dataset RML2016.10a

are affected by several different electromagnetic environments,

while the signals of the RML2016.04C are generated in a

single electromagnetic environment, the training based on

RML2016.10a is harder than that of RML2016.04C, leading

to performance deterioration in the former case [54].
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Fig. 13. Classification performance of the deep models and the traditional
methods based on RML2016.10a.

The classification performance based on the last dataset

is shown in Fig. 14. It can be seen that only TRN-based,

SCRNN-based and STN-based models maintain a good per-

formance, while the performance of the other two deep models

and two traditional methods drops a lot compared to that based

on the first and second datasets. The TRN-based model still

performs the best in the whole SNR range, which outperforms

the SCRNN-based and STN-based models by nearly 1% at

lower SNRs and performs almost the same at higher SNRs.

For the CNN-based model, it tends to be overfitting on the

training set for its simple network structure and the huge

number of samples of the new dataset. For the SVM, both

the total number of samples and the dimension of the signal

increase, leading to a huge amount of computation in training,

and its performance gets worse.
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Fig. 14. Classification performance of the deep models and the traditional
methods based on RML2018.01a.

It can be seen from Figs. 12, 13 and 14 that the performance

of the proposed TRN-based model is similar to that of the

STN-based one in most cases under the relevant datasets, and

the TRN-based model is superior to the STN-based one for

the range of SNR equal to or lower than −10dB in Fig. 12.

Moreover, as shown in Table III, the training parameter

number of the TRN-based model is smaller than that of the

other deep models. There are fewer training parameters in

every layer of the LSTM-based model, so the total number

of training parameters is small. For the TRN-based model,

only a few layers are needed to extract the features due to the

existence of attention mechanism, so the number of training

parameters of the proposed model is also small. Although the

LSTM-based and TRN-based models have a low number of

training parameters, the performance of the TRN-based model

outperforms that of the LSTM-based model.

TABLE III
COMPARISON OF TRAINING PARAMETERS BETWEEN FOUR DEEP MODELS

AND THE PROPOSED MODEL.

Deep Models CNN LSTM SCRNN STN TRN

Number of parameters 3813467 271755 429195 1197033 264587

In deep learning, the confusion matrix is a visual tool to

compare the predicted results with the true values. All the

classification results for all the classes are displayed in a

confusion matrix, where each column represents the predicted

modulation class and each row represents the real modulation

class. The numerical value on each grid denotes the prediction
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Fig. 15. Confusion matrices of the optimized TRN-based model on the dataset RML2016.04C at different SNRs.

probability of the corresponding modulation class. Confusion

matrices of the optimal TRN-based model at various SNRs are

presented in Fig. 15. It can be seen that the diagonals become

sharper with an increasing SNR, which illustrates that the

higher the SNR the better the classification accuracy. However,

the confusion between 8PSK and QPSK always exists even at

high SNRs. The phases of QPSK is the subset of those of

8PSK, so the curves of their signals are sometimes identical.

When the signals are under unideal channel conditions, it

becomes harder to distinguish the modulation features of 8PSK

and QPSK.

IV. CONCLUSION

In this paper, the TRN-based model has been constructed

and applied to the automatic modulation classification problem

successfully for the first time. As demonstrated by simulation

results, the proposed model outperforms the other three deep

models (LSTM, CNN and SCRNN) and the two traditional

methods (KNN and SVM) in terms of classification accuracy,

and the number of training parameters of the proposed model

is less than the other deep models. In comparison with STN,

the proposed model performs at least as well as STN under

most relevant datasets, but it is characterized with a smaller

number of training parameters and a lower overall computation

complexity. The impact on performance of different parameter

settings was also studied to find the best configuration for the

proposed model. Possible future work can focus on applying

various improved TRNs to modulation classification, which

may further improve the performance. The signals used in

the simulations now are under a single type of channel

condition, so it is essential to do more simulations under

different types of channel conditions to have a better training

result. Furthermore, the robustness of the model may degrade

due to lack of essential labels, and thus semi-supervised or

unsupervised methods could be further investigated.
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