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A B S T R A C T   

Accidents involving pedestrians are particularly common at unsignalised intersections and mid-block crosswalks, 
where vehicles often do not yield to them. Analysing and understanding pedestrian crossing behaviour at such 
locations is vital for improving road safety. Previous studies have repeatedly shown that pedestrians tend to 
accept smaller time gaps in conditions with higher vehicle speeds and thus potentially less safe. This has 
prompted the hypothesis that pedestrians rely on spatial distance to make crossing decisions. However, few 
studies have investigated the mechanism underpinning this phenomenon. We propose a novel approach to 
characterise pedestrian crossing behaviour: a psychophysics-based gap acceptance (PGA) model based on visual 
looming cues and binary choice logit method. Road crossing data collected in a simulated experiment were used 
to analyse pedestrian behaviour and test the model. Our analysis indicates that, in line with previous studies, 
higher vehicle speed increased the tendency of gap acceptance, leading to a higher rate of unsafe crossings. 
Crucially, the PGA model could accurately account for these crossing decisions across experimental scenarios, 
more parsimoniously than a conventional model. These results explain the speed-induced unsafe behaviour by 
suggesting that pedestrians apply visual looming, which depends on vehicle speed and distance, to make crossing 
decisions. This study reinforces the notion that for two vehicles with the same time gap, the one with higher 
speed can elicit more risky crossing behaviour from pedestrians, potentially resulting in more severe accidents. 
The practical implications of the results for traffic safety management, modelling and development of automated 
vehicles are discussed.   

1. Introduction 

With the increase in the number of vehicles on the roads, there are 
more and more traffic conflicts between pedestrians and vehicles (Li 
et al., 2020). Every year, nearly 300,000 pedestrians are killed globally, 
accounting for 22% of all transport fatalities (World Health Organiza-
tion, 2018). Pedestrians are generally the most vulnerable road user due 
to the lack of protective equipment and slow movement compared to 
vehicles (El Hamdani et al., 2020). Signalised pedestrian crosswalks can 
effectively address conflicts between pedestrians and vehicles. However, 
their quantity is strictly limited for traffic efficiency and cost consider-
ations (Pawar and Patil, 2015). Thus, accidents involving pedestrians 
are especially common at unsignalised and mid-block crosswalks, where 
vehicles are less likely to yield to pedestrians. Ensuring the safety of 
pedestrians is a challenge for researchers, because in unsafe 

environments involving vehicles, especially on crosswalks with no 
signal, it is not clear how pedestrians make decisions. 

Unlike at controlled crosswalks where signal lights organise the 
crossing behaviour, the crossing behaviour of pedestrians at unsignal-
ised crosswalks is affected by many factors, such as traffic characteristics 
(Ackermann et al., 2019), road environments (Zhao et al., 2019), pe-
destrians’ psychological factors and demographics (Kalatian and Far-
ooq, 2021). Among those factors, vehicle speed is one of the most critical 
factors associated with pedestrian safety and has been shown to have a 
strong correlation with the severity of pedestrian injuries in collisions 
(Leaf and Preusser, 1999). Not only that, current studies demonstrated 
that vehicle speed can also affect pedestrians’ safety by changing their 
crossing behaviour, i.e., when compared to a low vehicle speed, pe-
destrians tend to accept small time gaps in high vehicle speed condi-
tions, called speed-induced unsafe crossing behaviour (Oxley et al., 
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2005; Nuñez Velasco et al., 2019). This issue has impacts in different 
areas. In traffic safety research, a study by Lobjois and Cavallo 2007 
indicated that speed-induced unsafe behaviour has a strong negative 
effect on the safety of elderly pedestrians. Not only does it affect pe-
destrians, but also it affects drivers. Schmidt and Färber 2009 suggested 
that drivers driving at high speed will tend to receive more dangerous 
crossings from pedestrians, potentially resulting in more accidents. 
However, few studies have studied the potential decision-making 
mechanism of this unsafe crossing behaviour specifically. Likewise, 
very few studies have investigated the correlation between this behav-
iour and pedestrian crossing safety. Also, it is not clear from the existing 
literature whether pedestrians may compensate for these smaller 
accepted time gaps by crossing faster, such that the actual safety margins 
are not affected by vehicle speed. Furthermore, considering vehicle 
speed effects on pedestrians is important for traffic modelling; for 
example, pedestrian crossing decision models applied in traffic micro- 
simulation or automated driving systems. Better models of pedestrian 
behaviour can help facilitate the development of better traffic simula-
tion systems or automated vehicles (AVs) (Rasouli and Tsotsos, 2019). 
Nevertheless, few models have paid attention to the speed-induced un-
safe crossing behaviour. Therefore, exploring this unsafe crossing 
behaviour could have significance for traffic safety management, traffic 
micro-simulation, and AV development. 

In this study, we investigate and model pedestrian crossing behav-
iour based on a psychophysical mechanism, specifically explaining the 
speed-induced unsafe crossing behaviour and analysing its safety im-
pacts. Two vital research questions are answered in this study:  

(i) How does speed-induced unsafe crossing behaviour affect 
pedestrian road crossing safety?  

(ii) Can we use the proposed psychophysics-based gap acceptance 
model to describe and interpret speed-induced crossing 
behaviour? 

This paper is organised as follows: Section 1 provides a brief litera-
ture review. In Section 2, the proposed model and conventional binary 
choice gap acceptance model are introduced. Section 3 introduces two 
empirical datasets of pedestrian road crossing that are used to test these 
models. Section 4 describes the basic pre-processing and statistical 
analysis results of the main data. In Section 5, we describe how the PGA 
model fits the two datasets. Section 6 discusses the research results and 
their implications for improving traffic safety. Finally, conclusions are 
recorded in Section 7. 

1.1. Pedestrian road crossing gap acceptance 

Previous literature has explored several methods of studying and 
modelling pedestrian crossing behaviour, including pedestrian road- 
crossing gap acceptance research (Pawar and Patil, 2016; Oxley et al., 
2005), pedestrian intention and trajectory prediction research (Hashi-
moto et al., 2016), communication between pedestrians and vehicles 
(Lee et al., 2022) and pedestrian motion dynamics modelling (Helbing 
and Molnar, 1995; Zeng et al., 2014). Among those studies, gap accep-
tance research aims to investigate and understand pedestrian road- 
crossing decisions by analysing traffic gap acceptance and rejection, 
where the gap is defined as the time or spatial distance between two 
consecutive approaching vehicles. Identifying and quantifying accepted 
gaps can help understand how pedestrians weigh their safety and effi-
ciency and use different strategies to cross the road. Existing literature 
found that the gap acceptance behaviour is affected by many factors. 
These can be roughly categorised as external and internal attributes. 
External attributes which may affect pedestrian gap acceptance behav-
iour include vehicle speed (Schmidt and Färber, 2009), time to arrival 
(TTA) (Avinash et al., 2019; Pawar and Patil, 2016), distance (Lobjois 
and Cavallo, 2007; Schmidt and Färber, 2009), number of lanes 
(Chandra et al., 2014), and vehicle size (Beggiato et al., 2017; Lee and 

Sheppard, 2017). Internal attributes which may have an impact include 
gender, age (Hulse et al., 2018; Kalatian and Farooq, 2021) and group 
size (Pawar and Patil, 2015; Avinash et al., 2019). 

1.2. Speed-induced unsafe road crossing behaviour 

Among the factors mentioned above, common sense might suggest 
that TTA, i.e., the time available to cross before the vehicle arrives, 
ought to be the basis for pedestrian gap acceptance (Petzoldt, 2014). 
However, literature has repeatedly shown that high vehicle speeds 
negatively impact pedestrians, causing them to make potentially unsafe 
decisions compared to low vehicle speed conditions, i.e., pedestrians 
tend to accept smaller time gaps for high vehicle speed conditions 
(Beggiato et al., 2017; Lobjois and Cavallo, 2007; Oxley et al., 2005; 
Schmidt and Färber, 2009). This unsafe behaviour is also manifested as 
more pedestrians crossing the road under the same time gap in high 
vehicle speed conditions (Schmidt and Färber, 2009). A study conducted 
in a simulated environment indicated that young and old participants 
showed speed-induced unsafe behaviour and that the elderly were more 
severely affected (Lobjois and Cavallo, 2007). In addition to the simu-
lated study, this unsafe behaviour pattern was also found in research 
based on video recordings (Nuñez Velasco et al., 2019) and field tests 
(Schmidt and Färber, 2009). Due to this behaviour, pedestrians may 
make more inappropriate decisions and face a risk of serious injury 
when interacting with high-speed vehicles (Huang et al., 2018). More-
over, drivers who travel at high speeds tend to receive more dangerous 
crossings from pedestrians, potentially resulting in more accidents. For a 
given time gap, higher vehicle speed implies a longer perceived spatial 
distance. This insight has prompted the hypothesis that pedestrians tend 
to rely on spatial distance from the oncoming vehicle to make road- 
crossing decisions (so-called distance dependent decisions) (Lobjois 
and Cavallo, 2007; Oxley et al., 2005; Schmidt and Färber, 2009). A 
study from Petzoldt. (2014) suggested that this might occur because 
pedestrians incorrectly factor speed into their judgment of TTA, and 
then use this biased TTA as the basis for their crossing decision. Indeed, 
it is well established that the speed of an approaching object can affect 
the accuracy of TTA estimates. Observers generally underestimate TTA, 
and this underestimation becomes more serious when objects approach 
at lower speeds (Sidaway et al., 1996). 

Although the above conclusions are plausible, they do not really 
provide any information on the psychological mechanisms that cause 
these decision patterns. It is clear that not only distance but also time 
gap has an essential effect on gap acceptance behaviour (Oxley et al., 
2005; Schmidt and Färber, 2009), but it is not clear from the studies 
cited above how or why time gap and distance both influence crossing 
behaviour. This also applies to the TTA estimation error hypothesis; it 
suggests an intermediate step of TTA estimation but does not explain 
why both time gap and distance should affect this estimate. Further-
more, one recent study on gap acceptance and TTA estimates from 
Beggiato et al. (2017) found that speed had different effects on TTA 
estimation and gap acceptance, casting some doubt on the idea of TTA 
estimation as an intermediate step towards a gap acceptance decision. 

1.3. Collision perception theory for traffic research 

The well-established perception theory indicates that as an object 
moves close to the observer, its increasing image on the observer’s retina 
can cause the observer to perceive it as an approaching object (Gibson, 
2014). If its image continues to expand and reaches a certain perceptual 
threshold, it suggests to the observer that a collision event is imminent 
(Hoffmann and Mortimer, 1994; Markkula et al., 2016). This phenom-
enon, called visual looming, has been shown to be critical visual stimuli 
related to the sense of collision threat and human avoidance behaviour 
(Gibson, 2014). In traffic safety research, many studies on rear-end 
collisions have shown that visual looming is a potentially important 
factor for collision avoidance, and drivers’ responses to collision events 
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were in line with a strategy of responding to visual cues, like visual angle 
or visual looming (Hoffmann and Mortimer, 1994; DeLucia and Thar-
anathan, 2005; Maddox and Kiefer, 2012; Markkula et al., 2016). These 
insights suggest that visual cues might provide clues for pedestrians’ 
risky gap acceptance decision patterns. When humans perceive an 
approaching object, several different visual cues can provide informa-
tion about the object’s distance and movement, e.g., visual angle, 
expansion rate of the object (also called visual looming) (DeLucia, 
2015), and Tau (Lee, 1976). A conceptual framework from DeLucia 
(2008) suggested that when the tasks happened at a far distance, due to 
the limitations of the human visual system, the humans tended to use 
pictorial depth cues (e.g., visual angle) and low order information (e.g., 
visual looming) to judge the situation. Moreover, several studies indi-
cated that participants (or pedestrians) might judge the movement of the 
approaching vehicle by using visual cues, like visual looming (Lee and 
Sheppard, 2017; Ackermann et al., 2019). In short, although the liter-
ature on collision perception and rear-end collision studies have shown 
that humans rely on visual cues to avoid collision events, the situation is 
less clear regarding the relationship between collision perception and 
pedestrian road crossing gap acceptance. 

2. Methodology 

2.1. Visual looming model 

Generally, visual looming refers to the expansion in the size of the 
images on the observer’s retina, or the changing rate of the visual angle 
subtended by the object (Gibson, 2014; Lee, 1976). Based on the defi-
nition of looming, its psychophysical model can be derived. Considering 
an upcoming collision event, as shown in Fig. 1a, there is a rectangular 
object with length l and width w approaching the observer with a con-
stant speed v(t). The object deviates from the horizontal axis by distance 
R and subtends a visual angle θ(t) at point O. The derivative of the θ(t)
with respect to time refers to looming θ̇(t). 

To calculate the looming (Fig. 1a) in the road-crossing scenario, a set 
of variables are established to constrain the geometrical relationship 
between the pedestrian and the car, as shown in Fig. 1b. The model only 
considers the situation with a one-way lane and one vehicle driving at 
constant speeds to reduce the complexity. The position of the pedestrian 
is set at the origin of the coordinate axis. The vehicle moves forward 
with speed v(t), while the pedestrian stands at the curb and waits to 

cross. w and l refer to the width and length of the vehicle, where w refers 
to the maximum width of the vehicle front profile. s is the length of the 
diagonal of the vehicle. Z(t) is the distance between the pedestrian and 
the vehicle. θ(t) is the visual angle subtended by the approaching 
vehicle. R is the lateral distance from the car to the pedestrian. The 
length of the oa line and oc line are D(t) and B(t). The ∠oac is denoted by 
δ(t), which is comprised of angle δ1(t) and angle δ2. As shown in Fig. 1b, 
the diagonal of the vehicle is: 

s =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
w2 + l2

√
(1) 

Since the lateral distance between pedestrian and vehicle is R, the 
length of oa line and oc line in Fig. 1b can be formulated as: 

D(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Z(t)2
+ (R + w)

2
√

(2)  

B(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Z(t) + l )2
+ R2

√

(3) 

To calculate the angle δ(t), we separate it into two angles δ1(t) and δ2, 
which can be calculated by the following equations: 

δ1(t) = arctan
(

Z(t)
R + w

)

(4)  

δ2 = arctan
(

l
w

)

(5)  

δ(t) = δ1(t) + δ2 (6) 

Then, according to the sines rule, the visual angle, θ(t), in the road- 
crossing scenario is defined by the following equation: 

θ(t) = arcsin
(

s⋅sin(δ)
B

)

(7) 

Finally, take the temporal derivative of θ(t) to get the looming in the 
road-crossing scenario: 

θ̇(t) = -F1⋅
(

F2⋅
1

R + w
− F3

)

⋅v(t) (8) 

where: F1 = 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (s⋅sin(δ)/B)2
√

, F2 = s⋅cos(δ)/(B⋅(1+ F4
2)), F3 =

s⋅sin(δ) • (B− 1 • (Z+ l))/B2, F4 = Z/(R+ w). The visual looming is 
calculated and plotted in Fig. 1c, showing that the visual angle and the 

Fig. 1. (a) Looming model. The eye model comprises a semi-circular ’retina’ and a pinhole O as ’pupil’. At timestep t1, an object with speed v moves towards the 
observer from distance Z(t). The visual angle on the retina at O equals to the angle θ(t1) subtended by the object. At timestep t2, when the object gets closer, the visual 
angle is θ(t2) and the continuous change rate of θ is referred to as the loomingθ̇(t). (b) The looming model adapted to a road-crossing scenario. (c) Visual angle and 
looming calculated using the parameters, i.e., w = 1.95, l = 4.95, R = 2.45, v = 30 mph. 
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looming increase slowly as the 30 mph vehicle approaches from 100 m 
to 20 m distance. However, when the distance is<20 m, the visual angle 
increases sharply to 1.1 rad, and the looming value exceeds 2 rad/s. 
Further, the looming starts to decrease again at about 1 m. It can be 
found that looming has an approximately exponential relationship with 
the distance and TTA, which is similar to the pedestrian’s perceived 
collision risk in previous studies (Gupta et al., 2009; Zhuang and Wu, 
2013), in which a pedestrian’s perceived risk to an approaching vehicle 
was defined as having an approximately exponential relationship with 
TTA, such as f(1/TTA) (Gupta et al., 2009) and exp( − βTTA) (Zhuang 
and Wu, 2013). Hence, the looming has the potential ability to charac-
terise pedestrian’s feeling of risk in a road-crossing scenario. 

2.2. Binary gap acceptance model with mixed effects 

At uncontrolled crosswalks, pedestrians could either accept a traffic 
gap or not when approaching vehicles do not give way to them. 
Accordingly, pedestrian gap acceptance behaviour at such locations is 
typically modelled using a binary logit model, called binary gap 
acceptance model (BGA), as follows (Zhao et al., 2019): 

Pr(y|accept) = logit− 1(Xβ + ε (9) 

where logit− 1 is the inverse-logit transformation. Pr(y|accept) repre-
sents the probability that pedestrians accept the traffic gap. X is a matrix 
of the explanatory attributes. β is a vector of coefficients corresponding 
to explanatory attributes. ε are the error terms. However, for the analysis 
of the repeatedly measured data of subjects, the standard errors of the 
binary logit model are biased because the interdependencies among 
subjects violate the independence assumption (Hu et al., 1998). To avoid 
this problem, here we adopted a BGA model with mixed effects to 
establish pedestrian gap acceptance behaviour, which allowed hetero-
geneity of individuals to be retained (Gelman and Hill, 2006). A typical 
mixed-effects BGA model is given by: 

Pr(y|accept) = logit− 1(Xβ+Zu+ ε) (10) 

where X is a matrix of explanatory attributes and its corresponding 
coefficients are denoted by a vector β, also known as the fixed effects. Z 
is the designed matrix for random effects and u is a vector of the random 
effects. 

2.3. Psychophysics-based binary gap acceptance model with mixed effects 

If the explanatory attribute set is a composite of conventional attri-
butes, such as speed, age, and time gap, the gap acceptance model is 
called a conventional BGA model. In contrast to the conventional BGA 
model, the psychophysics-based gap acceptance (PGA) model with 
random effects of the visual looming can then be expressed as: 

logit{Pr(yijk|accept)} =β0 + β1f (θ̇ijk)+ u1,ijkf (θ̇ijk)+ u0,ijk (11) 

where θ̇ijk is the kth replication (k = 1 to 6) of the looming value of 
the ith traffic scenario (i = 1 to 12) belonging to jth participant (j = 1 to 
60). β1 and β0 are coefficients and slope with fixed effects. f(Â⋅) is a 
transformation function, discussed in Section 5.2.1. u0,ijk and u1,ijk are 
random coefficient and slope of the ith traffic scenario for the jth 
participant, which are assumed to be normally distributed. In the study, 
the conventional BGA model included the fixed effects of the time gap 
and vehicle speed and participants’ random effects of the time gap, 
which is given by: 

logit{Pr(yijk|accept)} =β0 + β1vijk + β2tijk + u1, ijktijk + u0, ijk (12) 

where v and t are the vehicle speed and time gap size. The BGA model 
was applied as a comparison to assess whether the PGA model could 
achieve equal or better performance with fewer coefficients than the 
BGA model. Therefore, we only considered the model with random ef-
fects of the time gap. 

3. Empirical data 

This study uses a dataset collected as part of a virtual reality exper-
iment, previously reported on in Lee et al. (2022) with detailed infor-
mation on the experimental setup; here a brief summary will be 
provided. The dataset was collected using the Highly Immersive Kine-
matic Experimental Research (HIKER) lab. As shown in Fig. 2 a, the 
HIKER is a virtual reality environment where the moving vehicles and 
road scenarios were generated in a cave-based pedestrian simulator with 
9 × 4 m walking space (Sadraei et al., 2020). Eight 4 K projectors behind 
glass panels projected the virtual scene at 120 Hz, and ten cameras 
tracked the head position through tracking glasses on the participant’s 
head so that the system could project images that fit the actual 
perspective of the participant. 

In the experimental scenario, the simulated road and pavement 
widths were 3.5 m and 1.85 m. The cars were 1.95 m wide and 4.95 m 
long. A row of trees was included on one side of the road to indicate the 
starting position for the pedestrian. The lateral distance R between the 
pedestrian’s starting position and the nearest side of the vehicles was 
2.45 m. 

In terms of the experimental procedure, participants stood on the 
side of the road and held a button to trigger the scenario, consisting of 
two approaching vehicles (Fig. 3). They were asked to cross or not be-
tween the two vehicles when they felt comfortable and safe to do so. The 
first car started 96 m away from the pedestrian, and the second car 
maintained one of four time gaps behind first car, 2 s, 3 s, 4 s or 5 s. 
When the rear of the first vehicle passed the participant, the time gap 
was available (Fig. 3). Both vehicles drove in the middle of the road at 
the same constant speed, one of the three speeds 25 mph, 30 mph or 35 
mph. Therefore, 4 × 3 = 12 different traffic scenarios were included. All 
scenarios were replicated twice in three different blocks so that each 
participant experienced 72 trials in total. Sixty participants aged 19–34 
participated in the experiment, and a total of 4,320 trials were thus 
recorded and included in the analyses here. It should be noted that the 
full experiment also included additional experimental scenarios, but the 
present scenario only used the above-mentioned scenarios, collected 
under constant vehicle speed without external human–machine inter-
face conditions. 

In addition to the Lee et al.’s (2022) dataset, the data from Lobjois 
and Cavallo (2007) was also used to evaluate the model in Section 5.2.1 
and 5.2.2. In their experiment, a gap acceptance task was designed to 
investigate whether young and elderly participants selected the same 
gap for all vehicle speed conditions. The experiment setup was similar to 
Lee et al. (2022), except their traffic gaps ranged from 10 m to 135 m in 
5 m increments, rather than temporal gaps. Since we did not have the 
detailed data for each participant in the second dataset, only the 
aggregated road-crossing percentages were used here. In addition, since 
age differences is not in focus in the present study, only the results for 
the 20–30 age group (Lobjois and Cavallo (2007), p. 937, Fig. 2, 20-30) 
were used, similar to the age range of participants in Lee et al. (2022). 
The main experimental parameters of two datasets are shown in Table 1. 

4. Data analysis 

As a first step, we analysed the data from Lee et al. (2022) to 
investigate whether this study replicated the potentially unsafe pedes-
trian behaviour patterns observed in previous studies (Beggiato et al., 
2017; Lobjois and Cavallo, 2007; Oxley et al., 2005; Schmidt and Färber, 
2009). 

4.1. Data pre-processing 

Before the data analysis, accurately capturing the pedestrian’s street- 
crossing onset time is vital. Several previous studies used a button to 
indicate crossing decisions. However, it was shown that button pressing 
could make participants more aggressive than in actual crossing tasks 
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(Lobjois and Cavallo, 2007). A recent study indicated that having the 
participant move forward naturally was a better way to measure the 
crossing onset time of the road-crossing (Faas et al., 2020). Therefore, in 
the analysis, the crossing onset time is the time when participants 
walked across the edge of the pavement and stepped out to the road. 
4270 valid data trials were obtained. Four performance measures were 
discussed: road-crossing percentage (gap acceptance percentage), time 
gap at crossing initiation TTAc, crossing duration and safety margin. The 
results of these analyses are described in the following sections. 

4.2. Unsafe road crossing decision 

Time gap at crossing initiation. The TTAc was defined as the time gap 
between participants and the vehicles when participants started crossing 
the road (Fig. 3). When participants started crossing after the first car 

passed them, the TTAc was smaller than the time gap size (Fig. 3a). Note 
that a pedestrian could also begin their crossing slightly before the first 
car passed them, in which case the TTAc was slightly larger than the 
time gap size (Fig. 3b) (Schneider et al., 2021). Fig. 4b shows the box 
charts of TTAc of each condition. A two-way repeated ANOVA analysis 
was done on TTAc with speed and time gap size as independent vari-
ables. The results did not show significant interactive effects between 
speed and time gap size. The speed (F (2, 22) = 7.272, p < 0.01) and 
time gap size (F (3, 33) = 967.56, p < 0.001) had significant main effects 
on TTAc. For the same time gap size, more participants started crossing 
at smaller TTAc when vehicles drove at higher speeds. For instance, for 
the 2 s time gap group, the calculated mean TTAc was smaller when the 
vehicle approached 35 mph (M = 1.98 s, S.D. = 0.30 s) than 25mph (M 
= 2.16 s, S.D. = 0.31 s). As shown in Fig. 4b, this tendency was observed 
among all the groups. 

Gap acceptance. Fig. 4a shows the percentage of gap acceptances for 
each condition. The gap acceptance percentage was the frequency of 
road-crossings divided by the quantity of all trials in each condition. The 
data showed that all three groups of participants were less likely to cross 
the road for the 2 s condition (road-crossing percentage is<6 %). With 
the increase in time gap size, the gap acceptance percentage grew 
steadily, and the largest percentage was observed for the 5 s time gap 
and 35 mph condition (82.91%). Logistic regression was performed with 
time gap and speed as independent variables and crossing decisions as 
the dependent variable to study the gap size and speed effects on the 
road crossing percentage. The results showed that time gap size (Coef.=

Fig. 2. a. Highly Immersive Kinematic Experimental Research (HIKER) simulator. b. The experimental scenario in the HIKER.  

Time gap size = 2 , 3, 4 and 5s

Initiation time

Time gap size = 2 , 3, 4 and 5s
Initiation time

a

b
TTAc

TTAc

Fig. 3. Schematic diagrams of experiment scenario and crossing initiation. (a) Pedestrians started crossing after the previous car passed them, so the TTAc was 
smaller than the time gap. (b) Pedestrians started crossing before the previous car passed them, so the TTAc was bigger than the time gap. 

Table 1 
The experimental parameters of datasets.  

Dataset Parameters 

l (m) w 
(m) 

R 
(m) 

Z (m) Time gap 
(s) 

Speed 

Lee et al. (2022)  4.95  1.95  2.45 – 2–5 25–35 
mph 

Lobjois and 
Cavallo (2007)  

4.42  1.72  2.09 10–135 – 40, 60 
km/h  
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1.263, p < 0.001) and speed (Coef. = 0.108, p < 0.001) were signifi-
cantly positively correlated with crossing percentage, which indicated 
more pedestrians were willing to cross the street in higher speed con-
ditions at the same time gap. 

Crossing duration and safety margin. The crossing duration was 
defined as the time between when pedestrians initiated crossing and 
when they crossed over the edge of the opposite pavement. With speed 
and time gap size as independent variables, a two-way repeated ANOVA 
was conducted on crossing duration. There was a significant main effect 
of time gap on crossing duration (F (3, 5) = 64.31, p < 0.001), showing 
that participants’ crossing duration increased with the time gap. No 
significant speed effect was found. 

The gap acceptance and TTAc analysed above reflected that vehicle 
speed could negatively affect pedestrian crossing performance. How-
ever, their impacts did not directly reflect pedestrian safety level. Ac-
cording to the literature (Chu and Baltes, 2001; Oxley et al., 2005), 
pedestrian crossing safety is largely governed by TTAc and crossing 
duration. Therefore, in order to evaluate if vehicle speed affected 
pedestrian safety, we applied the safety margin as a safety indicator. The 
safety margin (also known as post-encroachment time) refers to the time 
between the moment when the pedestrian reached the edge of the 
opposite pavement and when the second vehicle reached the pedestrian 
crossing position. Note that this metric of pedestrian crossing risk de-
pends on vehicle speed, distance, initiation time as well as crossing 
duration. In practice, the safety margin was calculated based on the time 
difference between TTA_c and the crossing duration of each trial. With 

speed and time gap size as independent variables, a two-way repeated 
ANOVA was conducted on safety margin. As shown in Fig. 5, the analysis 
revealed a significant negative main effect of speed (F (2, 5) = 6.25, p <
0.01), showing that the increase in vehicle speed impaired pedestrian 
safety margin. 

Furthermore, the other two types of safety indicators were identified 
to describe potential unsafe behaviour: ‘unsafe decisions’ and ‘tight fits’ 
(Lobjois and Cavallo, 2007). An ‘unsafe decision’ was counted when the 
safety margin was<0 s, indicating that participants’ TTAc was insuffi-
cient to allow them to reach the opposite pavement, causing them to 
conflict with the approaching vehicle in the shared zone, leading to a 
potential collision. A ‘tight fit’ corresponded to the crossing with a safety 
margin between 0 s and 1.5 s, representing that although the TTAc was 
enough for participants to finish the crossing before the vehicle reached 
the conflict zone, it required them to have precise timing due to the 
small safety margin. Table 2 provides the full results, showing that 
almost no participants made safe decisions in the 2 s time gap condition, 
and this unsafe tendency to cross became worse with an increase in 
speed. In the 5 s condition, whereas few participants made unsafe de-
cisions, the percentage of tight fits increased with speed, representing 
that their risk of crossing still increased with speed in long time gap 
conditions. In addition, we can see that participants attempted to walk 
faster at small time gap conditions. However, this was not enough to 
compensate for the speed’s negative effect on their safety. 

Finally, we also noticed that participants might not simply make the 
decision based on distance or time gap. As shown in Fig. 4a, for the 3 s 
and 35 mph conditions (distance was 46.9 m), the corresponding 
crossing percentage was 27.7 %. However, the crossing percentage was 
44.7 % for the 4 s and 25 mph condition (the distance was 44.7 m). In 
both cases, the distances were quite similar, but with a notable differ-
ence in crossing response. Meanwhile, results from the TTAc also indi-
cated a similar pattern; that is, participants’ response times were clearly 
different between two conditions with similar initial distances. In short, 
the above analyses indicated that pedestrians tended to make riskier 
crossing decisions in higher speed conditions, and their crossing de-
cisions seem affected by many different aspects of vehicle kinematics 
rather than any single factor. 

5. Model calibration and comparison 

5.1. Visual looming in the experimental scenarios 

Fig. 6 shows the looming curves calculated using the experimental 
parameters of Lee et al.’s (2022) dataset (Table 1). The curves of the 
model are plotted as the functions of the TTA and the spatial distance 

Fig. 4. (a) Percentage of gap acceptance. (b) Box chart of TTAc, and the small red squares represent the arithmetic mean.  

Fig. 5. Safety margin plotted as the function of time gap and vehicle speed. The 
arithmetic mean and median are represented by small squares and short hori-
zontal lines in boxplots. 
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separately. Fig. 6a shows that, at least from 0.5 s to 6 s, the slower speed 
vehicle produces greater looming values than the faster car at the same 
TTA. As an indication of possible collision events with the approaching 
object, larger looming values could make pedestrians feel more threat-
ened and uncomfortable. Therefore, because of the greater visual 
looming, pedestrians might not be willing to cross the road when they 
interact with a vehicle with a slower speed at the same TTA. In Fig. 6 b, 
when plotting looming curves as a function of distance, the effect of 
speed on looming reverses, i.e., the slower vehicle produces a smaller 
looming stimulus than the faster vehicle at the same distance. This might 
mean that pedestrians perceive greater risk when the vehicles approach 
them at a higher speed for a given distance. Based on the above analysis, 
variations of looming with speed and distance shown in Fig. 6 align 
qualitatively with the effects of speed and distance on pedestrian 
crossing as reported in the literature (Oxley et al., 2005; Schmidt and 
Färber, 2009) and in our statistical analysis in Section 4. This alignment 
provides a first indication that pedestrians’ risky road crossing behav-
iour may stem from a reliance on visual looming cues. 

5.2. Psychophysics-based gap acceptance model 

To fully specify the PGA model, the first subsection below in-
vestigates if there is a linear relationship between road crossing proba-
bility, an important precondition for applying logit regression presented 
in Section 5.2.2. Afterwards, how the looming information might best be 
transformed into a utility for use in the logit formulation of the PGA 

model is also studied. After the above manipulations, in Section 5.2.2, 
the PGA model is then formally fit to two datasets. Finally, we compare 
the PGA model with the conventional BGA model in the third subsection. 
Therefore, the results presented in Table 3 and Table 4 are conducted for 
different purposes and cannot be directly compared. 

5.2.1. Linear regression analysis 
Since the PGA model is based on the binary choice logit model, an 

important assumption needs to be satisfied: the logit probability is a 
linear function of attributes. Therefore, a linear regression analysis was 
applied to both datasets to test if the assumption could hold. The linear 
function can be expressed by: 

logit{Pr(y|accept)} = [f (θ̇)]T β1 + α1 (13) 

Since a probability of one hundred and zero would result in infinite 
logit(Pr), the corresponding points were removed from the linear anal-
ysis. β1 and α1 are estimated coefficients. θ̇ represents the visual looming 
value measured at the time point when the rear of the first vehicle 
passed the participant. Before choosing an appropriate f(Â⋅), the θ̇ was 
input to the linear analysis without transformation. The results, as 
shown in Table 3, indicated that the θ̇ was significantly negatively 
related to logit(Pr), but the regression curves did not fit the data very 
well, as shown in Fig. 7a. Considering that the looming had an 
approximately exponential form, a logarithmic function was applied, i. 
e., ln(•). The linear analysis yielded significant linear correlations 

Table 2 
Mean crossing duration (CD), gap acceptance (GA) and safety margin for speed and time gap conditions.  

Performance variable Time gap (s) and vehicle speed (mph) 

2  3  4  5 

25 30 35  25 30 35  25 30 35  25 30 35 

CD 2.94 3.23 2.98   3.22  3.24  3.21   3.41  3.40  3.37   3.51  3.50  3.51 
SM − 0.94 − 1.32 − 1.09   − 0.34  − 0.35  − 0.39   0.38  0.33  0.29   1.21  1.18  1.10 
GA 4.2 6.2 4.5   23.6  26.1  27.7   44.7  48.3  58.8   69.4  75.4  82.9 
UD 100 100 100   79.5  88.0  90.6   15.8  16.0  17.5   2.4  2.7  1.4 
TF 0 0 0   20.5  12.0  9.3   84.2  84.0  82.5   72.0  76.3  82.3 

Note. CD: crossing duration (s); SM: safety margin (s); GA: gap acceptance (%); UD: unsafe decision (%); TF: tight fits (%). 

Fig. 6. The speed effect on looming in experiment scenarios. (a) The model is plotted as a function of TTA and speed. (b) The model is as a function of distance and 
speed. Note that the visual looming is shown on a logarithmic scale. 

Table 3 
Results of linear regression of the logit probability of road crossing onto looming, with and without a natural logarithm transformation.  

f( ) Dataset α1 β1 R2 F Sig. Std. Error 

~ Lee et al. 2022  1.161  − 89.384  0.883  75.507  0.000  0.578 
Lobjois and Cavallo (2007)  2.281  − 98.416  0.758  79.187  0.000  0.923 

ln Lee et al. 2022  − 9.161  − 2.036  0.978  447.046  0.000  0.250 
Lobjois and Cavallo (2007)  − 8.911  − 2.136  0.977  1037.631  0.000  0.288  
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(Table 3, Fig. 7b), and the goodness of fit (R2) with the logarithmic 
transformation was noticeably better than without transformation. 
Therefore, we adopted the natural logarithm as the transform f( ) in the 
PGA model. 

5.2.2. PGA model analysis 
The linear regression analyses in the previous subsection minimised 

error in the logit domain, but for our present purposes, it makes more 
sense to minimise error in the gap acceptance probability domain. 
Therefore, as a final step, we formally fitted the full PGA model to both 
datasets. Regarding Lee et al.’s (2022) data, as we have the detailed 
information of each trail, a PGA model with participants’ random effects 
(Eq. (11)) was applied and estimated using the built-in function, 
’fitglme’, in MATLAB (MATLAB, 2021). Table 4 shows the estimated 
coefficients of the PGA model for Lee et al.’s (2022) dataset. For Lobjois 
and Cavallo’s (2007) data, we only had the aggregated crossing per-
centage data rather than the detailed response of each trial. The PGA 
model was estimated instead using a Nonlinear Least Square Estimation 
method and did not consider individuals’ random effects, where the 
estimated coefficients β0 and β1 equalled − 9.740 and − 2.295. As shown 
in Table 4, there was a significant random effect of looming, showing 
that responses to looming varied among participants. The PGA model 
retained the underlying heterogeneity of participants and indicated that 
the looming had a significant negative contribution to the gap accep-
tance (P < 0.001). Moreover, the fitting curves of the models and road 
crossing percentages of the two datasets are shown in Fig. 8. In panel a, 
the models and the data are plotted as functions of looming at the start of 
each scenario. Panels b through e show the same information, but 

instead plotted as functions of time gap and speed (panels b and d) or as 
functions of distance and speed (panels c and e). In Fig. 8 a, there is a 
clear negative correlation between the probability of crossing and the 
looming value. Meanwhile, these results were not only in line with the 
observed low safety margin decisions in Section 4.2, but also replicated 
the common time gap and distance effects on pedestrian behaviour, 
showing that looming in itself was enough to explain, in quite some 
detail, the various patterns of behaviour reported in previous studies 
(Fig. 8 b and c). Put differently, what looks like a rather complex set of 
dependencies, when seen from a perspective of time gaps, speeds, and 
distances in Fig. 8 b and c, collapses into just a single curve when seen 
from the perspective of looming in Fig. 8 a. Overall, the PGA model was 
able to capture both of these datasets well. 

5.2.3. Comparing the PGA model with the conventional BGA model 
As mentioned in Section 2, if the explanatory attribute set is a 

composite of conventional attributes (Eq. (12), then the model refers to 
the conventional BGA model, which is commonly used in pedestrian 
road-crossing behaviour research (Pawar and Patil, 2016). In this sec-
tion, we fit the BGA model to data and compare it to the PGA model. 
Except fixed effects of speed and time gap (Pawar and Patil, 2015), the 
random effects of time gap among participants were also considered in 
the BGA model (Eq. (12). As shown in Table 4, the PGA model achieved 
a higher log-likelihood than the BGA model, indicating a better fit of the 
data. Notably, the PGA model achieved this better fit with one free 
parameter less than the BGA model. To formally compare the two 
models, we used Akaike Information Criterion (AIC). 

AIC = 2k − 2ln(L) (14) 

Table 4 
Estimated coefficients of the PGA model and BGA model in terms of Lee et al.’s (2022) data.   

PGA model  BGA model 

Fixed effects Coef. SE tStat  Coef. SE tStat 

Looming − 6.47*** 0.40  − 16.35  –  –  – 
Vehicle speed  –  –  0.12***  0.01  8.06 
Time gap  –  –  3.24***  0.16  20.36 
Constant − 30.83*** 2.13  − 14.48  − 16.41***  0.89  − 18.49 
Random effects std(Coef.) 95% Conf. Interval  std(Coef.) 95% Conf. Interval 
Time gap – –  –  0.82***  0.57  1.20 
Looming 2.39*** 1.7  3.31     
Constant 13.55*** 9.8  18.68  4.07***  2.88  5.74 
Log-likelihood  − 1055  –  − 1067 
AIC  2119  –  2146 

Note. ***: p < 0.001; std: Standard deviation of coefficients. 

Fig. 7. Relationship between non-transformed (a) and ln-transformed (b) visual looming and the logit probability of road crossing. The black circles and blue crosses 
are the data points. The dashed lines show the fitted linear regression models in Table 3. 
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AIC estimates the relative amount of information lost by a given 
model: the less information a model loses, the better. AIC considers both 
log-likelihood L and the number of free parameters k in the model to deal 
with the trade-off between goodness of fit and model complexity. The 
preferred model is the one with the minimum AIC value (Akaike, 1974). 
As shown in Table 4, the PGA model had a smaller AIC value than the 
BGA model by 27, suggesting that the PGA model was significantly 
better than the BGA model to be minimising the information loss 
(Akaike, 1974). In sum, both the PGA model and BGA model could 
describe the crossing probability data well, but the PGA model did so 
both better and more parsimoniously than the BGA model. 

6. Discussion 

6.1. Answering the research questions 

Regarding the first main research question of the study, the data 
analyses indicated that the impact of vehicle speed on pedestrians 
differed across time and distance dimensions. Participants were less 
likely to cross the road in higher vehicle speed conditions for a given 
distance gap and did so with slower crossing initiation. Conversely, the 
participants were more prone to initiate quickly and cross for a given 
time gap in higher speed conditions, resulting in a vehicle speed influ-
enced crossing behaviour. To investigate the safety impacts of this 
behaviour pattern, we conducted a safety margin analysis from two 
perspectives. First, an ANOVA analysis indicated that participants had a 
smaller average safety margin for higher speed conditions. Second, we 
categorised crossing decisions based on the safety margin and calculated 
the percentages of unsafe decisions. Results showed that both partici-
pants’ unsafe crossings and tight fits were increased with vehicle speed. 
Although participants attempted to walk faster in smaller time gap 
conditions, such speed adaption strategy was not sufficient to compen-
sate for the reduction in safety margins caused by the speed-induced 
unsafe behaviour. Researchers have suggested that this behaviour 
pattern was caused by pedestrians’ over-reliance on the spatial distance 
from approaching vehicles (Schmidt and Färber, 2009). Pedestrians 

might not base their decisions on the time gap alone but also applied 
simplifying heuristics (i.e., distance-based heuristics), which were not 
always accurate but faster and easier to implement than time gap-based 
strategy (Lobjois and Cavallo, 2007). However, our results further 
showed that pedestrians had different gap acceptance and initiation 
times between conditions with similar spatial distances but different 
time gaps, suggesting that pedestrians relied on multiple sources of in-
formation from vehicle kinematics. 

Concerning another main question of the study, we derived mathe-
matical expressions for the visual looming of an approaching vehicle in 
pedestrian road-crossing situations. The results showed that the looming 
increases slowly at long distances and rapidly at short distances, which 
agrees qualitatively with the observation that pedestrians usually feel 
safe to cross for long-distance or big-time gap conditions but not when 
the vehicle is close. The proposed model demonstrated that the vehicle 
speed has a negative impact on the looming, that is, for a given TTA, 
looming decreases as the speed increases. This finding indicated that 
higher speed vehicles might produce smaller collision threats to pedes-
trians for a chosen TTA (Wann et al., 2011), which was qualitatively 
similar to the speed-induced unsafe crossing behaviour. Moreover, a 
linear regression analysis further supported the assumption that looming 
is significantly negatively related to the percentage of gap acceptance 
and the fit improved by applying a natural logarithm transformation. 
Consistent with the literature, DeLucia 2008 assumed that the possible 
heuristics for human collision perception are the optical size and its 
change rate (i.e., visual looming). Since a lower speed vehicle is asso-
ciated with greater optical size and visual looming than a higher speed 
vehicle for a chosen time gap, a feeling of risk may cause participants to 
reject opportunities in lower speed conditions. In previous studies, re-
searchers have established different models based on TTA to charac-
terise the pedestrian perceived risk to approaching vehicles (Gupta 
et al., 2009; Zhuang and Wu, 2013). Although TTA is the key determi-
nant associated with collision risk, our results have shown that TTA is 
not the only component. Pedestrians rely on multiple sources of infor-
mation from vehicle kinematics, such as vehicle speed, which previous 
models have ignored. Therefore, the looming model combining the 

Fig. 8. Road-crossing probability in Lee et al.’s (2022) data (black symbols) and Lobjois and Cavallo’s (2007) data (blue symbols), together with corresponding fits of 
the PGA model (line types related to speed conditions). (a) Observed and model-fitted crossing probabilities were shown as a function of ln(looming). (b)-(c) The 
same data and model predictions as in panel a, but plotted as a function of time gap and speed (panels b and d) or as a function of distance and speed (panels c and e). 
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spatial–temporal information in light of the human perceptual model 
could better describe pedestrian perceived collision risk toward 
approaching vehicles. 

Further, we proposed a PGA model based on our hypothesis, which 
predicts gap acceptance as a logit function of visual looming, could 
successfully characterise pedestrian gap acceptance behaviour and fit 
human data from VR studies well. The model replicated the speed- 
induced unsafe crossing and thus suggests that the mechanism behind 
this phenomenon is that higher speed situations provide weaker looming 
stimuli, leading to lower feelings of collision threat. The model com-
parison analysis indicated that the PGA model outperformed the con-
ventional BGA model, that is, the PGA model could describe the gap 
acceptance behaviour better and with fewer model parameters than the 
conventional model. The above findings reinforce the notion that 
looming may cause a sense of collision threat that affects pedestrian 
crossing decisions and this would be an important mechanism behind 
unsafe crossing decisions. 

6.2. Practical implications 

We see several ways in which our results could be used to improve 
traffic safety: 

• The speed-induced unsafe crossing behaviour identified in the pre-
sent study provides empirical evidence for understanding the asso-
ciations between pedestrian crossing behaviour and its influencing 
factors (e.g., vehicle speed). These findings suggest that necessary 
measures should be taken to increase the awareness of policymakers, 
road designers and pedestrians. For instance, to minimise the impact 
of speed on pedestrians, a possible policy direction is to control 
vehicle speed by placing speed limit signs, indicators, or cameras at 
appropriate locations.  

• The study provides a clear and simple explanation of the cause of 
speed-induced unsafe crossing in terms of the human perception 
mechanism. Researchers and engineers may therefore develop an 
external human–machine interface to provide explicit information of 
vehicle behaviour for pedestrians and thus reduce the potential 
negative effects of implicit information, e.g., vehicle kinematics (Lee 
et al., 2022).  

• The proposed PGA model could serve as a tool to investigate 
pedestrian crossing decisions and identify at-risk crossing locations, 
where pedestrians may often make speed-induced unsafe crossing 
decisions. For instance, the PGA model can be used to compare 
datasets collected from two crosswalks to determine which one has a 
greater impact on pedestrians’ decisions.  

• The proposed theory (i.e., speed-induced unsafe crossing behaviour) 
could increase precision in the pedestrian crossing decision model-
ling. One direct practical implication is to apply the proposed PGA 
model to the microscopic transport simulation model to promote a 
more naturalistic pedestrian crossing decision-making process.  

• Finally, recent studies have been keen on AVs using pedestrian 
behaviour models to implement human-like pedestrian-AV interac-
tive processes (Markkula et al., 2018). Our model could provide 
predictive information from a pedestrian perspective, helping design 
AVs that can better anticipate pedestrian crossing intentions. 

6.3. Limitations and future work 

Several limitations of the present study should also be borne in mind. 
Since the results and model considered only constant-speed scenarios, it 
cannot be concluded that looming is the only cue used by pedestrians, 
especially in scenarios with variable traffic speed and gaps. For example, 
in situations with vehicle deceleration, visual looming alone may not 
provide sufficient information to make crossing decisions (DeLucia, 
2015). Moreover, based on the current research aims and dataset, the 
study is limited to single-gap crossings in the single-lane scenario. 

However, pedestrians often cross the road in complex traffic environ-
ments, such as multilane highways and traffic with different vehicle 
characteristics. In addition, the binary crossing decision assumption is 
strictly limited to the crossing scenarios at uncontrolled crosswalks, 
where drivers do not have to give way to pedestrians. In contrast, 
pedestrian crossing decisions may not be a binary choice in other cases. 
For example, if the vehicle is yielding to the pedestrian, in which case 
the pedestrian will always cross eventually, but possibly not until the 
vehicle has come to a near-full stop. Finally, compared with the crossing 
behaviour in real traffic scenarios where pedestrians and vehicles can 
flexibly adjust their behaviours, the data collected in the highly 
controlled VR experiment considers fewer influencing factors, and both 
this aspect as well as the virtual nature of the task may lead to more 
unsafe behaviour. The degree to which pedestrians are affected by dis-
tance and time gap differs between studies, depending on whether the 
pedestrian crossing is carried out in naturalistic settings, on a test track, 
or in a virtual environment (Feldstein and Dyszak, 2020; Schneider 
et al., 2021). However, it is not easy to draw general conclusions, partly 
because the research aims and tasks differ between studies. Based on the 
above limitations, to develop a comprehensive and practical pedestrian 
crossing behaviour model, one important future aim could be involving 
more factors of complex traffic environments, such as pedestrian stra-
tegies for identifying acceptable gaps across multiple lanes of traffic at 
once (Brewer et al., 2006; Kadali et al., 2015). In addition, it is also 
important to apply the model to reliable naturalistic datasets and 
investigate their differences from simulated datasets. 

7. Conclusions 

In summary, this study linked pedestrian gap acceptance behaviour 
to a potential perceptual mechanism and provided a new approach to 
characterise pedestrian road-crossing decisions. The proposed PGA 
model, modelling gap acceptance binary choice logit decision operating 
only on (log-transformed) visual looming, was found capable of 
explaining gap acceptance data from two datasets collected in simulated 
pedestrian-driver environments. More in-depth statistical analysis was 
performed on one of these datasets, showing patterns of speed-induced 
unsafe crossing. Furthermore, the correlation between the percentage of 
road-crossings and looming was identified by linear regression analysis. 
Finally, the PGA model was fitted to the data and compared with the 
conventional BGA model. Based on the results, the following conclusions 
can be made:  

(i) For given time gaps with higher speed conditions, pedestrians 
tend to make more unsafe crossing behaviours.  

(ii) The PGA model can characterise gap acceptance behaviour across 
a range of experimental scenarios, better and more parsimoni-
ously than the BGA model, suggesting that looming is a critical 
visual cue that pedestrians may be using as an important part of 
their crossing judgment.  

(iii) The PGA model captures speed-induced unsafe crossings and 
explains this behaviour pattern in terms of visual looming, which 
is affected by both vehicle speed and distance. Applied practical 
implications of he the results and proposed model for traffic 
safety management, modelling and development of AVs are 
discussed. 
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