
1. Introduction
Air pollution exposure is a key public health problem in China (GBD, 2019 Risk Factors Collaborators, 2020; Yin 
et al., 2020). In recent years, particulate air quality has improved, primarily attributed to reductions in anthropo-
genic emissions (Cheng et al., 2019; Ding et al., 2019; Li et al., 2020, 2019; Silver, Conibear, et al., 2020; Silver, 
He et al., 2020; Silver et al., 2018; Zhai et al., 2019). However, the loss of healthy life from air pollution expo-
sure remains substantial (Conibear, Reddington, Silver, Knote, et al., 2021; Silver, Conibear, et al., 2020; Zhao 
et al., 2018) and further emission reductions are required to improve air quality.

Numerical chemical transport models (CTMs) are useful for simulating air quality and its driving processes. 
CTMs discretize the atmosphere into cells on a three-dimensional grid and compute complex processes, mecha-
nisms, laws, and parameterisations at high temporal resolutions on this grid (Brasseur & Jacob, 2017). However, 

Abstract Machine learning models can emulate chemical transport models, reducing computational 
costs and enabling more experimentation. We developed emulators to predict annual−mean fine particulate 
matter (PM2.5) and ozone (O3) concentrations and their associated chronic health impacts from changes in five 
major emission sectors (residential, industrial, land transport, agriculture, and power generation) in China. 
The emulators predicted 99.9% of the variance in PM2.5 and O3 concentrations. We used these emulators to 
estimate how emission reductions can attain air quality targets. In 2015, we estimate that PM2.5 exposure 
was 47.4 μg m −3 and O3 exposure was 43.8 ppb, associated with 2,189,700 (95% uncertainty interval, 95UI: 
1,948,000–2,427,300) premature deaths per year, primarily from PM2.5 exposure (98%). PM2.5 exposure and the 
associated disease burden were most sensitive to industry and residential emissions. We explore the sensitivity 
of exposure and health to different combinations of emission reductions. The National Air Quality Target 
(35 μg m −3) for PM2.5 concentrations can be attained nationally with emission reductions of 72% in industrial, 
57% in residential, 36% in land transport, 35% in agricultural, and 33% in power generation emissions. We 
show that complete removal of emissions from these five sectors does not enable the attainment of the WHO 
Annual Guideline (5 μg m −3) due to remaining air pollution from other sources. Our work provides the first 
assessment of how air pollution exposure and disease burden in China varies as emissions change across these 
five sectors and highlights the value of emulators in air quality research.

Plain Language Summary The ability of air quality models to help address important public 
health problems is limited by their high computational costs. Machine learning models can help by accurately 
representing these complicated air quality models for specific prediction tasks. These machine learning models 
can then be run many times at a fraction of the time and cost. Here, we developed machine learning models to 
predict long–term air quality and the associated health impacts in China from changes in emissions. We found 
that reducing emissions linearly improves particulate air quality and public health. The fractional improvements 
in public health were smaller than the fractional improvements in air quality. Removing emissions from five 
key sectors (residential, industrial, land transport, agriculture, and power generation) does not attain the 
World Health Organization Annual Guideline because of remaining pollution from other sources, such as 
from alternative anthropogenic emissions inside China, anthropogenic emissions outside China, and natural 
emissions. This work illustrates the broad reach of emulators in air pollution research.
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these complex CTMs have high computational costs. To reduce costs, some approaches are to reduce the model 
complexity, reduce the model resolution or precision (Palmer, 2015), reduce the number of experiments, or to 
use simplified models. To reduce computational demand, a wide range of reduced−complexity or reduced−form 
air quality models have been developed to simplify these complex processes (Buonocore et al., 2014; Carnevale 
et al., 2009; Foley et al., 2014; Heo, Adams & Gao, 2016a, 2016b; Henze et al., 2007; Seinfeld & Pandis, 2016; 
Tessum et al., 2017). For example, InMAP (Intervention Model for Air Pollution) is a reduced−form air qual-
ity model that decreases computational costs via simplified representations of atmospheric processes (Tessum 
et al., 2017). In contrast, the emulators are statistical machine learning models that decrease computational costs 
via mapping specific associations. Emulators learn these specific input−output associations from full CTM simu-
lations. These emulators are often designed using Gaussian process regressors (O’Hagan, 2006; Rasmussen & 
Williams, 2006), due to their flexibility, accuracy, and skill with smaller data sets. Emulators are computationally 
expensive to build as their training data requires many CTM runs, though they are substantially cheaper to run 
once built enabling many more experiments to be explored.

Previous studies have used emulators for prediction of air quality (Beddows et al., 2017; Chen et al., 2020; Conibear, 
Reddington, Silver, Chen, et  al.,  2021), weather (Chantry, Christensen, et  al.,  2021; Gettelman et  al.,  2021; 
Weyn et al., 2019), and climate (Beusch et al., 2020; Chantry, Christensen, et al., 2021; Holden et al., 2019; 
Ott et al., 2020; Scher, 2018; Tran et al., 2016). For example, the air quality prediction studies used  emulators 
to analyze the drivers of an ozone (O3) pollution episode in the United Kingdom (Beddows et al., 2017) and 
emission reduction strategies in India (Chen et al., 2020). Some studies have used machine learning models to 
represent processes, such as radiation (Chevallier et al., 2000; Krasnopolsky et al., 2005), convection (Beucler 
et al., 2020; Brenowitz & Bretherton, 2018; Gentine et al., 2018; Han et al., 2020; O’Gorman & Dwyer, 2018; Rasp 
et al., 2018; Yuval & O’Gorman, 2020), chemistry (Ivatt & Evans, 2020; Keller & Evans, 2019; Kelp et al., 2020; 
Kelp et  al.,  2022), physics (Chantry, Hatfield et  al.,  2021; Harder et  al.,  2021; Hatfield et  al.,  2021; Hughes 
et al., 2018; Krasnopolsky, 2020; Silva et al., 2021), and land surface models (Dagon et al., 2020). Many studies 
have used emulators to explore uncertainties and sensitivities (Aleksankina et al., 2019; Carslaw et al., 2013; 
Chang et al., 2016; Johnson et al., 2015; Lee et al., 2012; Lee et al., 2011; Lee et al., 2016; McCoy et al., 2020; 
Nicely et al., 2020; Ryan & Wild, 2021; Ryan et al., 2018; Rybarczyk & Zalakeviciute, 2018; Salter  et al., 2018; 
Watson-Parris, 2021; Watson-Parris et al., 2020; Watson-Parris et al., 2021; Wild et al., 2020).

In our previous work, we developed emulators to predict winter (January 2015) ambient fine particulate matter 
(PM2.5) concentrations from emission changes across China (Conibear, Reddington, Silver, Chen, et al., 2021). 
Here, we further develop these emulators for annual exposure (2015) to multiple air pollutants (PM2.5 and O3) and 
to assess the chronic health impacts. To our knowledge, this is the first study using emulators to predict long−
term (annual) air quality and the public health benefits attributed to different emission control strategies in China.

2. Methods
2.1. Simulator

Simulations were conducted using WRFChem (Weather Research and Forecasting model online–coupled with 
Chemistry) version 3.7.1 (Grell et al., 2005; Skamarock et al., 2008). Each simulation was for the whole of 2015 
with one–month spin–up over China at 30 km (0.3°) horizontal resolution. There were 50 simulations for the 
training data and five additional simulations for the test data. The simulations differed only in the scaling of the 
anthropogenic emissions over China, determined from separate maxi−min Latin hypercube space–filling designs 
(Tables S1 and S2 in Supporting Information S1). The version of WRFChem used here was described and evalu-
ated in our previous work (Conibear, Reddington, Silver, Chen, et al., 2021; Conibear, Reddington, Silver, Knote, 
et al., 2021; Reddington et al., 2019; Silver, Conibear, et al., 2020).

Sectoral and speciated anthropogenic emissions inside China were from the MEIC (Multi–resolution Emission 
Inventory for China) emission inventory for 2015 at 0.25° × 0.25° horizontal resolution (Li, Liu, et al., 2017; Li, 
Zhang, et al., 2017; MEIC Research Group & Tsinghua University, 2019; Zheng et al., 2018). Sectoral and speci-
ated anthropogenic emissions outside China were from EDGAR−HTAP (Emission Database for Global Atmos-
pheric Research with Task Force on Hemispheric Transport of Air Pollution) version 2.2 for 2010 at 0.1° × 0.1° 
horizontal resolution (Janssens-Maenhout et al., 2015). Anthropogenic emissions are largest over East, North, 
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and South China, as well as across South Asia (Figures S1−S4 in Supporting Information S1). A diurnal cycle 
was applied to the anthropogenic emissions (Qi et al., 2017; Zheng et al., 2017).

Gas phase chemistry was simulated using the extended MOZART (Model for Ozone and Related Chemical Trac-
ers) scheme (Emmons et al., 2010; Hodzic & Jimenez, 2011; Knote et al., 2014). Aerosol physics and chemistry 
was simulated using the updated MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) scheme 
with aqueous chemistry (Alma Hodzic & Knote, 2014; Zaveri et al., 2008). Secondary organic aerosol (SOA) 
formation was based on an updated volatility basis set mechanism (Knote et al., 2015).

We evaluated the simulator (WRFChem) against PM2.5 and O3 measurements from 1,633 sites (Jin et al., 2020; 
Silver et al., 2018). The normalized mean bias factor (NMBF) and the normalized mean absolute error factor 
(NMAEF) were used to evaluate the simulator (Yu et al., 2006). For example, a NMBF of −0.5 means that the 
simulator underestimated observations by 50% on average, and a NMAEF of 0.5 means that the simulator had an 
absolute gross error of 0.5 times the mean observation. Here, the simulator underestimated annual−mean PM2.5 
concentrations (NMBF = −0.05 and NMAEF = 0.18) and overestimated maximum 6−monthly−mean daily−
maximum 8−hour (6mDM8h) O3 concentrations (NMBF = 0.39 and NMAEF = 0.40) across China (Figure S5 in 
Supporting Information S1). To provide the closest match with observations, we tuned the PM2.5 and O3 concen-
trations. Tuning was completed by scaling the model to match observations by prefecture if measurements were 
available, otherwise scalings were applied by province (administrative division). The tuned model had reduced 
bias and error for both annual−mean PM2.5 concentrations (NMBF = 0.02 and NMAEF = 0.10) and 6mDM8h O3 
concentrations (NMBF = 0.03 and NMAEF = 0.11) across China. The scaling allowed us to accurately predict 
the spatial pattern and magnitude of PM2.5 and O3 concentrations across China.

2.2. Emulator

We developed emulators to make computationally efficient predictions of the WRFChem model, as described 
in our previous work (Conibear, Reddington, Silver, Chen, et al., 2021). Here, the emulator approach from our 
previous work was extended from January 2015 to the year of 2015, for O3 concentrations, and the air pollution 
disease burden. The emulator workflow is summarized in Figure S6 in Supporting Information S1.

The emulators predict air quality across China from fractional changes in anthropogenic emissions. The emulator 
inputs were anthropogenic emissions from the residential (RES), industrial (IND), land transport (TRA), agri-
cultural (AGR), and power generation (ENE) sectors. For the emulator inputs, all species from each sector were 
scaled between 0%–150%. These emulator inputs were from simulator data of 50 training runs and 5 test runs, 
based on separate maxi−min Latin hypercube space–filling designs. The training data was designed to cover 
all of the input distributions. The emulators were trained on the raw simulation data, before the control scaling 
factors were applied for tuning.

Individual emulators were developed for each output of annual−mean PM2.5 concentrations and 6mDM8h O3 
concentrations, and each WRFChem grid cell across China (15,278 grid cells in total) to capture the spatial distri-
bution of each pollutant. These outputs were chosen as they are the metrics used in the health impact assessment. 
This meant we developed a total of 30,556 separate emulators. The emulators are based on annual average values 
and do not have information of finer time scales.

The optimized emulator designs included an input preprocessor (Yeo & Johnson, 2000) and a Gaussian process 
regressor with a Matern 5/2 kernel (Conibear, 2021). Gaussian process regressors update a prior function over 
the inputs to a posterior function including observations (i.e., the training data) (Rasmussen & Williams, 2006). 
Bayesian inference is then used to sample from this posterior function to produce the Gaussian output. Gaussian 
process regressors notice trends well when similar inputs have similar outputs, and are flexible and accurate with 
smaller data sets. Our emulators were based on Gaussian process regressors as they are accurate with only a few 
training samples. This was a key limitation as each training sample is an annual CTM simulation. Other emulator 
design options, such as deep neural networks, often require much larger training datasets to avoid overfitting the 
limited data (Watson−Parris, 2021). Recent developments in machine learning architectures may overcome this 
limitation to improve emulator accuracy and scope, for example, with deep neural architecture search (Kasim 
et al., 2022).
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The creation of the simulation data (i.e., 55 annual WRFChem runs) was computationally expensive, using 320 
CPUs (Central Processing Units, Intel Xeon Gold 6,138) for approximately 1 year of wall time. The training of the 
emulators used 150 CPUs for approximately 1 hr. Using the emulators per prediction run on the order of seconds 
on 1 CPU. Hence, the key bottleneck is simulating the atmosphere using complex numerical models. Reducing 
the computational burden of this step is an important area of future research.

The emulators were specific to the data they were trained on. The emulators make predictions based on associa-
tional knowledge, rather than explanatory knowledge (Deutsch, 2012; Pearl, 2019). The emulators were used to 
predict air quality concentrations for all emission configurations within a 0%–150% matrix of emission scaling 
factors at 20% increments (32,768 emission configurations).

Figure 1 shows the evaluation of the emulators on the unseen test data. For PM2.5 concentrations, the emula-
tors have a coefficient of determination (R 2) value of 0.9995 and a root mean squared error (RMSE) value of 
0.5094 μg m −3. For O3 concentrations, the emulators have an R 2 value of 0.9992 and a RMSE value of 0.1667 
ppb. This means that the emulators can accurately predict 99.9% of the variance in both PM2.5 and O3 concentra-
tions for any similar emission configuration.

2.3. Health Impact Assessment

The health impact assessment estimated the disease burden attributable to PM2.5 and O3 exposure using popu-
lation attributable fractions (PAF) of relative risk (RR). Exposure variations were used to predict associated 
outcome variations.

The exposure to annual−mean PM2.5 (z) per grid cell was relative to the counterfactual exposure level of 2.4 μg 
m −3 (cf.) where no excess risk was assumed (Equation 1). The RR for a specific exposure and population age 
group was estimated through the GEMM (Global Exposure Mortality Model) (Burnett et al., 2018). The RR 
was a function of the parameters θ, α, μ, and ν (Equation 2) as defined in Supplementary Table 2 of Conibear, 
Reddington, Silver, Knote, et al. (2021). We used the GEMM for non−accidental mortality (non−communicable 
disease, NCD, plus lower respiratory infections, LRI), using parameters that included the China cohort, with 
age−specific modifiers for adults over 25 years of age in five−year intervals. The GEMM functions have mean, 
lower, and upper uncertainty intervals. The PAF was estimated as a function of the RR and the population count 
(P, Equation 3).

z = max(0,PM2.5 − cf) (1)

Figure 1. Evaluation of emulators on the unseen test data for concentrations of (a) fine particulate matter (PM2.5, annual−
mean) and (b) ozone (O3, maximum 6−monthly−mean daily−maximum 8−hour, 6mDM8h). Evaluation metrics used were 
the coefficient of determination (R 2) and the root mean squared error (RMSE).



GeoHealth

CONIBEAR ET AL.

10.1029/2021GH000570

5 of 17
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PAF = 𝑃𝑃 ×

(

1 −
1

RR(𝑧𝑧𝑧 age)

)

 (3)

The health impact assessment for O3 exposure followed the methodology of the Global Burden of Diseases, Inju-
ries, and Risk Factors Study (GBD) for 2017 (GBD, 2017 Risk Factor Collaborators, 2018). The exposure to O3 
(z) per grid cell was calculated as the change in 6mDM8h O3 concentrations relative to the counterfactual expo-
sure level of 35.7 ppb (cf.) where no excess risk was assumed (Equation 4) (Turner et al., 2016). The 6mDM8h 
metric was calculated by quantifying 24 separate 8−hour rolling mean O3 concentrations, finding the maximum 
of these each day, creating 12 separate 6−monthly means to account for seasonal variations, and finding the maxi-
mum of these over the year. The PAF was a function of the hazard ratio (HR), which was 1.06 (95UI: 1.02–1.10) 
for chronic obstructive pulmonary disease (COPD), based on data from five epidemiological cohorts (Equation 5) 
(GBD, 2017 Risk Factor Collaborators, 2018).

z = max(0,O3 − cf) (4)

PAF = 𝑃𝑃 ×

(

1 − 𝑒𝑒
𝑧𝑧
log𝐻𝐻𝐻𝐻

10

)

 (5)

Premature mortality (MORT), years of life lost (YLL), and years lived with disability (YLD) per exposure, health 
outcome, age bracket, and grid cell were estimated as a function of the PAF and the corresponding baseline 
mortality and morbidity rate (IMORT, IYLL, and IYLD) following Equations 6–8, respectively. Disability−adjusted 
life years (DALYs) were estimated as the total of YLL and YLD (Equation 9). The rates of MORT, YLL, YLD, 
and DALYs were calculated per 100,000 people.

MORT = PAF × IMORT (6)

YLL = PAF × IYLL (7)

YLD = PAF × IYLD (8)

DALYs = YLL + YLD (9)

The United Nations adjusted population count data set for 2015 at 0.25° × 0.25° resolution was obtained from 
the Gridded Population of the World, Version 4 (Center for International Earth Science Information Network & 
NASA Socioeconomic Data and Applications Center, 2016). Population age composition was taken from the 
GBD2017 for 2015 for adults of 25–80 years of age in 5−year intervals, and for 80 years plus (Global Burden of 
Disease Study, 2017, 2018). Cause−specific (NCD, LRI, and COPD) baseline mortality and morbidity rates were 
taken from the GBD2017 for 2015 for MORT, YLL, and YLD for each age bracket (Institute for Health Metrics 
and Evaluation, 2020).

Shapefiles were used to aggregate results at the country, province, and prefecture level (Hijmans et al., 2020). 
Regional groupings were applied as follows: North China (Beijing, Tianjin, Hebei, Shanxi, and Inner Mongo-
lia), North East China (Liaoning, Jilin, and Heilongjiang), East China (Shanghai, Jiangsu, Zhejiang, Anhui, 
Fujian, Jiangxi, and Shandong), South Central China (Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan, 
Hong Kong, and Macau) including the Guangdong−Hong Kong−Macau Greater Bay Area (GBA), South West 
China (Chongqing, Sichuan, Guizhou, Yunnan, and Tibet), and North West China (Shaanxi, Gansu, Qinghai, 
Ningxia, and Xinjiang), and the GBA individually.

Uncertainty intervals at the 95% confidence level were estimated using the derived uncertainty intervals from 
the exposure−outcome associations, baseline mortality and morbidity rates, and population age fractions. Health 
impact assessments of the disease burden associated with air pollution exposure have many uncertainties (Nethery 
& Dominici, 2019).
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3. Results and Discussion
In the results and discussion, PM2.5 concentrations are ambient annual−means and O3 concentrations are ambient 
6mDM8h. Exposures are population−weighted concentrations. Air quality standards for O3 concentrations in 
units of μg m −3 are converted to ppb using the conversion factor of one ppb being approximately equal to 2 μg 
m −3 (Fleming et al., 2018).

3.1. Emulated Baseline PM2.5 and O3 Exposure and Disease Burden for 2015

Baseline (i.e., for 2015 with all emission sectors at 100%) PM2.5 exposure in China is 47.4 μg m −3, with higher 
exposure over North, East, and South Central China, and lower exposure in the GBA, South West, and North West 
China (Table 1 and Figure S5 in Supporting Information S1). PM2.5 exposure is highest across the provinces of 
Hebei, Beijing, Shandong, Henan, and Anhui in North and East China. The National Air Quality Target (35 μg 
m −3) is achieved in GBA and South West China. The baseline annual disease burden associated with PM2.5 expo-
sure in China is estimated as 2,143,700 (95UI: 1,916,200−2,382,400) premature mortalities and 4,219 (95UI: 
3,412−5,178) DALYs per 100,000 people. Our estimated disease burdens for 2015 are similar to the previous 
estimate of 2,440,000 (95UI: 2,046,600−2,808,300) premature mortalities from Burnett et al. (2018). The disease 
burden rate is largest in North, East, and South Central China.

Baseline O3 exposure in China is 43.8 ppb, with higher exposure over North, North West, and East China, and 
lower exposure in the GBA, North East, and South Central China (Table 1 and Figure S5 in Supporting Informa-
tion S1). O3 exposure is highest across the provinces of Hubei, Beijing, and Shandong. The National Air Quality 
Target (80 ppb) and the World Health Organization (WHO) guideline (50 ppb) are achieved in all regions at the 
baseline (World Health Organization, 2021). The baseline annual disease burden associated with O3 exposure in 
China is estimated as 46,000 (95UI: 31,800−64,900) premature mortalities and 68 (95UI: 44–99) DALYs per 
100,000 people. The disease burden rate is largest in North, North West, and East China.

Baseline (2015) China GBA North China
North east 

China East China
South central 

China
South west 

China
North west 

China

Annual− mean 
PM2.5 
exposure (μg 
m −3)

47.4 26.8 62.3 42.4 47.0 45.3 29.4 37.6

6mDM8h O3 
exposure 
(ppb)

43.8 35.7 48.5 41.8 42.8 41.9 41.5 46.2

MORT PM2.5 
(deaths yr −1)

2,143,700 
(1,916,200–
2,382,400)

66,600 
(59,300–
74,300)

335,700 
(300,800–
372,200)

158,200 
(141,300–
175,900)

651,100 
(582,300–
723,200)

593,600 
(530,600–
659,600)

258,200 
(230,200–
287,800)

147,000 
(131,100–
163,700)

MORT O3 
(deaths yr −1)

46,000 
(31,800–
64,900)

1,300 
(900–1,900)

8,300 (5,800–
11,700)

3,300 (2,300–
4,700)

15,300 
(10,600–
21,500)

10,900 (7,500–
15,300)

4,900 (3,400–
7,000)

3,200 (2,200–
4,600)

DALYs rate 
PM2.5 
(DALYs 
100,000 
people −1 yr −1)

4,219 (3,412–
5,178)

4,318 (3,490–
5,304)

5,651 (4,591–
6,906)

4,768 (3,861–
5,846)

5,431 (4,407–
6,645)

5,330 (4,323–
6,524)

3,574 (2,885–
4,396)

4,231 (3,420–
5,197)

DALYs rate O3 
(DALYs 
100,000 
people −1 yr −1)

68 (44–99) 51 (33–74) 112 (73–161) 70 (45–101) 72 (47–104) 64 (41–93) 40 (26–58) 84 (54–122)

Note. The disease burden is given by the annual number of premature mortalities (MORT) and the annual rate of disability−adjusted life years (DALYs) per 100,000 
people.

Table 1 
The Emulated Baseline (2015) Exposure and Disease Burden for Fine Particulate Matter (PM2.5, Annual−Mean) and Ozone (O3, Maximum 6−Monthly−Mean 
Daily−Maximum 8−Hour, 6mDM8h) Across Regions in China
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3.2. Impact of Changes in Individual Emission Sectors on PM2.5 and O3 Exposure and Disease Burden

PM2.5 exposure decreases approximately linearly from emission reductions in a single sector (Figure  2a). 
Completely removing IND emissions decreases national PM2.5 exposure by 28% and regional PM2.5 exposure by 
23%–31%. Under this scenario, the National Air Quality Target (35 μg m −3) is achieved in all regions except North 
China (Figures S7−S13 in Supporting Information S1). Completely removing RES emissions decreases national 
PM2.5 exposure by 21% and regional PM2.5 exposure by 8%–28%. Removing IND or RES emissions results in 
similar reductions in regional PM2.5 exposure, except in the GBA where reducing IND emissions provides larger 
reductions in PM2.5 exposure. The impacts on PM2.5 exposure from individual emission sector changes are then 
of decreasing size from TRA, AGR, and ENE emissions.

The sectoral contributions to PM2.5 concentrations of 28% from industry, 21% from RES, and 4% from TRA 
emissions are similar to those from a multi−model study, which found contributions of 30% from industry, 26% 
from RES, and 7% from TRA emissions (Reddington et al., 2019). We find smaller contributions from AGR (3%) 
and ENE (2%) emissions compared to the multi−model contribution estimates of 16% from AGR and 14% from 
ENE emissions (Reddington et al., 2019). In our study, there are larger contributions from other sources (42%, 
compared to 7% in the multi−model estimates) (Reddington et al., 2019), such as from other anthropogenic emis-
sions inside China, anthropogenic emissions outside China, and natural emissions.

The fractional reductions in PM2.5 disease burden (Figure  2b) are smaller than the fractional reductions in 
PM2.5 exposure (Figure 2a), due to the non−linear exposure−outcome association. Completely removing IND 

Figure 2. The impact of emission changes in China for 2015 on (a) fine particulate matter (PM2.5, annual−mean) exposure, (b) annual premature mortalities (MORT) 
from PM2.5 exposure, (c) annual rate of disability−adjusted life years per 100,000 people from PM2.5 exposure, (d) ozone (O3, maximum 6−monthly−mean daily−
maximum 8−hour, 6mDM8h) exposure, (e) annual MORT from O3 exposure, and (f) annual rate of DALYs per 100,000 people from O3 exposure. Exposure, MORT, 
and rate of DALYs are shown relative to a simulation with baseline (100%) emissions. The emission sectors are residential, industry, land transport, agriculture, and 
power generation.
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emissions decreases the national number of premature mortalities from PM2.5 exposure by 17%, avoiding 369,100 
(95UI: 334,300–404,800) deaths, and decreases the rate of DALYs by 11%. Completely removing RES emissions 
decreases the national number of premature mortalities from PM2.5 exposure by 12%, and decreases the rate of 
DALYs by 8%. Removing either IND or RES emissions can decrease the regional number of premature mortali-
ties by 5%–20% and the rate of DALYs by 6%–19%.

O3 exposure changes non−linearly with changes in emissions from a single sector (Figure 2d). This non−linear 
response is stronger for some sectors (e.g., TRA) and in some regions (e.g., North China, Figures S7−S13 in 
Supporting Information S1). Completely removing either IND or RES emissions consistently decreases O3 expo-
sure. Removing IND emissions decreases national O3 exposure by 7% and regional O3 exposure by 3%–10%. 
Removing RES emissions decreases national O3 exposure by 2% and regional O3 exposure by 0%–4%. However, 
individually removing ENE, TRA, or AGR emissions can increase O3 exposure.

The fractional changes in the O3 disease burden (Figure 2e) are larger than the fractional changes in O3 exposure 
(Figure 2d), due to the high counterfactual exposure level of no excess risk. Completely removing IND emis-
sions decreases the national number of premature mortalities from O3 exposure by 25%, avoiding 11,700 (95UI: 
8,100−16,400) deaths, and decreases the rate of DALYs by 23%. Completely removing RES emissions decreases 
the national number of premature mortalities from O3 exposure by 9%, avoiding 3,900 (95UI: 2,700−5,500) 
deaths, and decreases the rate of DALYs by 5%. Although removing TRA emissions decreases the national 
number of premature mortalities from O3 exposure by 9% avoiding 4,400 (95UI: 3,000–6,100) deaths, the 
number of premature mortalities in the GBA increases by 21%, an additional 300 (95UI: 200–400) deaths locally. 
Removing ENE emissions increases the national number of premature mortalities from O3 exposure by 11%, 
whilst removing AGR emissions increases the national number of premature mortalities from O3 exposure by 8%.

3.3. Impact of Changes in Multiple Emission Sectors on PM2.5 and O3 Exposure and Disease Burden

Removing RES and IND emissions together decreases national PM2.5 exposure by 48% (Figure 3) and regional 
PM2.5 exposure by 37%–53% (Figures S14−S20 in Supporting Information S1). These emission reductions attain 
the WHO Interim Target 2 (25 μg m −3) in all regions except North and East China, and attain the WHO Interim 
Target 3 (15 μg m −3) in the GBA. Removing IND emissions with either AGR, TRA, or ENE emissions attains the 
National Air Quality Target (35 μg m −3) in China (Figure 3). Removing TRA, AGR, and ENE emissions, without 
reducing RES and IND emissions, decreases national PM2.5 exposure by 9%.

Removing emissions from all five sectors together decreases national PM2.5 exposure by 57% and regional PM2.5 
exposure by 52%–61%. These emission reductions attain the WHO Interim Target 2 (25 μg m −3) in all regions 
except North China, but only attain the WHO Interim Target 3 (15 μg m −3) in the GBA. The WHO Annual Guide-
line (5 μg m −3) is not achieved in any region. Under this scenario, PM2.5 concentrations result from other anthro-
pogenic emissions inside China including shipping, aviation, and agricultural fires, from anthropogenic emissions 
outside China, and from natural emission sources such as vegetation fires, dust, sea spray, and secondary organic 
aerosols from biogenic volatile organic compounds (VOC). Previous studies have estimated the contributions to 
PM2.5 concentrations in China from dust were 2%–10% and were higher in North West China (Shi et al., 2017; 
Yang et al., 2011). Open biomass burning was estimated to contribute 1%–8% of PM2.5 concentrations across 
China (Reddington et al., 2019), with higher contributions of up to 29% in South Central China (Reddington 
et al., 2019; Shi et al., 2017). Biogenic SOA has been estimated to contribute 2%–8% of PM2.5 concentrations 
(Hu et al., 2017; Shi et al., 2017). Long−range transport of PM2.5 concentrations from anthropogenic emissions 
outside China was estimated to contribute up to 3% of PM2.5 concentrations inside China (Liu et  al.,  2020). 
Anthropogenic emissions from shipping were estimated to contribute up to 3% (Chen et al., 2019; Dasadhikari 
et al., 2019; Reddington et al., 2019) and aviation 1% (Dasadhikari et al., 2019; Zhang et al., 2017). Emissions 
from sea salt have been estimated to contribute 1% of PM2.5 concentrations (Shi et al., 2017).

Removing RES and IND emissions together decreases the national number of premature mortalities from PM2.5 
exposure by 32%, avoiding 691,800 (95UI: 625,100–760,400) deaths, and decreases the rate of DALYs by 21% 
(Figure 4 and S22 in Supporting Information S1). Removing TRA, AGR, and ENE emissions together decreases 
the national number of premature mortalities from PM2.5 exposure by 5%. Removing emissions from all five 
sectors together decreases the national number of premature mortalities from PM2.5 exposure by 40%, avoiding 
858,800 (95UI: 774,900–945,400) deaths, and decreases the rate of DALYs by 27%.
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These findings highlight that substantial public health benefits can be achieved by emission reductions, and the 
majority of these benefits due to reductions in IND and RES emissions. However, even after removing emissions 
from these five sectors, approximately half of the disease burden associated with PM2.5 exposure remains, due to 
other sources of air pollution.

The largest reductions in O3 exposure occur when removing IND emissions with either TRA or RES emissions 
(Figure S22 in Supporting Information S1). Removing IND and TRA emissions decreases national O3 exposure 

Figure 3. The impact of variations in two emission sectors on fine particulate matter (PM2.5, annual−mean) exposure in China for 2015 from (a) residential (RES) and 
industry (IND), (b) RES and land transport (TRA), (c) RES and agriculture (AGR), (d) RES and power generation (ENE), (e) IND and TRA, (f) IND and AGR, (g) 
IND and ENE, (h) TRA and AGR, (i) TRA and ENE, and (j) AGR and ENE emissions. Air quality targets shown for the World Health Organization's (WHO) Interim 
Target 1 (IT−1, 35 μg m −3), Interim Target 2 (IT−2, 25 μg m −3), Interim Target 3 (IT−3, 15 μg m −3), and China's National Air Quality Target (35 μg m −3).



GeoHealth

CONIBEAR ET AL.

10.1029/2021GH000570

10 of 17

by 14% and regional O3 exposure by 8%–22% (Figures S23−S29 in Supporting Information S1), reducing the 
disease burden by 46% and the rate of DALYs by 41% (Figures S30 and S31 in Supporting Information S1). 
Removing IND and RES emissions decreases national O3 exposure by 10% and regional O3 exposure by 5%–16% 

Figure 4. The impact of variations in two emission sectors on the disease burden (premature mortalities, MORT, per year) from fine particulate matter (PM2.5, annual−
mean) exposure for China from (a) residential (RES) and industry (IND), (b) RES and land transport (TRA), (c) RES and agriculture (AGR), (d) RES and power 
generation (ENE), (e) IND and TRA, (f) IND and AGR, (g) IND and ENE, (h) TRA and AGR, (i) TRA and ENE, and (j) AGR and ENE emissions.
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reducing the annual number of premature mortalities by 36%. However, some combinations of reductions in 
ENE, AGR, and TRA emissions can increase O3 exposure and the associated disease burden in some regions.

These findings highlight the complex dependencies between the chemical production of O3 and precursors of O3, 
especially nitrogen oxides (NOX) and VOC emissions. The ENE and TRA sectors have large NOX emissions but 
smaller VOC emissions, while the IND sector has large emissions of both NOX and VOC (Zheng et al., 2018). 
As some urban areas in East China are VOC−limited (Jin & Holloway, 2015; Wang et al., 2017), reducing NOX 
emissions from the ENE and TRA sectors can increase O3 exposure (Li et al., 2021).

The largest public health benefits come from reductions in PM2.5 exposure, as the PM2.5 disease burden is two 
orders of magnitude larger the O3 disease burden. The largest public health benefits also come from reductions 
in IND and RES emissions, as these sectors dominate PM2.5 exposure and are the only sectors which consistently 
decrease O3 exposure.

3.4. Emission Configurations That Meet Air Quality Targets

There are 11,192 emission configurations that meet the National Air Quality Target (35 μg m −3) nationally for 
PM2.5 concentrations, requiring mean emission reductions of 72% in IND, 57% in RES, 36% in TRA, 35% in 
AGR, and 33% in ENE emissions (Figure 5). The WHO Interim Target 2 (25 μg m −3) can be attained nationally 
for PM2.5 concentrations via 1,158 emission configurations, requiring 95% reductions in IND and RES emissions. 
The GBA is the only region where the WHO Interim Target 3 (15 μg m −3) can be attained, requiring stringent 
reductions in IND emissions (Figure S32 in Supporting Information S1). The WHO Air Quality Guideline (5 μg 
m −3) cannot be attained in any region from reductions in these five emission sectors alone.

Figure 5. Emission configurations that meet air quality targets in China from the baseline in 2015. Targets are (a–e) the National Air Quality Target (35 μg m −3) for 
ambient fine particulate matter (PM2.5, annual−mean) concentrations (f–j) the World Health Organization Interim Target 2 (IT−2, 25 μg m −3) for PM2.5 concentrations, 
and (k–o) the counterfactual exposure level of no excess risk for ozone (O3, 35.7 ppb) concentrations. Boxplots per sector from (a, f, and k) residential (RES), (b, g, and 
l) industrial (IND), (c, h, and m) land transport (TRA), (d, i, and n) agricultural (AGR), and (e, j, and o) power generation (ENE) emissions.
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For O3 concentrations, the National Air Quality Target (80 ppb) and the WHO guideline (50 ppb) are already 
attained at the baseline. There are 101 emission configurations that can reach the counterfactual exposure level 
of no excess risk (35.7 ppb) for O3 concentrations, all of which require the near removal of IND, TRA, and RES 
emissions. Reaching this level would remove the health impacts associated with O3 exposure. This attainment is 
possible in all regions except North and East China (Figure S32 in Supporting Information S1).

4. Conclusion
We developed emulators to predict annual mean PM2.5 and O3 concentrations and associated public health impacts 
in China. Our analysis provides a first estimate of how air pollution exposure and associated disease burden in 
China vary for different emission reductions across five major emission sectors (IND, RES, TRA, AGR, and 
ENE). The emulators predicted 99.9% of the variance in PM2.5 and O3 concentrations for a given input config-
uration of emissions. We found that PM2.5 exposure was most sensitive to IND and RES emissions, confirming 
previous studies (Reddington et al., 2019). Complete removal of IND emissions would attain the National Air 
Quality Target (35 μg m −3) in all regions except North China. The National Air Quality Target can be attained 
nationally with emission reductions of 72% in IND, 57% in RES, 36% in TRA, 35% in AGR, and 33% in ENE 
emissions. Removing RES and IND emissions completely, decreases national PM2.5 exposure by 48% (to 24.0 μg 
m −3). However, removing emissions from the five sectors in China does not enable the attainment of the WHO 
Annual Guideline (5 μg m −3) due to the remaining emissions from shipping, aviation, and agricultural fires, emis-
sions from outside China, and from natural emission sources including forest fires, dust, and biogenics.

Emulators have broad potential in air quality research. Future work could study other regions, countries, emis-
sion sources, and could further split emission inputs by species, sub−sectors, and time−of−day. Here, we chose 
to apply the same emission changes over all species within each sector due to computational constraints. For 
five inputs, 55 annual high–resolution WRFChem simulations were required for the training and testing data 
(Loeppky et al., 2009). If the emulators split the emissions by pollutant, then the computational burden would 
have increased by up to a factor of 10. Our work was conducted for one meteorological year (2015). Previous 
work found that the air quality impacts from meteorological changes were smaller than those from emission 
changes (Ding et al., 2019; Silver, Conibear, et al., 2020; Silver, He et al., 2020). However, future work should 
account for and explore variations in meteorology, including seasonal and inter−annual variations. To further 
understand how China can achieve the WHO Annual Guideline for PM2.5 exposure (5 μg m −3), future work is 
needed exploring the relative contributions of other anthropogenic emission sources, emissions outside China 
and natural emissions, which may increase under climate change (Carslaw et al., 2010). Our work highlights the 
challenges facing China as it attempts to further reduce PM2.5 exposure and improve public health.
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