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Abstract

Transfer learning offers the potential to increase the utility of obtained data and improve predictive

model performance in a new domain, particularly useful in an environment where data is expensive

to obtain such as in a blast engineering context. A successful application in this respect will improve

existing surrogate modelling approaches to allow for holistic and efficient strategies to protect

people and structures subjected to the effects of an explosion. This paper presents a novel ap-

plication of transfer learning for the prediction of peak specific impulse where we demonstrate that
previous knowledge learned when modelling spherical charges can be transferred to provide a

performance benefit when modelling cylindrical charges. To evaluate the influence of transfer

learning, two artificial neural network architectures were stress tested for three levels of random

data removal: the first model (NN) did not implement transfer learning whilst the second model

(TNN) did by including a bolt-on network to a previously published NN model trained on the

spherical dataset. It is shown the TNN consistently outperforms theNN, with this out-performance

increasing as the proportion of data removed increases and showing statistically significant results

for the low and high threshold with less variability in all cases. This paper indicates transfer learning
applications can be used successfully with considerable benefit with respect to surrogate modelling

in a blast engineering context.
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Introduction

Blast protection engineers are tasked with designing infrastructure such that it is resilient enough to

withstand extreme loading. To perform the accurate appraisal of structures and protective systems

subject to extreme near-field explosive blast loading, knowledge of both the distribution and the

magnitude of loading are critical (Rigby et al., 2019b). Obtaining the loading information in this

extreme near-field region, however, is particularly challenging. Experimental methods can be used

to directly measure near-field reflected specific impulse and specific impulse distributions, for

example, Hopkinson pressure bars (Edwards et al., 1992; Piehler et al., 2009; Rigby et al., 2015a;

Cloete and Nurick, 2016; Tyas et al., 2016), impulse plugs (Huffington and Ewing, 1985; Nansteel

et al., 2013) and flush-mounted pressure gauges (Aune et al., 2016). In this near-field region, the

high magnitude of loading necessitates the use of robust support structures and protective housing

for sensitive equipment. Additionally, the measurements themselves are highly variable owing to

the presence of surface instabilities in the early stages of expansion of the detonation products

(Rigby et al., 2020).

Therefore, it is not practical to develop a predictive approach based solely on physical testing.

However, experimental data remains a fundamental requirement for validation of numerical

modelling schemes. Computational fluid dynamics (CFD) and finite element (FE) approaches have

been shown generally to provide good agreement with experimental data for near-field blast loading

where it is available (Shin et al., 2014a; Rigby et al., 2018; Whittaker et al., 2019; Pannell et al.,

2021). In spite of research into near-field blast loading currently being limited by a lack of well-

controlled experimental validation data (Tyas, 2019), FE/CFD analyses can provide data at con-

siderably higher spatial and temporal resolution than experimental studies and are therefore suitable

tools with which to develop a refined predictive approach. However, physics-based models have a

relatively high computational demand, and are unsuitable for probabilistic, risk-based analyses.

An appropriate technique is to use validated CFD analyses to create a dataset from which a

surrogate model can be developed (Pannell et al., 2021). A fast-running surrogate model allows the

analyst to rapidly obtain the loading information, within the parameters of the surrogate model, for a

multitude of scenarios (that would otherwise be costly to ascertain) and is the first step towards a

probabilistic mode of risk assessment. The preliminary surrogate model presented in Pannell et al.

(2021) is an equation made of three separate terms and is suitable for a specific charge shape, type

and range of scaled distances (spherical PE4 charges between 0.11 � 0.55 m/kg1/3).

However, to increase the capabilities of the surrogate model proposed in Pannell et al. (2021),

and therefore, the situations an analyst can simulate, a model that can handle additional complexity

is required. Integrating data-driven methods with scientific theory is considered crucial in order to

improve surrogate model performance whilst respecting natural laws (Reichstein et al., 2019).

Pannell et al. (2022) investigated this by implementing a physics-based regularisation procedure

when training a machine learning model through adding a monotonic loss constraint to the loss

function.

Traditional data mining and machine learning algorithms provide predictions on future data

using statistical models trained on previously collected labelled or unlabelled data (Pan and Yang,

2010; Ramon et al., 2007; Taylor and Stone, 2007). Many machine learning methods work under the

assumption that the training and test data belong to the same distribution. When this distribution

changes, most statistical models need to be re-trained on newly collected training data. Though

some methods do exist that model non-stationary data where the ‘data-drift’ is parameterised and

modelled, alternatively there are heuristic methods for continuous learning (Panoutsos and

Mahfouf, 2008). In the context of blast protection engineering, obtaining data is considerably
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expensive in time and cost, and therefore, any method that increases the utility of this data is of

paramount importance, as it would be in many other applications. In these cases it would be highly

useful to reduce the need to re-collect training data, and therefore, knowledge transfer, or transfer

learning, between task domains is highly desirable. Many examples exist where transfer learning

can be beneficial such as web-document classification (Mahmud and Ray, 2007; Blitzer et al., 2008;

Xing et al., 2007); sentiment classification (Li et al., 2009); image classification (Lee et al., 2007);

WiFi localisation models (Yin et al., 2005; Raina et al., 2006; Pan et al., 2007, 2008; Zheng et al.,

2008) and web-page translation (Ling et al., 2008). For an insight into the benefit transfer learning

can explicitly bring over traditional machine learning approaches, see Table 5 in Pan and Yang

(2010).

This paper presents a novel application of transfer learning for the prediction of near-field (0.2�
0.5 m/kg1/3) peak specific impulse distributions on a target surface from detonation of cylindrical

charges of four different L/D ratios (0.2, 0.33, 0.5 and 1) of the same charge type (PE4). The overall

aim of this paper is to establish the feasibility of implementing transfer learning to improve model

performance in a new domain. This is achieved by transferring knowledge learned from a previously

obtained dataset (Pannell et al., 2021) of near-field (0.11 � 0.55 m/kg1/3) peak specific impulse

distributions on a target surface produced from the detonation of spherical charges and incorporating

this into the model that predicts peak specific impulse distributions produced by cylindrical charges

in a similar scaled distance range (0.2� 0.5 m/kg1/3). The influence of transfer learning is evaluated

by stress-testing two models: a neural network (NN) that does not implement transfer learning and a

transfer neural network (TNN) that does implement transfer learning. The stress-tests consist of

three different levels of data removal of the new cylindrical data. Discussion on dataset generation is

provided in each case and assessments of the proposed models are presented. It is shown clearly that

by implementing transfer learning, the need for new training data is drastically reduced.

Transfer learning

Transfer learning and domain adaptation refer to the situation where what has been learned in one

scenario is exploited to improve generalisation in a second scenario. The inherent assumption is that

the factors that influence variations in the first scenario also apply, to some level, to the second. In

the real world, there are many clear examples of transfer learning. For example, one may find that

learning to play the organ will facilitate learning the piano. The field of transfer learning is motivated

by this awareness that people can apply previously learned knowledge intelligently when faced with

a new problem and can solve it more quickly or with better solutions (Pan and Yang, 2010).

To aid understanding of transfer learning it is useful to have some formal notation and definitions.

Firstly, the definitions of ‘domain’ and ‘task’. A domain, D, consists of a feature space X and a

marginal probability distribution P(X), where X ¼ fx1,…,xig2X . Consider as an example the

learning task of document classification where each term is taken as a binary feature, X is the vector

space for all terms, xi is the ith term vector (corresponding to some documents) and X is a particular

sample. It can generally be considered that if two domains are different, then they may have different

feature spaces or marginal probability distributions (Pan and Yang, 2010).

Given a specific domain, D ¼ fX ,PðX Þg a task consists of two components: label space Y and

an objective predictive function f :X →Y and is denoted T ¼ fY,f ð�Þg. This predictive function is
learned from the training data, pairs fxi,yig where x 2 X and y2Y can be used to predict new labels

f(x) from an instance x (Pan and Yang, 2010).

A definition of transfer learning is given as follows: ‘Given a source domainDS and learning task

T S , a target domainDT and learning task T T , transfer learning aims to help improve the learning of
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the target predictive function fT (�) in DT using the knowledge in DS and T S , where DS ≠DT , or

T S ≠ T T ’.

In the above definition, from Pan and Yang (2010), a domain is a pair D ¼ fX ,PðX Þg. So the

condition that DS ≠ DT has the implication that XS ≠ XT or PS(X) ≠ PT(X). Likewise, a task is defined

as a pair T ¼ fY,PðY jXÞg, therefore the condition T S ≠ T T implies YS ≠YT or

PðYS jXSÞ ≠PðYT jXT Þ. If the source and target domains are the same DS ¼ DT , and their learning

tasks are the same T S ¼ T T , the problem then becomes a classical machine learning problem.

There are considered to be three main research questions in the field of transfer learning: (1) what

to transfer, (2) how to transfer and (3) when to transfer. ‘What to transfer’ is concerned with

ascertaining which part of knowledge from the source can be transferred, and what may be useful

knowledge to transfer for improving performance in the target domain or task. ‘How to transfer’ is

concerned with choosing a learning algorithm that can transfer the knowledge from the source to the

task, and ‘when to transfer’ considers when the transfer of knowledge should be implemented. An

important point for consideration here is that it is equally useful in knowing when not to transfer as

when to transfer. When transfer learning takes place and is harmful to performance in the target, it is

referred to as negative transfer (Pan and Yang, 2010).

The overall objective of transfer learning is to take advantage of knowledge from the source

domain ðDSÞ, and use this to improve performance when learning, or making predictions in the

target domain ðDT Þ (Goodfellow et al., 2016). There are clear advantages to allowing more accurate

predictions in the target domain, but a unique benefit to transfer learning is that accuracy of

predictions can be high, even when data is sparse or severely limited (in DS). This has the practical

benefit that gathering new data is less important and there can be substantial savings in cost and

time. For an extensive overview of advancements in transfer learning across a wide range of settings

and implementations, see Pan and Yang (2010).

Modelling charge shape effects

Mesh sensitivity and model validation

The datasets used in this paper were generated from CFD simulations using Apollo Blastsimulator, a

specialised CFD software dedicated to the simulation of detonations, blast waves and gas dynamics.

Apollo solves the conservation equations for transient flows of inviscid, chemically reacting or inert

gas mixtures. Apollo applies a finite-volume method with explicit time integration and uses a

particular Reimann solver which efficiently copes with the extreme conditions present. Full second-

order accuracy is achieved via a tri-linear reconstruction of cell-centred conservative variables

(Fraunhofer EMI, 2018).

Prior to validating Apollo results against experimental data, a mesh sensitivity study was

conducted with the aims of determining the required element size to achieve convergence and

identifying suitable combinations of zone length and resolution level for cylindrical explosives. The

chosen model set-up modelled a centrally detonated 0.078 kg PE4 squat cylinder (L/D = 1/3) axially

aligned at 168 mm clear stand-off (0.1774 m perpendicular distance from centre of charge to target)

after Rigby et al. (2019b). Quarter-symmetry was used, with symmetry planes located in the di-

rections orthogonal to the reflecting wall, originating at the centre of the charge. All other

boundaries were outflow boundaries, as summarised in Figure 1. The domain size was 1.2 m ×

1.2 m × 1.2 m and Apollo’s auto-staging procedure was used throughout.
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Apollo’s in-built model parameters were used for PE4. The pressure-density-temperature re-

lationship of the post-detonation explosive products is given by the Jones Wilkins Lee equation of

state (Lee et al., 1968)

pðρ,TÞ ¼ C1e
�R1ρ0=ρ þ C2e

�R2ρ0=ρ þ ρRT (1)

where ρ and ρ0 are density and initial density, R is a gas constant, and T absolute temperature. The

constants C1, C2, R1 and R2 are assigned the values given in Table 1. The air is modelled as a

thermally perfect gas, p = ρRT, such that under ambient conditions (288 K), ambient pressure is p =

101.3 kPa. Afterburn was modelled using the Klomfass Afterburning (KAB) model, and the

Chapman–Jouguet detonation model was used in all cases. In all numerical simulations, the ex-

plosives were centrally detonated and the mass of the detonator was not included. A Savitzky–Golay

filter (Savitzky and Golay, 1964) has been used to remove spurious oscillations induced by Apollo’s

DMA (dynamic mesh adaption) procedure.

For each analysis, 150 gauges are linearly spaced along the target surface at angles of incidence

between 0 and 60°, where angle of incidence is defined as the angle between the outward normal of

the surface and the direct vector from the explosive charge to that point. Each gauge outputs

pressure-time histories at that location, which are numerically integrated (with respect to time) in

postprocessing to yield specific impulse-time histories. The maximum of each of these is taken to

provide the distribution of peak specific impulse.

The results of the mesh sensitivity study are shown in Figure 2: the three sub-plots represent peak

perpendicular specific impulse, area-integrated impulse (on a 100 cm2 circular plate), and simu-

lation time. Figure 3 presents the studied meshes compared to the experimental peak specific

impulse distribution where it can be shown that a mesh with a S/cell length from 336 shows good

agreement with experimental data and can be considered suitable. The CFD model with S/cell

length of 336 was chosen for further analysis, with the overpressure-time histories and impulse-time

histories compared with experimental data and presented in Figure 4 where good agreement be-

tween CFD and experimental data is shown.

Figure 1. 0.078 kg PE4 squat cylinder (L/D = 1/3): CFD model set-up.
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Dataset generation

The dataset for cylindrical charges was generated from CFD simulations using Apollo consisting of

centrally detonated 100g cylinders of PE4 located at five linearly spaced scaled distance values

between 0.2� 0.5 m/kg1/3. Scaled distance, Z, according to Hopkinson–Cranz scaling (Hopkinson,

1915; Cranz, 1926) is given by S/W1/3, where S is stand-off distance, andW is the mass of explosive.

Therefore, the cylinders had stand-off values between 0.09m–0.23 m from the centre of the charge

to a target. The general modelling schematic for these analyses are demonstrated in Figure 5. Four

different L/D ratios were chosen of 1/5, 1/3, 1/2 and 1, where L/D represents length/diameter ratio.

The domain size was 2 m × 2 m × 2 m, with 100 mm zone length and resolution level 3, otherwise

the models follow a similar set-up to that outlined previously in Sec. 3.1.

In summary, there are 20 CFD models (representing the five different stand-off distances an-

alysed for each of the four different L/D ratios) with 150 values of peak specific impulse recorded for

each, resulting in a dataset of 3000 samples, these are considered alongside the 2700 samples used to

train the spherical network in Pannell et al. (2022) (shown in Figure 6). There are three input

features: scaled distance (X1), angle of incidence (X2) and L/D ratio (X3) with the labelled values Y

representing peak specific impulse. An example entry from this dataset is shown in Table 2, and an

overview of the cylindrical datasets presented in Figure 7.

The variables X1 and X2 are minmax scaled across the entire dataset using the scaling functions from

the spherical model in Pannell et al. (2022), whilst X3 is left unchanged, and varies between 0.2–1. The

vector of labels, Y, has a log-normal distribution and is scaled via a power transform using the method

described in Yeo and Johnson (2000) and again uses the same scaling function that scaled the spherical

dataset labels used in Pannell et al. (2022). The result of this data transformation in presented in Figure 8,

and the transformation is applied prior to model training to allow for the knowledge transfer.

Figure 2. Mesh convergence study for 0.078 kg PE4 cylinder, Z = 0.415 m/kg1/3, stand-off from charge centre
= 0.1774 m, L/D = 1/3.

Table 1. Equation of state information for the five newly studies charge compositions, including the
previously studied PE4.

Charge type Gas constant J/(kg.K) Initial density (kg/m3) C1 (GPa) C2 (GPa) R1 R2

PE4 365 1660 734.60 8.86 4.79 1.06
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In Pannell (2022, Chapter 6) it was demonstrated that prior knowledge from PE4 spheres can be

leveraged to improve performance modelling spheres of different explosive types (TNT, HMX,

RDX, PETN, COMPB). The specific method of applying a charge shape effect component was

suitable as this applied across different charge compositions, and could be captured in a single

exponential term (as shown in Pannell et al. (2021)). This exponential term modelled the ‘nor-

malised’ impulse, which we defined as dividing subsequent specific impulse values (for 0° < θ ≤

60°) by the respective specific impulse value located at 0°. Figure 9 demonstrates why this

would not be a suitable approach for cylinders, as the normalised impulse profiles for cylinders

are significantly different to a sphere, meaning the spherical model is not suitable. Furthermore,

the normalised profile for each L/D ratio cannot be reasonably approximated to be the same

profile whilst additionally is not always monotonically decreasing, necessitating the use of a

more complex model.

Application of transfer learning

Network architecture study

To model charge shape effects with transfer learning, two alternative network architectures were

compared using the Keras package with Tensorflow backend (Chollet et al., 2015). The first model

(NN) is shown in Figure 10(a) and does not utilise any transfer learning. It is only trained on the

cylindrical dataset and provides a benchmark to compare a transfer network (TNN) to. It consists of

three input nodes, one hidden layer and one output layer and is fully connected. The number of

epochs was set at 1000, with early stopping, where the patience value was set as 50 epochs to

prevent over-fitting.

The TNN structure is shown schematically in Figure 10(b), it consists of a pre-trained spherical

model that was trained on the spherical dataset and is the network produced in Pannell et al. (2022),

and a ‘bolt-on’ network that handles the additional feature, X3 (L/D). The output from both the

spherical model and the bolt-on model are summed to provide an overall model output for the TNN.

During model training, the spherical model is ‘frozen’ so that the parameters are not updated during

back-propagation, and the only parameters that are updated are in the bolt-on network. This means

the information that the pre-trained model contains is preserved. After the initial 1000 epochs

Figure 3. Mesh sensitivity analysis - comparison of different CFD models with experimental data.
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training, the TNN is fine-tuned by un-freezing the spherical model, reducing the learning rate by an

order of magnitude and training for 100 further epochs (with early-stopping implemented again).

This allows any incremental improvements on the pre-trained features to be made. This process of

transfer learning, specifically the fine-tuning stage, is based on that outlined in Chollet (2021,

Chapter 5).

Figure 4. Experimental validation of numerical overpressure and specific impulse histories for Z = 0.415m/kg1/3 at
0, 25 and 50 mm perpendicular distance from the target centre.

8 International Journal of Protective Structures 0(0)



In both cases the activation functions for the hidden units were set as hyperbolic tangent, with

layer weights initialised with the Glorot normal initialiser (Glorot and Bengio, 2010). The ‘Adam’

algorithm was chosen as the optimiser, a stochastic gradient descent method that is based on

adaptive estimation of first-order and second-order moments. The dataset consists of all L/D ratios

and K-fold cross-validation was implemented with five splits, following an initial data split of 25%

data randomly removed (and these values were chosen heuristically). The batch size was set at 32.

A varying number of hidden units are examined ranging from 1 to 10 in increments of 1. The

hidden units apply to the hidden layer in Figure 10(a) and the hidden layer in the bolt-on network in

Figure 10(b). All networks contain one hidden layer. The results of these analyses are presented in

Figure 11 where six separate sub-figures provide: mean absolute error (Figures 11(a) and 11(d)),

mean squared error (Figures 11(b) and 11(e)) and coefficient of determination (Figures 11(c) and

11(f)) for the NN and TNN, respectively. For all analyses, the metrics are evaluated for the three

separate data portions: train, validation and test data and all L/D ratios are considered in aggregate. If

Figure 5. Model schematic for dataset generation: S is perpendicular stand-off distance between cylindrical
charge and reflecting surface, gauges were placed along the perpendicular length r.

Figure 6. Spherical CFD dataset for the spherical network in Pannell et al. (2022).
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any large discrepancies occur between data portions (train, test or evaluate), this can be indicative of

over-fitting issues. For the NN the global minimum mean MAE and MSE occur with 6 units in the

hidden layer, suggesting that this capacity provides adequate predictive capability. For the TNN, a

sufficient capacity is provided by six hidden units in the bolt-on sub-network. These two model

architectures were taken forward for further modelling.

Stress-testing: Set-up

As previously discussed, obtaining data is expensive within a blast engineering context (and

commonly other domains). A useful assessment for the utility of transfer learning would be how the

models perform when data is increasingly limited; any model or modelling framework that would

improve the performance in a low-data environment would be highly beneficial. To test this, the

Table 2. Example dataset information for cylindrical dataset.

X1 X2 X3 Y

Scaled distance (m/kg1/3) Angle of incidence L/D ratio Peak specific impulse (MPa.ms)

0.1 15 1 45.87

Figure 7. Cylindrical CFD dataset. Filled contours of scaled specific peak impulse for (a) L/D = 0.2, (b) L/D =
0.33, (c) L/D = 0.5, (d) L/D = 1.
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cylindrical dataset has been limited by three separate levels of random data removal: a low threshold

representing 20% data removal, a medium threshold representing 55% data removal, and a high

threshold representing 90% data removal. The effects of this data restriction on the dataset is shown

in Figure 12.

Stress-testing: Results

The modelling procedure follows that set out in Sec. 4.1, with the exception that the K-fold cross-

validation procedure is repeated 3 times for five splits. The results of these analyses are shown in

Figure 13, with sub-figures for each of the three assessment metrics: mean absolute error (Figure

13(a)), mean squared error (Figure 13(b)) and coefficient of determination (Figure 13(c)). The points

plotted are mean values, whilst the error bars represent standard deviation. For the 90% removal

case in Figure 13(c), the values for the NN have been omitted due to negative values, indicating the

model performs arbitrarily worse than a constant model that always predicts the mean true value

(which would give an R2 of 0).

To better understand how each model is learning, a training history from the high threshold

removal (90% data removal) case is presented in Figure 14 comparing the two different models NN

and TNN. The TNN has been included as two separate parts in the legend, the initial training when

the spherical model is frozen, followed by the ‘fine-tuning’, where the entire model can be updated.

The critical case of 90% data removal was explored further and shown in Figures 15 and 16,

representing each of the four L/D ratios. In each figure, the training and unseen data are presented

alongside the predictions made for the entire unseen dataset. It can be seen in these Figures what

information is available to each model and how it influences the accuracy of model predictions.

Furthermore, the ‘true’ data (representing actual CFD values) has been included to aid the eval-

uation of the NN and TNN’s predictions due to the different axis scales.

Discussion

The results from the stress-testing evaluation for the NN and TNN are compared in Table 3. To

check the statistical significance of the results from each test, two-tailed Kolmogorov–Smirnov (KS)

tests (Hodges, 1958) have been performance in each case. This is a two-tailed test to evaluate the

Figure 8. Unscaled Y dataset (left) and the resulting power transform (right).
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hypothesis that both sets of independent samples are drawn from the same continuous distribution.

In this analysis, it establishes if any performance premium is statistically significant.

For every metric and for each data holdout proportion it can be seen that the TNN shows a

performance premium over the NN, and this performance premium widens as the data holdout

proportion increases. This performance premium is shown to be statistically significant for data

holdout values of 20% and 90%. Since the performance premium widens as the proportion of data

removed increases, it suggests that the transfer learning has more utility as data becomes

Figure 9. Normalised peak specific impulse comparison for four different L/D ratios: (a) 1/5, (b) 1/3, (c) 1/2
and (d) 1. In each case there are five normalised impulse curves corresponding to each scaled distance
sample modelled. Note that here, non-normalised epicentral specific impulses from the cylindrical
charges are between 2 and 6 times greater than those from a spherical charge at equivalent scaled distance
(Rigby et al., 2021).
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Figure 10. Model architectures for (a) NN architecture, model trained with no transfer learning and (b)
Transfer neural network (TNN). In the TNN the previously trained ‘Spherical model’ is used and an
additional ‘bolt-on’ network is added to handle the additional L/D input. The output of the spherical model (is)
and bolt-on network (ic) are summed to produce the overall model output.

Pannell et al. 13



increasingly limited. The TNN shows drastically less variability than the NN in all cases as shown

by the considerably smaller standard deviation values.

A further insight into this performance premium can be seen in the training history from Figure

14. Initially it would appear that the NN is learning well, and there is a clear gap between the NN and

TNN, until the TNN enters the fine-tuning stage. After the fine-tuning stage the TNN shows a clear

performance premium over the NN and would appear to be a crucial element in the transfer learning

implementation.

The stress-testing overview in Figures 15 and 16 further demonstrate the effectiveness of transfer

learning. As shown, when predicting values at the minimum values of angle of incidence and scaled

distance, the NN often over-predicts, quite drastically in some instances. This is demonstrated in

Sub-figures 15b, 15d, 16b and 16d where the TNN remains closer to the ‘true’ line plotted and the

NN diverges from this when predicting the maximum values. It suggests that the knowledge gained

from the spherical dataset is useful in preventing such drastic over-predictions, even though there is

considerable difference in charge shape.

These results are highly promising, particularly from an engineering perspective. It has been

established that knowledge of the source domain ðDSÞ and task ðT SÞ can be used to provide more

accurate predictions and improve learning in the target domain ðDT Þ and task ðT T Þ. In this instance
the source domain is the spherical dataset and the target domain is the cylindrical dataset. The

important practical implication of this finding can improve the efficiency of experimental design and

improve the accuracy of predictive models in a blast engineering setting.

Figure 11. Hyper-parameter configuration of NN (a, b, c) and TNN (d, e, f). Mean absolute error (a, d), mean
squared error (b, e) and coefficient of determination (c, f). Error bars are standard deviation.
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Figure 12. Distributions for (a) 20%, (b) 55% and (c) 90% random data removal. Each of the four plots in the
right hand side represent a one of the four L/D ratios with a shaded pixel representing the presence of data.
The features are scaled using the fitted scalers from the dataset of spherical data in Pannell et al. (2022).
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Summary

This paper presents a novel application of transfer learning for the prediction of peak specific

impulse in a blast engineering setting. The implementation aimed to investigate if knowledge

obtained when modelling spherical explosives could be used to improve the learning when

modelling cylinders. An initial architecture study was completed for two separate network ar-

chitectures to determine a model that had a sufficient capacity to model the cylindrical charges. The

first model (NN) did not implement any transfer learning and was included as a benchmark for

comparison; this network did not have knowledge of the spherical dataset. The second network

(TNN) did implement transfer learning through incorporating the trained spherical model proposed

in Pannell et al. (2022), with an additional ‘bolt-on’ network to handle the new L/D parameter. The

Figure 13. Stress-test results from three data holdout proportions. The coefficient of determination values
for the NN in the 0.9 data holdout case have been omitted due to negative values, indicating the model
performs arbitrarily worse than a constant model that always predicts the mean true value.

Figure 14. Training history for 90% data holdout of the two different networks (NN and TNN). ‘TNN-2’
represents the fine-tuning of the TNN.
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models were stress tested for three levels of random data removal, where it is shown the TNN

outperforms the NN for every level, with this out-performance increasing as the percentage of data

removed increases and showing statistically significant results for the low and high threshold. The

TNN also shows less variability in each case shown by the far smaller standard deviation values.

In a domain where data is expensive to obtain, a method is proposed here that improves the utility

of data already obtained and demonstrates how this can be used when modelling a new, but related,

domain within a blast engineering context. The implications of this research can directly affect how

experiments are designed and will facilitate more accurate probabilistic-based approaches to ex-

perimental design and risk mitigation that encompass a more complex suite of scenarios than is

capable presently.

Figure 15. Stress-testing of 100g PE4 cylinder with 90% data removed. (a) and (c) histogram of original and
training data for L/D =0.2 and 0.33, respectively; (b) and (d) predicted versus true unseen data for L/D =0.2 and
0.33, respectively. ‘True’ data (shown by the dashed blue line) represents actual CFD values and has been
included to aid comparison due to the different axis scales.
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Figure 16. Stress-testing of 100g PE4 cylinder with 90% data removed. (a) and (c) histogram of original and
training data for L/D =0.5 and 1, respectively; (b) and (d) predicted versus true unseen data for L/D =0.5 and
1, respectively. ‘True’ data (shown by the dashed blue line) represents actual CFD values and has been
included to aid comparison due to the different axis scales.

Table 3. Mean RMSE results from each stress-testing evaluation of NN and TNN models, with standard
deviation given in brackets. RMSE values are from the unseen, test data. Entries in bold indicate a statistically
significant difference (p < 0.10) from the Kolmogorov–Smirnov two-tailed test statistic (Hodges, 1958) for
performance premium (two-tailed p-value).

Data holdout, %
Mean RMSE ± (SD.)

NN TNN

20 1.047 (±0.230) 1.033 (± 0.037)

55 1.314 (±0.335) 1.133 (±0.106)

90 3841.733 (±8458.127) 3.384 (± 0.212)
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