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ARTICLE OPEN
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Genome-wide association (GWA) studies have uncovered DNA variants associated with individual differences in general

cognitive ability (g), but these are far from capturing heritability estimates obtained from twin studies. A major barrier to finding

more of this ‘missing heritability’ is assessment––the use of diverse measures across GWA studies as well as time and the cost of

assessment. In a series of four studies, we created a 15-min (40-item), online, gamified measure of g that is highly reliable (alpha

= 0.78; two-week test-retest reliability= 0.88), psychometrically valid and scalable; we called this new measure Pathfinder. In a

fifth study, we administered this measure to 4,751 young adults from the Twins Early Development Study. This novel g measure,

which also yields reliable verbal and nonverbal scores, correlated substantially with standard measures of g collected at

previous ages (r ranging from 0.42 at age 7 to 0.57 at age 16). Pathfinder showed substantial twin heritability (0.57, 95% CIs=

0.43, 0.68) and SNP heritability (0.37, 95% CIs= 0.04, 0.70). A polygenic score computed from GWA studies of five cognitive and

educational traits accounted for 12% of the variation in g, the strongest DNA-based prediction of g to date. Widespread use of

this engaging new measure will advance research not only in genomics but throughout the biological, medical, and

behavioural sciences.

Molecular Psychiatry (2021) 26:7823–7837; https://doi.org/10.1038/s41380-021-01300-0

INTRODUCTION
Given its association with crucial life outcomes, it is essential to
understand the genetic and environmental mechanisms that
support the development of general cognitive ability (g). A major
barrier in identifying the genetics of g is measurement hetero-
geneity. Traditional cognitive assessment is expensive and time-
consuming and therefore unsuited to large biobanks; conse-
quently, gene discovery studies have had to integrate data from
multiple cohorts that differ widely in the quality of measurement
of g. We present a brief, reliable, valid, and engaging new measure
of g, Pathfinder, developed over four studies. In a fifth study, we
administered this measure to a large sample of young adult twins
and assessed the psychometric and genetic properties of the
measure.
General cognitive ability (g) is the best behavioural predictor of

many educational, social and health outcomes [1]. The symbol g
was proposed more than a century ago to denote the substantial
covariance among diverse tests of cognitive abilities. This under-
lying dimension runs through diverse cognitive abilities such as
abstract reasoning, spatial ability and verbal ability and dominates
the predictive validity of cognitive tests for educational,
occupational, and life outcomes [2–4]. In a meta-analysis of
over 460 datasets, the average correlation among such

diverse tests was about 0.30, and a general factor (first unrotated
principal component) accounted for about 40% of the tests’ total
variance [5].
Model-fitting analyses that simultaneously analyze the

mountain of family, adoption, and twin data on g indicate that
about half of the differences between individuals (i.e., variance)
can be attributed to inherited DNA differences, a statistic
known as heritability [6, 7]. Shared environmental influences
that make family members similar to one another contribute
20% of the variance in parent-offspring studies, 25% in sibling
studies and 35% in twin studies [6]. However, one of the most
interesting and perhaps counterintuitive findings about g is the
developmental change in these estimates. Heritability increases
from 45% in childhood to 55% in adolescence to 65% in
adulthood, while shared environmental influence decreases
from 30 to 15% in twin studies [7, 8] and is even less in adoption
studies [9].
Multivariate genetic analyses, which examine associations

between multiple traits, show that genetic overlap among
cognitive tests is much greater than their phenotypic overlap.
The average genetic correlation among diverse cognitive tests is
about 0.80, indicating that many of the same genes affect
different cognitive abilities [10–12]. Recent evidence applying
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genomic methods has shown that this genetic covariance is
largely reflected in the g factor [12].
Progress in identifying some of the many DNA differences

that account for the heritability of g would result in advances
not only in genomics, but across the psychological, biological
and medical sciences [13]. This is because g pervades virtually
all aspects of life, including education [14], job satisfaction and
earnings [15, 16], health and longevity [17–20]. A substantial
portion of the observed associations between g and education,
wealth and health is rooted in genetic variation [21, 22]. For
example, substantial genetic correlations have been observed
between g and educational attainment (r= 0.73), longevity (r=
0.43) and age of first birth (r= 0.46; [23]). This widespread
pleiotropy (i.e. the same genetic variants contributing to two or
more traits) suggests that g can be a useful translational target
for any area of research in the life sciences––biology, brain as
well as behaviour [24].
Given the genetic overlap observed between g and physical

and mental health [25], advances in uncovering the DNA
variants associated with individual differences in g are likely to
enhance our understanding of the genetics of health, illness
and psychiatric disorders. This becomes particularly meaningful
when considering the major challenges related to gene
discovery in specific areas of the psychological and medical
sciences, most prominently psychiatric disorders [26]. With the
notable exception of schizophrenia, for which a polygenic score
constructed from the latest genome-wide association
(GWA) study [27] was found to account for 7.7% of the variance
in liability in independent samples, genomic prediction of
psychiatric traits and disorders has been considerably less
successful [28, 29] than for g [25, 30]. Leveraging on pleiotropy,
progress in uncovering the genetics of g might therefore exert
important spillover effects for our understanding of the
genetics of physical and mental health.
We now know that the biggest effects of specific DNA variants

associated with most complex traits, including g, account for less
than 0.1% of the variance [31]. GWA studies that attempt to
identify these DNA associations need very large samples to
reliably detect the tiny effects; however, testing large samples on
g is challenging. As a result, it has been necessary to meta-analyze
GWA results across studies that have used different methods and
measures to assess g.
The largest meta-analytic GWA study of g included a total of

270,000 individuals from 14 cohorts, all of which used different
measures of g [23]. Despite the heterogeneity of measures, this
GWA study was able to identify 242 independent loci significantly
associated with variation in g. A polygenic score derived from this
GWA meta-analysis predicted 7% of the variance in g at age 16 in
the sample used in the present study [30]. A polygenic score for g
is a genetic index of g for each individual that represents the sum
across the genome of thousands of DNA differences associated
with g weighted by the effect size of each DNA variant’s
association with g in GWA studies. Adding a polygenic score
derived from a GWA meta-analysis of years of schooling [32] to
the polygenic score for g boosts the prediction of g to 10% at age
16 [30].
Nonetheless, 10% is a long way from the heritability estimate of

50% from twin studies. This gap is known as ‘missing heritability’,
which is a key genetic issue for all complex traits in the life
sciences [33]. Increasing the GWA sample size and employing
whole-genome sequencing approaches that can capture rare
variants are among the approaches in use to narrow the missing
heritability gap [34]. Better measurement of the phenotype can
also help. Differences between the psychometric quality of
measures have been shown to reduce the statistical power to
detect genetic associations, the effect sizes of the detected
associations, and the predictive power and specificity of the
polygenic scores that derive from GWA studies [35–37]. For

example, a simulation study showed that with heterogeneity of
50%, the sample size needed to achieve the same statistical power
obtained from homogeneous samples increased by approximately
three times [35]. Extant GWA studies of g differ widely in the
quality of measurement, from individually administered full-scale
IQ tests to scores on a college entrance exam or a single reading
test or six items on a digit-span test [23]. Rather than combining
small heterogeneous GWA studies with diverse measures of g, a
better strategy is to incorporate the same high-quality measure of
g in large biobanks that already have genotype data on their
participants. Cognitive testing has not been conducted in most
biobanks because traditional in-person testing is expensive and
time-consuming.
This issue of heterogeneity of measurement in GWA studies

motivated us to create a brief, reliable and valid online measure of
g that could be offered to participants in extant biobanks. In
addition to the criterion of brevity (15-min) and ease of access and
use, we set out to develop a g measure characterized by an
additional important feature: gamification. Evidence points to the
positive impact of gamification on participants’ engagement and
motivation [38, 39], which boosts the value of on-line gamified
tests, for two reasons. First, increasing engagement and motiva-
tion is likely to reduce distractions and drift in attention, leading to
more reliable estimates of performance, especially in online
testing conditions outside the controlled environment of the
laboratory. Second, participants’ satisfaction increases participa-
tion and retention rates, which is especially important for large
cohort studies [40].
Gamification sets our measure apart from the few other

existing online batteries that are capable of reliably assessing g.
The two most prominent examples are the battery of cognitive
tests that have been developed for and administered to UK
Biobank participants [41] and the Great British Intelligence Test
[42], a citizen science project launched in late December 2019
by BBC2 Horizon. The Great British Intelligence Test includes a
selection of 9 cognitive tests from a broader library of 12 tests
available via the Cognitron repository, which takes 20–30 min
to complete. The cognitive tests administered to UK
Biobank participants, which take on average 21 min to
complete, assess five abilities: visual memory, processing
speed, numeric working memory, prospective memory, and
verbal and numerical reasoning. Recent analyses found the
tests to have moderate concurrent validity, with a mean
correlation between the shortened version and a validated
reference test of 0.53, but ranging widely from 0.22 to 0.83, and
moderate short-term stability, with a mean four-week test-
retest correlation of 0.55, ranging between 0.40 and 0.89 for
individual tests [43]. In addition, although the five tests yielded
a measure of g that correlated 0.83 with a measure of g
constructed from their corresponding standardized reference
tests, the estimate of g provided by the battery appears to
reflect the fluid, largely not dependent on prior learning,
aspects of intelligence more strongly than the crystallized,
academic forms of cognitive function, such as vocabulary and
verbal knowledge [12].
Our g battery overcomes these limitations by providing a highly

reliable, balanced assessment of g, constructed from measures of
verbal and nonverbal abilities. Importantly, and different from all
existing measures, our measure is gamified and engaging,
accessible by all researchers through our open science research
framework, and easy to integrate within existing data collection
platforms. It is also at least five minutes shorter than existing
measures, which is particularly meaningful when considering data
collection in large cohorts.
The current paper describes our work developing and validating

this new, brief, easy-to-administer, gamified measure of g in a
series of four studies (see Fig. 1). In a fifth study, we administered
this measure to 4,751 young adults from the Twins Early
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Development Study (TEDS; [44]) and assessed the psychometric
and genetic properties of the measure. Our analyses were

preregistered in line with the Open Access Framework (https://
osf.io/pc9yh/), and included the following three core hypotheses:
First, we hypothesized that our 15-min online measure of g

would:

a. Capture more than 40% of the variance of diverse tests of
verbal and nonverbal abilities in a first principal component.

b. Yield test-retest reliability greater than 0.80.

Second, we predicted that, using the classical twin design, our
measure of g would:

c. Yield twin heritability estimates greater than 50%.
d. Yield estimates of shared environmental influence less

than 20%.

Third, we predicted that multivariate approaches to calculating
polygenic scores would predict over 10% of the variance in
individual differences in g in our sample of young adults.

MATERIALS AND METHODS
Study 1
Participants. Participants (N= 142) were recruited from the Twins Early
Development Study (TEDS) sample [44]. Specifically, for this first study we
invited a group of TEDS twins whose co-twin was no longer actively
participating in the TEDS longitudinal data collection. Sixteen out of the 142
participants who agreed to take part in the study did not complete the full
battery, which resulted in 126 participants with complete data. Participants’
ages ranged between 21.60 and 22.30 (M= 21.98, SD= .19). The sample
included more females (N= 97) than males (N= 45). Participants varied in
their education level (58% had completed A-level exams).

Measures

Cognitive battery: Participants were administered a battery of 18 well-
established cognitive tests covering four core domains of cognitive
performance, including a total of 293 items: nonverbal reasoning (6 tests
for a total of 75 items), verbal reasoning (4 tests for a total of 98 items), spatial
ability (3 tests for a total of 45 items) and memory (5 tests for a total of 75
items, 2 tests assessed long-term memory and 3 tests short-term memory). A
full list of tests is reported in Supplementary Table 1 and examples for each
test can be found at the following link: https://www.youtube.com/watch?
v=TA38bsgp7Lg&ab_channel=TEDSProject. The 18 tests were selected after
a careful literature review and were chosen with three core features in mind:
[1] each test had to demonstrate high validity and reliability; [2] altogether,
tests had to tap a wide array of cognitive domains, from verbal and
nonverbal reasoning to memory; and [3] they had to be tests that were either
developed or adapted for online administration, or tests that could easily be
adapted by our team for online administration.
The final battery was administered online using forepsyte.com, an online

data collection platform. Tests were presented in a fixed order and the
order of presentation is reported in Supplementary Table 1. The median
time participants took to complete the battery was 68min.

Study 2
Participants. Participants (N= 144) were recruited using Prolific.co
(www.prolific.co), an online research recruitment platform. Of the total
sample, 30% (N= 43) were males, 68% (N= 98) females, and 2% (N= 3)
did not specify their gender. Participants’ ages ranged from 18 to 49
years (M= 30.99, SD= 8.67). Recruitment was based on four selection
criteria: 1) age between 18 and 50 years; 2) English as first language; 3)
UK nationality; and 4) education level which was selected in two groups,
one of which had completed tertiary education and the other not (this
resulted in 40.9% of the total sample who had completed tertiary
education and 59.1% not, which is representative of educational levels in
the UK population; see https://www.oecd.org/unitedkingdom/United%
20Kingdom-EAG2014-Country-Note.pdf). Supplementary Table 2 pre-
sents a breakdown of the participants’ education level and ethnicity.

Measures

Cognitive battery: The cognitive battery included 138 items (78 verbal
and 60 nonverbal) from seven well-established cognitive tests, which were

Fig. 1 A roadmap to the development of Pathfinder. Flowchart
depicting the roadmap to the development and testing of
Pathfinder over our five studies.
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selected from a larger battery based on the results of Study 1. The three
tests assessing verbal ability were: (1) the Mill Hill vocabulary scale [45], (2)
a missing letter test and (3) a verbal analogies test. The Mill Hill vocabulary
scale consists of items assessing individuals’ ability to select semantically
related words. For each item, a target word is displayed, and participants
are asked to select the word that is closest in meaning from six response
options. In the missing letter test, participants were exposed to pairs or
strings of words, each with a blank space indicating a missing letter.
Participants were asked to identify the missing letter that would
meaningfully complete all the words presented on the screen simulta-
neously and select the letter from a displayed alphabet. An example of
items is ban(?) (?)ave – fla(?) (?)ain and the missing letter in this instance is
“g”. In the verbal analogies test, participants were presented with verbal
analogies, having either one or two missing words. An example of a one-
word problem is: “Sadness is to happiness as defeat is to x”. Participants
could solve x by choosing between four options: Joy, Victory, Victor, Tears.
An example of a two-word problem is: “Robin is to x as Spider is to y”.
Participants could choose between four options to solve x (Batman, Bird,
Christmas, Tree) and four options to solve y (Spiderman, Easter, Arachnid,
Insect). Participants were asked to select the word(s) that would correctly
and meaningfully complete the missing part of the sentence. For items
containing one missing word, participants selected their answer from a
choice of four or five. For items with two missing words, a choice of four
was presented for every word missing.
The four tests assessing nonverbal ability were: (1) the Raven’s standard

progressive matrices [46], and three visual puzzles tests: (2) nonverbal
analogies, (3) nonverbal groupings and (4) nonverbal logical sequences.
The Raven’s progressive matrices test measures nonverbal abstract
reasoning. Participants are presented with a series of incomplete matrices
and are asked to select the missing part from a choice of eight. In the
nonverbal Analogies test, participants are presented with a series of
images that contain a logical statement phrased as “x is to y as z is to ___“,
where x/y/z are replaced by images. Participants are asked to select the
correct missing image to complete this statement. In the nonverbal
groupings test, participants are presented with the image of a group of
shapes and are asked to identify which other shape, out of five options,
belongs to the group. In the nonverbal sequences test, participants are
presented with items containing a sequence of images, in which one is
removed and replaced by a question mark, and they are asked to select
the image that completes the sequence from five options.
The seven tests (three verbal and four nonverbal) were presented to

participants in a randomized order. Within each test, items were presented
in fixed order, starting from easier items (determined from the results of
study 1) and moving on to progressively more difficult ones. Each item was
presented for a maximum of 60 seconds.

Study 3
Participants. About two weeks (mean= 13.00 days) after the completion
of Study 2, participants were invited back to participate in Study 3. Of
those invited back, 91.7% completed Study 3 (N= 132). Out of the total
sample for Study 3, 30.3% (n= 40) were males, 67.4% (n= 89) were
females, and 2.3% (n= 3) did not specify their gender; the mean age was
31.3 years (SD= 8.7), and age ranged between 18 and 49 years.
Supplementary Table 2 presents a breakdown of the participants’
education levels and ethnicities.

Measures

Cognitive battery: The cognitive battery included the 40 items selected
based on the results of Study 2. These 40 items covered five tests: three
capturing verbal ability (vocabulary, verbal analogies, and missing letter)
and 2 capturing nonverbal ability (matrix reasoning and visual puzzles, the
latter being a composite of the best-performing items from each of the
three visual puzzles tests administered in Study 2). The order of
presentation of these tests was randomized to account for the potential
effects of test-taking fatigue on cognitive performance. Within each test,
items were presented in order of difficulty, based on accuracy results from
Study 2 (see Supplementary Table 3). Each item was presented for
between 20 to 40 seconds; the time limit decisions were made based on
the means and standard deviations for response time obtained from Study
2 (see Supplementary Table 3). During this phase we also added four
quality control (QC) items. These were presented in the same form as test
items, but they were extremely easy to solve; their aim was to help us
identifying ‘clickers’, i.e., participants who were just clicking through the
test and providing random responses. Control items did not contribute to

either the tests or total score. A fifth standard quality control question ‘This
is a quality control question, please select option B’ was also added. QC items
were presented half-way through each test, except for the standard quality
control question that was presented between two tests in randomized
order. Response accuracy for each QC item is presented in Supplementary
Table 4.

STUDY 4
Participants
Approximately one month after Study 3 (mean= 29, range = 23
to 35 days), participants who completed both Study 2 and Study 3
were invited back to complete Study 4. Of those invited back,
85.4% completed Study 4 (N= 123). Out of the total sample for
Study 4, 30.1% (n= 37) were males, 68.3.% (n= 84) were females,
and 1.6% (n= 2) did not specify their gender; the mean age was
31.82 years (SD= 8.61), and age ranged between 18 to 50 years.
Supplementary Table 2 presents a breakdown of the participants’
education levels and ethnicities.

Measures
Gamified cognitive battery. In Study 4 we administered the same
battery of 40 items included in Study 3, but this time the items
were embedded in a gamified storyline, the Pathfinder, which
took participants through five ‘journeys’. A detailed description of
each journey can be found in the TEDS data dictionary at the
following link: http://www.teds.ac.uk/datadictionary/studies/
webtests/21yr_ggame_description.htm. Fig. 2 provides a visual
summary of the graphics of how items were presented in the
gamified test and Fig. 2F provides an example of the feedback
that participants were given at the end of the gamified test.

STUDY 5
Participants
In study 5, Pathfinder was administered to an initial sample of
4,751 twins (1,491 twin pairs and 1,769 individual twins) from
the Twins Early Development Study (TEDS) ([47]. All families
with twins born in England and Wales between 1994 and 1996,
identified through birth records, were invited to take part in
TEDS. Over 15,000 families took part in the first data collection
wave and over 10,000 families are still actively participating in
TEDS 25 years on. TEDS is an ongoing project and TEDS twins
have contributed data longitudinally from birth to the present
day. The last major wave of assessment was conducted in 2018
when the twins were 21–23 years old. TEDS remains reasonably
representative of the UK population for their birth cohort in
terms of ethnicity and socioeconomic status (SES; see [44] for a
detailed description). Data from twins known to suffer from a
severe medical condition including autism, cerebral palsy,
chromosomal or single-gene disorders and organic brain
problems, were excluded from the current analyses, together
with twins whose sex and/or zygosity was unknown (N= 137
participants excluded). In addition, ‘clickers’ were identified
from a combination of the incorrect responses in QC items,
rapid responding (based on the mean item response time), low
sub-test score and uniform responding (i.e. a pattern of clicking
on the same response over a series of items). This resulted in the
exclusion of data from 69 additional participants. The final
sample consisted of 4,545 participants (1,416 twin pairs –639
monozygotic and 777 dizygotic pairs, and 1,713 unpaired
twins). The sample mean age was 24.81 (SD= 0.85), ranging
between 23.29 and 26.41. Genotyped DNA data was available
for a subsample of 1,365 unrelated individuals. Genotypes
underwent phasing using EAGLE2 and imputation into Haplo-
type Reference Consortium (release 1.1), employing the Posi-
tional Burrows-Wheeler Transform method via the Sanger
Imputation Service (see [48] for additional information). TEDS
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data collections have been approved by the King’s College
London ethics committee.

Measures
Pathfinder. In Study 5 we administered the same tests adminis-
tered in Study 4. The 15-min (median time taken to complete the
battery= 15.95 min), gamified Pathfinder g measure included two
core components assessing verbal and nonverbal cognitive ability.
The verbal ability block included 20 items from three tests:
vocabulary, verbal analogies, and missing letter. The nonverbal
ability block included 20 items from two tests: matrix reasoning
and visual puzzles (which grouped items from three tests:
nonverbal analogies, nonverbal groupings, and nonverbal logical
sequences). The items were embedded in a gamified storyline as
participants solved puzzles while moving through different
journeys (represented as background images, which changed
after every 1–3 items): The “Mountain” journey (vocabulary test)
included 8 items, the “Tower” journey (missing letter) included 6

items, the “Woodland” journey (verbal analogies) included 6 items,
the “Space” journey (visual puzzles) included 9 items, and the
“Ocean” journey (matrix reasoning) included 11 items (see Fig. 2).
The test included the same 5 QC items described in Study 3 and
included in Study 3 and 4. Screen size: participants could complete
Pathfinder using a variety of devices, including laptops, tablets
and mobile phones. To account for the potentially confounding
effects of screen size we created a categorical variable reflecting
three screen size categories in order to statistically control for the
effects of screen size. These categories were “small screen (<768
pixels)”, “medium screen (768–1199 pixels)” and “large screen
(>=1200 pixels)”.

Cognitive ability at earlier ages. TEDS includes measures of
cognitive ability collected at multiple waves from childhood to
late adolescence.
At age 7 cognitive ability was measured using four cognitive

tests that were administered over the telephone by trained

Fig. 2 The five journeys included in Pathfinder. Screenshots of each of the five ‘journeys’ included in the Pathfinder gamified test (panels A-
E) and a visual representation of the final feedback page (panel F). Panel A depicts the “Mountain” journey (vocabulary test); panel B the
“Tower” journey (missing letter test); panel C the “Woodland” journey (verbal analogies test); panel D the “Space” journey (visual puzzles); and
panel E the “Ocean” journey (matrix reasoning test).

M. Malanchini et al.

7827

Molecular Psychiatry (2021) 26:7823 – 7837



research assistants. Two tests assessed verbal cognitive ability: a
13-item similarity test and 18-item vocabulary test, both derived
from the Wechsler Intelligence Scale for Children (WISC; [49]).
Nonverbal cognitive ability was measured using two tests: a
9-item conceptual groupings test [50], and a 21-item WISC picture
completion test [49]. Verbal and nonverbal ability composites
were created taking the mean of the standardized test scores
within each domain. A g composite was derived taking the mean
of the two standardized verbal and two standardized nonverbal
test scores.
At age 9 cognitive ability was measured using four cognitive

tests that were administered as booklets sent to TEDS families by
post. Verbal ability was measured using the first 20 items from
WISC-III-PI words test [51] and the first 18 items from WISC-III-PI
general knowledge test [51]. Nonverbal ability was assessed using
the shapes test (CAT3 Figure Classification; [52] and the puzzle test
(CAT3 Figure Analogies; Smith et al., 2001). Verbal and nonverbal
ability composites were created taking the mean of the
standardized test scores within each domain. A g composite was
derived taking the mean of the two standardized verbal and two
standardized nonverbal test scores.
At age 12, cognitive ability was measured using four cognitive

tests that were administered online. Verbal ability was measured
using the full versions of the verbal ability tests administered at
age 9: the full 30 items from WISC-III-PI words test [51] and 30
items from WISC-III-PI general knowledge test [51]. Nonverbal
ability was measured with the 24-item pattern test (derived from
the Raven’s standard progressive matrices; [53] and the 30-item
picture completion test (WISC-III-UK) [49]. Verbal and nonverbal
ability composites were created taking the mean of the
standardized test scores within each domain. A g composite was
derived taking the mean of the two standardized verbal and two
standardized nonverbal test scores.
At age 16 cognitive ability was measured using a composite of

one verbal and one nonverbal test administered online. Verbal
ability was assessed using an adaptation of the Mill Hill vocabulary
test [45], Nonverbal ability was measured using an adapted
version of the Raven’s standard progressive matrices test [45]. A g
composite was derived taking the mean of the two
standardized tests.

Academic achievement at earlier ages. Measures of academic
achievement have been obtained in TEDS throughout compulsory
education.
At age 7 academic achievement was measured with standar-

dized teacher reports and consisted of standardised mean scores
of students’ achievements in English and mathematics, in line with
the National Curriculum Levels. Performance in English was
assessed in four key domains: speaking, listening, reading and
writing abilities; performance in maths was assessed in three key
domains: applying mathematics, as well as knowledge about
numbers, shapes, space and measures.
At age 9, academic achievement was again assessed using

teacher reports. The domains assessed were the same for English
and mathematics (although on age-appropriate content). In
addition, performance in science was assessed considering two
key domains: scientific enquiry and knowledge and understanding
of life processes, living things and physical processes.
At age 12, academic achievement was assessed in the same way

as at age 9, with the exception of mathematics, which added a
fourth domain: data handling, and science, which added a third
domain: materials and their properties; these additions were in
line with the changes made to the National Curriculum teacher
ratings.
At age 16, academic achievement was measured using the

General Certificate of Secondary Education (GCSE) exam scores.
The GCSEs are examinations usually taken by 16-year-olds in
England and Wales [54]. Twins’ GCSE scores were obtained via

mailing examination results forms to the families shortly after the
twins received their GCSE results. For the GCSE, students could
choose from a wide range of subjects. In the current analyses we
used the mean score of the compulsory GCSE subjects English
Language and/or English Literature, mathematics and a science
composite (a mean score of any of the scientific subjects taken,
including physics, chemistry and biology).
At age 18, academic achievement was measured based on the

A-Level (Advanced Level) grade. The A-Level is a subject-based
qualification conferred as part of the General Certificate of
Education, as well as a school-leaving qualification. A-Levels have
no specific subject requirements. We used standardized mean
grades from all of the A-levels taken. Sample size was limited to
those twins who continued with academic education beyond
GCSE level, typically in preparation for university, thus reducing
range as well.

Family socioeconomic status (SES). At first contact, parents of
TEDS twins received a questionnaire by post, and were asked to
provide information about their educational qualifications and
employment and mother’s age at first birth. SES was created by
taking the mean of these three variables standardized. The same
measures, except for the mother’s age at first birth, were used to
assess SES at age 7. At age 16, the SES was assessed based on a
web questionnaire, and comprised a standardized mean score
obtained from five items: household income, mother’s and father’s
highest qualifications, mother’s and father’s employment status.

ANALYSES
Phenotypic analyses
Phenotypic analyses were conducted in R version 4.0 (R Core
Team, 2020) and Mplus version 8 [55]. The variables were adjusted
for the effects of sex, age (and screen size for the Pathfinder
measures) using linear regression. Sex and age-controlled data
were used in all downstream analyses. Because of the normal
distribution of the Pathfinder measures no transformations were
applied.
We conducted univariate analysis of variance (ANOVAs) to

explore phenotypic sex differences and Pearson’s correlations to
examine phenotypic associations between measures. We con-
ducted Principal Component Analysis (PCA) and Confirmatory
Factor Analysis (CFA) to examine the factor structure of the
Pathfinder measures.
We applied Item Response Theory (IRT) modelling to reduce the

cognitive battery, selecting items based on their psychometric
properties. IRT refers to a set of mathematical models that
describe the relationship between an individual’s response to test
items and their level of the latent variable being measured by the
scale––in this case, g. IRT allows the estimation of item
information, difficulty, and discrimination parameters [56]. An
item’s information properties are reflected in its item information
curve, and its difficulty and discrimination properties are reflected
in its item characteristic curve. Item information reflects the
reliability of an item at a particular level of latent ability. The flatter
the item information curve, the less reliable the item. An
information curve positioned further along the x-axis suggests
that an item is informative at the upper end of latent ability. Item
difficulty is the level of latent ability at which the probability of
correct response is 50%. The more difficult the question, the
further the item characteristic curve will be to the right (more
latent ability is needed to get it correct). Item discrimination
indicates how much an item is influenced by the latent trait and is
thus similar to a factor loading. High discriminative ability is
indicated by a steep item characteristic curve. An item discrimi-
nates well at a particular level of g if a small change in ability
results in a large increase in the probability of correct response.
We fitted a binary 2-PL Model in the MPLUS software including all
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138 verbal and nonverbal items. This model uses maximum
likelihood and estimates item difficulty and discrimination
(whereas the 1 PL model assumes items are equally discrimina-
tive). The 2 PL model provided a better fit for the data (Akaike
Information Criterion (AIC)= 18327.596, Bayesian Information
Criterion (BIC)= 19158.532, sample-size adjusted BIC=
18285.045) than a three-item parameter (3 PL) model (AIC=
18496.790, BIC= 19743.193, sample-size adjusted BIC=
18432.962), as indicated by the lower AIC, BIC and sample-size
adjusted BIC indices obtained for the 2 PL IRT model, and a 1PL
model which failed to converge.

Genetic and genomic analyses
The twin method. We applied the univariate twin method to
partition the variance in each phenotype into genetic, shared, and
unique environmental influences. The twin method capitalizes on
the genetic relatedness between monozygotic twins (MZ), who
share 100% of their genetic makeup, and dizygotic twins (DZ),
who share on average 50% of the genes that differ between
individuals. The method is further grounded in the assumption
that both types of twins who are raised in the same family share
their rearing environments to approximately the same extent [57].
By comparing how similar MZ and DZ twins are for a trait
(intraclass correlations), it is possible to estimate the relative
contribution of genetic and environmental factors to individual
variation. Heritability (h2), the amount of variance in a trait that
can be attributed to genetic variance (A), can be roughly
estimated as double the difference between the MZ and DZ twin
intraclass correlations [58]. The ACE model further partitions the
variance into shared environment (C), which describes the extent
to which twins raised in the same family resemble each other
beyond their shared genetic variance, and non-shared environ-
ment (E), which describes environmental variance that does not
contribute to similarities between twin pairs (and also includes
measurement error). Structural equation modelling provides more
formal estimates of A, C, and E and calculates confidence intervals
for all estimates. We performed twin analyses using OpenMx 2.0
for R [59] and Mplus version 8 [55].
Model fit was measured using the difference between the

likelihood (-2LL) of the assumed model (with fewer parameters)
and the likelihood of the saturated model, which provides a
baseline summary of the data prior to decomposition into
variance components [60]. Difference in -2LL is distributed as
chi-square (χ2) with χ

2 degrees of freedom (df) representing the
difference in a number of parameters between the baseline and
more restrictive models. χ2 and df are used to create a p value for
model fit comparisons, with a non-significant p value indicating
that the more restrictive model does not fit the data significantly
worse than the saturated model [60].
The twin method was then extended to the exploration of the

covariance between pairs of traits (bivariate twin models), by
modelling cross-twin cross-trait covariances. Cross-twin cross-trait
covariances describe the association between two variables, with
twin 1’s score on variable 1 correlated with twin 2’s score on
variable 2, which are calculated separately for MZ and DZ twins.
We employed the bivariate twin models to explore genetic and
environmental overlap between the Pathfinder composites and
educationally relevant traits over development, using OpenMx
2.0 for R.

SNP heritability (SNP h2). SNP heritability was estimated using the
Genome-wide complex trait analysis (GCTA) software that
employs a genome-based restricted maximum likelihood method
(GREML). GREML estimates the proportion of the variance in a trait
that is captured by all genotyped single nucleotide polymorph-
isms (SNPs) in samples of unrelated individuals [61]. GREML uses
individual-level genotypic data to estimate narrow-sense SNP h2,
the proportion of phenotypic variation explained by the additive

effects of genetic variants measured using a genotype array and
subsequent imputation [61]. Cryptic relatedness was controlled for
by setting the relatedness threshold to .05, which resulted in
removing pairs of individuals who are genetically as similar as 4th-
degree relatives [62]. The grm-adj 0 option was used to control for
incomplete tagging of causal variants. Due to the fact that causal
regions are likely to show lower MAF (minor allele frequency)
compared to the genotyped set of genetic variants, weak LD
(linkage disequilibrium) estimates may result. Incomplete tagging
of causal loci may therefore be mitigated by assuming similar
allele frequencies of causal loci and genotyped SNPs [62].

Genome-wide polygenic scores (GPS). We constructed GPS using
LD-pred [63] with an infinitesimal prior, which corrects for local
linkage disequilibrium (LD), correlations between SNPs. We used the
target sample as a reference for the LD structure (see [64] for a
detailed description of LD-pred analytic strategies used in calculating
GPS in the TEDS sample). Three univariate polygenic scores were
calculated from GWA summary statistics of intelligence (IQ3; N=
266,453 [23]), years of education (EA3; excluding 23andMe; N=
766,345 [65]) and childhood IQ (N= 12,441; [66]). Because the
original IQ3 GWA meta-analysis included the TEDS sample, we used
summary statistics that excluded TEDS to avoid bias due to sample
overlap. The EA3 summary statistics employed here do not include
23andMe data (~300k individuals) due to their data availability
policy.
In addition to examining the predictions from individual GPS, we

investigated the extent to which multivariate approaches boost the
GPS prediction of g, verbal, and nonverbal ability. Following the
pipeline developed by Allegrini et al. (2019), multivariate polygenic
scores were constructed using MTAG [67] and Genomic SEM [68],
and combined the IQ3 and EA3 GPS with summary statistics of three
additional educationally relevant traits: household income (N=
96,900; [69]), age at completion of full-time education (N= 226,899;
[68]) and time spent using computer (N= 261,987; [70]).
Linear regression analyses were performed in R to investigate the

association between the GPS and Pathfinder composites (R Core
Team, 2017). We report results for the GPS constructed assuming a
fraction of casual markers of one (assuming that all markers have
non-zero effects). GPS results for other fractions (p value thresholds)
are included in the Supplementary Material. Phenotypic data,
polygenic scores and covariates were standardized prior to the
regression analysis to achieve the z-distribution and obtain R2

estimates in units of standard deviation. Variance explained by the
GPS was determined as the difference between variance explained
by the full model (including both GPS and covariates as predictors)
and the null model (including the covariates alone). Each linear
regression analysis included the following covariates: batch, chip and
10 principal components of population structure. All analyses were
performed on samples of unrelated individuals.

RESULTS
Over four studies we adopted multiple psychometric approaches
to develop the shortest possible, yet highly valid and reliable,
measure of general cognitive ability (g).

Study 1: Identifying the most informative verbal and
nonverbal cognitive tests: principal component analysis
In Study 1 we administered a battery of 18 widely used cognitive
tests, which we identified through an in-depth review of the
literature. The sample and procedures are detailed in the Methods
section. The final battery included 293 items that spanned four key
areas of cognitive performance: nonverbal reasoning (75 items),
verbal reasoning (98 items), spatial ability (45 items) and memory (75
items). Supplementary Table 1 presents a full list of tests, which are
described in greater detail in the Methods section, a demonstration
of each test is provided at the following link: https://www.youtube.
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com/watch?v=TA38bsgp7Lg&ab_channel=TEDSProject. We con-
ducted Principal Component Analysis (PCA) of these 18 tests to
reduce the number of tests and select those that best represent
verbal and nonverbal cognitive ability, the two core subdomains of
cognitive skills which also reflect the key distinction between verbal
and performance IQ.
We ran two separate PCAs, one for the 12 nonverbal measures

and a second for the six verbal measures. The first PCA
(Supplementary Table 5a) identified four tests that most reliably
captured nonverbal reasoning, indexed by the highest loadings
onto the first principal component (PC) of nonverbal ability. These
nonverbal tests assessed Matrix reasoning (Raven’s progressive
matrices), and Visual puzzles (Groups, Sequences and Nonverbal
analogies). The second PCA (Supplementary Table 5b) indicated
three tests that captured the majority of the variance in verbal
ability: Similarities (Verbal analogies), Vocabulary (Mill Hill voca-
bulary test) and Information (Missing letter test). A first principal
component including these seven tests accounted for 60% of the
total variance. A composite g score (the scores summed) created
from these seven tests, including a total of 138 items (average
correlation across all individual items= 0.10), was strongly
correlated (r= 0.85, p < 0.001, N= 126) with a g composite
constructed from the entire battery (293 items). Cronbach’s alpha
for each of the seven tests is reported in Supplementary Table 5c;
the average alpha across the seven tests was .75 (min= 0.65, max
= 0.86).

Study 2: Selecting the items that best captured variation in g:
item response theory
With the aim of further reducing our g battery and selecting only
the best performing items for each test, in a second study (study
2) we administered the seven tests selected in Study 1 to an
independent sample. We conducted an item response theory (IRT;
[71]) analysis to identify items that best capture individual
differences in g and estimated their difficulty, discrimination,
and information parameters (see Methods).
Since one of the main assumptions of IRT is the unidimension-

ality of the latent construct, we first fitted a principal component
analysis (PCA) and a principal component parallel analysis
including all 138 items to determine the number of components
or factors to retain from PCA and examine whether the
assumption of unidimensionality held. Although results of the
parallel analysis suggested the existence of 3 components, the
adjusted eigenvalue for the first component (15.73) was
substantially larger than the eigenvalues obtained for the second
and third components (2.50 and 1.24, respectively). Further
examination of the scree plot obtained from PCA (Supplementary
Fig. 1a) indicated one dimension, which explained 15.3% of the
total variance. In addition, when plotting the first three principal
components against one another, we found no evidence for
multidimensionality (see Supplementary Fig. 1b, c and d). There-
fore, we proceeded to perform IRT analysis. Our IRT analysis
proceeded in three stages. First, we inspected item information
curves for each of the 138 items included in the seven tests.
Information curves indicate how informative (reliable) each item is
over a particular range of the latent trait. We identified 37 items
characterized by horizontal (completely flat) information curves,
indicating items that did not discriminate well at any level of the
latent trait; these items were removed.
Second, we removed 51 additional items with flat information

curves under a threshold of 0.2 or with information curves out of
range, either extremely high or low, indicating that the items were
either too hard or too easy. This selection process resulted in 20
nonverbal and 30 verbal items.
Third, we focused on refining the verbal battery in order to

further reduce the number of items capturing verbal ability. We
identified three items showing significantly lower information
scores than all others; three other items with flat item

characteristic curves, therefore not discriminating at any level of
the latent trait; and four additional items that had item
characteristic curves that were identical to other items, therefore
not providing unique information. These 10 verbal items were
deleted, resulting in a battery of 20 nonverbal and 20 verbal items.
This 40-item battery included items from all seven tests (see
Supplementary Table 6 for a summary of the reduction process)
ranging from very easy (96% of correct responses) to very difficult
(7% of correct responses). Information and characteristic curves for
the selected items are reported in Supplementary Figs. 2 and 3,
and discrimination and difficulty parameters for all items are
reported in Supplementary Table 7. Percentages of correct
responses and average response times are reported in Supple-
mentary Table 3.
These 40 items spanned five tests: three verbal ability tests

(Vocabulary, Verbal analogies, and Missing letters) and two
nonverbal ability tests (Matrix reasoning and Visual puzzles). A
PCA of the composite scores for the five subdomains showed that
the first PC accounted for 67% of the total variance, with factor
loadings ranging between .78 and .86 (see Supplementary Table 8
for the factor loadings).

Studies 3 and 4: Test–retest reliability and gamification
In Studies 3 and 4 we assessed the test-retest reliability of the 40-
item measure. In study 3 we examined two-week test-retest
reliability, which was excellent for g, verbal, and nonverbal ability,
with phenotypic correlations ranging between 0.78 (95% CIs=
0.70, 0.84) and 0.89 (95% CIs= 0.85, 0.92) (Supplementary Table 9).
Information on the time limits and order of presentation of each
item and subdomain is included in Supplementary Table 10.
We proceeded with the process of gamification. Items from

each subdomain were embedded into a gamified story line, the
Pathfinder, which took participants through five ‘journeys’:
mountain, tower, woodland, space and ocean (this 2-min video
demonstrates how items were incorporated into the gamified
environment: https://www.youtube.com/watch?v=
KTk1Ej4F8zE&ab_channel=TEDSProject).
In Study 4 we administered Pathfinder to the same participants

who participated in studies 2 and 3 in order to assess whether
the gamification process affected the psychometric properties of
the test. Supplementary Table 10 presents a summary of the
Pathfinder journeys and the number and type of items included in
each test. Within each sub-domain, items were presented for the
same amount of time and in the same order as in study 3.
Additional information on Pathfinder can be found at the
following link: http://www.teds.ac.uk/datadictionary/studies/
webtests/21yr_ggame_description.htm.
Study 4, which was conducted approximately 1 month (mean=

29, range= 23–35 days) after Study 3, showed that test-retest
reliability and external validity (i.e., association with education
level) remained excellent for g, verbal and nonverbal ability even
following the gamification of the 40 items. The test-retest
correlations ranged between 0.78 and 0.91, while the correlations
between g, verbal and nonverbal ability and education level
ranged from 0.36 to 0.45 (Supplementary Table 9). We also
compared the factor structure obtained across the two versions of
the test (i.e., study 3 vs. the gamified version administered in study
4) by including the 40 items in two separate CFA models, one for
each study. The factor scores derived from each one-factor CFA
model correlated at 0.86, p < 0.0001, as shown in Supplementary
Fig. 4.

Study 5: Testing the new g measure in a large sample of
young adults: Distributions, sex differences, dimensionality
and intercorrelations
In Study 5, we administered the new g measure (Pathfinder) to
4751 twins from the Twins Early Development Study (see Method
section and [44] for an in-depth description of the sample). This
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allowed us to conduct in-depth developmental and genetic
analyses to further characterize Pathfinder. The first requirement
of a good measure of g is that it should be distributed normally.
We found that the scores for the g, verbal and nonverbal ability
composites were normally distributed (see Fig. 3A). We subse-
quently investigated sex differences in g, verbal ability and
nonverbal ability using univariate analysis of variance (ANOVA).
Sex differences were significant but small, accounting for between
1 and 3% of the variance. Males outperformed females across the
three composites and in four out of five tests, the only exception
was performance in the Missing Letter test, for which we found no
significant sex differences (Fig. 3B and Supplementary Table 11
and 12 for the same analyses in cognitive measures collected over
development).

A second requirement of a good measure of g is that it should
tap into correlated, yet distinct components of cognitive
functioning. We explored this examining the observed correla-
tions between performance in the five subdomains of cognitive
ability, which ranged from moderate to strong, as shown in
Fig. 3C. The network plot in Fig. 3C shows how performance in
verbal tests, particularly vocabulary and verbal analogies created a
verbal ability cluster, which was correlated with, but more distant
from, the nonverbal ability cluster that comprised matrix reason-
ing and visual puzzles. Performance in the missing letter test was
moderately correlated with verbal tests (r= 0.47 and 0.35 with
verbal analogies and vocabulary, respectively) and nonverbal tests
(r= 0.43 and 0.37 with matrix reasoning and visual puzzles,
respectively). Correlations between all tests are reported in
Supplementary Table 13.

Fig. 3 Visual summary of the descriptive properties of the Pathfinder measure administered in Study 5. a distributions of standardized
test scores for the g, verbal and nonverbal ability composites as well as for each subdomain. The coloured dots indicate individuals’
performance in each test, black dots represent means and error bars indicate standard deviations for the standardized scores. b Sex
differences in performance across all subdomains and composite scores, ***= p < 0.001 (two-tailed). c Network plot showing the correlations
between subdomains, the greater the proximity between points, the greater the correlation between pairs of subdomains. d Scree plot of the
proportion of variance explained by the principal components. (e) phenotypic correlations between Pathfinder composite scores: g, verbal
and nonverbal ability.
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A third requirement of a good measure of g is that it should
produce a first PC accounting for a substantial portion of variance
across several cognitive tests, typically about 40%. A PCA of our
five tests yielded a first PC that accounted for 52% of variance
(Fig. 3D and Supplementary Table 14a). Scores on this first PC
correlated .99 with a composite score of g created by taking the
sum of performance across the 40 verbal and nonverbal items and
.99 with a latent factor of g created using confirmatory factor
analysis (CFA). The results of this CFA analysis are reported in
Supplementary Table 14b. A one-factor CFA provided a good fit
for the data (CFI= 0.95, TLI= 0.90, SRMS= 0.03) and accounted
for 73% of the common variance and between 30.1% and 53.1%
of the variance in each of the five tests (see Supplementary Fig. 5).
Reliability for this novel g measure was high, as indicated by a
Cronbach’s alpha of 0.78 and a hierarchical omega coefficient
of 0.68.
Considering the nearly perfect correlations between different

way of aggregating across cognitive tests, we henceforth consider
a composite of g constructed from the sum of all items (see
Method), a more straightforward approach to compositing. As
expected, this g composite correlated strongly with verbal ability
(0.89) and nonverbal ability (0.88), while the verbal and nonverbal
ability composites correlated with each other to a lesser extent
(0.57; Fig. 3E).
External validity: Performance in Pathfinder correlates

strongly with cognitive performance measured using well-
established cognitive tests, with academic achievement and

with family socioeconomic status during childhood and
adolescence.
Given the developmental nature of the TEDS sample and the

rich cognitive and educational data collected from early childhood
to emerging adulthood, in Study 5 we also examined how well
performance in Pathfinder mapped onto well-established devel-
opmental indicators of cognitive and academic performance
assessed at ages 7–18. Correlations between the Pathfinder
composites (g, verbal and nonverbal ability) and the correspond-
ing composites created from these other cognitive measures are
presented in Fig. 4A–C. Overall, correlations were strong and
increased with age, ranging from 0.42 at age 7 to 0.57 at age 16
for g, from 0.39 to 0.45 for verbal ability and from 0.28 to 0.52 for
nonverbal ability (Supplementary Table 15).
Pathfinder composites were also found to be strongly linked to

academic achievement during the period of compulsory educa-
tion, correlations were observed to increase developmentally,
ranging from 0.45 at age 7 to 0.58 at age 16 for g, from 0.45 to 0.57
for verbal ability and from 0.34 to 0.46 for nonverbal ability
(Fig. 4D–F and Supplementary Table 15). The correlation between
Pathfinder composites and academic performance at age 18,
measured with A-level exam grades (see Method) was found to be
lower, ranging between 0.20 and 0.30, likely due to a restriction of
variance as the measure included only those individuals who had
continued their education and had taken A-level exams.
In order to further examine how Pathfinder related to constructs

known to be associated with traditional measures of cognitive

Fig. 4 External validity. Phenotypic correlations between Pathfinder g, verbal and nonverbal composites and cognitive (A–C), achievement
(D–F) and family socioeconomic status (G–I) measures over development. vb verbal ability, nv nonverbal ability, ach academic achievement,
ses family socioeconomic status. The numbers following each variable name indicate age in years. The length of each bar represents the size
of the correlation and the error bars indicate 95% confidence interval (CIs).
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ability, we examined the association between the Pathfinder
composites and family socioeconomic status (SES). In line with the
research literature, correlations with SES over development were
modest to moderate and similar across the Pathfinder composites
(average r= 0.30 for g and verbal ability and 0.25 for nonverbal
ability; Fig. 4G–I and Supplementary Table 15).
In a further set of analyses, we examined the extrinsic

convergent validity [72–74] of Pathfinder relative to other well-
known measures of cognitive functioning. Specifically, we
compared the external correlational profile of Pathfinder to those
of other standardized measures of g as well as verbal and
nonverbal ability collected in the TEDS sample over development.
These external criteria included measures of academic achieve-
ment and SES. Supplementary Table 16 reports the results of these
analyses, which show excellent extrinsic convergent validity for g,
verbal, and nonverbal Pathfinder composites. All these measures
are functionally equivalent and empirically interchangeable and
appear to be indexing the same underlying source of individual
difference, general intellectual ability (or g).

Pathfinder g, verbal and nonverbal ability show substantial
heritability in twin and DNA analyses
A further key requirement for this novel measure was that it
should show substantial heritability for two reasons. First, a meta-
analysis of cognitive measures across the lifespan yielded an
average heritability of 47% [75]. Second, substantial heritability is
crucial in order for Pathfinder to foster genomic discoveries in the
cognitive domain. We quantified the heritability of Pathfinder g,
verbal and nonverbal ability indirectly from the classical twin
design and directly from variation in single nucleotide poly-
morphisms (SNPs) in unrelated individuals (see Method for a
description of both techniques).
Twin correlations profiled by zygosity (see Supplementary

Table 17) revealed substantial differences in MZ and DZ
resemblance across the three Pathfinder composites: DZ correla-
tion were about half the MZ correlations (Supplementary Table 17).
In line with the twin correlations, univariate twin model fitting
revealed substantial heritability (h2) for Pathfinder g (h2= 0.57;
95% CIs= 0.43, 0.68), verbal ability (h2= 0.63; 95% CIs= 0.49, 0.69)
and nonverbal ability (h2= 0.46; 95% CIs= 0.29; 0.55) and minor
shared environmental influences (0.08, 0.03 and 0.05, respectively)
(Fig. 5A). (See Supplementary Table 18 for model-fitting estimates
and Supplementary Table 19 for model fit indices). Twin
correlations calculated separately for sex and zygosity indicated
potential qualitative sex differences (Supplementary Table 17) (i.e.,
differences in same-sex and opposite-sexes DZ twin correlations)
for g (r= 0.35 for same sex vs. 0.25 for opposite sex twins), verbal
(0.33 vs. 0.24) and nonverbal (0.26 vs. 0.18) ability. However, formal
twin sex-limitation model fitting (Supplementary Table 20)
showed that both qualitative and quantitative (i.e., differences in
MZ-DZ similarity between males and females) sex differences
were not significant, indicating that the same genetic effects
operate in males and females [76].
SNP-based heritability, calculated using GCTA-GREML (see

Method), was substantial for the three Pathfinder composites
(SNP h2= 0.37 (SE= 0.17) for g, h2= 0.31 (SE= 0.17) for verbal
ability and h2= 0.39 (SE= 0.17) for nonverbal ability, see Fig. 5B
and Supplementary Table 21), around half of the twin heritability
estimates. The large standard errors around the estimates indicate
that the point estimates were not significantly different, a product
of the modest sample size (N= 1365 unrelated individuals).
We also examined polygenic score heritability: the extent to

which genome-wide polygenic scores (GPS, see Method) con-
structed from GWA studies of cognitive and educationally relevant
traits predicted variance in performance in Pathfinder g, verbal,
and nonverbal ability. Specifically, we examined the extent to
which the individual GPS based on predictions of childhood IQ
[66], adult cognitive performance (IQ3) [23] and educational

attainment (EA3) [32] predicted variation in Pathfinder g, verbal
ability, and nonverbal ability. These GPSs accounted for between 2
and 9% of the variance in Pathfinder g, between 1 and 9% in
verbal ability and between 2 and 6% in nonverbal ability (Fig. 5C,
bottom three lines in each case, and Supplementary Table 22).
Following examination of how individual GPSs related to

variation in performance, we applied multivariate genomic
methods to construct GPS aggregating findings from GWAS
based on predictions of five cognitive and educationally relevant
traits: IQ3, EA3, household income [69], age at completion of full-
time education [68] and time spent using a computer. Multivariate
GPS improved prediction of cognitive measures, accounting for up
to 12% of the variance in Pathfinder g (β= 0.35, SE= 0.02, t=
19.85, p < 0.001), up to 12% of the variance in verbal ability (β=
0.35, SE= 0.02, t= 19.67, p < 0.001) and up to 8% of the variance
in nonverbal ability (β= 0.28, SE= 0.02, t= 15.52, p < 0.001;
Fig. 5C). Supplementary Table 22 presents these results separately
for males and females: GPS prediction was comparable between
males and females. This provides support for the potential utility
of administering Pathfinder to large cohorts to advance our
knowledge of the genetics of cognitive ability.
A further characteristic of tests of cognitive ability is that they

overlap genetically with many other traits (indexing pleiotropy),
and particularly so with other cognitive and educational traits.
Genetic correlations (rA) between Pathfinder and other traits were
derived from bivariate twin model fitting (see Method). Genetic
correlations were substantial between the three Pathfinder
composites (rA ranging between 0.73 (95% CIs= 0.68, 0.81) and
0.94 (95% CIs= 0.92; 0.96)) and with cognitive and educational
measures at earlier ages (rA ranging between 0.43 (95% CIs= 0.39,
0.60) and 0.95 (95% CIs= 0.89, 1.00)) (Supplementary Table 23). In
addition to estimating the extent to which two traits overlap
genetically, bivariate twin model fitting also estimates the extent
to which they overlap for environmental reasons. Shared
environmental correlations, indicating how similarities between
family members contribute to the association between traits, were
mostly not significant. On the other hand, nonshared environ-
mental correlations, pointing to how environmental experiences
that differ between siblings contribute to the association between
two traits, were modest between Pathfinder composites (rE= 0.33;
95% CIs= 0.26, 0.39) but small with cognitive and educational
measures obtained at earlier ages, with rE ranging between −0.03
(95% CIs=−0.12, 0.07) and 0.28 (95% CIs= 0.18, 0.37) (Supple-
mentary Table 23).
Bivariate associations between traits can also be expressed in

terms of the proportion of their phenotypic correlations that is
accounted for by genetic, shared environmental and nonshared
environmental factors, respectively. For example, genetic factors
accounted for 64.9% of the correlation between Pathfinder verbal
ability and nonverbal ability, shared environmental factors
accounted for 10.5% of their correlation and nonshared environ-
mental factors accounted for 24.6% of their correlation. (Fig. 5D,
with fit statistics in Supplementary Table 24). Fig. 5D also shows
the proportional contribution of genetics (A), shared environment
(C) and nonshared environment (E) to the phenotypic correlation
between Pathfinder g and cognitive performance over develop-
ment. Estimates for verbal and nonverbal composites are reported
in Supplementary Table 25.

DISCUSSION
Pathfinder is a 15-min gamified online test whose construction
was guided by item response theory and principal component
analysis to be a maximally efficient and reliable measure of g. The
first principal component accounts for 52% of the total variance,
which reflects the communalities among the five tests. The g score
is normally distributed and its one-month test-retest reliability is
0.88. Despite the strong g factor, we were able to differentiate
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verbal and nonverbal cognitive abilities, which correlated 0.57 and
yielded one-month test-retest reliabilities of 0.90 for verbal and
0.75 for nonverbal abilities. This engaging, freely available and
easily accessible measure is a fundamental resource that enables
scientists easily to incorporate general cognitive ability in research
across the biological, medical, and behavioural sciences.
We were especially interested in the application of Pathfinder in

genetic studies. In the midst of a replication crisis in science [77], it
is noteworthy that genetic and genomic results replicate reliably
[78]. Based on previous research, we predicted (https://osf.io/
pc9yh/) that twin heritability for g would be greater than 50%, that
shared environmental influence would be less than 20% and that

multivariate polygenic scores would predict more than 10% of the
variance. Our results confirmed these hypotheses: Heritability was
57%, shared environmental influence was 8% and multivariate
polygenic scores predicted up to 12% of the variance.
The latter finding—that 12% of the variance of Pathfinder g can

be predicted by DNA—makes this the strongest polygenic score
predictor of g reported to date [13]. Although 12% is only one fifth
of the twin study estimate of heritability, we hope that adding
Pathfinder g in large biobanks will improve the yield of meta-
analytic GWAS analyses by increasing sample sizes and decreasing
heterogeneity of cognitive measures. It should be possible to use
the brute force method of increasing sample sizes, especially with

Fig. 5 Twin, SNP and polygenic score heritability for Pathfinder composites, and genetic and environmental associations with measures
of g during childhood and adolescence. A Proportion of variance in Pathfinder g, verbal and nonverbal ability accounted for by
heritability (A), shared environment (C), and nonshared environment (E) calculated using twin design. B SNP heritability estimates
(represented by the length of the red bars) and standard errors (represented by the error bars) for Pathfinder g, verbal and nonverbal ability
composites calculated using GCTA/GREML. C Univariate and multivariate genome-wide polygenic score (GPS) predictions of Pathfinder g,
verbal and nonverbal ability. D Proportion of the phenotypic correlation between Pathfinder g and cognitive and achievement measures
accounted for by their genetic (ra), shared environmental (rc) and nonshared environmental (re) correlation using the twin design. The length
of each bar indicates the size of the phenotypic correlation.
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less heterogeneity of measures, to close the missing heritability
gap from 12% to the SNP heritability of about 30%.
A more daunting challenge is to break through the ceiling of

30% SNP heritability to reach the ~60% heritability estimated by
twin studies of adults. Both GPS heritability and SNP heritability
are limited to the additive effects of the common SNPs assessed
on SNP chips used in GWAS studies. Going beyond SNP heritability
will require whole-genome sequencing that can assess rare
variants and methodologies to analyze gene-gene and gene-
environment interactions [13].
Nonetheless, predicting 12% of the variance of g is a notable

achievement for two reasons. First, until 2016 polygenic scores
could predict only 1% of the variance in general cognitive ability
[13]. Predicting a substantial amount of variance (more than 10%
in this case) is an important milestone for genetic research on
intelligence because effect sizes of this magnitude are large
enough to be ‘perceptible to the naked eye of a reasonably
sensitive observer’ [79]. Second, effect sizes like this, are rare in the
behavioural sciences. For example, one of the most widely used
predictors of children’s g and educational achievement is family
SES. We showed that family SES predicts 9% of the variance of
Pathfinder-assessed g. At two years of age, infant intelligence tests
predict less than 5% of the variance of g in late adolescence
[80, 81]. It is not until the early school years that children’s
cognitive test scores predict more than 10% of the variance of
adult g. The unique value of polygenic scores is that their
prediction of adult g is just as strong from early in life as it is in
adulthood because inherited DNA differences do not change.
Increasing the predictive power of polygenic scores also opens
important new avenues for investigating the mechanisms under-
lying this prediction, including the environmental experiences that
mediate this pathway from genotype to phenotype [24].
We were primarily motivated to create a measure of g that

could be used in large biobanks to improve the power of meta-
analytic GWA studies to identify the minuscule SNP associations
we now know to be responsible for the heritability of g. However,
because g pervades so many aspects of life—education, occupa-
tion, wealth, and health—we hope that Pathfinder will open new
avenues for research into the causes and consequences of general
cognitive ability throughout the life sciences. Incorporating g in
biological, medical, and behavioural research can add a new
dimension that capitalizes on the pleiotropic power of g. Using
Pathfinder as a standard measure of g will also improve the
reproducibility of research in the life sciences, which is critical in
light of the replication crisis [82]. For these reasons, we have
designed a platform to make it easy to use Pathfinder. Further
information on how to access Pathfinder can be found at the
following webpage, specifically created for the purpose of sharing
the test: www.pathfindertestgame.com
Limitations of the present study point the way to future

research. Like most genetic and genomic research, the results of
our study cannot be safely generalized beyond its UK sample
whose ancestry is 90% northern European. Although twin study
heritability estimates of g are substantial in other countries and
ancestries [75, 83], polygenic scores derived largely from
GWA studies of northern European samples are not yet as
predictive in other ancestral groups [84]. The present study has
three more practical limitations. First, Pathfinder is currently
limited to English, although the test’s language load is light, which
will render translation, including appropriate linguistic and cultural
adaptation, manageable. Second, no alternate forms have as yet
been created, which would be useful for longitudinal designs that
require repeated testing, although the high one-month test-retest
reliability suggests that the Pathfinder test can be used for
repeated testing. Third, Pathfinder was created in samples of
adults from 18 to 49 years of age, so its utility for younger or older
groups remains to be investigated.

One of the most widely adopted definitions of g describes it as
“…a very general mental capability that, among other things,
involves the ability to reason, plan, solve problems, think
abstractly, comprehend complex ideas, learn quickly and learn
from experience.” (Gottfredson, [3], p. 13). Alternative conceptua-
lizations and interpretations have also been proposed, most
notably the view that g does not reflect a set of a domain-general
abilities, but is in fact mental energy [85], or a property of the
mind [86], potentially simply indexing overall cognitive potential.
However the statistical abstraction of g is interpreted, given its
remarkable ability to predict important functional and life
outcomes, and its likely universality supported by cross-cultural
research [87, 88], a deeper understanding of g has the potential to
lead to major scientific advances in our understanding of human
development from several scientific angles, from molecular
genetics to psychology and evolutionary biology.
To conclude, over four studies we have created a very brief (15-

min), reliable and valid measure of g, Pathfinder, that given its
gamified features, is also engaging. Pathfinder can be accessed by
all researchers, and easily integrated within existing data
collection platforms. It is our hope that the widespread use of
this engaging new measure will advance research not only in
genomics but throughout the biological, medical, and behavioural
sciences.

CODE AVAILABILITY
Code will be made available by the corresponding author upon request.
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