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In many studies on disease progression, biomarkers are restricted by detection limits,

hence informatively missing. Current approaches either ignore the problem by just

filling in the value of the detection limit for the missing observations or apply a global

approach for estimation of the mean function. The latter is time-consuming for dense

data, and the obtained estimate depends on the whole observed interval which might

not be realistic. We will propose novel estimators for the mean function for both

unbalanced sparse and dense data subject to the detection limit. We will derive the

asymptotic properties of the estimators. We will compare our methods to the exis-

ting methods via simulations and illustrate the new methods with a data application.

Our methods appear to perform well. For dense data, the approximation methods are

computationally much faster than existing methods.
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1 | INTRODUCTION

The availability of dense observations along a continuum has motivated the development of functional data analysis (FDA) methods; see, for

example, Ramsay and Silverman (2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012) and Kokoszka and Reimherr (2017). These

methods are also of interest for sparse data because of their flexibility in estimation of the mean function and the covariance structure of the con-

tinuum (Li & Hsing, 2010; Peng & Paul, 2009; Wang et al., 2016; Yao et al., 2005; Zhang & Wang, 2016). A drawback of these methods however

is that they do not fully model the distribution of the observed data points. Methods which do not model the whole distribution may provide

biased results in the case of missing data. Only when the data are missing completely at random (Little & Rubin, 2019), the FDA estimation proce-

dure provides unbiased estimators. For missing at random or for missing not at random, the observed sample is not a random sample of the popu-

lation; hence, the estimators might be biased. To obtain valid estimators, the missingness has to be modelled. In this paper, we consider a specific

case of missing data not at random, namely, missingness due to the presence of a detection limit (DL). We propose a model and computational

fast estimation procedures for the model parameters.

When levels of a specific marker in a sample have to be determined in a laboratory, we often deal with DLs. The amount of the marker might

be too low to be detected. This results in too many zeros in the dataset, and an observed ‘zero’ might be true zero or just very small. Also on the

other extreme of the distribution, DLs might occur, since measurement techniques are often optimized for a certain range of values, and values

above and below a certain threshold cannot be accurately measured. DLs are not restricted to laboratory measurements only. Devices which mea-

sure certain characteristics (the number of steps for example) might be out of charge yielding an underestimation of the characteristic per day

(e.g., the true number of steps for a day is higher if the device was out of charge). For simplicity in this paper, we only consider DLs on the lower
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extreme of the distribution; that is, we do not observe values lower than a specific value, instead we observe this specific value which is also

called a DL.

The motivating data example is a cohort of 217 scleroderma patients with hospital visits every 6 months from 2010 to 2015. The aim is to

identify biomarkers associated with disease progresses over time; see, for example, Clements et al. (1993), Muangchan et al. (2013), Jaeger et al.

(2018) and Khanna et al. (2017). While the patients were advised to visit a hospital once in every 6 months, patients skipped visits, which resulted

in a sparsely observed unbalanced dataset with in total 408 visits. Here, we focus on estimation of profiles of two biomarkers which are restricted

by a DL at the lower end of the distribution, namely, aldose reductase (AR) with 7.8% values below the DL and alpha fetoprotein (AF) with 75% of

the values below the DL.

To obtain more accurate estimators, we need to model the missingness of the data. We propose to use the probability density function fðYÞ
for the observed values and the probability distribution function FðY ≤DLÞ for the missing observations. As we will see, the presence of the proba-

bility distribution function necessaries numerical approximations in the estimation procedures. Therefore, we propose, in additional to the ‘exact’
methods, also methods which are based on approximations of the probability distribution function. Such an approximation procedure is expected

to be much faster for dense observations. Furthermore, to estimate the mean function around the observed time points, we propose to use the

local polynomial kernel method (Beran & Liu, 2014; Fan & Gijbels, 1995, 2018) instead of the global method which was used by Shi et al. (2021).

The reason is that the observations close to the target point t contain more information about the mean function at t than observations far away

from t. Moreover, in addition to assigning larger weight to the observations in the neighbourhood of t by using a kernel function, we propose two

weighing schemes for subjects, namely, the ‘SUBJ’ scheme and the ‘OBS’ scheme following the same terminology in Zhang and Wang (2016).

While the SUBJ scheme assigns the same weight to each subject, the OBS scheme assigns the same weight to each observation which implies

that subjects with more observations will have more weight.

An alternative approach is to replace the missing values by the value of the DL and apply standard methods (Li & Hsing, 2010; Yao et al.,

2005; Zhang & Wang, 2016). Such an approach will give biased estimators, especially when there are many observations restricted by a DL

(Uh et al., 2008). An approach that addresses the DL problem is the global method of Shi et al. (2021). This estimator might be unbiased but may

also give inaccurate estimators in some situations, for example, when the mean changes over time. Moreover, its estimation procedure is time-

consuming, especially for dense data.

We propose local constant and local linear estimators with approximation and without approximation (‘exact’) for dense and sparse functional

data with DLs and derive their asymptotic behaviour. While the global mean estimator proposed by Shi et al. (2021) might be unbiased, it is less

accurate than our estimator when the mean function changes over time as we observed in our application. Via simulations, we evaluate the per-

formance of our estimators in a sparse and a dense settings under both SUBJ and OBS weighing schemes and compare their performance with

the global approach and with using a standard method where the DL is used for the missing values. Our method which uses an appropriate

approximation in the likelihood function reduces the computational time considerably compared to the method of Shi et al. (2021), for example, in

our simulation more than 100 times compared to the existing global method in the dense setting and around 40 times for the sparse setting. We

also investigate the asymptotic behaviour of the estimators via simulations. The asymptotic properties of the existing global method of Shi et al.

(2021) have not been investigated. Finally, we apply the method to data on two biomarkers and finish with a conclusion.

2 | METHODOLOGY

2.1 | Functional principal component analysis (FPCA)

Let fXðtÞ : t� Ig be an L2 stochastic process on interval I. Let μðtÞ¼ E½XðtÞ� and Cðs,tÞ¼ E½ðXðsÞ�μðsÞÞðXðtÞ�μðtÞÞ� be the mean and covariance

functions of XðtÞ, respectively. Then XðtÞ can be decomposed into

XðtÞ¼ μðtÞþUðtÞ

where UðtÞ is the stochastic part of XðtÞ which has mean zero, that is, E½UðtÞ� ¼0 for t� I, and covariance Cðs,tÞ¼ E½UðsÞUðtÞ� for all s,t� I. By

Karhunen–Loeve expansion and Mercer's Theorem, we have

Cðs,tÞ¼
X∞
l¼1

λlψ lðsÞψ lðtÞ

and

UðtÞ¼
X∞
l¼1

ξlψ lðtÞ
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where ψ lðtÞ are eigenfunctions of the covariance operator corresponding to Cðs,tÞ, the positive real numbers λ1 > λ2 > ::: are eigenvalues of the

covariance operator corresponding to Cðs,tÞ, and varðξlÞ¼ λl. Notice the FPCs fψ lðtÞg consist of an orthonormal basis for L2ðIÞ.
Let X1ðtÞ,…,XnðtÞ be n iid copies of XðtÞ with t� I. Notice that typically, X1ðtÞ,…,XnðtÞ are not observed. Instead we have observations at dis-

crete time points ti1,…,tiNi
for subject i, with Ni the number of measurements for subject i. Furthermore, these observations are perturbations by

(additive) random errors of the true values. Specifically, let Yij denote the jth observation for subject i with j¼1,…,Ni and i¼1,…,n, then Yij can be

written as,

Yij ¼XiðtijÞþϵij ¼ μðtijÞþUiðtijÞþϵij ¼ μðtijÞþ
X∞
l¼1

ξilψ lðtijÞþϵij ð1Þ

where ϵij is an independent random measurement error term following a distribution in the exponential family with mean zero and variance σ2ϵ .

We assume further that ϵij is independent of UiðtÞ (or equivalently ξil). Often a Gaussian distribution is assumed; that is, we have ϵij �Nð0,σ2ϵ Þ and
ξil �Nð0,λlÞ.

In addition, the data are subjected to informative missingness due to DL, and not all Yij are observed. Let δ be the missingness indicator; that

is, δij ¼0 if Yij is observed, and δij ¼1 if Yij is not observed. For the data points that are not observed, we assume that their values are constrained

by a known threshold value cij from below which means the actual unobserved Yij is smaller than a threshold cij. For the sake of simplicity of nota-

tion, we assume the threshold is fixed, that is, cij ¼ c for all i, j. Therefore, the observations are as follows.

fðtij,Yij,δijÞg, i¼1,…,n, j¼1,…,Ni

We first propose a method to estimate the mean μðtÞ from the observations. The estimation of covariance Cðs,tÞ, ξ, and ψðtÞ will be discussed in

subsequent papers.

2.2 | Local kernel weighted log-likelihood estimation of mean function

For the sake of simplicity of notation, we assume in this section that UðtÞ¼0 and ϵ�Nð0,σ2ϵ Þ.
The contribution to the log-likelihood from the jth observation of the ith subject, ðtij,Yij,δijÞ, is

lij ¼ð1�δijÞlðμðtijÞ,YijÞþδij lðμðtijÞ,cÞ: ð2Þ

Under the Gaussian distribution, we have

lðμðtijÞ,YijÞ¼ log ϕðYij;μðtijÞ,σ2
� �

and

lðμðtijÞ,cÞ¼ log Φðc;μðtijÞ,σ2
� �

,

where ϕð�;μ,σ2Þ and Φð�;μ,σ2Þ are the pdf and cdf of Nðμ,σ2Þ, respectively, with σ2 ¼ σ2ϵ ; see in Li and Zhang (2011) and Shi et al. (2021).

Now to estimate μðtÞ at a time point t� I, we approximate μðtijÞ by its Pth order Taylor expansion at t:

μðtijÞ ¼ μðtÞþμ0ðtÞðtij� tÞþμ00ðtÞ
2!

ðtij� tÞ2þ :::

≈

1

ðt� tijÞ
..
.

ðt� tijÞP

0BBBBBB@

1CCCCCCA

T μðtÞ
μ0ðtÞ
..
.

μðPÞðtÞ
P!

0BBBBBBB@

1CCCCCCCA¼: bTðtÞβ:

where bTðtÞ¼ 1,ðt� tijÞ,…,ðt� tijÞP
� �T

and β¼ β0,β1,…,βP�1ð ÞT ¼ μðtÞ,μ0ðtÞ,…, μ
ðPÞðtÞ
P!

� �T
Therefore, for a data point ðtij,Yij,δijÞ in a neighbourhood of t, we define its contribution to the local kernel-weighted log-likelihood

lijðβ;h,tÞ¼wi δij l c,bTðtÞβ,σ2
� �

þð1�δijÞl Yij,b
TðtÞβ,σ2

� �h i
Khðtij� tÞ ð3Þ
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where Khð�Þ¼Kð�=hÞ=h with Kð�Þ a one-dimensional kernel function with bandwidth h. Such a kernel regression method is widely used; see Fan

and Gijbels (1995), Yao et al. (2005), Beran and Liu (2014) and Beran and Liu (2016). For the weights wi , we propose to use

wSUBJ
i ¼ 1

nNi

or
wOBS

i ¼ 1Xn

i¼1
Ni

:

Notice that
Pn

i¼1Niwi ¼1. In FDA, the SUBJ and OBJ are the most commonly used weighting schemes (see Zhang & Wang, 2016). The SUBJ

scheme assigns a higher weight to the observations from subject i than from subject k if Ni <Nk , While, the OBS assigns the same weight to each

observation independent of the number of observations of a subject.

Therefore, the local (kernel-weighted) log-likelihood is

LPðβ;h,tÞ¼
Xn
i¼1

wi

XNi

j¼1

lijðβ;h,tÞ:

Maximizing the above equation with respect to β gives the estimator of β: β̂¼ðβ̂0,…, β̂P�1Þ
T ¼ μ̂ðtÞ,…, μ̂ðPÞðtÞ=P!

� �T
, and obviously, β̂0 is the estima-

tor of μðtÞ, and β̂p is the estimator of p!μðpÞðtÞ for p¼1,…,P.

Now for P¼2, the local log-likelihood is

L2ðβ;h,tÞ ¼
Xn
i¼1

wi

XNi

j¼1

δij log Φ
c�ðβ0þβ1ðtij� tÞÞ

σ

� �� 	


þð1�δijÞ log ϕ
yij�ðβ0þβ1ðtij� tÞÞ

σ

� �� 	�
Khðtij� tÞ:

ð4Þ

Optimization techniques can be used to maximize L2ðβ;h,tÞ (see simulation studies). Maximizing it directly to obtain an analytic form of the

estimator is difficult, because the log-likelihood contains the function logðΦðxÞÞ for the observations restricted by the DL. However, in most cases

when dealing with a DL, the function values of logðΦðxÞÞ are only needed for a small range of x values, namely, x¼ σ�1½c�ðβ0þβ1ðtij� tÞÞ�>0, as
c> β0þβ1ðtij� tÞ. Furthermore, logðΦðxÞÞ≈0 for x>2. Thus, if we take the random error into account, we only need the function values of

logðΦðxÞÞ for �1< x¼ σ�1½c�ðβ0þβ1ðtij� tÞÞ�<2. We propose to approximate logðΦðxÞÞ for �1< x< 2 by a quadratic function. The quadratic

function is obtained by first dividing ½�1,2� into 300 equal subintervals and then computing the function values of logðΦðxÞÞ at each dividing

point. Then a regression is performed with the function values of logðΦðxÞÞ at these dividing points as the response variable and the dividing

points x and the square of x as the covariates. Thus, logðΦðxÞÞ, x� ½�1,2�, is approximated by

logðΦðxÞÞ≈ �0:7172þ0:8194x�0:251x2, x� ½�1,2�:

From Figure 1, we see that this approximation is accurate.

This approximation does not only reduce the computational burden but also simplifies the estimation procedure. Moreover, it helps to obtain

the asymptotic property of the estimators in a more intuitive way.

Under this quadratic approximation, the estimators β¼ðβ0,β1ÞT have a closed form. Notice that, based on this approximation, the local log-

likelihood (4) reduces to (ignoring a constant term)

L2ðβ;h,tÞ ¼
Xn
i¼1

wi

XNi

j¼1

�0:251δij
c�ðβ0þβ1ðtij� tÞÞ

σ

� �2
"

þ0:8194δij
c�ðβ0þβ1ðtij� tÞÞ

σ

þð0:5�0:5δijÞ yij�ðβ0þβ1ðtij�tÞÞ
σ

� �2�
Khðtij� tÞ:

ð5Þ
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Maximizing (5) with respect to β0 and β1 gives a local linear estimator of mean function, μ̂ðtÞ. The case of P¼1 gives a local constant estima-

tor of the mean function. Here, we only derive the asymptotic normality of the local linear estimator of mean (see Theorem 1). The asymptotic

normality of local constant estimator of mean can be derived in a similar way but less complicated.

Theorem 1. Asymptotic normality of μ̂ðtÞ:
For a fixed interior point t� I, under Assumptions 1-3 given in the Appendix, we have

ðΓn,Ni
Þ�1=2 μ̂ðtÞ�μðtÞ�BðtÞσ�h2

2
σ2Kμ

00ðtÞþoðh2Þ
" #

!Nð0,1Þ

where

Γn,Ni ¼
P

iNi wi1ðtÞþwi4ðtÞ�BðtÞwi2ðtÞð Þ2þw2
i3ðtÞ

h
kKk2 σ2

fðtÞ

with

BðtÞ ¼
P

iNiðwi1ðtÞþwi4ðtÞÞP
iNiwi2ðtÞ ,

wi1ðtÞ ¼�0:8194δiðtÞwi ,

wi2ðtÞ ¼ ð1�0:498δiðtÞÞwi ,

wi3ðtÞ ¼ ð1�δiðtÞÞwi,

wi4ðtÞ ¼0:502δiðtÞ½�1,2�wi:

Remark 1. We notice wi4ðtÞ has the expression 0:502δiðtÞ½�1,2�wi, which is the likelihood contribution of the observations that are

restricted by the DL. Because we approximate the distribution in the interval ½�1,2�, this interval appears in the expression. Clearly,

if δiðtÞ¼0, that is, none of the observations is restricted by the DL, and wi4ðtÞ is omitted.

Remark 2. If all δij ¼0ðδiðtÞ¼0Þ, that is, no DL, then the asymptotic bias reduces to

h2

2
σ2Kμ

00ðtÞþoðh2Þ

F IGURE 1 Quadratic approximation of logðΦðxÞÞ when x� ½�1,2�
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which coincides with existing results in Zhang and Wang (2016).

If all δij ¼1ðδiðtÞ¼1Þ, that is, all observations are contaminated with the DL, then the asymptotic bias is

ð�0:8194þ0:502½�1,2�Þσþh2

2
σ2Kμ

00 ðtÞþoðh2Þ

which of course is influenced by the extent to which the true values are different from threshold c.

Remark 3. If all δij ¼0ðδiðtÞ¼0Þ, that is, no DL, then the asymptotic variance reduces to

P
iNiw2

i

h
kKk2 σ2

fðtÞ

which coincides with existing results in Zhang and Wang (2016).

Remark 4. Theoretically, Assumption 3 in Appendix 3 provides a guide for selecting an optimal bandwidth for the estimation of the

mean function; that is, it depends on n,Ni,wi and δij. In practice, we would suggest a data-driven method to select an appropriate

bandwidth, for example, GCV which we used in the data analysis.

3 | SIMULATION STUDY

We evaluate the performance of our proposed methods (local constant with approximation, local linear with approximation, local constant with-

out approximation) for various scenarios via simulations. We compare their performance with the global method of Shi et al. (2021) and with a

standard method where the missing observations are replaced with the DL value (Yao et al., 2005). We compare the methods in terms of bias,

efficiency, asymptotic behaviour and computation time.

We assume that UðtÞ¼0 for simplicity and define the true mean function as follows:

μðtÞ¼�0:5þ1:5sinð10πðtþ0:5ÞÞþ4ðt�1Þ3, t� ½1,2�:

The observed time points tij �U½1,2� are iid sampled from the continuous uniform distribution in the interval ½1,2�. Additive errors are sampled

from ϵij �Nð0,1Þ. Then, the response is generated by

Yij ¼ μðtijÞþϵij, i¼1,…,n, j¼1,…,Ni:

Finally, we create missing data by replacing observations smaller than zero with zero; that is, we assume a DL of zero.

We consider two settings, namely, a sparse and a dense grid for the observations for each subject i. Specifically,

• Sparse setting: Ni �Uf3,4,5,6,7,8,9,10g, that is, Ni are iid from a discrete uniform distribution in the interval ½3,10�.
• Dense setting: Ni �Uf175,176,…,200g, that is, Ni iid from a discrete uniform distribution in the interval ½175,200� ¼ 7

8n,n
� 

where n¼200 is

the number of subjects.

For each setting, we simulate Q¼100 replicates. Each replicate contains information of n¼200 subjects.

To estimate the mean functions in the replicates, we consider the following estimation methods:

• local constant approximation: the local constant method (P¼1) but using the quadratic approximation.

• local linear approximation: the local linear method (P¼2) but using the quadratic approximation.

• local constant exact: the local constant method (P¼1) without approximation, using numerical optimization methods to obtain the parameters.

• imFunPCA: with adjustment of DL but not in a local way proposed by Shi et al. (2021).

• PACE: without adjustment of detection limit but in a local linear way proposed by Yao et al. (2005).
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The variance of ϵij is estimated as the mean squared error based on the least-squared fit using all the data (including the values subject to DL).

We use the Gaussian kernel for the estimation procedure. To select the bandwidth h, the integrated squared error (ISE) is computed for a dense

grid of values; namely, h¼ð3 :10Þ=400. The ISE is defined as follows:

ISEðμ̂ðtÞ,hÞ¼ ð

2

1

ðμ̂ðtÞ�μðtÞÞ2dt:

The bandwidth which minimizes ISEðμ̂ðtÞ,hÞ is selected as the optimal bandwidth, and the corresponding ISE is denoted with ISEoptðμ̂ðtÞÞ.
We then calculate the mean integrated squared error (MISE) and the SD of ISE over 100 replicates:

MISEðμ̂ðtÞÞ¼ 1
Q

XQ
i¼1

ISEoptðμ̂ð½i�ÞðtÞÞ:

SDðμ̂ðtÞÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q�1

XQ
i¼1

ISEoptðμ̂ð½i�ÞðtÞÞ�MISEðμ̂ðtÞÞ
� �2vuut ,

where μ̂ð½i�ÞðtÞ is the mean estimation based on the ith replicate.

F IGURE 2 The observations in the sparse setting: left without the detection limit, right with the detection limit, the red curve is the true
curve

F IGURE 3 The mean estimation in the sparse setting (estimated at 200 equal-distant points in ½1,2�: bandwidth for the constant
approximation method is 0.015; bandwidth for the linear approximation method is 0.015; for the exact method is 0.015. The number of basis for
imFunPCA is 20)
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For the sparse setting and the first replicate, Figure 2 depicts the data and the true mean function, and Figure 3 shows the corresponding esti-

mation of mean for different methods, respectively. The proportion of observations subject to DL is 42.17% in this replicate. The mean function is

estimated on 200 equal-distant time points in ½1,2�. For this replicate, the proposed methods (local constant approximation, local linear approxi-

mation, local constant exact) appear to perform slightly better than imFunPCA and better than PACE. The time needed for calculating the esti-

mated mean function appeared to vary across the methods. These are 0.03 secs for the local constant approximation, 0.06 seconds for the local

linear approximation, 22.51 seconds for the local constant exact, 1.26 seconds for imFunPCA, and 28.90 seconds for PACE. Thus, our proposed

local approximation methods are more time efficient than the other methods.

For the dense setting, the data of one replicate and the mean functions estimated by the various methods are given in Figures 4 and 5,

respectively. The proportion of observations subject to DL is 42.43% in this replicate. The mean function is estimated on 200 equal-distant time

points in ½1,2�. For this replicate, the proposed methods (local constant approximation, local linear approximation, local constant exact) perform

much better than the existing ones: imFunPCA and PACE. The time needed for calculating the estimated mean function appeared again to vary

across the methods, namely 0.11 seconds for the local constant approximation, 0.24 seconds for the local linear approximation, 647.67 seconds

for the local constant exact, 31.72 seconds for imFunPCA, and 8047.90 seconds for PACE. Thus, our proposed local approximation methods are

considerably more time efficient than the other methods for the dense setting.

In Table 1, the MISE*100 and the corresponding standard deviation (SD) for local constant approximation, local linear approximation, local

constant exact, imFunPCA and PACE for the two weighing schemes (SUBJ or OBS) are given. Also the mode of optimal tuning parameter

(i.e., bandwidth in local constant/linear estimation or the number of basis in imFunPCA) selected for each replicate is provided. The mean func-

tions are estimated on 50 equal-distant time points in ½1,2�. Due to the numerical optimization, the exact methods are computational intensive

especially for the dense setting. Therefore, we did not consider the linear exact method and only used the OBS scheme. Moreover for the dense

F IGURE 4 The observations in the dense setting: left without the detection limit, right with the detection limit, in red is the true curve

F IGURE 5 The mean estimation in the dense setting (estimated at 200 equal-distant points in ½1,2�: bandwidth for the constant
approximation method is 0.0075; bandwidth for the linear approximation method is 0.01; for the exact method is 0.0075. The number of basis for
imFunPCA is 20)
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setting, we only simulated 10 replicates and did not select an optimal bandwidth. Note that for the dense setting, the approximation methods

using the OBS scheme and the SUBJ scheme perform similarly. Here we only simulated 10 replicates and did not select an optimal bandwidth.

And the bandwidth was set to be 0.0075 which is the obtained value in the approximation approaches. Also for the imFunPCA method and the

dense setting, the computation burden is large. Hence, we only analysed the first 10 replicates. For these replicates, we still select an optimal

number of basis over a grid ((8:15)*2), since based on the results of the local methods, the sparse case might need a bigger bandwidth. It appeared

however that the same number of basis is selected as in the sparse case, namely, 20. Finally, for the PACE method in the dense setting, we only

analysed 1 replicate, as the computation time is huge. Note that PACE method automatically selected an optimal bandwidth by GCV.

It appears that for the dense setting, the SUBJ scheme gives slightly smaller MISE compared to the OBS scheme. This in contrast to the

sparse setting, for which the OBS scheme gives smaller MISE than the SUBJ scheme. The local linear approximation gives slightly better results

than the local constant approximation. Note that in contrast to the other methods, the local linear approximation also gives an estimate of the first

derivative of the mean function. With regard to the existing methods, the MISE of the global method imFunPCA is larger than that of the local

methods proposed in this paper, especially for the dense setting. For PACE, its MISE is much larger than that of the local methods proposed in this

paper for both dense and sparse settings as could be expected since it does not take into account of the DL.

We also evaluated the asymptotic behaviour of the local constant approximation, local linear approximation and local constant exact methods

by computing MISE and SD by increasing the sample size n. The mean function is estimated on 50 equal-distant time points in ½1,2�. The results

are given in Table 2. Clearly as n increases (from 50 to 200), the MISE and the corresponding SD decrease for all the methods. For all considered

sample sizes, the local methods have the highest accuracy, although the difference decreases with the sample size. Especially, the local linear

approximation method in the sparse setting performed better. For the sparse setting, the OBS scheme performs better than the SUBJ scheme.

For the dense setting, the two weighing schemes perform similar, but as n increases, the SUBJ scheme appears to outperform the OBS scheme

slightly.

4 | DATA APPLICATION

In total, information on two biomarkers from 217 scleroderma patients with hospital visits from 2010 to 2015 has been retrospectively obtained

for this study. Scleroderma has a heterogeneous disease course across patients. For some patients, the disease worsens over time while, for

others, the disease is stable. The data were collected according to an ethically approved protocol for the observational study HRA number

15/NE/0211. Typically, scleroderma patients visit the hospital every 6 months to check whether the disease has progressed. However, patients

missed their appointments, or their data were not recorded, resulting in a sparse unbalanced dataset. Here, we are interested in estimation of the

mean function of two biomarkers for disease progression which are subject to a DL, namely, AR and AF. The DL for AR is 3.1; that is, the values

that are less than 3.1 are set to 3.1; while the DL for AF is 0.98; that is, the values that are less than 0.98 are set to 0.98. For AR, 7.8% observa-

tions are missing due to the DL, while for AF, this percentage is 75%. After removing observations at time points with no outcome or no

TABLE 1 MISE � 100 and SD(MISE � 100) of local constant approximation, local linear approximation, local constant exact, imFunPCA and
PACE for both SUBJ and OBS weighing schemes and both dense and sparse settings and the mode of bandwidth (on the grid (3:10)/400) or the
number of basis (on the grid (8:15)*2) selected for each replicate

Dense Sparse

MISE*100 (SD) mode(bw/nb) MISE*100 (SD) mode(bw/nb)

constant approx(OBS) 1.073337(0.1227) 0.0075 3.89(0.93) 0.0150

constant approx(SUBJ) 1.073083(0.1234) 0.0075 4.34(1.05) 0.0175

linear approx(OBS) 1.024649(0.115) 0.0100 3.84(0.94) 0.0150

linear approx(SUBJ) 1.024568(0.116) 0.0100 4.29(1.05) 0.0175

Based on 10 replicates

constant exact(OBS) 0.72(0.137) 0.0075(fixed) 4.24(1.42) 0.0150

imFunPCA(OBS) 2.14(0.229) 20 4.39(1.94) 20

Based on 1 replicate

PACE(OBS) 138(NA) 230(3.87)

Note: Notice that ‘fixed’ means, for the constant exact method in dense setting, we set bandwidth to be 0.0075 which is the same as that in the

approximation approaches to reduce the computation burden. There are in total 100 replicates. The mean function is estimated on 50 equal-distant time

points in ½1,2�. The results of constant exact and imFunPCA in dense setting are based on 10 replicates. The PACE method in dense setting only has one

replicate.
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biomarker values, some outlier values (at one time point AR has a value larger than 3 times the SD and patients with only one observation), our

final dataset comprises 90 patients with in total 268 observations.

We estimate the mean of AR and AF by using the three novel methods proposed in this paper and two existing methods. Since the data are

sparse and the number of patients is relatively small, based on the results of the simulation, we would prefer the local constant approximation and

local linear approximation methods for estimation of the mean functions of AR and AF. We only consider the OBS scheme which appeared to be

the best option for sparse data in the simulation study. For the local constant approximation, the bandwidth is selected using CV over a fine grid.

This selected bandwidth is also used in the local linear approximation and constant exact methods. The number of basis in imFunPCA is also

selected based on CV over a grid. The results are shown in Figures 6 and 7 for AR and AF, respectively. For AR, the various methods provide simi-

lar estimates of the mean function, which was expected because of the small number of missing values due to DL. For AF, the percentage of

observations subject to DL is much larger; hence, methods which do not adjust for DL should not be used. From Figure 7, PACE provides, indeed,

a different estimate for the mean function, and this result should not be trusted. Furthermore, the local constant approximation, local linear

approximation and local constant exact method give similar results before 40 months. And imFunPCA varies more than the local methods. Note

that after 40 months, none of the estimations can be trusted since there is very limited information.

Because of the lack of information after 40 months, we also estimated the curves until 40 months. The results are depicted in Figures 8 and 9

for AR and AF, respectively. We do not expect the local approaches to change much if the bandwidth is not big, while the global approaches might

TABLE 2 MISE � 100 and and SD(IMSE � 100) of local constant approximation, local linear approximation, local constant exact, for both
OBS and SUBJ weighing schemes and both dense and sparse settings under different sample sizes (50, 100, 150 and 200)

n¼50 n¼100 n¼150 n¼ 200

Dense

constant approx(OBS) 2.3027(0.462) 1.3985(0.253) 1.1425(0.149) 1.0733(0.123)

constant approx(SUBJ) 2.3065(0.461) 1.3993(0.252) 1.1422(0.148) 1.0731(0.123)

linear approx(OBS) 2.3375(0.487) 1.3044(0.229) 1.0791(0.133) 1.0246(0.115)

linear approx(SUBJ) 2.3400(0.488) 1.3050(0.227) 1.0788(0.132) 1.0246(0.116)

Sparse

constant approx(OBS) 10.12(2.79) 6.36(1.46) 4.61(1.05) 3.89(0.93)

constant approx(SUBJ) 11.29(3.16) 7.07(1.64) 5.21(1.27) 4.34(1.05)

constant exact(OBS) 12.15(5.60) 8.24(5.36) 5.14(1.49) 4.24(1.42)

linear approx(OBS) 9.86(2.92) 6.34(1.46) 4.54(1.07) 3.84(0.94)

linear approx(SUBJ) 10.89(3.30) 7.07(1.63) 5.15(1.28) 4.29(1.05)

Note: The optimal bandwidth is selected based on the MISE criteria. There are in total 100 replicates. The mean function is estimated on 50 equal-distant

time points in ½1,2�.

F IGURE 6 The mean estimation for AR by using different methods
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F IGURE 7 The mean estimation for AF by using different methods

F IGURE 8 The mean estimation for AR by using different methods

F IGURE 9 The mean estimation for AF by using different methods
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be affected by restricting the analysis to the first 40 months. The bandwidth for the local linear approximation is selected based on CV over a fine

grid, and this bandwidth is also used for the local constant approximation and the constant exact methods. The number of basis in imFunPCA is

selected based on CV over a grid. Since there are not many observations observed below DL for the AR, the various methods gave similar results

(Figure 8). While for AF (Figure 9), the local methods give similar results as expected. PACE gives again too high values since it does not take into

account of DL. The mean function estimated by imFunPC is quite different and varies across time probably due to undersmoothing. Thus, just as

in the simulation study for the dataset, the novel local approaches perform best especially when there are many observations subject to DL and in

the sparse setting.

5 | DISCUSSION

We have proposed novel estimators for the mean function using unbalanced sparse and dense data subject to DL. Our method is based on local

smoothing of the mean functions using kernel functions. We derived the asymptotic properties of the estimators. We compared our methods to

existing methods and showed that our methods performed better in terms of efficiency, bias and computation time. We also considered two

weighing schemes for the observations: one based on single observations and the other based on subjects. For sparse data, weighing per observa-

tion appeared to perform better. For dense data, the approximation methods are computationally fast.

We applied our methods to sparse and unbalanced functional data on two biomarkers. The two biomarkers have different percentage of

observations restricted to DL, namely, 7.8% and 75%, respectively. Our proposed methods appear to give appropriate estimates of the mean func-

tion. The global method appears to be affected by reducing the observation period. In contrast to the other methods, its estimate of the mean

function fluctuated. Ignoring DL was not an option for the biomarker which had 75% observations subject to DL.

An alternative to our approach might be imputation of the missing observations. For cross sectional data, Uh et al. (2008) studied the perfor-

mance of imputation methods. They conclude that these methods may give biased estimators or underestimated variances. Moreover, they do

not perform well if the percentage of DL is large (say larger than 30%). In this paper, we investigated the DL problem for functional data over time

and estimated the mean curves for individuals. Given the results of Uh et al. (2008) and the fact that multiple imputations would increase the com-

putation time, we did not consider this approach for the estimation of the mean curve.

Currently, we are working on an estimator for the covariance function estimator for datasets with observations that are restricted by the

DL. Estimators of the mean and covariance functions would enable us to setup the corresponding FPCA. FPCA provides us a dimension reduction

method from infinite dimension to a finite dimension. FPCA will also provide smooth individual curves which are often required for sparse

datasets. In addition, a functional regression model can be developed to investigate the influence of covariates with DL on the outcomes which

might be also subject to DL. The problem of missing data not at random is not limited to laboratory measurement. Similar informative missingness

occurs due to the malfunction of devices; examples are pollutant monitoring stations and wearable devices which collect health status data. This

is sometimes called partially observed functional data. To conclude, our work is a first step to FPCA and functional regression methods for data

partially missing, which is a common situation in real data examples.
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APPENDIX A

ASSUMPTIONS

Assumption 1. Assumptions for kernel function:

(A1) The kernel function Kð�Þ is a symmetric probability density function on ½�1,1�, and

σ2K ¼ ðu2KðuÞdu<
and

kKk2 ¼ ðK2ðuÞdu< :

Assumption 2. Assumptions for time points and true functions:

(B1) Time points ftij, i¼1,…,n, j¼1,…,Nig are iid copies of a random variable T defined on interval I with density fð�Þ:

0 <mf ≤ min fðtÞ≤ max fðtÞ≤Mf <
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and f 0
0 ðtÞ is bounded.

(B2) Indicator curves fδiðtÞ, i¼1,…,ng are defined on ½0,1� with range f0,1g and δiðtijÞ¼ δij.

(B3) XðtÞ is independent of T, ϵ is independent of T.
(B4) μ0

0 ðtÞ is bounded on I.

Assumption 3. Assumptions for deriving the asymptotic distribution of mean estimation:

(C1)

h!0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iNiw2

i2ðtÞ
h

s
!0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iNiðw2

i1ðtÞþw2
i3ðtÞþw2

i4ðtÞÞ
h

s
!0:

(C2)
min

hP
iNiw

2
i2ðtÞ

,
hP

iNiðw2
i1ðtÞþw2

i3ðtÞþw2
i4ðtÞÞ

( )
h6 !0:

Assumption (A1) is standard in the context of kernel smoothing. Assumptions (B1), (B3) and (B4) are standard in the local polynomial smooth-

ing and the context FDA. Assumption (B2) is the assumption of the DL behaviour of the observations. Assumptions (C1) and (C2) guarantee con-

sistency of the estimators, and (C1) is also used to check the Lyapunov condition for asymptotic normality.

PROOF OF THEOREM 1

Proof. By calculation, we have the following derivatives:

∂L2
∂β0

¼ σ�2
Xn
i¼1

wi

XNi

j¼1

0:502δijðc�β0�β1ðtij� tÞÞ�0:8194δijσ
�

þð1�δijÞðyij�β0�β1ðtij� tÞÞKhðtij� tÞ

and

∂L2
∂β1

¼ σ�2
Xn
i¼1

wi

XNi

j¼1

0:502δijðc�β0�β1ðtij� tÞÞ�0:8194δijσ
�

þð1�δijÞðyij�β0�β1ðtij� tÞÞðtij� tÞKhðtij� tÞ:

Setting them to be zero and, and solving β0 and β1, we have

μ̂ðtÞ¼ β̂0 ¼
R0S2�R1S1
S0S2�S21

where, for r¼0,1,2,

Sr ¼
Xn
i¼1

wi

XNi

j¼1

ð1�0:498δijÞ tij� t
h

� �r

Khðtij� tÞ
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and

Rr ¼
Xn
i¼1

wi

XNi

j¼1

�0:8194δijσþ0:502δijcþð1�δijÞyij
�  tij� t

h

� �r

Khðtij� tÞ:

Actually, we can write

μ̂ðtÞ¼ β̂0 ¼
R0eS0 �

eS1eS0 μ̂0ðtÞþ tμ̂0ðtÞ

where

Sr ¼
Xn
i¼1

wi

XNi

j¼1

ð1�0:498δijÞtrijKhðtij� tÞ:

Define

~μðtÞ¼ β̂0 ¼
R0eS0 �

eS1eS0 μ0ðtÞþ tμ0ðtÞ:

We first prove that we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

hP
Niw

2
i2ðtÞ

,
hP

Niðw2
i1ðtÞþw2

i3ðtÞþw2
i4ðtÞÞ

( )vuut ðμ̂ðtÞ� ~μðtÞÞ¼ oPð1Þ:

To see it, we can show that

μ̂� ~μ¼�S1
S0

S0ðR1�μS1�hμ0S2Þ�S1ðR0�μS0�hμ0S1Þ
S0S2�S21

:

It is straightforward to show that both S0 and S0S2�S21 are positive and bounded away from 0 with probability tending to one. It is also straight-

forward to show that

S1 ¼OP hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Niw2
i2ðtÞ

h

r !
,

R1�μS1�hμ0S2 ¼OP h2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Niðw2
i1ðtÞþw2

i3ðtÞþw2
i4ðtÞÞ

h

r !
,

R0�μS0�hμ0S1 ¼OP h2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Niðw2
i1ðtÞþw2

i3ðtÞþw2
i4ðtÞÞ

h

r !
:

Then we show the asymptotic normality of ~μðtÞ. By the Lyapunov condition and Cramer–Wald device, we can derive the asymptotic joint normal-

ity of ðR0�E½R0�, ~S1�E½~S1�, ~S0�E½~S0�Þ, and the convergence rate is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min hP

Niw2
i2
ðtÞ ,

hP
Niðw2

i1
ðtÞþw2

i3
ðtÞþw2

i4
ðtÞÞ

� 	s
:
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In order to calculate the asymptotic variance, we first calculate the asymptotic bias, and we obtain

E½~S0� ¼ fðtÞþh2

2
σ2Kf

00ðtÞþoðh2Þ
" #P

Niwi2ðtÞ,

E½~S1� ¼ tfðtÞþh2

2
σ2Kð2f 0ðtÞþ tf 00ðtÞÞþoðh2Þ

" #P
Niwi2ðtÞ,

E½R0� ¼ fðtÞþh2

2
σ2Kf

00ðtÞþoðh2Þ
" #

σ
P

Niðwi1ðtÞþwi4ðtÞÞ

þ μðtÞfðtÞþh2

2
σ2Kðμ00ðtÞfðtÞþ2μ0ðtÞf 0ðtÞþμðtÞf 00ðtÞþoðh2Þ

" #P
Niwi2ðtÞ

where σ2K ¼ Ðu2KðuÞdu: Therefore, by using the delta method, the asymptotic bias is

E½~μðtÞ��μðtÞ¼
P

Niðwi1ðtÞþwi4ðtÞÞσP
Niwi2ðtÞ þh2

2
σ2Kμ

00ðtÞþoðh2Þ:

Then, in order to calculate the asymptotic variance, we calculate:

varð~S0Þ ¼
P

Niw2
i2ðtÞ

h
ðkKk2fðtÞþoð1ÞÞ,

varð~S1Þ ¼
P

Niw2
i2ðtÞ

h
ðkKk2t2fðtÞþoð1ÞÞ,

covð~S0,~S1Þ ¼
P

Niw2
i2ðtÞ

h
ðkKk2tfðtÞþoð1ÞÞ,

varðR0Þ ¼1
h

X
Ni½ðw2

i1ðtÞþw2
i3ðtÞþw2

i4ðtÞÞσ2þw2
i2ðtÞμ2ðtÞ

þ2σðwi1ðtÞþwi4ðtÞÞwi2ðtÞμðtÞ�kKk2fðtÞ,

covðR0, ~S0Þ ¼
P

Ni w2
i2ðtÞμðtÞþσðwi1ðtÞþwi4ðtÞÞwi2ðtÞ

� 
h

kKk2fðtÞ,

covðR0, ~S1Þ ¼
P

Ni w2
i2ðtÞμðtÞþσðwi1ðtÞþwi4ðtÞÞwi2ðtÞ

� 
h

kKk2tfðtÞ:

Therefore, by using the delta method, the asymptotic variance is

varð~μðtÞÞ¼
P

Ni wi1ðtÞþwi4ðtÞ�Cwi2ðtÞð Þ2þw2
i3ðtÞ

h
kKk2 σ2

fðtÞ

where C¼
P

Niðwi1ðtÞþwi4ðtÞÞP
Niwi2ðtÞ :
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