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Generalized partially functional 
linear model
Weiwei Xiao1, Yixuan Wang1* & Haiyan Liu2,3

In this paper, a generalized partially functional linear regression model is proposed and the asymptotic 
property of the proposed estimated coefficients in the model is established. Extensive simulation 
experiment results are consistent with the theoretical result. Finally, two application examples of the 
model are given. One is sleep quality study where we studied the effects of heart rate, percentage of 
sleep time on total sleep in bed, wake after sleep onset and number of wakening during the night on 
sleep quality in 22 healthy people. The other one is mortality rate where we studied the effects of air 
quality index, temperature, relative humidity, GDP per capita and the number of beds per thousand 
people on the mortality rate across 80 major cities in China.

Nowadays, more and more data, in various fields such as medicine, economics, biology and computer, are 
recorded in the form of curves or images. For these high-dimensional data, traditional multiple regression 
analysis is insufficient. Ramsay 23 proposed the concept of functional data. Functional data can be thought of as 
a real valued function defined on a compact interval. In other words, the data sampled can be represented as a 
function by interpolation or fitting. Indeed, functional data is different from scalar data because of its infinite 
dimension. Ramsay and  Dalzell24 proposed functional data analysis. Since then, functional data analysis has been 
very popular among researchers. Many statistical methods such as principal component analysis, functional 
regression, and cluster analysis have been developed and widely used. For details on functional data analysis, 
see monographs Ramasy and  Sliverman25, Ferraty and  Vieu10, Horvath and  Kokoszka14, Hsing and  Eubank15, 
and so on.

With respect to functional regression, functional and scalar data can respectively appear in the regression 
model as predictors and responses. And estimation of regression coefficients is important in functional regression 
model. The case that response is scalar and predictors are functional is well-developed. For examples, Cardot 
et al.5 studied two estimation methods of principal component estimation and penalty spline, Cai and  Hall3 
used a principal components approach to estimate regression coefficients, Kou and  Liu19 used a wavelet basis 
to estimate regression coefficients, and so on. The case where the response is scalar with functional and scalar 
predictors can be referred to  Shin31 which used the least squares method to estimate regression parameters, 
Shin and  Lee32 and its regression parameter estimation is based on functional principal components regression 
(FPCR) and the alternative is functional ridge regression (FRR) based on Tikhonov regularization, Kong et al.18 
characterized the effects of regularization on the resulting estimators, Wang et al.33 used a two-step estimation 
method based on functional effective dimension reduction, slice inverse regression and kernel estimation to give 
the estimation of partial functional linear models, and gave the convergence rate of the estimation, and so on.

Generalized functional regression model has attracted more and more researchers’ interest. Müller21 develop 
generalized functional regression but only include one functional predictor and proposed a functional estimating 
equation which is maximizing a functional quasi-likelihood. Goldsmith et al.11 proposed the generalized linear 
mixed model and compared likelihood based and Bayesian estimation. However the response in their simula-
tion study and application is continuous, and the corresponding asymptotic property of estimated parameters 
is not obtained. Crainiceanu et al.8 introduced generalized multilevel functional linear models. They proposed 
and compared two methods for inference: a two-stage frequentist approach and a joint Bayesian analysis. They 
studied the generalized functional linear model in which the predictive variables are both functional and sca-
lar and the response variables are scalar. However, they do not give corresponding results for the generalized 
functional linear model with binary or Poisson response variables. Ieva and  Paganoni16 proposed a generalized 
functional linear regression model for binary response and applied the model to the ECG signals. They studied 
the generalized functional linear model with binary response variables, but they did not give the corresponding 
asymptotic property of estimated parameters, and the predictive variables only have functional data in their 
application. For general response such as binary or Poisson the theory is not well-developed. In this paper, We 
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establish generalized partially functional regression model which can deal with general response and multiple 
scalar and functional predictors and we develop quasi-likelihood method to estimate the regression coefficients.

Mental health problem reduces quality of life, especially during this pandemic, and sleep quality can result in 
severe mental health problem. Therefore study of sleep quality has received extensive attention from research-
ers, see  Zhang36,  Kadoya17 and so on. Our work is motivated by a sleep quality study aiming to investigate the 
relationship between sleep quality which is binary and covariates which are functional and scalar. The Multilevel 
Monitoring of Activity and Sleep in Healthy people (MMASH) dataset provides 24 hours of continuous beat-to-
beat heart data, sleep quality, physical activity and psychological characteristics (i.e., anxiety status, stress events 
and emotions) for 22 healthy participants. Moreover, saliva bio-markers (i.e. cortisol and melatonin) and activity 
log were also provided in this dataset. In MMASH database, we have curves like heart rate, inter-beat intervals; 
we have scalar data like wake after sleep onset, number of awakening during the night, hormones concentrations 
in the saliva and so on, and we have binary response i.e. good or bad sleep quality. Our work is also motivated 
by another study in public health, i.e. to investigate the impact of air quality index (AQI), temperature, relative 
humidity (RH), GDP per capita and the number of beds per thousand people on the mortality rate across dif-
ferent cities in China. In particular, we are interested in studying the effect of AQI on mortality. AQI reflects the 
degree of air pollution and it is judged by the concentration of pollutants in the air, where the main pollutants in 
the air include PM2.5, PM10, carbon monoxide, nitrogen dioxide, sulfur dioxide, ozone and so on.

The paper is organized as follows. The generalized partially functional linear model is proposed in Sec-
tion “Generalized partially functional linear regression”. The estimation of the regression coefficients within 
the generalized functional linear model is discussed in Section “Estimation of β and γ”. In Section “Asymptotic 
inference”, asymptotic normality of estimators is derived where the needed appropriate metrics are given. Simula-
tion results are reported in Section “Simulation study”. Two real data examples, the sleep quality study in healthy 
people and the mortality rate study in major Chinese cities, are given in Section “Application”. We conclude in 
Section “Conclusion”. Proofs and other supplementary materials are followed in Appendix.

Generalized partially functional linear regression
The data we observe for the i-th subject are {(Xi1(t1), t1 ∈ T1), (Xi2(t2), t2 ∈ T2), . . . , (Xid(td), td ∈ Td),

Zi ,Yi}, i = 1 . . . n . We assume that these data are independent identically distributed (i.i.d.) copies of 
(X1, . . . ,Xd ,Z,Y) . For j = 1, . . . , d , the functional predictor Xij(tj) is a random curve which is observed for 
subject i and corresponds to a square integrable stochastic process on a real interval Tj , i.e. Xij(tj) ∈ L2(Tj) . 
And the scalar predictor vector Z =

(
Z1,Z2, . . .Zq

)
 is a q dimensional random vector. The dependent variable 

or response Yi is a real-valued random variable which may be continuous or discrete (e.g. binary, count etc.).
We assume there is a known link function g(·) which is a monotone and twice continuously differentiable 

function with bounded derivatives and is thus invertible. We further assume there is a variance function σ 2(·) 
which is defined on the range of the link function and is strictly positive.

We assume the following relation between Yi and (Xi1, . . . ,Xid ,Zi)

where α ∈ R is the intercept, βj(·) ∈ L2(Tj) is the regression function corresponding to functional predic-
tor Xj , and γ =

(
γ1, γ2, . . . , γq

)T is the regression coefficient vector corresponding to the scalar predictor 
vector Z. Furthermore, ε is random variable from exponential family that satisfies E

[
ε | Xj

(
tj
)
,Z

]
= 0 with 

E
[
ε2
]
= Var[εi] = Var[Y ] = σ 2(E[Y ]) . Therefore, the generalized partially functional linear model is deter-

mined by parameter coefficient function βj(·) , parameter coefficient vector γ , link function g(·) and variance 
function σ 2(·).

Define linear predictors η,

We have conditional mean E
[
Y | Xj

(
tj
]
,Z

)
= µ = g(η) and Var

(
Y | Xj

(
tj
)
,Z

)
= σ 2(µ) = σ̃ 2(η) for a function 

σ̃ 2(η) = σ 2(g(η)).
For simplicity, assume that both functional predictors X(t) and scalar predictors Z are centralized, i.e. 

E
[
Xj

(
tj
)]

= 0, j = 1, 2, . . . , d and E[Zl] = 0, l = 1, 2, . . . , q . In order to solve the problem of infinite dimen-
sion of functional data, we adopt functional principal component analysis method to reduce dimension. For 
functional predictor Xij(tj) , by Karhunen-Loeve (KL) expansion and Mercer’s theorem, it can be expanded as:

where ξijk is called functional principal component score and the functions φjk(·), k = 1, 2, . . . are called func-
tional principal components obtained via the covariance structure of Xij(tj) . Notice that φjk(·), k = 1, 2, . . . forms 
an orthonormal basis for the function space L2(Tj) and clearly 

∫
Tj
φ2
jk(tj)dtj = 1 . Then parameter coefficients 

βj(tj) can be expanded as

(1)Yi = g


α +

d�

j=1

�

Tj

Xij

�
tj
�
βj
�
tj
�
dtj + Ziγ


+ εi ,

(2)η = α +
d∑

j=1

∫

Tj

Xj(tj)βj(tj)dtj + Zγ .

Xij

(
tj
)
=

∞∑

k=1

ξijkφjk
(
tj
)
,
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with 
∑

b2jk < ∞.
Therefore, after plugging the above two expansions in to (1), we have:

Notice that in (3), in order to solve the difficulty caused by the infinite dimension of the functional predictors, 
we truncate the predictors at pj , and the dimension pj increases asymptotically with n → ∞.

Estimation of β and γ
Denote parameter vector

Then the maximum likelihood estimator of θ can be obtained by solving the score equation:

where ηi = α +
∑d

j=1

∑pj
k=1 bjkξijk + Ziγ , µi = g(ηi), i = 1, 2, . . . , n and

 We denote the MLE

and therefore b̂j = (b̂j1, b̂j2, . . . , b̂jpj )
T , j = 1, . . . , d , γ̂ = (γ̂0, γ̂1, γ̂2, . . . , γ̂q)

T , α̂ = γ̂0 are the estimators of 
bj , γ , α respectively.

We introduce the following matrices:

and vectors Y = (Y1,Y2, . . . ,Yn)
T and µ = (µ1,µ2, . . . ,µn)

T . Then the score Eq. (4) can be rewritten as

This equation is usually solved iteratively by the method of integrated weighted least squares. Under our basic 
conditions in Section “Generalized partially functional linear regression”, 1nE(D

TD) is a fixed positive definite 
matrix.

Asymptotic inference
Generalized auto‑covariance operator. Given an L2 integrable kernel function R(s, t) : T2 → R , define 
the linear integral operator AR : L2(ds) → L2(dt) on the Hilbert space L2(ds) for f ∈ L2(dt) by

An operator AR is compact self-adjoint Hilbert-Schmidt operator if

and can then be diagonalized.
Integral operator of special interest is the auto-covariance operator AK of K with kernel

and the generalized auto-covariance operator AG with kernel

βj
(
tj
)
=

∞∑

k=1

bjkφjk
(
tj
)
,

(3)Yi = g


α +

d�

j=1

pj�

k=1

ξijkbjk + Ziγ


+ εi , i = 1, 2, . . . , n.

θ = (b11, b12, . . . , b1pj , b21, b22, . . . , b2pj , . . . , bd1, bd2, . . . , bdpj , γ0, γ1, γ2, . . . , γq)
T .

(4)U(θ) =
n∑

i=1

(Yi − µi)g
′(ηi)

σ 2(µi)
ωi = 0,

ωi = (ξi11, ξi12, . . . , ξi1p1 , ξi21, ξi22, . . . , ξi2p2 , . . . , ξid1, ξid2, . . . , ξidpd , zi0, zi1, . . . , ziq)
T .

θ̂ =
(
b̂11, b̂12, . . . , b̂1pj , b̂21, b̂22, . . . , b̂2pj , . . . , b̂d1, b̂d2, . . . , b̂dpj , γ̂0, γ̂1, γ̂2, . . . , γ̂q

)T

D0 = Dn,q+1 =
(
g ′(ηi)zil
σ(µi)

)

1≤i≤n,0≤l≤q

,

Dj = Dn,pj =
(
g ′(ηi)ξijk
σ(µi)

)

1≤i≤n,1≤k≤pj

, j = 1, 2, . . . , d,

D = D
n,q+1+

∑d
j pj

= diag(D1,D2, . . . ,Dd ,D0),

V = diag
(
σ 2(µ1), σ

2(µ2), . . . , σ
2(µn)

)
.

DTV−1/2(Y − µ) = 0.

(
ARf

)
(t) =

∫
f (s)R(s, t)ds.

∫
|R(s, t)|2dsdt < ∞,

K(s, t) = cov(X(s),X(t)) = E[X(s)X(t)],
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where �j,k1k2 is a non-increasing sequence of eigenvalues.
Hilbert-Schmidt operators AR generate a metric in L2,

for f , g ∈ L2(ds) , and given an arbitrary orthonormal basis {φj , j = 1, 2, . . .} , the Hilbert-Schmidt kernels R can 
be expressed as

for suitable coefficients {rkl , k, l = 1, 2, . . .}.
Thus, for each Xj(tj), j = 1, ..., d , the correlated Hilbert-Schmidt operator of AG produces a metric in L2:

w h e re  b̂j = (b̂j1, b̂j2, . . .)
T  i s  t h e  e s t i m at or  o f  bj = (bj1, bj2, . . .)

T  ,  �j = (�j,k1k2)1≤k1,k2≤∞ =(
E

[
g ′(η)2

σ 2(µ)
ξjk1ξjk2

])
1≤k1,k2≤∞

 is a symmetric and positive definite matrix with elements to be the eigenvalues of 

generalized auto-covariance operator AG.
For the sequence of pj truncated model (3), we have

where b̂j = (b̂j1, b̂j2, . . . , b̂jpj )
T is the estimator of bj = (bj1, bj2, . . . , bjpj )

T , and here,

We note that �̃j = 1
nE(D

T
j Dj) is a symmetric and positive definite matrix and that the inverse matrix �̃−1

j  exists. 
And b̄j =

(
bj(pj+1), bj(pj+2), . . .

)T
.

We note that higher-order oscillations associated with property 
∑∞

k1,k2=pj+1 �j,k1k2 b̄
2
j , j = 1, 2, . . . , d contribute 

to the L2 norm of the parameter functions βj(tj) , relative to the oscillations of processes Xj(tj) , i.e.,

The specific proof follows by combining the results of corollary 4.1 of Müller (2005).
To derive the asymptotic property of d2G

(
β̂j ,βj

)
 , in addition to the basic assumptions in Section “Generalized 

partially functional linear regression” and usual conditions on variance and link functions, we require some 
technical conditions which restrict the growth of pj and the independence of Xj and Z. The basic model assump-
tion is as follows:

 (A1) The link function g is monotone, invertible and has two continuous bounded derivatives with �g ′(·)� ≤ c , 
�g ′′(·)� ≤ c for a constant c ≥ 0 . The variance function σ 2(·) has a continuous bounded derivative and 
there exists a δ > 0 such that σ 2(·) > δ.

 (A2) The fourth moment of Xj is finite, i.e. E
[∫

T

{
Xj(t)

}4
dt
]
< ∞.

 (A3) Z = (Z1, . . . ,Zq) and (X1(t),X2(t), . . . ,Xd(t)) are independent of each other.
 (A4) The number of truncated terms pj in the sequence of approximating pj truncated model (3) satisfies 

pj → ∞ and pjn−
1
4 → 0 as n → ∞.

G(s, t) = E

[
g ′(η)2

σ 2(µ)
X(s)X(t)

]

d2R(f , g) =
∫

(f (t)− g(t))(AR(f − g))(t)dt

=
∫∫

(f (s)− g(s))(f (t)− g(t))R(s, t)dsdt.

R(s, t) =
∑

k,l

rklφk(s)φl(t)

d2G

(
β̂j ,βj

)
=

∫∫ (
β̂j(s)− βj(s)

)(
β̂j(t)− βj(t)

)
G(s, t)dsdt

=
∫∫ (

β̂j(s)− βj(s)
)(

β̂j(t)− βj(t)
)
E

[
g ′(η)2

σ 2(µ)
Xj(s)Xj(t)

]
dsdt

=
(
b̂j − bj

)T
�j

(
b̂j − bj

)
, j = 1, 2, . . . , d,

d2G

(
β̂j ,βj

)
=

(
b̂j − bj

)T
�̃j

(
b̂j − bj

)
+

∞∑

k1,k2=pj+1

�j,k1k2 b̄j
2
, j = 1, 2, . . . , d,

�̃j = (�j,k1k2)1≤k1,k2≤pj ,

�j,k1k2 = E

[
g ′(η)2

σ 2(µ)
ξjk1ξjk2

]
,

�̃−1
j = (ζj,k1k2)1≤k1,k2≤pj .

∞∑

k1,k2=pj+1

�j,k1k2 b̄
2
j = o

(√
pj

n

)
,
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Remark 1 In the assumption (A1), because the link function g we defined is continuous, its first derivative is 
bounded. And its second derivative is bounded in order to make sure that the Hessian matrix is a meaningful 
existence when we prove corresponding asymptotic property. In the assumptions (A2) and (A3), the point is 
to simplify our proof, and we do not have to worry about the interactions between the predictors. As shown 
in the assumption (A4), the truncation pj goes to infinity, but in order for lemmas to hold and for the rate of 
convergence to be even faster, we have to pjn−

1
4 → 0 to control the rate at which pj goes to infinity. Since d and 

q represent finite number of predictors, then (q+ 1+
∑d

j=1 pj)n
− 1

4 → 0.

Asymptotic convergence of βj(t) and γ. Lemma 1 As n → ∞ , assumptions (A1)–(A4)

Remark 2 Lemma 1 essentially implies 
√
n(θ̂ − θ) ∼

(
DT
j Dj

n

)−1
U(θ)√

n
.

Lemma 2 Under the assumptions (A1)–(A4), we have that

where �nj are pj × pj matrices

and Inj are pj × pj diagonal matrices.

Theorem 1 If the basic conditions in Section “Generalized partially functional linear regression” and assumptions 
(A1)–(A4) are satisfied, then

where νl = E
[
g ′(ηi)2

σ 2(µi)
z2il

]
, l = 0, 1, . . . , q and Ia is a 

(
q+ 1+

∑d
j=1 pj

)
×

(
q+ 1+

∑d
j=1 pj

)
 identity matrix.

Remark 3 For j = 1, 2, . . . , d , each nd2G
(
β̂j ,βj

)
 obeys a asymptotically normal distribution with the mean of pj 

and the variance of 2pj . For l = 0, 1, . . . , q , each 
√
n(γl − γ̂l) obeys a asymptotically normal distribution with the 

mean of 0 and the variance of E
[
g ′(ηi)2

σ 2(µi)
z2il

]−1
 . Because we assume that (Xi1(t1),Xi2(t2), . . . ,Xid(td), zi0, zi1, . . . , ziq) 

are independent of each other, the variance term in the jointly asymptotically normal distribution is a diagonal 
matrix.

Corollary 1 Denote the eigenvectors and eigenvalues of the matrix �̃j by

and let

where {φj,l(t), l = 1, 2, . . .} is an orthonormal basis, which is mentioned in Section “Generalized partially functional 
linear regression”.

∥∥∥∥∥∥
√
n(θ̂ − θ)−

(
DT
j Dj

n

)−1
U(θ)√

n

∥∥∥∥∥∥
2

= o(1).

∥∥∥�2
nj − Inj

∥∥∥
2

2
= O

(
1

pj

)
.

�nj = �̃
1
2
j

(
DT
j Dj

n

)−1

�̃
1
2
j




nd2G

�
β̂1,β1

�
−p1

√
2p1

nd2G

�
β̂2,β2

�
−p2

√
2p2
...

nd2G

�
β̂d ,βd

�
−pd√

2pd√
nν0(γ0 − γ̂0)√
nν1(γ 1− γ̂1)

...√
nνq(γd − γ̂d)




d−→N(0, Ia)

(ej,1, �j,1), (ej,2, �j,2), . . . , (ej,pj , �j,pj ),

ej,k = (ej,k1, ej,k2, . . . , ej,kpj )
T ,

ωj,k(t) =
pj∑

l=1

φj,l(t)ej,k , k = 1, 2, . . . , pj .
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Then for large n and pj an approximate (1− α) simultaneous confidence band is given by

where c(α) = [pj +
√

2pj�(1− α)]/n . And when α = 0.05 , then �(1− α) = 1.96.

Simulation study
We consider the case with two functional predictors and three scalar predictors and the response is binary.

For the functional predictors Xi1(t1), t1 ∈ [0, 1], and Xi2(t2), t2 ∈ [−1, 1], i = 1, ..., n , we first generate 
ξijk , j = 1, 2 which satisfy

and

Defining orthonormal basis φ1k(t1), t1 ∈ [0, 1] and φ2k(t2), t2 ∈ [−1, 1], which satisfy

Therefore Xi1(t1), t1 ∈ [0, 1], and Xi2(t2), t2 ∈ [−1, 1], i = 1, ..., n satisfy

where φjk , j = 1, 2 are principal component base. Figure 1 plots part of the X1(t1) and X2(t2).
We simulate scalar predictors as follows: z1 ∼ N(0, 1) , z2 ∼ N(0, 3) and z3 ∼ B(1, 0.5).
We assume the true regression coefficients are generated as

where b1k = 2k2, b2k = k2.
Therefore the binary response is generated as follows: We define

and choose logit link

Then we generate response

as pseudo-Bernoulli random variable sequence with probability p(X, Z), when p > 0 , Y = 1 , otherwise Y = 0 . 
Therefore, we have a sample

β̂j(t)±

√√√√c(α)

pj∑

k=1

ωj,k(t)2

�j,k
.

ξi1k ∼ N(0, �1k), k = 1, 2, 3, with �11 = 6, �12 = 4, �13 = 2

ξi2k ∼ N(0, �2k), k = 1, 2, 3, with �21 = 6, �22 = 4, �23 = 2, �24 =
1

2
, �25 =

1

4
.

φ1k(t1) =
{√

2 cos (kπ t1), k = 1, 2, 3
0, k � 4.

φ2k(t2) =
{√

(4k−3)
2 t

2(k−1)
2 , k = 1, 2, 3, 4, 5

0, k � 6.

Xi1(t1) =
3∑

k=1

ξi1kφ1k(t1),

Xi2(t2) =
5∑

k=1

ξi2kφ2k(t2).

γ = (2, 3, 5)T ,

β1(t1) =
3∑

k=1

b1kφ1k(t1),

β2(t2) =
5∑

k=1

b2kφ2k(t2),

p(X,Z) = g




2�

j=1

�

T
Xj

�
tj
�
βj
�
tj
�
dtj + Zγ


,

g(x) = exp(x)

1+ exp(x)
.

Y(X,Z) ∼ Bernoulli(p(X,Z), 1)

{(Xi1(t1), t1 ∈ [0, 1]), (Xi2(t2), t2 ∈ [−1, 1]),Zi ,Yi}, i = 1 . . . n,
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where n is the sample size.
In the simulation study, in order to study the asymptotic property of our estimators we choose separately 

n = 50, 500, 1000 , and the number of functional principal components that explain 90% of cumulative variation 
contribution are p1 = 1, 2, 2 , p2 = 2, 3, 4 . We do 100 simulations.

Table 1 shows the values of statistics McFadden’s pseudo R2 (McFadden) and Maximum likelihood pseudo 
R2 (r2ML) for different n. The simulation results show that the performance of the model gets better and better 
with the increase of sample size. This is consistent with our expectations.

Then, in order to study the performance of β̂1(t1) and β̂2(t2) , we show the 95% confidence band under differ-
ent sample sizes of the estimator β̂1(t1) and β̂2(t2) in Fig. 2. The red curves are true β1(t1) and β2(t2) , the black 
curves are the corresponding estimations β̂1(t1) and β̂2(t2) , the gray parts are the 95% confidence band. As we 
can see, as the sample size increases, the confidence band becomes narrower and narrower and the estimate (red 
line) gets closer to the theoretical true value (black line). Therefore, the simulation clearly indicates that the larger 
the sample size, the closer the estimated and true values.

In order to verify Theorem  1, we calculate the mean and variance of nd2G
(
β̂j ,βj

)
, j = 1, 2 and 

√
n(γl − γ̂l), l = 1, 2, 3 . To be specific, the theoretical values of the mean and variance of nd2G

(
β̂j ,βj

)
 are 3, 6 

and 5, 10 respectively for j = 1, 2 . The theoretical values of the mean of 
√
n(γl − γ̂l), l = 1, 2, 3 are 0. Table 2 

shows the sample mean and variance of nd2G
(
β̂j ,βj

)
, j = 1, 2 and 

√
n(γl − γ̂l), l = 1, 2, 3 . From Table 2 we can 

see that the sample mean and sample variance of nd2G
(
β̂j ,βj

)
 tend to 3, 6 for j = 1 and 5, 10 for j = 2 and the 

sample mean of 
√
n(γl − γ̂l), l = 1, 2, 3 tend to 0 as n increases which verifies Theorem 1. The simulation results 

show that the estimation of regression coefficient functions gets better and better as the sample size increases.

Figure 1.  Part of the X1(t1) and X2(t2).

Table 1.  Statistics and statistical criteria under different sample sizes.

n McFadden r2ML

50 0.736 0.976

500 0.816 0.984

1000 0.925 0.996
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Table 3 shows the estimated values and corresponding standard deviations of the γ̂ = (γ̂1, γ̂2, γ̂3)
T under dif-

ferent sample sizes. The simulation results show that as the sample size increases, the standard deviation becomes 
smaller and smaller, and γ̂ tends to the theoretical value, where the theoretical values of γ = (γ1, γ2, γ3)

T are 2,3,5.
We use GCV to demonstrate the predictive accuracy of the estimators. When n = 50, 500, 1000 , the corre-

sponding GCV values are 0.104, 0.005, 0.001 which imply that as the sample size increases the prediction becomes 
more accurate. For details of GCV, see Roozbeh et al.27, Roozbeh et al.28,  Roozbeh29, Amini and  Roozbeh1 for 
details.

Application
Sleep quality. Data on activity and sleep of healthy person from PhysioNet Databases were analyzed in this 
section. The data were collected and provided by BioBeats (biobeats.com)34 in collaboration with researchers 
from the University of Pisa. Data were recorded on 22 healthy males in various aspects of their daily lives, such 
as cardiovascular responses, psychological perception, sleep quality, and exercise information.

We investigated the effects of hourly heart rate (HR), percentage of sleep time on total sleep in bed (Effi-
ciency), wake after sleep onset (WASO) and number of awakenings during the night (Number) on sleep quality. 
The volunteers’ Pittsburgh Sleep Quality Questionnaire index was used as response, which follows a Bernoulli 
distribution where good sleep quality is represented by 1 and bad sleep quality is represented by 0. In our study, 

Figure 2.  95% confidence band for the estimator β̂1(t1) and β̂2(t2) under different sample sizes. The red curves 
are theoretical β1(t1) and β2(t2) , the black curves are the corresponding estimation and it’s the result of a 
simulation, the gray parts are the 95% confidence band.
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7 men had a bad sleep quality and 15 had a good sleep quality. Efficiency, WASO and Number were used as scalar 
predictors. The volunteers’ hourly heart rate was used as a functional predictor. We chose g−1(x) = exp(x)

1+exp(x) as 
link function. We chose the number of functional principal components that explain 80% of cumulative varia-
tion contribution and p = 5 .

By substituting the data into our model, the functional parameter coefficients β̂ and the non-functional 
parameter coefficients γ̂ can be obtained. Moreover, with respect to the prediction accuracy, the GCV is obtained: 
is 0.358. The results of the estimation are shown in Table 4 and Fig. 3.

From the estimated non-functional parameter coefficient vector γ̂ shown in Table 4, we can see that Efficiency 
and WASO are positively correlated with sleep quality. In other words, the greater the proportion of sleep time or 
the longer the first waking time after falling asleep, the better the corresponding sleep quality. On the contrary, 
Number is negatively correlated with sleep quality, that is, the more awakenings during the night, the poorer 
sleep quality.

Figure 3 shows the estimated regression coefficient function β̂(t) and its 95% confidence band. We can tenta-
tively conclude that heart rate is positively correlated with sleep quality between 8:00 and 11:00. On the contrast, 
heart rate is mainly negatively correlated with sleep quality at other time. So, proper exercise and hard work 
to raise your heart rate in the morning will help improve the quality of sleep at night. While, some people may 
think that doing some exercise at night will improve their sleep quality because they are tired, but this is exactly 
the opposite. Sajjadieh (2020) used the method of time domain spectral analysis and obtained that heart rate 
has a negative correlation with sleep quality. But we give more insights on the dynamic and temporal behaviour 
of the influence of heart rate on sleep quality.

Table 2.  The mean and variance of nd2G
(
β̂j ,βj

)
 and 

√
n(γl − γ̂l) in Theorem 1.

n Mean Variance

nd2G

(
β̂1,β1

)
50 4.15 7.95

500 3.31 6.75

1000 3.03 6.08

 nd2G
(
β̂2,β2

)
50 6.06 13.42

500 5.51 11.49

1000 5.06 10.63

√
n(γ1 − γ̂1)

50 0.19 1.26

500 0.16 1.11

1000 0.09 1.08

 
√
n(γ2 − γ̂2)

50 0.07 0.15

500 0.04 0.13

1000 0.03 0.11

 
√
n(γ3 − γ̂3)

50 0.10 5.01

500 0.05 4.02

1000 0.04 3.93

Table 3.  The estimated values and corresponding standard deviations in brackets of the estimator 
γ̂ = (γ̂1, γ̂2, γ̂3)

T.

n γ̂1 γ̂2 γ̂3

50 1.84 (0.16) 2.97 (0.06) 4.89 (0.34)

500 2.06 (0.04) 2.99 (0.02) 4.95 (0.09)

1000 2.01 (0.03) 2.99 (0.01) 5.03 (0.05)

Table 4.  Parameter coefficient estimation and significance levels.

Estimate SE t value Pr( > |t|)

γ̂Efficiency 0.106 0.213 0.497 0.063 –

γ̂WASO 0.059 0.063 0.938 0.037 –

γ̂Number − 0.143 0.007 − 0.07 0.006 **

r2ML = 0.917
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Mortality. We have a dataset which includes daily temperature, daily relative humidity (RH), daily air quality 
index (AQI), GDP per capita, the number of beds per thousand people and mortality in 80 cities in China col-
lected during 2019. A main goal of the study was to investigate the impact of temperature, RH, AQI, GDP per 
capita and the number of beds per thousand people on the mortality rate. We apply the proposed generalized 
partially functional linear model to the data for different cities.

We have three functional predictors: daily AQI, daily temperature and daily RH from 1 January 2019 to 31 
December 2019. The two scalar predictors are GDP per capita and the number of beds per thousand people. 
The response is the mortality rate for each city in 2019, which is documented in the statistical bulletin of each 
city. Mortality follows a Bernoulli distribution where the mortality rate greater than 6‰is considered high and 
represented by 1, otherwise the mortality rate is low and the mortality rate is represented by 0. In our study, 
there are 30 cities with high mortality and 50 with low mortality. Figure 4 shows daily AQI, temperature and 
RH in some cities in 2019.

We chose g−1(x) = exp(x)
1+exp(x) as link function. We chose the number of functional principal components that 

explain 75% of cumulative variation contribution, i.e. pAQI = 11, pTemp = 4, pRH = 10 as standard orthogonal 
basis. By substituting the data into our model, the regression coefficients of functional predictors β̂ and regression 
coefficients of scalar predictors γ̂ are shown in Table 5 and Fig. 5. Moreover, the prediction accuracy is shown 
by the GCV with value 0.037.

From the estimated regression coefficient vector γ̂ shown in Table 5, we can see that GDP per capita and the 
number of beds per thousand people are negatively correlated with mortality rate. In other words, the greater 
GDP per capita or the number of beds per thousand people, the lower the mortality rate.

Figure 5 shows the estimated regression coefficient functions β̂(t) and their 95% confidence band. From Fig. 5, 
we can conclude that AQI is positively correlated with mortality in winter, early spring and fall. In other words, 
the higher the AQI, i.e. the worse the air conditions, the higher the death rate.  Kong18 studied the effect of PM2.5 
on mortality in US cities from 1 April 2000 to 31 August 2000. Unsurprisingly, in our study, the effect of AQI on 
mortality from April to August is concise with their results. For the effect of temperature on mortality, we can 
conclude that temperature is negatively correlated with mortality from March to May (in spring), and is positively 
correlated with mortality for the rest of the year. For the effect of RH on mortality, we can conclude that RH is 
positively correlated with mortality from August to November (in autumn), and is negatively correlated with 
mortality for the rest of the year. The effect of temperature and RH on mortality is very easy to use in traditional 
Chinese medicine (TCM) theory. In TCM, Yin and Yang are emphasized, and there is a saying that spring is 
born, summer is growing, autumn is converging and winter is stored. In spring, the gradually high temperature 
indicates that the climate is normal and Yang occurs normally. But if temperature is low in spring then Yang 
occurs abnormally which results in health problems. In autumn, Yang is converging, and both temperature and 
RH should gradually decrease. If the RH is still high, it shows that Yang cannot dive into the internal storage, 
floating over the outside, excessive consumption of human healthy.

Conclusion
In this paper, we propose a generalized functional linear regression model with multiple scalar and functional 
predictors. We develop maximum likelihood estimators for the regression coefficients. For the functional pre-
dictors, we adopt the method of functional principal component analysis to reduce their dimensions. We then 
propose the generalized auto-covariance operator, based on which an appropriate measure quantifies the differ-
ence between the estimators and their true values is established. The asymptotic joint distribution of estimated 

Figure 3.  Regression coefficient function β̂(t) and its 95% confidence band.
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regression functions is proved. For the scalar predictors, we establish a distance between the estimated value and 
the true value, and prove the asymptotic property of the estimated regression coefficients. The model is applied to 
two examples: sleep quality study and mortality rate study, and the research results clearly show that the predic-
tors in this model explain the responses well and reveal the influence of predictors on response.

In sleep quality research, we find that Efficiency and WASO are positively correlated with sleep quality, and 
Number is negatively correlated with sleep quality. We also find that heart rate is positively correlated with sleep 
quality between 8:00 and 11:00. On the contrast, heart rate is mainly negatively correlated with sleep quality at 
other time. In mortality rate research, we conclude that GDP per capita and the number of beds per thousand 
people are negatively correlated with mortality rate. AQI is positively correlated with mortality in winter, early 

Figure 4.  Daily AQI, temperature and RH.

Table 5.  Regression coefficient estimation and significance levels.

Estimate SE t value Pr( > |t|)

γ̂GDP per capita − 3.181e−06 1.659e−06 − 2.165 0.035 *

γ̂Number of beds − 3.048e−01 4.718e−02 − 1.917 0.061 –
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spring and fall. Temperature is negatively correlated with mortality from March to May (in spring). Relative 
humidity is positively correlated with mortality from August to November (in autumn).

The application of generalized partially functional linear model has been further extended, which lays a 
foundation for further research on the generalized partial-function linear model of unknown link function and 
variance function, predictors with interactions and variable selection with high-dimensional predictors.

Figure 5.  Regression coefficient function β̂(t) and its 95% confidence band.
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