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Kasturi Nagesh Pai,d Vinay Prasad, d Arvind Rajendran,d Paula Nkulikiyinka, a

Jude Odianosen Asibor, a Zhien Zhang,e Ding Shao, f Lijuan Wang, g

Wenbiao Zhang, f Yong Yan, g William Ampomah,h Junyu You,hi Meihong Wang, j

Edward J. Anthony, a Vasilije Manovic a and Peter T. Clough *a

Carbon capture, utilisation and storage (CCUS) will play a critical role in future decarbonisation efforts to

meet the Paris Agreement targets and mitigate the worst effects of climate change. Whilst there are many

well developed CCUS technologies there is the potential for improvement that can encourage CCUS

deployment. A time and cost-efficient way of advancing CCUS is through the application of machine learning

(ML). ML is a collective term for high-level statistical tools and algorithms that can be used to classify, predict,

optimise, and cluster data. Within this review we address the main steps of the CCUS value chain (CO2

capture, transport, utilisation, storage) and explore how ML is playing a leading role in expanding the

knowledge across all fields of CCUS. We finish with a set of recommendations for further work and research

that will develop the role that ML plays in CCUS and enable greater deployment of the technologies.

Broader context
Carbon capture, utilisation and storage (CCUS) is well recognised to play a critical role in future decarbonisation efforts to meet Paris Agreement goals and net

zero emissions targets. Machine learning (ML) is a collective term for high-level statistical tools and algorithms that can be used to classify, predict, optimise,

and cluster data. ML has been applied to CCUS technologies as a powerful tool to accelerate their development. This work presents a state-of-the-art review of

ML applications in CO2 capture, transport, storage, and utilisation, and provides perspectives for the field. In this manuscript, the authors provide a set of

recommendations for further work and research that will help develop the role that ML plays in CCUS and enable greater deployment of CCUS technologies.

1. Introduction

As atmospheric CO2 concentrations surpass yet another milestone

(4420 ppm in April 20211), climate change continues to be

described as the biggest threat to humanity and global security.2

It is for this reason that global efforts to decarbonise all sectors of

society through Nationally Determined Contributions (NDCs) have

begun to be strengthened and provides the backdrop for the

COP26 discussions.3

The recent COVID-19 pandemic has provided the oppor-

tunity to foresee a ‘new normal’ where lifestyles can be radically

different, and a sense of national contribution can be understood.
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Furthermore, the COVID-19 pandemic has led to governments

around the world utilising this change as an opportunity

to ‘‘Build Back Better’’ with ‘‘Green Growth’’ and a ‘‘Green

Industrial Revolution’’.4–8 Part of these recovery plans involve

the deployment of CCUS at significant scales in the coming

decades to meet net zero pledges and limit warming to 1.5 1C.

CCUS is absolutely crucial for the decarbonisation of many

sectors that cannot be decarbonised by other process changes

(e.g., cement, iron and steel). The roll out of Carbon Capture

and Storage (CCS) is planned to achieve 10 Mt CO2 captured

per year by 2030 in the UK, with other similar commitments

globally.9 In addition, all negative emissions technologies

(NET), such as direct air capture (DAC) and Biomass Energy

with Carbon Capture and Storage (BECCS) technologies require

the deployment of CCUS. These technologies allow otherwise

stranded fossil fuel in the power sector to continue to be used

at a much higher level and reduces the abatement require-

ments of fossil fuels (including natural gas) to a 28–33% level,

instead of a 46–57% level while staying below a 2 1C tempera-

ture target.10 Moreover, there is also a growing awareness in the

EU and countries like Canada that meeting net zero emissions

by 205011 and 2060 for China,12 unconventional methods such

as DAC will be required.13 A similar view is developing in the

USA, that negative emissions technologies are required to meet

current climate goals by 2050 and without them, the US net

zero initiative will fail.14 Moreover, the idea that a 100% wind,

water and solar scenarios are even achievable by 2050 has also

received challenges.15 In light of this, more affordable CCUS, is

not just desirable, but also essential. However, a general review

of CCUS technology and its roll out is available from others,
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so the authors will not go into details, explaining the basic

mechanics of CCUS processes.16

The use of machine learning (ML) has increased for a

multitude of applications due to the growth in computing

power in recent years, this is true for CCUS applications as

well. ML offers the potential to identify links between data/

results that aren’t readily identifiable, and it also provides

alternative lower computing cost pathways. Within the field

of CCUS, ML has begun to be utilised to evaluate new CO2

sorbents and oxygen carrier materials,17 simulate, control and

operate capture processes,18–23 simplify process economics,

predict CO2 solubilities in solvents and CO2 capture capacities

in adsorbents,24–26 improve the accuracy of multiphase flow-

meters used for CO2 pipelines,27 and predict leaks from CO2

wells;28 each with the aim of advancing the field of CCUS in a

cost and time effective manner. Meanwhile, it is also worth

noting that ML is data-driven technology, and its performance

usually depends on the size and quality of database. In some

areas of CCUS, the available data size can be limited to only

a few dozens of datapoints and some of the raw data may

not even be published openly, which will limit researchers in

applying ML in those areas. Moreover, ML is a powerful tool for

complex and nonlinear problems. It may not be suitable for

applications that can be easily solved by numerical methods.

Another big challenge for ML is it is difficult to extract the new

knowledge from ML models to form general conclusions and

scientific laws. Researchers in CCUS should consider what new

information they can extract from ML models before applying

ML in their research. Nevertheless, ML in CCUS is still relatively

new and there is much yet to be studied.

Past studies in ML in CCUS are scattered within the literature

and there has been no previous attempt to reconcile this infor-

mation, gathered along the entire CO2 supply chain, systemically

into a critical review and summary and set out a clear pathway

forward. A detailed and systematic critical analysis of previous

research will lead to an acceleration of CCUS commercialisation

and an expansion of ML in all areas of CCUS, this forms the main

motivation behind this review.

2. Machine learning algorithms

ML is a subset of artificial intelligence (AI) that involves the

study of computer algorithms that allow computer programs to

automatically improve through experience.29,30 Its advantages

include ease of trends and pattern identification, minimal

human intervention (automation), ability to improve continuously,

as well as high efficiency in the handling ofmulti-dimensional and

multi-variety data.29,31 Its application is however sometimes limi-

ted by factors such as ethics, lack of physical constraint, data

availability and quality, misapplication as well as interpretability.32

The dependence of ML modelling on data presents some

challenges in terms of availability, quantity as well as quality.

Given this dependence, if the sourced data contains human

biases and prejudices, then the decision of models developed

from such data may inherit such biases, consequently leading

to unfair and wrong decisions. Closely associated with the

aspect of data is the challenge of dimensionality (the curse of

dimensionality). This refers to all the problems that arise when

working with data in higher dimensions (large number of data

features) that did not exist in lower dimensions.33 This leads to

overfitting resulting in poor performance of the model. In order

to avoid this, dimensionality reduction, which is the transfor-

mation of high-dimensional data into a meaningful representa-

tion of reduced dimensionality is carried out.34 This data pre-

processing improves the performance of the data, reduces

training time and computational resources as well as noise

removal.35 Dimensionality reduction methods include: Principal
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Component Analysis (PCA), Factor Analysis, Linear Discriminant

Analysis (LDA), Multi-dimensional Scaling (MDS), Isometric

Feature Mapping (Isomap), t-distributed Stochastic Neighbour

Embedding (t-SNE) and auto-encoders.33,34

ML model interpretation is another major challenge of

deploying ML. This is as a result of the black-box nature of

many ML models in which humans are unable to explain the

decision-making logic of the ML model despite obtaining high

predictive accuracy. This crucial weakness impacts not only on

ethics but also on accountability, trust, transparency, safety

and industrial liability.36 To address this limitation and given

the importance of openness in scientific research, several

approaches have been reported with some even deployed at

the cost of sacrificing accuracy. Some of these methods and

techniques include; decision tree, feature importance, sensitivity

analysis, partial dependence plots, activation maximization,

explainable neural network (XNN), local interpretable model-

agnostic explanation (LIME), shapley additive exPlanations

(SHAP), Deep Learning Important FeaTures (DeepLIFT) expla-

nation method and Treeinterpreter.36,37 Key factors to consider

in building interpretable ML models have also been reported to

include but not be limited to the degree of white-box modelling,

data visualisation, usability, model visualisation, variable

importance, accuracy, fairness, and sensitivity residuality.36,38

In the application of ML to CCUS, it is recommended to aim for

the use and development of interpretable models with compe-

titive levels of predictive accuracy.

Fig. 1 presents the types of ML and respective areas of

application. There are three main types of ML: supervised,

unsupervised and reinforcement learning. The supervised ML,

which is the most commonly used of the three is usually applied

when the input–output data is known. It involves training the ML

models to learn the relationship between the given inputs and

associated output values.39 If the available dataset consists of only

input values (no labels), unsupervised ML can be used in an

attempt to identify trends, structure, patterns or clustering in the

input data.40 Reinforcement learning is a ML technique that

enables an agent to learn in an interactive environment by trial

and error using feedback from its actions and experiences.41 The

execution of any of the types of ML can be done through the

application of the appropriate algorithm. A brief description of

common ML algorithms is presented in Table 1.

Other ML algorithms include K-nearest neighbour, density-

based spatial clustering of applications with noise (DBSCAN),

recommender systems, genetic algorithm, gradient boosting

trees and particle swarm algorithms. Given the numerous types

of ML models, the choice of model to be deployed in a

particular application is very much dependent on factors such

as task type, type and structure of expected output, type and

size of data, accuracy-interpretability consideration, number

of data features, linearity, available computational time as well

as model complexity.39 It is important to note that in many

applications, multiple algorithms are usually combined

(referred to as ensemble algorithms) to improve model perfor-

mance accuracy and robustness. Information and learning

resources on ML are readily available and accessible on various

websites and online platforms. Table 2 presents some publicly

accessible tools and resources for general purpose ML and

CCUS related application.

3. Machine learning in CO2 capture
3.1 Machine learning in CO2 absorption

ML has wide application in modelling and analysis of different

separation units such as distillation, absorption, and regenera-

tion columns.43 This section will focus on the research that has

been done in the past decade to model and analyse different

aspects of CO2 absorption process using different solvents.

It includes process modelling, simulation, and optimisation;

thermodynamic analysis; and solvents selection and design.

These four main areas of application of ML in CO2 absorption

are discussed in this section. Selected studies and research

related to each part are also reviewed and discussed.

3.1.1 Process simulation and optimisation

3.1.1.1 Background and challenges of mathematical and opti-

misation models. Due to the complex governing phenomena in

absorption (especially chemical absorption, which includes

mass transfer and chemical reactions) modelling and simula-

tion of solvent-based carbon capture is a time consuming and

intensive job. Two common approaches to model CO2 absorp-

tion process are equilibrium-stage model and non-equilibrium

stage models. The set of equations that describe the equilibrium-

stage model for the separation processes are termed the MESH

equations (i.e., the mass balance equations, equilibrium relations,

summation relations and the enthalpy equations). In the case of

non-equilibrium stage models, the separation processes are

described by the MERQ equations (i.e., the material balance

equations, energy balance equations, rate (transfer rate) equations

and the equilibrium relations).44 In addition to MESH and

MERQ equations, numerous parameters related to physical

properties and transport properties such as density, viscosity,

thermal conductivity, heat capacity, diffusivity coefficient, and

mass and heat transfer coefficients must be considered in the

model. The mass and heat balances must be considered for

both liquid and gas phases and complex mathematic methods

must be applied to solve the obtained set of algebraic and

differential equations.Fig. 1 Types and applications of ML.42
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As many of the models used to predict the physical proper-

ties are experimental based models, there is considerable error

and deviation in the prediction of different parameters that

directly affect the results of the process model.45 It should be

noted that in the case of dynamic simulation which contains

partial differential equations (PDE), the initial points to solve

the problem is a critical aspect of the modelling job. Finding

these can be a very tedious and time-consuming process.

Table 1 Common ML algorithms42,54

Algorithm name Task type Description

Linear regression Regression By fitting a linear model with coefficients, this algorithm correlates each data feature to
the output, thus assisting in predicting future values

Logistic regression Classification A classification algorithm that predicts the likelihood of a dependent variable
(usually binary) belonging to a category

Decision tree Regression and classification This interpretable algorithm performs by splitting values of data features into branches at
decision nodes until a final decision output is established

Naı̈ve Bayes Regression and classification This algorithm is based on the Bayes’ theorem which updates the prior knowledge of an
event with the independent probability of each feature that can affect the event

Support Vector
Machines (SVMs)

Regression, classification,
and outlier detection

This algorithm operates by transforming the required data and determining the optimal
boundary (hyperplane) between the various outputs

Random forest Regression and classification The algorithm is an ensemble of decision trees characterised by improved accuracy.
It operates by generating a multitude of decision trees and uses either the modal vote or
average prediction for classification or regression tasks respectively

Artificial Neural
Network (ANN)

Regression, classification,
and clustering

This algorithm which is modelled after the biological neurons of the brain consists of
several layers with interconnected artificial neurons performing various data transfor-
mations to obtain the required output

K-means clustering Clustering This centroid-based algorithm clusters unlabelled data points by their similarity of
characteristics determined by the model without human interference

Hierarchical
clustering

Clustering This algorithm splits clusters along a hierarchical tree to form a classification system

Gaussian mixture
model

Clustering This unsupervised algorithm clusters data by estimating the density distribution of the
dataset

AdaBoost Regression and classification This is an ensemble algorithm that combines multiple weak algorithms to obtain an
improved output

Principal component
analysis (PCA)

Dimension reduction This algorithm is often used to reduce the dimensionality of large data sets without
distorting its characteristics (though it is not strictly a ML algorithm in its own right)

Table 2 Publicly accessible learning resources and tools related to ML

Name Description URL

General-purpose machine-learning frameworks40

Caret Package for ML in R https://topepo.github.io/
caret

Deeplearning4j Distributed deep learning for Java https://deeplearning4j.org
H2O.ai Machine-learning platform written in Java that can be imported as a Python or R library https://h2o.ai
Keras High-level neural-network API written in Python https://keras.io
Mlpack Scalable machine-learning library written in C++ https://mlpack.org
Scikit-learn Machine-learning and data-mining member of the scikit family of toolboxes built around the SciPy

Python library
https://scikit-learn.org

Weka Collection of machine-learning algorithms and tasks written in Java https://cs.waikato.ac.nz/
ml/weka

TensorFlow An open source for numerical and large-scale ML https://www.tensorflow.org

ML tools for CCUS
COMBO Python library with emphasis on scalability and efficiency https://github.com/tsuda

lab/combo
DeepChem Python library for deep learning of chemical systems https://deepchem.io
MatMiner Python library for assisting ML in materials science https://hackingmaterials.

github.io/matminer
NOMAD Collection of tools to explore correlations in materials datasets https://analytics-toolkit.

nomad-coe.eu
Silicone v1.0.0 An open-source Python package for inferring missing emissions data for climate change research https://github.com/Gran

thamImperial/silicone
Carboncalc Tools to calculate growth statistics for individual urban trees such as for estimating carbon storage https://github.com/adhol

lander/carboncalc
Fair Python package that takes emissions of greenhouse gases, aerosol and ozone precursors, and

converts these into greenhouse gas concentrations, radiative forcing and temperature change
https://pypi.org/project/fair

pyGAPS A Python framework for adsorption data analysis and isotherm fitting https://github.com/paulia
comi/pyGAPS
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Despite all these above-mentioned weaknesses and drawbacks,

applying ML to model and optimise the solvent-based carbon

capture is attracting increasing attention. Methods like ANN,

adaptive neuro-fuzzy inference system or adaptive network-

based fuzzy inference system (ANFIS), support vector regression

(SVR), radial basis function (RBF), and genetic programming

(GP) can examine complex interaction between inputs to the

model and predict the target (usually CO2 capture levels and

rate of absorption of CO2). It should be noted that as experi-

mental process data acquisition is frequently inadequate for

various types of solvents, the majority of the researchers first

developed a first principle mathematical model in a process

simulator (such as Aspen Pluss, Aspen HYSYSs, and gPROMSs)

and collected the data from that model. Then the collected data

are used to develop the ML-based model. The ML-based models

can predict the required targets with acceptable accuracy and be

used easily for future studies.46,47

3.1.1.2 Review of the ML-based process modelling and optimi-

sation studies. Sipöcz et al.46 used a multilayer feed-forward

neural network to capture and model the non-linear relation-

ship between inputs and outputs of the solvent-based CO2

capture process. The data used for training and validation of

the ANN were obtained using the process simulator CO2SIM.

The trained model was then used for finding the optimum

operation for the example plant with respect to the lowest

possible specific steam duty and maximum CO2 capture rate.

The authors reported that the average value of the errors for the

prediction of specific reboiler duty was less than 0.2% and the

maximum error was 3.1%. The prediction of solvent rich

loading and amount CO2 captured had a maximum error lower

than 2.8% and 0.17% respectively.

Nuchitprasittichai and Cremaschi48 used response surface

methodology (RSM) and ANN to minimise the capture cost of

CO2 using different amines. RSM uses local searches to esti-

mate an appropriate direction to reduce the objective function

while ANN uses simulation to build a global surrogate model of

the objective function over the entire decision space and solves

the optimization problem using a global solver.

The structure of the algorithm in this study is presented in

Fig. 2. The first step of the algorithm is the determination of the

appropriate sample size to construct the ANN, the second step

is optimization by using the constructed ANN with the sample

size obtained from the first step as the objective function. The

results showed that the number of simulations, the minimum

CO2 capture cost, and the percent error, for both methods

were close to each other. The data required for the study was

provided from an Aspen HYSYSs simulation.

Li et al.49 considered different parameters namely inlet flue

gas flow rate, CO2 concentration in inlet flue gas, the pressure

of the flue gas, the temperature of the flue gas, lean solvent

flow rate, monoethanolamine (MEA) concentration and the

temperature of lean solvent as input to predict the CO2 capture

rate and CO2 capture level using bootstrap aggregated neural

networks. The required data to develop ML models were

extracted from first principle steady-state and dynamic models

developed in gPROMSs. It should be noted that both absorber

and stripper were included in their model. Zhan et al.50 studied

the simultaneous absorption of CO2 and H2S in a mixture of

N-methyl diethanolamine (MDEA) and piperazine (PZ) in a

rotating packed bed (RPB) experimentally. The authors devel-

oped an ANN model to predict the absorption efficiencies of

H2S and CO2 and mass-transfer coefficient (KGa).

Shalaby et al.51 considered a fine tree, Matern Gaussian

Process Regression (GPR), rational quadratic GPR, squared

exponential GPR and feed-forward ANN models to predict the

different output from CO2 capture unit using MEA solution.

Reboiler duty, condenser duty, reboiler pressure, flow rate,

temperature, and the pressure of the flue gas were considered

as inputs to the models and the system energy requirements,

capture rate, and the purity of condenser outlet stream were the

output of the models. The required data were obtained from

the gPROMS process builder and the results of the models

indicated high prediction accuracy.

After the development of the models, the authors developed

a non-linear programming (NLP) problem and solved it using

sequential quadratic programming algorithm (SQP) and genetic

algorithm optimization on the surrogate model to determine the

optimal operating conditions. This study showed that ML-based

methods could be used to model and optimise the CO2 capture

unit appropriately. Wu et al.23 developed an intelligent predictive

controller (IPC) for a large-scale solvent-based post-combustion

CO2 capture process, and an ANN model was trained to predict

the dynamics of the CO2 capture process. The results indi-

cated that the IPC demonstrated fast control of the CO2 capture

level and reduced the fluctuations in re-boiler’s temperature

significantly.

3.1.2 Thermodynamic analysis

3.1.2.1 Background of mathematical thermodynamic analysis.

Thermodynamic analysis for solvent-based carbon capture can

be classified in terms of two main tasks. One of them is

chemical equilibrium calculation and the other is physical

equilibrium calculation. Chemical equilibrium (speciation

equilibrium) calculations provide the concentrations of different

species in a solution. The modelling of speciation equilibrium is

used in the calculation of enhancement factor, vapour–liquid

equilibrium (VLE) modelling, and calculation of the CO2 loading

value. Implementation of chemical equilibrium calculation

requires extensive knowledge about the chemical reactions inFig. 2 Structure of the algorithm to perform optimisation.48
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the system and all the related parameters and models for kinetic

reactions and equilibrium constants for equilibrium reactions in

the combination of mass transfer balances.52

On the other hand, VLE modelling for the CO2 capture

system is a challenging task because of the non-ideal nature

of the liquid phase (due to the existence of different types of

interactions between ions and molecules), lack of accurate

model parameters as well as the availability and quality of

solubility data. In addition, an equation of state (EOS) such as

Peng–Robinson, SAFT, and Soave–Redlich–Kwong is necessary.

Furthermore, an activity coefficient-based model for instance

Electrolyte NRTL, Wilson, and Extended UNIQUAC is also

required to do the VLE calculations. The programming and

implementation of these thermodynamic models, EOS and

activity coefficients models is a complex and time-consuming

job.44

3.1.2.2 Review of the ML-based thermodynamic modelling

studies. As mentioned, thermodynamic modelling and calcula-

tion of solvent-based carbon capture is a tedious task. There are

many studies in recent years where researchers used ML

methods to perform thermodynamic analysis of CO2 capture

in different types of solvents and these will be discussed below.

Baghban et al.53 compared the predictive capability of four

ML models to evaluate the CO2 solubility in 67 ionic liquids

(ILs). They used the Least Square Support Vector Machine

(LSSVM), ANFIS, Multi-Layer Perceptron Artificial Neural

Network (MLP-ANN), and Radial Basis Function Artificial

Neural Network (RBF-ANN). The solubility is considered as a func-

tion of different parameters such as operational temperature,

pressure accompanied with the properties of ILs including the

critical temperature, critical pressure and, acentric factor (o).

LSSVMmodel showed the best statistical performance in compar-

ison to other methods.

Ghiasi and Mohammadi55 used a Classification and Regres-

sion Tree (CART) method in modelling CO2 solubility in different

ILs as a function of system’s temperature and pressure and

properties of ILs including critical temperature, critical pressure,

and acentric factor. A tree-based model was developed using 5330

experimental data points of CO2 solubility in 66 different ILs.

Findings reveal that the proposed model’s outcomes are in

excellent agreement with the corresponding experimental values.

The presented model shows an average absolute relative deviation

equal to 0.04% and provides considerably better estimations than

the previously published ML based models.

Garg et al.56 studied the CO2 solubility in aqueous sodium

salt of L-phenylalanine (Na-Phe) for different concentrations,

temperatures and CO2 pressure range, experimentally. Kent–

Eisenberg and ANN models were used to model and correlate

the solubility data. ANN showed better results in comparison to

Kent–Eisenberg thermodynamic models.

Li et al.57 compared several thermodynamic models

(Kent–Eisenberg,52 Austgen,58 Hu–Chakma,59 Liu et al.60) with

two types of ANN models (back-propagation neural network

(BPNN) and (RBF-NN)) to predict the CO2 solubility in

3-dimethylamino-1-propanol (3DMA1P) solution for different

operating conditions. The authors reported that absolute average

deviation (ADD) of thermodynamic models were almost three

times more than the ADD of ANN models. Babamohammadi

et al.61 presented experimental data of VLE for CO2 absorption in

the mixture of MEA and glycerol and then used these data to

develop the ANN model to predict the VLE data. Yarveicy et al.62

presented an extra trees model to predict the CO2 loading in

different chemical solvents using solubility data from the literature.

The results of the extra treesmodel were compared to LSSVM,MLP-

ANN, ANFIS, and RBF-ANN models in the literature. The authors

reported a coefficient of determination (R2) of 0.9993 and an

average absolute relative deviation in percent (AARD%) of 0.15

for this model. Soroush et al.63 applied ANFIS to develop a precise

temperature-dependent ML model to correlate the CO2 loading of

amino acid salt solutions for different types of amino acids. This

model was used to perform sensitivity analysis as well.

3.1.3 Prediction of properties

3.1.3.1 Background and challenges of developing property

models. The models developed to predict the different types of

properties could be empirical, semi-empirical, and theoretical. The

objective is making a link between microscopic structural features

(well-known as descriptors) of materials and their macroscopic

properties (this can be any property such as density, viscosity,

toxicity, etc.). The following general form can be considered for the

property model:

Property = f (parameters/descriptors) (1)

In the case of empirical and semi-empirical models, parameters/

descriptors that are used to obtain the model are very important

and their selection is a crucial task. Depending on the approach

different types of descriptors can be considered. These descriptors

are obtained experimentally, theoretically, quantum-mechanically

(chemically) (QM) or molecular mechanically (MM) and a combi-

nation of all types of descriptors. Having access to high accuracy

experimental database is necessary. Some examples of these data

are experimental values reported in the literature, or famous

databases like Design Institute for Physical Properties (DIPPR),64

NIST,65 and DETHERM.66 Poling et al.67 notes there is a relation

between molecular structure and the bonds between atoms and

their macroscopic properties. This concept proposes that a macro-

scopic property could be estimated using group contribution (GC)

models. GC models include a wide range of models such as

activity coefficient GC models like UNIFAC to EOS GCmodels like

SAFT.68

Quantitative-structure property/activity relationship (QSPR/

QSAR) is a modelling method to predict different physical and

thermodynamic properties using the knowledge about the

chemical structure of the molecules.69 These physio-chemical

structure and properties are known as descriptors and provide

the basis for mathematically linking and explaining a mole-

cules/materials activity or property. A large family of models

have been developed to predict the properties for solvent-based

CO2 capture systems based QSPR approach. Different modelling

(regression) approaches are applicable in QSPR/QSAR studies

which are different from linear techniques like multivariate linear

regression (MLR), partial least-squares regression (PLSR), and
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principal component regression (PCR) to the nonlinear techni-

ques such as ANN, GP, SVMs, and ANFIS. In QSPR studies

especially when dealing with MLR method, different types of

algorithms from classic algorithms such as stepwise forward

selection or evolutionary or metaheuristic algorithms such as

genetic algorithm (GA), particle swarm optimization (PSO),

simulated annealing, and ant colony and so on, have been used

in descriptor selection step to reduce the number of descriptors

and keep the most influential ones in the prediction of property

under study.

3.1.3.2 Review of the ML-based property modelling studies.

Many of the descriptors that have been used in QSPR models

related to CO2 capture have physical meaning. Temperature,

pressure, partial pressure of CO2, the concentration of solution

are some examples of descriptors that are used by different

researchers. Golzar et al.70 developed ANN QSPR model to

predict the solubility of CO2 and N2 in common polymers.

The authors used genetic function approximation (GFA) to find

the best descriptors between 1600 molecular descriptors. They

found out that molecular weights of gas and monomer, spectral

moment 07 from edge adj. matrix weighted by edge degrees,

mean atomic Sanderson electronegativity (scaled on Carbon

atom), mean atomic polarizability (scaled on Carbon atom) can

predict the solubility of CO2 and N2 in common polymers.

Venkatraman and Alsberg71 extracted over 10 000 IL-CO2 solu-

bility data for 185 ILs measured at different operating tempera-

tures and pressures from the literature. The authors used a

single decision tree, PLSR, and the non-linear ensemble ran-

dom forest models. They also considered the COSMO-RS model

and predicted the results of regression models with this quan-

tum mechanical based thermodynamic model. They reported

that temperature and pressure and parameters relevant to

intermolecular interactions were selected as descriptors of the

models. In this regard, a number of HOMO, LUMO energy-

based descriptors such as the HLFRACTION (ratio of the

HOMO/LUMO energies), softness (inverse of the HOMO–LUMO

gap) is indicative of the cation–anion electrostatic (nucleophi-

lic–electrophilic) interactions that are key to the CO2 solvation

abilities to be selected. Other descriptors focus on important

geometrical parameters such as the ovality or its inverse, the

globularity factor that reflects the ability of the molecule to

adapt its shape with respect to the approaching reactant.

Kuenemann and Fourches72 collected and compiled experi-

mental absorption properties for more than 40 unique amines,

and developed several QSPR models demonstrating the influ-

ence of structural modifications for amines’ absorption proper-

ties. The authors used different MLs techniques namely

ensemble tree, partial least squares regression, random forest,

and ANN. They reported that the Random Forest and ANN

models gave the best results. The authors also mentioned that

they considered two types of descriptors in their study namely

RDKit descriptors and Functional Connectivity Fingerprints

(FCFP). A total of 117 RDKit and 1024 FCFP6 descriptors were

computed. After pre-treatment of data, their dataset of amines

reduces to 67 RDKit descriptors and 140 FCFP6 fingerprints

descriptors. Zhang et al.73 used ANN to predict CO2 solubility in

the solutions of potassium lysinate (PL) and its blended solu-

tions with MEA, with a total of 433 data groups extracted from

the literature. They use two different methods namely BPNN

and general regression neural network (GRNN). The authors

also predicted the aqueous solution density and viscosity using

the same method. Afkhamipour et al.74 selected concentration,

temperature, molecular weight and CO2 loading of the amine

as the inputs (descriptors) to the ANN model to predict the heat

capacity (CP). Here, 3947 experimental data points representing

heat capacity for 47 systems of amine-based solvents with a

broad range of concentration and temperature were collected

from published papers. The AARD% between model results and

experimental data of CP for amine-based solvents was 4.3%.

The obtained results from the ANN and thermodynamic

models showed that the models could accurately predict the

CP of conventional amines with an AARD% of 0.59%, and

0.57%, respectively. Cao et al.75 modelled the toxicity of ILs

towards a leukaemia rat cell line (ICP-81) using QSPR method.

The authors considered the structures of 57 cations and 21

anions that were optimised using quantum chemistry. The ML

methods used in this study were extreme learning machine

(ELM), MLR and SVM. The results show that the ELM method

had the best statistical parameters. In the aspect of used

descriptors in their model, Ss-C-0.016 stands for the charge

distribution area of the cation. SEP-A-69.25 and SEP-A-128.75

belong to the electrostatic potential surface area of anions. The

other selected descriptors in their model are related to the

electrostatic potential surface area of cations. The authors

emphasised that the parameters for the electrostatic potential

surface area are important and effective descriptors for predict-

ing the toxicity of ILs. Borhani et al.76 used GA-MLR method to

develop a model to predict the partial pressure of CO2, the heat

of absorption, and K-values for CO2 absorption in 30, 45, and

60 wt% MEA aqueous solutions. The GA was used for the

selection of the best parameters (feature selection) and func-

tional form, by optimising with respect to the RQK fitness

function. They used combination of CO2 loading and temperature

as descriptors to predict the partial pressure of CO2. Mazari et al.77

predicted CO2 solubility, density, viscosity andmolar heat capacity

of an IL ([Bmim][PF6]) using three GPR family and SVM methods.

The range of temperature, pressure and water content of the data

used in the models are presented in Table 3.

The results showed that the least accurate model was SVM

with an AARD% of 15.13. The squared exponential GPR model

was the most accurate coefficient of determination of 0.992 and

AARD% of 0.14 for testing data. Wu et al.78 collected a total of

160 experimental data points for Henry’s law constant of CO2 in

32 imidazole ILs. Multi-Layer Perceptron (MLP), RF and MLR

were used to develop the models to predict Henry’s law constant.

The results of the modelling showed good statistical parameters

for all three models for the test set. The correlation coefficient

mean absolute error (MAE), and RMSE for the MLP model were

0.98, 0.4818 and 0.65 respectively. The authors considered tem-

perature, CO2 partial pressure and water wt% as input of the

model (descriptors) which all of them have physical meaning here.
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3.1.4 Solvents selection and design

3.1.4.1 Background and challenges of solvent selection and

design methods. Two important methods can be used to screen

the solvents to absorb the CO2-application of chemometric

models (QSPR, GC,. . .) and computer-aided molecular design

(CAMD).79 Since ML is utilised in both these types of methods,

it can therefore be said that the models developed using ML

and described in Section 3.1.3 can be used to screen and select

the best solvents.

3.1.4.2 Review of the ML-based models used to solvent selection

and design. ML has been used to perform solvent screening

for different applications.80,81 Some studies related to solvent

screening for CO2 absorption have been done using the

COSMO-RS thermodynamic model.82,83 However, it should be

noted that the number of studies related to the application of

ML in the solvent selection and design for CO2 absorption is

considerably less than the application of ML in other types

of studies related to CO2 absorption, which are reviewed in

previous sections. As ML is used to select and screen solvents

for different applications,81 it is promising to use it for CO2

absorption solvents as well. Venkatraman et al.84 have

employed a multi-property, high-throughput pipeline to facil-

itate task-specific IL discovery. In Fig. 3, one of the main steps

is the application of ML. ML models (RF, cubist and gradient

boosted regression (GBR) were developed using experimental

data for 10 different IL properties of interest. The models were

applied to a large library of eight million cation–anion pairs

that span diverse chemical scaffolds.

Wang et al.85 presented a strategy to select the best ionic

liquids and apply them in the process simulator to absorb CO2.

Their strategy contains four main steps. The first part is related

to the target system, in the second part absorption, selectivity

and desorption for each IL are calculated using the COSMO-RS

model. In the next step, a prediction model is applied to predict

viscosity and another one for predicting melting point to find

the optimal ILs which these models are developed using the

SVM method. In the final step, the applicability and effectivity

of optimal ILs reported in the literature are evaluated by Aspen

Pluss (Fig. 4).

3.1.5 Perspectives and prospects. In comparison to the first

principle models developed for different studies on CO2

absorption, the ML models are more accurate as they provide

a complex and non-linear relationship between the inputs and

predict the targets. As noted in this section, many ML-based

models are developed for different applications of CO2 absorp-

tion. However, the models that were developed for the prediction

of physical and thermodynamic properties were not applied in

any process modelling study. An important future goal is to

integrate MATLAB or Python or other similar ML programmes to

Aspen Pluss or gPROMSs or similar simulators to use these ML-

based models in first principle process modelling studies. As

ML-basedmodels are more accurate than the traditional models,

they can result in better predictions and results in thermody-

namic and process modelling studies. Hence, the connection of

these models to process simulators should be considered in

future studies.

3.2 Machine learning in CO2 adsorption

Adsorbents are micro-porous structures with a characteristi-

cally large surface area and the ability to capture large amounts

of gases on their surface.86 They generally have a selective

affinity for specific gases in a mixture of gases, making them

ideal for gas separation applications such as CO2 capture.86,87

One of the primary considerations when designing an

adsorbent-based CO2 capture process is the choice of the

adsorbent media.16 This field has gone through a renaissance

in recent years with the advent of the use of organometallic

chemistry.24,88,89 There are several new classes of adsorbents

such as Metal–Organic Frameworks (MOFs),88–90 Covalent

Table 3 The range of experimental data extracted from the literature to

predict different thermodynamic properties of ionic liquids77

Dataset T/K P/MPa Water/wt%

CO2 solubility (mass fraction
of CO2)

293–395 0.015–9.685 0–1.6

Density (g cm�3) 278–391 0.1–173 0–2.68
Viscosity (mPa s) 273–388 0.1–175 0
Heat capacity (J K�1 mol�1) 283–353 0.1–100 0

Fig. 3 The concept of the approach presented by Venkatraman et al.:84

(a) data collection, (b) ML calibration, (c) combinatorial library design and

enumeration, (d) prediction of properties by ML, (e) experimental validation

of selected candidates, (f) property-based filtering, (g) theoretical evalua-

tion, (h) potential applications.

Fig. 4 Strategy considered to select and evaluate the best candidates

of ILs.85
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Organic Frameworks (COFs),91 Zeolitic Imidazolate Frameworks

(ZIFs),92 Porous Organic Cages (POCs)93 along with the classical

zeolites86,94 and activated carbons. Many of these porous struc-

tures are chemically and physically tuneable and can be reverse

engineered to provide the process designer with tailor-made

options.95–97 This means an effectively infinite number of possible

structures can be theorised.24,98 Exploring the entire adsorbent

material design space is computationally restrictive, and tradi-

tional adsorbent characterisation techniques are time-consuming,

adding to the complexity.98,99 Large databases with over one

million of such real and in silico hypothetical porous structures

are available to process designers that are already partially char-

acterised for the application of CO2 capture.
24,100–106

3.2.1 Adsorbent synthesis and characterisation. The ability

to build adsorbent structures by using a different set of building

blocks has been well documented in the literature.107,108 This has

provided a realistic opportunity to tailor-make an adsorbent for

CO2 capture with targeted features such as high CO2 affinity over

other gases in the flue gas mixture.16 However, with an almost

infinite set of possible structures, correctly identifying the best

adsorbent is extremely challenging. To make matters more com-

plicated, the required adsorbent properties for an effective CO2

separation process are not fully understood.24,25,109–112 The dis-

covery and synthesis of new adsorbents using traditional experi-

mental techniques alone are expensive and time-consuming.113

Computational methods have been used to create frameworks to

develop, characterise, and tune the properties of the porous

structures.97,100,114 ML via supervised and unsupervised algo-

rithms can help explore the complex and highly multivariate

material design space.24,98 Researchers have already applied many

ML and other statistical techniques to explore adsorbent synthesis

pathways.99 Other aspects for adsorbent selection for applications

such as CO2 capture are the synthesizability, stability to moisture,

and overall life cycle costs, among other things, which can be

aided by the application of ML.

Adsorbent discovery and screening for CO2 capture using

supervised ML models have been extensively reported in the

literature.99 There have been many instances in the literature

where the adsorbent properties are also tuned for specific

applications. Collins et al.115 showed that a genetic algorithm

could efficiently optimise for desired physical or functional

property in MOFs by evolving the functional groups within the

pores. The authors optimised the CO2 uptake capacity of

141 experimentally characterised MOFs under post-combustion

CO2 capture conditions and were able to increase the CO2

adsorption on MOF MIL-47 by 400%. ML models have also been

used to identify novel adsorbent properties such as hydrophobic

adsorbaphore. This could be a very interesting phenomenon

to exploit since the presence of moisture always hindered

adsorptive CO2 capture. Boyd et al.116 screened an adsorbent

library of E300 000 structures to identify adsorbents with this

adsorbaphore property and demonstrated a synthesis pathway

for two such adsorbents. These demonstrations of ML in the

discovery, synthesis and exploration of the adsorbent design

space show the possible pathways for identifying and imple-

menting an effective adsorbent-based CO2 capture process.116

ML techniques have also been applied to speed up the

characterization of the adsorbents. The Grand Canonical Monte

Carlo (GCMC) is generally used to predict the adsorption, and

Molecular Dynamics simulations (MD) are used to describe

diffusion and other transport properties.117,118 These techniques

have been used to generate adsorbent property data for large

databases of adsorbents at enormous computational costs.105,119

To tackle this problem, researchers have applied supervised ML

techniques to build predictive data-driven models. Extensive

work has been carried out by computational materials chemists

to identify the underlying QSPR using ML.120 There are four

general classes of descriptors that are generally used to describe

the adsorption equilibria, geometric, topological, chemical and

energy-based.121 Dureckova et al.122 developed ML models to

predict CO2 working capacity and CO2/H2 selectivity using a

diverse set of MOF structures using gradient boosted trees

regression method. The authors also showed that both geo-

metric descriptors, such as surface area, and chemical descrip-

tors, constructed using atomic property weighted radial

distribution functions, can be used to predict with reasonable

accuracy the working capacity and mixture gas selectivity.122

Burner et al.123 presented a similar framework to predict the

working capacity and CO2/N2 selectivity using a deep neural

network (DNN). The best predictions were obtained with the

AP-RDF, chemical motif, and geometric descriptors, all as

inputs, with an Radj
2
4 0.95. Pardakhti et al.124 reported that

a framework for the prediction of methane uptakes using ML

algorithms. They evaluated multiple ML algorithms, such as

SVR and RF, and reported a high prediction accuracy compared

to the GCMC predictions.124 Bucior et al.125 presented a data-

driven surrogate trained ML model to predict H2 loading on

MOFs using a new type of descriptors as model inputs. The

descriptors were derived using the binned histograms of the

energies of adsorbent–adsorbate interaction and used as inputs

to the predictive model. The sparse regression model trained

with this and geometric descriptors to predict gas uptake in

multiple MOF databases to a high degree of accuracy.125 These

studies show us that both the adsorbent structure and the

chemical interactions are needed to be taken into account for

accuracy in predictions. ML frameworks have been successfully

shown to speed up single adsorbent–adsorbate interactions.

Still, their real application is in the prediction of multiple gases

and mixture gas adsorption on adsorbents. Techniques such as

transfer learning, dimension reduction, feature identification

can improve the model predictions for such cases.126 Anderson

et al.127 presented a new framework to predict the adsorption of

multiple adsorbate gases for a given range of conditions using a

MLP. The model was trained using the variables that describe

the force-field parameters of ‘‘alchemical’’ species and the

MOFs as simple descriptors such as geometric and chemical

moieties. The resulting models could then predict the adsorp-

tion of six different gases in a diverse set of adsorbents.127

While understanding the separation potential of an adsor-

bent is critical, quantification of the mechanical stability and

synthesizability of the in silico predicted adsorbent structures is

an important aspect for the final deployment of the technology.
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Evans et al.128 showed that ML models predicted bulk and

shear moduli of zeolites using only geometric features and that

the accuracy of these predictions is better than the traditional

force field approaches. Moghadam et al.113 demonstrated that

ML techniques and multi-level simulations predict MOF pro-

perties. The ML models developed in this work can predict the

mechanical properties of MOFs in a matter of seconds. They

were also shown to predict the mechanical stability for the in

silico predicted structures.113

The recent explosion of ML-related applications means that

a large amount of new information, through publicly shared

models and data, open up the possibility of transfer learning.

Here, models taught to learn patterns for a specific application

or purpose can help retrain new models for different applica-

tions. This has been demonstrated for applications such as the

characterisation of adsorbent isotherms, where ML models

used to predict equilibrium measurements of one gas can help

the prediction of other gases on the same adsorbent. Thus,

saving precious computational time.

3.2.2 Process modelling and optimisation. Cyclic adsorp-

tion processes are typically operated in fixed beds that undergo

several steps to achieve the desired separations. Depending on

the bed regeneration strategies, several processes operational

modes such as pressure swing adsorption (PSA), vacuum

swing adsorption (VSA), temperature swing adsorption (TSA),

temperature-vacuum swing adsorption (TVSA), concentration

swing adsorption (CSA), electric swing adsorption (ESA), micro-

wave swing adsorption (MSA), etc. can be realised. Such systems

are inherently characterised by a system of coupled nonlinear

PDEs obtained from the underlying mass, momentum and

energy balances. In the context of modelling and simulating

cyclic adsorption processes, the system of nonlinear PDEs is

repeatedly solved in time and space for each step in a cycle

sequence. Owing to its transient and cyclic nature, adsorption

processes must be simulated until the system reaches a cyclic-

steady state (CSS). The key performance indicators are then

calculated based on the transient profiles of state variables

(composition, pressure and temperature). Often, solving the

system of PDEs cyclically several times until CSS is computa-

tionally demanding. Further, the modular nature of cyclic

adsorption processes allows for flexibility in controlling several

operating conditions and design parameters. Hence, in the

context of process optimisation, several decision (or design)

variables can arise. Therefore, the high-dimensionality and

effort to determine process performance at CSS make optimisa-

tion of cyclic adsorption processes complex and challenging.

To tackle problems mentioned above, ML techniques have

been applied to design and optimise cyclic adsorption pro-

cesses for CO2 capture applications. The studies employing ML

to model and optimise cyclic adsorption processes can be

classified into three categories. The first category corresponds

to studies that used ML for supervised learning (regression) to

know the structural mapping between the decision variables

and process outputs in the process optimisation in order to

avoid the computational burdens of running high-fidelity

simulations for functional evaluations. To this end, an initial

design of experiments (DOE) is performed on the decision

variables that typically cover the entire design space. The

high-fidelity models are then used to calculate the desired

process outputs (typically key performance indicators used in

the optimisation) based on the sample set of decision variables

from the DOE. Finally, surrogate models using ML algorithms

are constructed based on those samples and subsequently used

in the optimisation. Single or multiple surrogate models can be

constructed for process outputs. For example, Pai et al.129

tested the ability of a variety of surrogate models constructed

based on different supervised ML algorithms to predict the

performance indicators of a 4-step VSA process for post-combustion

CO2 capture. Algorithms such as decision trees, RFs, SVMs,

GPR and ANNs were trained for each performance indicator

using a sample set of operating conditions generated via Latin

hypercube sampling. Among these, GPR was shown to perform

well using an adjusted coefficient of determination (greater than

0.98) as the metric. Upon employing these surrogate models in

the process optimisation, they showed that the relative error of

the optimal performance indicators from the surrogate and

high-fidelity simulations was within 3%. Subraveti et al.130 devel-

oped a neural network-based optimisation approach to deter-

mine the Pareto solutions of multi-objective maximisation of

CO2 purity and CO2 recovery for a complex 8-step PSA process

designed for pre-combustion CO2 capture. Herein, the multi-

objective NSGA-II (Non-Dominated Sorting Genetic Algorithm

version II) algorithm’s initial generations were carried out using

high-fidelity simulations for evaluating objectives. This also

served as the training data generation step for the neural net-

work models, which learned the underlying input–output map-

ping structures between decision variables and objectives, CO2

purity – CO2 recovery. Such training data that was already biased

towards the optimal region of the decision variable space helps

improve the prediction accuracy of the neural network models in

the desired optimal region. A three-layer feed-forward neural

network with one input layer, one hidden layer with ten neurons

and one output layer were used for each objective to demonstrate

this approach, with results indicating that the relative error

in both the objectives was found to be around 1%. The PSA

optimisation using neural networks was ten times faster as

compared to using high-fidelity simulations for functional eva-

luations. Instead of constructing a surrogate model for each

performance indicator, Xiao et al.131 used a multi-output feed-

forward neural network architecture to predict purity, recovery

and productivity in the PSA optimisations. Vo et al.132 formu-

lated an integrated process model based on the combination of

different feed-forward neural networks, which represent the

input–output mapping structure of cryogenic, membrane and

PSA units for hydrogen recovery and CO2 capture from the tail

gas of SMR-based hydrogen plants. The neural network models

for each unit were shown to have less than 2% error and were

subsequently used to minimise the production cost of the

integrated process. The neural network models were also shown

to have low computational costs.

Often, uncertainty arises in ML-based optimisations during

the ML model selection and/or training the model parameters.
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Uncertainties in model predictions even lead to potentially

different optimal solutions. To address the issue of uncertain-

ties in ML-based optimisations, Hüllen et al.133 proposed three

different strategies, i.e., robust optimisation, stochastic pro-

gramming and discrepancy modelling, integrated with ML

models for handling uncertainty. These approaches have been

applied to a case of temperature swing adsorption process for

DAC where the productivity of the process was maximised

subject to purity, recovery and energy constraints. Sparse Grid

polynomials and ANNs were used as data-based models to

approximate decision variable-processes output mapping. The

authors stress the importance of incorporating uncertainty into

ML-based optimisations.

The second category of studies involves developing super-

vised ML models to predict the axial or temporal profiles of the

cyclic adsorption process. Pai et al.129 also developed neural

network models to predict the bed profiles of the intensive

variables of a 4-step VSA process at CSS. Using these neural

networks, they demonstrated a rapid convergence to CSS.

Further, the neural network predictions were also matched

with the experiments. Leperi et al.134 used neural networks to

construct basic steps in typical PSA processes for post-

combustion CO2 capture. For each step, twelve neural network

models were constructed. To elaborate, each neural network

model for predicting five state variables (absolute pressure, CO2

gas phase mole fraction, CO2 molar loading, N2 molar loading

and column temperature) were measured at ten measured

locations along the column. Further, one neural network at

each end of the column predicts the total gas flowing in and out

of the column. This approach allowed them to synthesise

different PSA cycles for post-combustion CO2 capture and

calculate their performances based on the neural network

models underpinning each step. Oliveira et al.135 proposed a

real-time soft sensor for a PSA unit based on deep learning

networks. Three different types of ANNs, namely, feed-forward,

recurrent and long short-term memory (LSTM) models based

on multi-input and a single output, were developed to predict

the PSA model dynamics. It was shown that LSTM-based DNNs

outperformed feed-forward and recurrent neural networks in

terms of predicting the dynamics of PSA. The authors also

suggested that the LSTM-based DNNs can be reliable for

optimisation, control and on-line measurements of PSA units.

In the third category, supervised ML algorithms such as

PLSR were used for reducing the dimensionality of the cyclic

adsorption process optimisation. For example, Subraveti

et al.130 employed PLSR to identify each decision variable’s

relative importance in the optimisation, which impacts the

process objectives. The most relevant decision variables were

identified using the PLS weights, and other variables are

discarded. For the case study considered, the original eight

decision variables were reduced to three using this approach.

This improved the optimisation speeds by almost 50% without

compromising the accuracy of the Pareto solutions.

3.2.3 Integrated material-process screening studies. The

choice of the porous adsorbent media is dependent on the

product requirements and constraints. Traditional adsorbent

selection metrics such as selectivity, and working capacity, fall

short of this and thus do not provide the complete representa-

tion of separation efficiency/performance.136 Additionally,

many such simplified metrics do not fully consider the process

requirement or the complex multiscale phenomenon during

scale-up. Although relevant and valuable work has been carried

out in relation to the underlying QSPR in most of cases, there

needs to be a consensus over the integration of the real-world

process that will be used to separate and capture the CO2.
137

Often, simplified descriptors such as CO2 working capacity or

selectivity are used as optimisation targets.

ML-based techniques such as DNNs are well-suited for

applications that require large amounts of repetitive computa-

tion. ANN-based surrogate models have been applied as cheap

computational emulators of complex process models to aid in

the fast screening of material. Khurana and Farooq111 developed

regression models to directly predict minimum energy and

maximum productivity for CO2 capture from a flue gas stream

containing 15% CO2 using a VSA process. Khurana and

Farooq111 also screened around 80 adsorbents using the ML

model and validated the optimised results with a detailed

mathematical model. Burns et al.25 and Leperi et al.110 also

screened the CoRE MOF database to identify high-performance

adsorbents for post-combustion CO2 capture using a detailed

model. Burns et al.25 developed a decision tree-based ML

model, and Leperi et al.110 developed a generalised separation

metric using the data from a detailed model to screen new

adsorbents in the same process with a high degree of accuracy.

These papers also showed the clear computational advantage of

the application of ML-based surrogate models for screening

due to their inherent speed and accuracy. Pai et al.26 developed

a generalised framework called machine-assisted adsorption

process learner and emulator (MAPLE) for modelling and

screening any Langmuir (Type I) adsorption isotherm by

including the isotherm parameters as model inputs along with

the process parameters. The authors demonstrated that the

framework accurately modelled process performance and were

able to validate the ML-based optimisation framework from the

external literature. The study showed the computation required

to train the generalised ML model was similar to the computa-

tion required to screen rten adsorbents using the traditional

modelling and optimisation approach. It should be noted that

these ML models are robust only in the training data range.

One must be careful not to overtrain and to thoroughly validate

the performance with independently generated testing data.

3.2.4 Process inversion and performance limits. In recent

years, multiscale models have shown that it is necessary to carry

out the integrated process and material screening.25,110–112

However, the full consideration of all the multiscale phenomenon

makes the computational evaluation restrictive. For this reason,

most scale-up studies in the literature evaluate only a small

subsection of the available adsorbents. This makes effective

and accurate screening of adsorbents a non-trivial problem.

Alternatively, reverse engineering the hypothetical best per-

forming adsorbent for a fixed process cycle, where the opera-

tion of the process cycle is optimised, is a route to identify the
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best possible choice, with the final goal being the synergistic

design of both the adsorbent media and separation process

cycle. In each of these cases, vast amounts of simulation

experiments need to be carried out.

Khurana and Farooq111 developed an inverse design framework

to predict the hypothetical best isotherm for post-combustion

CO2 capture in a VSA-based process. In this work, the authors

considered five input parameters to describe the adsorption

equilibria and trained a neural network model. The resulting

optimisation of the idealised isotherms provided insight

into the effect of the isotherm on the process performance.

Pai et al.137 used a ML surrogate, MAPLE, for a wide range of

operational conditions and used the inverse adsorbent design

approach to study the limits of PVSA-based CO2 capture for a

wide range of CO2 feed compositions. Yao et al.138 proposed an

automated adsorbent discovery framework using an auto-

encoder to generate MOF structures with desired functions.

The results showed that the model accurately captured struc-

tural features and was able to reconstruct MOF structures. The

framework showed the automated design of MOFs for CO2

capture from natural gas and flue gas streams.138 These studies

highlight the advantage of ML in synergistic processes and

adsorbent. Due to their computational speed and accuracy,

such ML models allow designers to explore previously compu-

tationally restrictive engineering problems.

3.2.5 Perspectives and prospects

Material design and discovery. The material databases

include more than 500 000 structures (both experimental and

hypothetical) that can be evaluated for CO2 capture. Such large

databases can be screened for best performers using ML.

Unsupervised/semi-supervised learning methods can be applied

to classify the materials in databases into different clusters and

know the underlying patterns/distributions within the databases.

In addition, supervised learning techniques can be used to

identify the mapping between the structures andmaterial proper-

ties without the associated computational burdens of solving

physical models.

Process modelling and optimization. The major barrier for

exploring different adsorption process cycles for CO2 capture

has been the significant computational demands in process

modelling and optimisation. Existing studies in the literature

showed that supervised learning algorithms could be efficiently

incorporated into the optimisation routines. With the advances

in ML, more efforts must be directed towards the dynamic

modelling of adsorption processes. For instance, Leperi et al.134

used ANNs tomodel the dynamics of some basic constituent steps

in PSA processes. Such approaches are useful, especially when

designing and evaluating different adsorption processes for CO2

capture. Increasing the generalisation capability of such ML

models is also important for accurate predictions. These models

can also gainmore insights in understanding the interplay among

different intensive variables such as gas composition, pressure,

temperature, and solid compositions affecting the process. The

high dimensionality of the adsorption process optimisations can

be tackled using ML. Semi-supervised/unsupervised algorithms

can be utilised to know the effect/causal relationships between the

decision variables and the performance indicators. This will

help understand the underlying relationships between process

inputs-outputs and identify significant decision variables for the

optimisation. While most ML studies are focused on the pro-

cesses designed for the pilot-scale, some of these ML approaches

can also be extended to industrial applications. For example,

these models can be effectively used in the process monitoring

and control to overcome inherent process control challenges,

especially since several sequences of steps occur in cyclic adsorp-

tion processes. Reinforcement learning (RL) can also be applied to

monitor and control the cyclic adsorption processes. RL algo-

rithms can be trained to learn adaptability when the process is

subjected to external disturbances.

Integrated material-process screening. For CO2 capture, inte-

grated material-process studies have recently become common.

Given that a large number of materials have to be screened

using the process for reliable material evaluations, conducting

a multiscale computational campaign for integrated material-

process performance evaluation is computationally very expensive.

However, ML has transformed this potentially computationally

impossible exercise into a possibility. For example, Pai et al.26

developed a material agnostic ML framework where both

material and process decision variables are considered for

screening and evaluating the performance of different materials.

Such approaches will enable a deeper understanding of the under-

lying patterns in the material feature space. Algorithms like

manifold learning can be utilised to identify such patterns in the

material feature space, which will help in accelerating the material

discovery for CO2 capture.

3.3 Machine learning in oxy-fuel and chemical-looping

combustion for CO2 capture

3.3.1 Machine learning in oxy-fuel and chemical-looping

combustion. Oxyfuel combustion burns fuels in a mixture of

pure O2 and recirculated CO2 instead of air, and then the CO2

can be easily separated from the flue gases. To reduce the

energy penalty and costs from the air separation unit in the oxy-

fuel combustion process, the next generation of carbon capture

technology, chemical-looping combustion (CLC), that can

transfer the oxygen from the air reactor to the fuel reactor by

means of oxygen carriers, has been proposed. The current

technology readiness level (TRL) for oxy-fuel combustion and

CLC is estimated at 7–8 and 6, respectively. The applications of

ML in these technologies are mainly focused on predicting the

thermodynamic characteristics of oxy-fuel combustion, moni-

toring the oxy-fuel combustion process, estimating the reactivity of

oxygen carriers and process control of CLC.

To reduce the complexity and improve the accuracy of

numerical models to predict the coal/char combustion rates,

Zhu et al.139 investigated the application of an ANN approach

for estimating the coal/char combustion rates with their charac-

teristics as inputs of the neural networks. The results indicated

that ANNs can provide a new approach to the development

of models for predictions of reactivity/combustion rate of coal
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combustion with reasonably good accuracy and robustness.139

Later on, several researchers employed ANN to predict the values

from thermogravimetric analysis (TGA) of oxy-fuel combustion of

different fuels. Chen et al.140 applied ANN models to predict the

thermogravimetric curves of co-combustion of sewage sludge

and coffee grounds under O2/CO2 atmospheres, with O2/CO2

mixing ratios, heating rates, and temperature as the inputs. After

training using the experimental data from the TGA, the optimal

ANN model provided a good agreement between the experi-

mental and predicted values. Xie et al.141 compared the perfor-

mance of RBF and BPNNs on the prediction of TG curves of

oxy-co-combustion of textile dyeing sludge and pomelo peel, with

the mixing ratio, heating rates, combustion atmosphere and

temperature as the inputs and mass loss percent as the output.

The results indicated that BPNNs gave a better prediction than

that of RBF neural networks.141 Govindan et al.142 used trained

ANNs, using TGA to predict the sample mass loss percentage of

oxy-fuel combustion of calcined pet coke, with the predictions

obtained from the model showing a high degree of accuracy,

with a coefficient of determination (R2) of 0.99. Qiao and Zeng143

also applied the ANN framework to predict the gas products of

heavy oil gasification under oxy-fuel conditions but the authors

have not clarified how they trained and validated their ANN

models. Debiagi et al.144 developed a reduced-order model based

on ML, which can accurately predict different phases of coal

particle combustion at a reduced computation cost. They used a

High Dimensional Model Representation (HDMR) method to

develop the supervised ML models (see Fig. 5). Unlike the case

with the previous work, the training and test datasets were

generated from an accurate, detailed solid fuel kinetic model

that considered a wide range of operation conditions obtained

from a novel gas-assisted coal combustor.144

Krzywanski et al.145 developed a generalised ANN model to

predict the SO2 emissions from large- and small-scale circulating

fluidised bed (CFB) boilers under air-firing, oxygen-enriched and

oxy-fired combustion conditions with the dimension and opera-

ting parameters of the CFB boilers as the inputs. The authors145

also conducted a sensitivity analysis to investigate the effects of

changing operating parameters on the SO2 emissions using the

trained ANN models. The results indicated that the ANN model

can serve as a fast tool to provide the accurate prediction of SO2

emissions for coal combustion in the CFB boilers under the

different combustion environments with less complexity and

costs.145

Besides predicting the useful parameters of oxy-fuel combus-

tion, ML can also be applied to monitor air/oxy-fuel combustion

processes for combustion control and optimisation under

variable conditions. Bai et al.146 proposed a novel method by

combining flame imaging, principal component analysis and

random weight network (PCA–RWN) techniques for multi-

mode process monitoring for air and oxy-fuel combustion of

coal (see Fig. 6). Flame image database collected from a

250 kW air/oxy-fuel combustion Test Facility were used to

validate the PCA–RWN models and the performance was

evaluated by the Hotelling’s T2 and squared prediction error

(SPE). Compared to the performance of the proposed PCA–

RWN model with other ML classifiers (Kernel Support Vector

Machine, Neural Network, and k-Nearest Neighbour classifier)

for pattern recognition, the proposed PCA–RWN model gives

the best prediction of the average recognition success rate and

the least training time.146 The authors147 also followed a similar

methodology to apply the PCA with kernel support vector

machine (KSVM) model for the multimode monitoring of

combustion stability under different oxy-gas fired conditions.

Liu et al.148 used a supervised multilayer deep belief network

(DBN) to evaluate the nonlinear relationship between the flame

images and the outlet oxygen content, and the results indicated

that the proposed method was a reliable and efficient way for

predicting the real-time oxygen content. Later on, Han et al.149

applied flame imaging and stacked sparse autoencoder based

DNN to monitor the combustion stability. The results showed

that the proposed model could quantitatively and qualitatively

evaluate the combustion stability with good generalisation and

robustness.149

Yan et al.17 used the experimental data of nineteen manga-

nese ores to train the ANN models to predict the reactivity

of manganese ores as oxygen carriers in CLC. The results

indicated the optimal ANN models can provide very good

performance predictions for both training and new dataset

and the authors proposed a general workflow in applying ML

model to predict the performance and aid the design of the

oxygen carriers as shown in Fig. 7.

Fig. 5 Diagram of a generic multilayer perceptron of the HDMR

method.144
Fig. 6 Diagram of PCA–RWNmodel for multi-mode combustion process

monitoring.149
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Singstock et al.150 proposed a statistical ML descriptor-based

method to predict the reaction free energies and classify the

thermodynamically viable active materials for chemical-looping

processes, and the authors applied it to evaluate materials for a

novel chemical looping process for pure SO2 production. This

approach is envisioned to link the process design with high-

throughput material discovery to promote the development of a

wide range of chemical-looping technologies.150 Wilson and

Sahinidis151 proposed a mixed-integer nonlinear programming

(MNLP) formulation to estimate and identify kinetic rate para-

meters from a postulated superset of reactions, and they

validated that this approach can automatically generate accu-

rate kinetic models from dynamic CLC process.

The assurance of smooth and long-term operational stability

of the CLC system is one of the key requirements for CLC

technology to be deployed on a commercial scale. Pan et al.

applied the LSTM based recurrent neural network (RNN) for

early detecting of fault caused by fines accumulation, which is

represented as bubbles in the packed bed standpipe of a

chemical looping systems. The results revealed that the model

trained by the cold-flow model of sub-pilot scale chemical

looping system can provide a recall value of at least 86.7% with

the application of ensemble decision strategy, and the authors

pointed out the proposed model can easily be extended and

generalised with further training using the data obtained from

multiple operation conditions.152

3.3.2 Machine learning in calcium looping. A similar pro-

cess to chemical looping, is calcium looping, which is a CO2

capture process, that uses calcium oxide-based sorbents to

separate and remove CO2 from flue gases. The process is based

on the reversible reaction of lime with CO2 and is considered as

an emerging CO2 capture technology. This process has been

well researched with findings focusing on optimal CaO based

sorbents to achieve the best capture efficiency, however the

application of ML to this field is relatively new, with very few

studies on this aspect.

Chen et al.153 proposed the use of BPNN to predict the

performance of Ca-based sorbents in the calcination/carbona-

tion cycles, based on TGA experimental data. This study

observed the factors that affected the sorbent performance,

namely sample particle diameter, calcination temperature,

calcination duration, calcination atmosphere and carbonation

duration. The feed-forward multilayer ANN, which had the

architecture of 5-34-1, had the five aforementioned factors as

inputs, and the carbonation conversion degree as the output

parameter, calculated with the assumption that the decomposi-

tion of calcium carbonation was the only reason for sample

weight change. Here, 75% of the data was used for training

while the remaining 25% was accounted as the test data. The

model proposed showed a strong correlation with TGA results

and proved the validity for the approximation of Ca-based

sorbent in the carbonation process even when conducted at

extreme reaction condition.

A recent application of ML to the calcium looping process

was developed by Nkulikiyinka et al.154 Here, the authors

developed an ANN and random forest (RF) model to act as soft

sensor models, for the prediction of gas concentrations for the

reaction of steam methane reforming coupled with calcium

looping, also known as sorption enhanced steam methane

reforming (SE-SMR). In this study, the data was obtained using

the Aspen Plus software, where input parameters, regenerator

and reformer temperatures, pressure, steam-to-carbon ratio

and sorbent-to-carbon ratio, were varied to obtain a wide range

of data for the process. The Aspen Plus data was validated

against literature data, and was then split into training, validation

and test data. Various gas concentrations in the reformer and

regenerator, as well as methane conversion were used as the

output parameters. The models developed showed high accuracy

prediction for the reactor gas concentrations and confirmed that

ANN and RF algorithms can successfully model a nonlinear

process such as SE-SMR, and therefore act as a suitable data-

driven soft sensor for the process.

Krzywanski et al.155 explored a method of predicting the NOx

emissions produced from the regenerator of a calcium looping

system, coupled with oxyfuel combustion of coal to provide

heat of decomposition, using a regression analysis-based

modelling technique. The authors conducted the experiment

in a dual-fluidised bed (DFB), with the effects of fuel type,

oxygen feed, and NO addition to primary or secondary feed gas,

being evaluated. The authors provided limited detail on the

regression model, however Fig. 8 shows the flowchart of the

model application, and the only input necessary are the fixed

carbon, the ratio of molar nitrogen to carbon content in fuel

N/C, and the O2, concentration in the flue gas from the

regenerator, leading to the NOx emission as the output para-

meter. The results obtained from the model were in good

agreement with experimental results, with a correlation coeffi-

cient equal to 0.925.

An alternate purpose that ML has been applied to in the

calcium looping field, is on the study of the economic feasibility

of the post-combustion calcium looping process on a 580 MW

coal fired power plant, by Hanak and Manovic.156 In this study,

Fig. 7 Workflow of developing a machine-learning model for oxygen

carriers in chemical-looping processes.17
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an ANN was developed using data from Aspen Plus simulations,

and this model was then combined with results from an

economic model developed from a Monte Carlo (MC) simula-

tion. The ANN model was used to connect the process inputs of

the process model with the process inputs of the economic

model. A two-layer feedforward ANN with ten sigmoid hidden

neurons and linear output neurons was developed, with 70% of

the data obtained from the Aspen Plus model, used for training,

15% used for validation and 15% used for testing. Fig. 9 shows

that the ANN used in this study can depict the thermodynamic

performance of the calcium looping retrofit accurately, despite

its nonlinear characteristic. The study concluded that the

stochastic approach, and incorporation of the ANN model, in

the economic feasibility assessment enables a more accurate

and reliable comparison of different calcium looping retrofit

configurations.

3.3.3 Perspectives and prospects.ML has been successfully

applied in oxy-fuel combustion for the combustion charac-

teristics prediction and process monitoring. It should be

pointed out that most researchers use TGA data to train,

validate and test the ML models to predict combustion char-

acteristics, but these also can be easily measured by the TGA

without using the training data to develop the optimal ML

model that requires higher computing costs and longer time.

In addition, the extracted TGA data cannot represent the

combustion characteristics in the real combustor due to their

low heating rates and mass-heat transfer considerations. Thus,

it is suggested that the researchers could use the data from the

pilot-scale or large-scale combustors to develop their ML

models, and the trained ML models could provide more useful

information to develop oxyfuel combustion technology. ML can

also be applied for using the flame images to monitor oxyfuel

combustion process.

For calcium and chemical looping technologies, it is

expected that ML will play an important role in materials

development, process control, and techno-economical assess-

ment. However, only a few researchers have attempted to utilise

ML for these goals. We encourage researchers working in this

area to consider applying ML in their research to maximise

their research outputs. For instance, CLC is a novel carbon

capture technology, and the selection of suitable oxygen carriers

is a key barrier to chemical looping technologies development.

Over the last 20 years, over 1000 materials have been investigated

experimentally. This could serve as an ideal database for utilising

ML to screen and identify useful information to guide the oxygen-

carrier materials development. Also, ML can be combined with

density functional theory (DFT) to screen the thermodynamic

feasible metal oxides as the oxygen carriers.157 It is also foreseen

that ML will accelerate the discovery, design, and synthesis of

sorbents for calcium looping process by using the historical

research data on sorbents development.

In the Section 3, we have reviewed and discussed the

research of applying ML in CO2 capture, which includes CO2

absorption, CO2 adsorption, oxyfuel combustion, calcium

looping and chemical looping combustion. There is also work

on ML in membrane for CO2 separation which is detailed

elsewhere.158–160

4. Machine learning in CO2

transportation, utilisation, and storage
4.1 Machine learning in CO2 transportation

4.1.1 The role of machine learning in the mass flow

metering of CO2. The captured CO2 needs to be transported

from the capture points to the storage sites. Pipeline trans-

portation of CO2 in the dense phase is regarded as the most

cost-efficient and safest solution over a long distance.161 Accurate

flow metering of CO2 in CCUS pipe networks is crucial to the

optimised design and economical operation of CCUS processes.

For instance, it is reported that each percent of accuracy improve-

ment will save h200k per year for a CCUS project in Norway.162

As expected, larger-scale CCUS systems, a higher number of

accurate flowmeters need to be deployed. In addition, the

European Union Emission Trading Scheme (EU-ETS) requires

the flowmeters to operate within an uncertainty of �1.5%.161

However, it is difficult for traditional flowmeters to meet the

accuracy requirements due to the complex properties of CO2

fluid. Unlike water, oil and natural gas, CO2 is expected to be

transported near the critical point, which is very close to the

expected operational condition of transportation pipelines.

A small change in line temperature and pressure may lead to

a significant change in the phase of CO2, resulting in gas–liquid

two-phase CO2 flow. Impurities produced using different cap-

ture methods may also affect the phase behaviours of CO2 flow.

In addition, some impurities, such as water, H2S, NO and SO2,

produce corrosive products which may influence the choice of

Fig. 8 Application of the model for the evaluation of NOx concentration if

flue gas.155

Fig. 9 Structure of the artificial neural network used to map the thermo-

dynamic performance of the calcium looping process retrofit.156
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flowmeter material.163,164 For some volumetric flowmeters, the

density data calculated from the equation of state (EoS) is

required to obtain the mass flowrate. However, the accuracy

of EoS of CO2 flow with impurities is insufficient.165 Moreover,

flexible operations of CCUS systems on smart fossil fuel fired

power plants, such as frequent load changes and rapid start-

ups and shutdowns, may lead to rapid changes in the proper-

ties of CO2 flow. Transient behaviours that occur in pipelines

may result in the phase transition of CO2 and flow instability,

making the accurate measurement of CO2 flowrate more

challenging.

Over the past few decades, some techniques have been

developed to achieve the accurate measurement of multiphase

flow, especially gas–liquid two-phase flow. Some of these tech-

niques, such as radiation attenuation and nuclear magnetic

resonance, exhibit satisfactory performance in terms of

measurement range and accuracy, and can directly provide mass

flowrate, density and composition of multiphase flow.166,167

Nevertheless, the high cost and system complexity restrict their

applicability in the CCUS sector. Other economical techniques

such as differential pressure-based flowmeters are not able to

achieve satisfactory accuracy in the mass flow measurement. In

order to improve the accuracy of flowmeters, low-cost sensing

techniques incorporating ML algorithms have been proposed in

recent years.168,169 ML algorithms are capable of handing the

hidden relationships in large, complex and multivariate datasets

and have been used in the measurement of gas–liquid two-phase

CO2 flow.

4.1.2 Measurement of the mass flowrate of two-phase CO2

flow. Mass flowrate measurement of CO2 flow is essential for

the fiscal purpose in CCUS projects. Coriolis mass flowmeters,

as the most accurate single-phase mass flowmeters, have the

ability of directly measuring mass flowrate, but the errors in

measuring two-phase flow are still large. Thus, ML algorithms

are employed to improve the accuracy of Coriolis mass flow-

meters in multiphase flow measurement, based entirely on

internally observed parameters. Fig. 10 shows the common

solution based on Coriolis mass flowmeter and ML algo-

rithms. The ML algorithms use input variables reading from

Coriolis flowmeters and give the measured mass flowrate,

density, and gas volume fraction (GVF). When CO2 flow is

single-phase liquid or gas, the output of GVF is 0% and 100%,

respectively.

Henry et al.171 reported a case study which achieved the

errors of mass flowrate within 1–5% in the measurement of

gas–oil two-phase flow based on a Coriolis mass flowmeter and

an ANN under the condition of 1 kg s�1 to 10 kg s�1 in flowrate

and less than 60% in GVF. The same measurement system was

also employed to measure slugging two-phase CO2 flow at the

pressure of 5.52–7.03 MPa and the temperature of 4–32 1C.172

Results show that the reading difference between the Coriolis

flowmeter and other sales meters over several weeks is usually

within �5%. Comparative investigations into the performance

of ML algorithms for gas–water two-phase flow metering were

conducted by Wang et al.173 Several algorithms, such as ANNs,

SVM and GP, were developed to estimate the liquid mass

flowrate and GVF. The inputs of the ML algorithms were

obtained from a Coriolis flowmeter and a differential pressure

(DP) transducer. For the mass flowrate measurement, the input

variables are apparent mass flowrate, apparent density, damp-

ing and DP, while for the GVF measurement, the apparent mass

flowrate, density and DP are taken as inputs. Results show that

the relative errors are within �1% in mass flowrate measure-

ment over the range of 250 to 3200 kg h�1 and within �10% in

GVF prediction. Wang et al.170 also applied a Coriolis mass

flowmeter incorporating LS-SVM models to measure the mass

flowrate of gas–liquid two-phase CO2 flow in both horizontal

and vertical pipelines. Fig. 11 illustrates the principle of the

flow measurement of gas–liquid two-phase CO2 flow. A classi-

fication model is developed and incorporated in the system to

recognise the flow pattern and independent LS-SVM models for

the mass flowrate metering of gas–liquid two-phase CO2 flow.

Results suggest that most of the relative errors under steady-

state flow conditions are within �2% in horizontal test pipeline

and �1.5% in vertical test pipeline. However, the performance

of the models is affected by the lack of verification under

dynamic flow conditions. It should be noted that the afore-

mentioned models can also be trained to measure the GVF of

two-phase CO2 flow (Section 4.1.3).

4.1.3 Measurement of the gas volume fraction of two-

phase CO2 flow. Accurate GVF measurement of gas–liquid

two-phase CO2 flow in a pipeline network is crucial to the safe

and economic operation of the CCUS process. In recent years,

some accessible sensing solutions such as capacitive sensors

Fig. 10 A typical CO2 flow measurement system based on low-cost

sensors and ML algorithms.170
Fig. 11 Principle of the mass flowrate and GVF measurements of two-

phase CO2 flow.170
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and Coriolis flowmeters in conjunction with ML algorithms

have been proposed to measure the GVF of CO2 flow.

As shown in Fig. 12, a flow-pattern-based LS-SVM model

developed by Wang et al.173 was utilised to measure the GVF of

gas–liquid two-phase CO2 flow. Experimental results suggest

that errors of the measured GVF are mostly within �10%. Shao

et al.27 achieved the GVF measurement in a horizontal CO2

pipeline based on a 12-electrode capacitive sensor and data-

driven models, as shown in Fig. 12. Three data-driven models,

BPNN, RBFNN and LS-SVM, were established. Unlike the flow

pattern recognition approach, reconstructed images are usually

not required for GVF measurement. The GVF measurement of

two-phase CO2 flow is achieved without the time-consuming

image reconstruction of the flow pattern. Experiments were

conducted under both steady-state and dynamic flow conditions.

For steady-state flow conditions, the mass flowrate was set from

200 to 3100 kg h�1 while the GVF was from 0–84%. Under

dynamic flow conditions the gas phase CO2 was rapidly increased

from 120 kg h�1 to 400 kg h�1 and then decreased while the

liquid CO2 was fixed at 1500 kg h�1. Measurement results show

that the RBFNN outperforms the other two models. Errors are

mostly within �7% and �16% under steady-state and dynamic

flow conditions, respectively.

4.1.4 Input variable selection for CO2 flow metering

Significance of variable selection in ML. Input variable selec-

tion is an essential step in the development of ML models. It is

intended to eliminate the irrelevant or redundant variables

from the available data, which is directly obtained from sensors

or in a transformed manner and identify a suitable subset

which is significant to estimation of the desired output. Due to

the inherent complexity of multiphase flow and the limited

theoretical knowledge of complex physical phenomena, input

variable selection becomes more important. Input variable

selection is helpful to analyse parametric dependency between

input variables and their significance and sensitivity to the

desired model output. Meanwhile, it is beneficial to reduce the

complexity of the model structure and improve the computa-

tional efficiency of the model. Therefore, input variable selec-

tion should be considered before developing ML models.

It must be pointed out that dimension reduction algorithms

such as Principal Component Analysis (PCA) and Independent

Component Analysis (ICA) are easily confused with input

variable selection. Dimension reduction aims to transform data

from a high-dimensional space into a low-dimensional space,

resulting in a reduced number of variables.

Methods that may be used to select variables. Input variable

selection techniques can be classified into three main categories:

wrapper, embedded and filter algorithms. Wrapper algorithms,

such as Single Variable Regression and Genetic Algorithm-

Artificial Neural Network (GA-ANN), and embedded algorithms,

including Recursive Feature Elimination and Evolutionary ANNs,

are model-based, i.e., a model has to be constructed and trained

in advance. Filter algorithms such as Rank Correlation, Partial

Correlation and Partial Mutual Information (PMI) are model-free.

May et al.174 considered several key factors in determining the

most appropriate approach to input variable selection for a given

application. The model-based approach aims to select the vari-

able set which makes the model perform well through establish-

ing and evaluating the model through potential variable

combinations. The main drawback of this approach is the high

computational requirement due to a large number of calibration

and validation processes required. Moreover, the selection results

depend on the predefined model in terms of architecture and

parameters. By contrast, the model-free approach is directly

based on the information (interclass distance, statistical depen-

dence, or information theory, etc.) between the available dataset,

so the computational efficiency is not an issue. However, a trade-

off criterion should be defined to balance the significance

measurement and the number of selected variables.

For air–water two-phase flow measurement, Wang et al.173

applied PMI, GA-ANN and tree-based iterative input selection

(IIS) methods to investigate the parametric dependence, sig-

nificance and sensitivity of the input variables to the desired

outputs, i.e., mass flowrate and GVF. Results suggested that the

selected variables using the PMI algorithm, observed density,

apparent mass flowrate, DP and damping provide more effec-

tive information for the models to measure liquid mass flow-

rate. The variables selected using the tree-based IIS algorithm,

included observed density, apparent mass flowrate and DP,

which were more significant to predict GVF. Subsequently,

Wang et al.170 investigated the measurement of gas–liquid

two-phase CO2 flow and developed LS-SVM models for flow

pattern recognition, mass flow measurement and GVF predic-

tion (Section 4.1.3), with the selected input variables including

apparent mass flowrate, observed density, damping and DP.

Although variable selection approaches can provide some

valuable information to determine the input variables of an ML

model, the accuracy of the methods also depend on the

observational dataset, such as data size and their distributions.

A dataset with less data or low-quality may result in under-

estimation or overestimation of the candidate variables for an

ML model. Consequently, in order to ensure the selection

accuracy with a limited size of a dataset, it is necessary to

determine the input subset by combining variable selection

methods with engineering judgement based on the relevant

knowledge of the target application. The results of input

variable selection will help enhance engineering judgement

whilst the latter will interpret the variable selection results.

4.1.5 Perspectives and prospects

CO2 flow metering under steady and dynamic conditions.

Although CO2 flow metering has achieved higher accuracies

Fig. 12 Principle of CO2 GVF measurement using capacitive sensors.27
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under steady flow conditions, the online implementation and

in-situ calibration of a data driven model should be incorpo-

rated. In addition, smart power plants with CCUS facilities are

required to balance the power grid by compensating for the

intermittent electricity supply from renewable energy resources

such as wind farms and solar stations. As a result, smart CCUS

plants will need to be operated flexibly.175,176 Load change,

frequent start-up and shutdown will occur during flexible CCUS

operations, which will generate constantly occurring transient

flow conditions. Recent experimental investigations revealed

significant discrepancies in the mass flow rate of two-phase

CO2 between the measured value from a Coriolis flowmeter and

the reference value during the load change in a CO2 transporta-

tion pipeline, which could lead to significant errors in the fiscal

metering of CO2.
177 Therefore, CO2 flow metering with a ML

model that considers dynamic nature of the flow, such as a

dynamic neural network should be investigated.

Deep learning algorithms of Long Short-Term Memory

(LSTM) and Gate Recurrent Unit (GRU) may also offer possible

solutions. Meanwhile, a data driven model is usually a black-

box which is highly dependent on the available dataset and it

may result in poor generalization capability when used on

practical CCUS facilities. ML by combining a physical based

model and a data driven model may improve the model

interpretability, measurement accuracy and generalization cap-

ability, but further research is required in this direction.

In addition, the data driven models that have been proposed

and developed to date have some drawbacks, such as heavy

computational workload caused by the feature engineering or

inefficiency when dealing with a high volume of data. There-

fore, the necessity and significance of developing new deep

learning models, which can deal with the above problems,

should be investigated.

Mass flowrate metering of CO2 with impurities. There are a

range of impurities such as N2, Ar and O2 in a CO2 stream from

fossil fuel power plants and large-scale industrial emitters.

Such impurities have a potentially significant influence on

the thermophysical properties of CO2 and hence large errors

in the mass flow metering of CO2. In addition, the range and

level of impurities in a CO2 stream vary under different carbon

capture sources.178 As a result, the flow measurement system

should combine the information from the mass flowrate and

the GVF to obtain the actual mass flowrate of CO2 component

in the presence of impurities.

A reliable CO2 test rig is essential for R&D in CO2 mass flow

metering of single-phase and two-phase CO2 with impurities

under both static and dynamic CCUS conditions. A dedicated

CO2 two-phase flow rig with an inner pipe diameter of 25 mm is

available at the North China Electric Power University. The

liquid flowrate of CO2 ranges from 200 to 3600 kg h�1 with

uncertainty of 0.16%, while the gas flowrate range is from 15 to

400 kg h�1 with uncertainty of 0.3%. The line pressure of the rig

can be varied from 57 to 72 bar with a temperature between

20 and 30 1C. However, new features, including a wider range of

flow conditions, injection of impurities, different pipe orientations

for meters under test, and variations in the pipe diameter of the

test sections should be developed in future.

Leakage detection of CO2 from transportation pipelines and

from storage sites. Potential CO2 leakages from high-pressure

CO2 transportation pipelines and from storage sites pose a

significant threat to the safety and health of those living in the

vicinity of CCUS pipe networks and storage sites. The possibi-

lity that CO2 may migrate from storage sites is a primary

concern for the safety and effectiveness of the CCUS techno-

logies. Permanent, automated monitoring techniques for the

continuous leakage detection of CO2 from transportation pipe-

lines and storage sites are necessary. For the CO2 leakage

detection in transportation pipelines, although acoustic emis-

sion (AE) sensors have been applied to locate the position of the

leakage source,179 the flowrate of the CO2 leakage needs to be

estimated. By combining the information from the AE sensors

and relevant temperature and pressure data, a leakage location

and estimation model based on ML algorithms should be

developed for the safe operation of the CCUS pipe networks.

Moreover, for the large-area monitoring of a CO2 storage site,

remote sensing techniques, such as hyperspectral imaging, aerial

imaging and satellite imaging, should be considered.180–182

Meanwhile, in-field pressure and seismic transducers may also

be applied for the local-area monitoring of a CO2 storage site.183

An integrated monitoring system by fusing the information from

the remote imaging systems and from the in-field transducers

is a promising solution, which should facilitate the practical

deployment of CCUS technologies.

4.2 Machine learning in CO2 storage and utilisation

4.2.1 CO2 storage. Ideal CO2 storage places include saline

aquifers and depleted oil reservoirs because of their high

storage capacity with available infrastructure184 (i.e. caprocks that

prevent the migration of CO2 plume) in place. More importantly;

the injection and production wells in those mature fields can

serve as the injection path for CO2 storage.
185–187

Four types of trappings could occur when CO2 is injected

into depleted oil reservoirs: structural-stratigraphic trapping,

solubility trapping, residual trapping, and mineral trappings.188–190

Structural-stratigraphic trapping is the process that CO2 is stored

in the underground structure as a supercritical state.191 CO2 can

often be trapped under low permeable formations such as shale

or mudstone, which can prevent CO2 from migrating upward

due to the buoyancy force. Besides, impermeable zones such as

cap rocks and sealed faults can also provide a good condition for

the entrapment of CO2.
192,193 Thus, the investigation of the

caprock integrity for a long-term sealing capability is important

before a CO2 sequestration project is carried on.194 Solubility

trapping refers to the dissolution of CO2 in the formation of

aqueous and oleic phases.195 The solubility of CO2 in formation

water depends on underground conditions including pressure,

temperature and water salinity. Numerous studies have been

performed to construct the relations between the CO2 solubility

with those parameters that would impact solubility trapping

(i.e. diffusivity,196 oil/gas–brine interfacial tension (IFT),197 etc.).
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The solubility of CO2 in the oil phase is generally higher than

that of brine in mature oil reservoirs.191 Residual trapping

involves the process that trapping CO2 as an immobile phase

within the porous media due to capillary forces. It is an impor-

tant phenomenon in the CO2 sequestration process especially

when there are no reliable sealing formations or caprock. The

gas hysteresis effect plays a vital role in the residual trapping.198

The bypass of a wetting phase fluid will render the non-wetting

phase immobile, thus leading to the entrapment of the non-

wetting phase. The effect of residual trapping can be enhanced

when the hysteresis effect is considered. Ampomah et al.191 in a

detailed numerical simulation study, pointed out that there

would be an apparent increase in the predicted amount of CO2

trapped as a residual phase after the gas hysteresis effect was

implemented. The predicted residual trapped CO2 surged from

1% to 14% after the hysteresis effect was considered. In the

mineral trapping, CO2 will react with formation mineralogy and

be trapped in the precipitation or dissolution of extant or new

carbonate minerals. Compared with other mechanisms, CO2

reactions often take years to occur thus its impact on the

transportation of the CO2 plume would be observed on a longer

time scale. When CO2 is in contact with formation brine,

aqueous species such as soluble CO2, HCO3
�, CO3

� are gener-

ated, and then reacted with formation minerals. Some common

reactions between CO2 and formation mineralogy are sum-

marised in Table 4.

Several studies using ML-based methodologies have been

performed regarding how those trapping mechanisms influ-

ence the dispersal and migration of the CO2 plume. Sun et al.188

studied the CO2 trapping mechanisms in the Morrow B Sand-

stone in the Farnsworth Units. A neural network-based approach

was used to match the reservoir model with historical data.

The history matched model was then employed to evaluate the

impacts of residual, structural-stratigraphic, solubility, and

mineral trapping mechanisms on CO2 sequestration and hydro-

carbon production. The ML-based history match process was

able to provide reliable pressure, fluid saturation and composi-

tion distributions that help the numerical model effectively

investigate trapping mechanisms with a reduced computational

overhead. The conclusion was that more CO2 is dissolved in the

oleic phase than the aqueous phase, which is due to the high

salinity of the formation water. Moreover, mineral trapping plays

a less significant role in the CO2 sequestration process compared

with other trapping mechanisms.

Ni and Benson199 studied the effect of mesoscale hetero-

geneity on larger-scale multiphase fluid flow properties and

trapping behaviours using a ML clustering method. The CO2

saturation maps, the voxel-level porosity and the permeability

maps were used as the inputs for the model. Each voxel was

treated as one data point, and the time series properties at each

voxel were treated as individual attributes (i.e., CO2 saturation

time series). The CO2 saturation and the porosity maps were

obtained through CT image manipulation, and the voxel-level

permeability map was obtained using the extended Krause’s

method.199 This study tested two clustering methods and found

that K-means clustering was more suitable for characterizing

flow behaviours and hierarchical clustering was more desirable

for identifying the capillary heterogeneity trapping behaviours.

Five different sets of coreflooding data were used to examine

the feasibility of the proposed approach. They concluded this

method was able to assess how the mesoscale petrophysical

properties influence capillary-dominated flow and residual

trapping behaviours. Moreover, the differences in time series

behaviours among the different clusters would be diminished

in viscous-dominated flow regimes.

CO2 storage of solubility trapping involves the process where

the injected CO2 contacts in situ brines and dissolves into the

water through molecular diffusion. Research was carried out to

study the CO2/oil/brine interactions under subsurface conditions.

Amar and Ghahfarokhi196 established the correlation between

diffusivity coefficients of the CO2 in brine water with pressure,

temperature and the viscosity of the solvent using the group

method of data handling (GMDH) and gene expression program-

ming (GEP). GMDH is one type of ANN that can generate an

explicit expression for the correlation between inputs and output.

The correlation generated using GMDH takes the advantage of

polynomial models. GEP is one evolutionary technique to mimic

systems with accurate explicit expressions, which is an improved

version of genetic programming. Besides the common genetic

operators, including selection, crossover, elitism and mutation,

GEP also introduces new actions such as insertion and transposi-

tion to find a reliable correlation. The conclusion was that both

GEP and GMDH correlations were able to make predictions that

were very close to experimental values, and the GEP correlation

yielded higher accuracy than the GMDH correlation. The GEP

model was also compared with decision trees (DTs), RF, mixed

Kernel-based SVM coupled with GA and other pre-existing

models, the GEP model was superior to all these models.

Menad et al.200 proposed to use MLP and RBFNN to predict

the CO2 solubility in brine at different temperatures, pressures

and molalities of NaCl. Additionally, several evolutionary algo-

rithms were employed to optimise the control parameters of

the neural networks, namely the Levenberg–Marquardt (LM)

algorithm, GA, particle swarm optimization (PSO) and artificial

bee colony (ABC). Combinations of those methods were com-

pared to determine the best one. They found that RBFNN-ABC

Table 4 Summary of some common reactions between CO2 and for-

mation mineralogy188–190

Reactions

1 CO2(aq) + H2O = H+ + HCO3
�

2 CO3
2� + H+ = HCO3

�

3 OH� + H+ = H2O
4 Quartz = SiO2(aq)

5 Albite + 4H+ = 2H2O + Na+ + Al3
+ + 3SiO2(aq)

6 Calcite + H+ = Ca2+ + HCO3
�

7 Dolomite + 2H+ = Ca2+ + Mg2+ + 2HCO3
�

8 Siderite + H+ = HCO3� + Fe2+

9 Illite + 8H+ = 5H2O + 0.6K+ + 0.25Mg2+ + 2.3Al3+ + 3.5SiO2(aq)

10 Kaolinite + 6H+ = 5H2O + 2Al3+ + 2SiO2(aq)

11 Smectite-low-Fe–Mg + 7H+ = 0.29Fe2+ + 3.75SiO2(aq) + 0.16Fe3+ +
4.5H2O + 1.25Al3+ + 0.15Na+ + 0.02Ca2+ + 0.2K+ + 0.9Mg2+

12 Chamosite-7A + 10H+ = 2Fe2+ + SiO2(aq) + 2Al3+ + 7H2O
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would yield to the most accurate prediction in the tests among

all combinations.

Zhang et al.201 proposed a work to model the CO2–brine IFT

using extreme gradient boosting (XGBoost) trees. The gene-

rated model was then employed to determine the optimal CO2

sequestration depth in saline aquifers. The brines used to

synthesise the database consider one or more of the following

salts: NaCl, KCl, Na2SO4, MgCl2, and CaCl2. Thus, the total

molalities of the monovalent cations (Na+ and K+) and bivalent

cations (Ca2+ and Mg2+) were considered as two independent

input variables. CH4 or N2 were two impurities accounted for in

the CO2 stream, so the mole fractions of these two impure

components were categorised into other two individual input

variables. Pressure and temperature were also utilised as the

other two variables due to their important impacts on the CO2–

brine IFT. After inconsistent data points were removed, a total

of 2346 data points were used to train the IFT prediction model.

The XGBoost trees model combined a cluster of classification

and regression trees (CARTs) to fit the training data samples.

The basic components contained in CART are a root node,

a set of internal nodes, and a set of leaf nodes, which is

depicted in Fig. 13.

The hyperparameters of the XGBoost trees were optimised

using the K-fold cross-validation integrated with the exhaustive

grid search approach. In the grid search approach, the search

range of each parameter is divided into different grids and this

approach will test the values of all grids to determine the best

result. Based on the model, the permutation importance (PI)

was employed to ascertain the importance of each input vari-

able to the IFT. Results showed that pressure had the highest

impact on IFT, followed by temperature, bivalent cation mol-

ality and monovalent cation molality, while the mole fractions

of CH4 or N2 were the least important factors. The capacity of

structural trapping CO2 in aquifers varies with the CO2–brine

IFT that would be affected with different temperatures and

pressures. It was claimed that with the help of the generated

model, reservoirs with different pressure and geothermal gra-

dients can be used to study the capacity of structural trapping

CO2. An increase in the maximal structural trapping capacities

for shallower formations was observed when the pressure was

higher and/or the geothermal gradient was lower.

CO2 leakage detection. After the CO2 is injected into the

subsurface complex, it is necessary to use monitoring and

verification approaches to ensure the safe and long-term sto-

rage of injected CO2.
202 The commonmethod includes building

a numerical model to simulate how the CO2 plume moves in

the underground structure and to predict the feasibility of

the long-term storage of the sequestered CO2.
203 Direct or

non-direct monitor data is always utilised in collaboration with

numerical models to assess risk of CO2 plume leaks from faults,

legacy well, or fracture systems.204

Wang et al.205 studied how to interpret the CO2 saturation

using seismic and downhole monitoring data. This study used

ML approaches to infer the CO2 saturation at different depths

from the combination of synthetic seismic data and monitored

downhole pressure and total dissolved solids (TDS) information.

The framework was built upon a candidate geologic carbon

storage site near Kimberlina, CA, USA. A hypothetical well

leakage was included in the numerical model, which was

focused on simulating the three geological layers overlying

the CO2 storage reservoir. All three layers were aquifer layers

with a sand fraction of approximately 0.8. There were 6000

numerical simulations implemented by varying the distribu-

tions for the permeability of the three geologic layers. Each

simulation had a 20 years’ prediction with a timestep of one

year. At each time step, rock physics modelling was performed

to estimate changes in seismic velocity due to the simulated

CO2 and brine leakage from the flow simulation outputs.

Therefore, a total of 120 000 forward seismic velocity models

were obtained from those 6000 simulations. Each velocity

model was further used to generate synthetic shot gathers

using 2D finite-difference acoustic wave modelling, along a

sparse 2D seismic line with only five shots and 40 receivers.

For each velocity model, five seismic features were calculated

thus 1200 (= 6 � 40 � 5) seismic features could be used to train

the prediction model. Besides the seismic features, measured

downhole pressure and TDS at three depths were also included

in the training inputs, leading to a total of 1206 involved in each

input-output pair. The output was the category of CO2 saturation

at three depths that have been labelled as five different integers

to discretize the range of CO2 saturation from zero to very high

level. The SVM with a linear kernel (linear SVM), support vector

machine with a radial basis kernel (SVMr), DNN with two

hidden layers and recurrent neural network (RNN) with a LSTM

layer were used to train the CO2 saturation prediction model

respectively. The performance of the models was estimated

using the Kappa statistic, meaning the prediction accuracy was

calculated and ranked between 0 to 1, with 0 representing

a random prediction and 1 standing for perfect prediction.

It was concluded that compared with using seismic monitoring

alone, adding downhole pressure and TDS measurements as

input features could improve the accuracy of the CO2 saturation

inversion.
Fig. 13 Illustration of a CART. L denotes the leaf node (modified from

Zhang et al.
201).
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Sinha et al.28,183 demonstrated how to detect the CO2

leakage using pressure data. The injection of CO2 would cause

pressure perturbation across the reservoir field. Harmonic

pulse testing (HPT) is one approach to cause this kind of

perturbation hence it can be used to differentiate CO2 leakage.

In a typical HPT job, the perturbation was induced by the

harmonic injection of a fluid into the reservoir at the injection

well, and the responses were recorded at the observation well.

The pressure HPT can be used to differentiate the pressure

response of a leak versus the non-leak in a field test. In a CCUS

project across multiple depleted oil fields, many injection wells

and abandoned wells could act as the path for CO2 leakage,

making the interpretation of the voluminous HPT data a

challenging task for human brains. However, the ML techni-

ques can be a good alternative. In this work, the author used

different neural networks to build the anomaly detectors to

interpret CO2 leakage, including multi-layer neural network

(MFNN), LSTM, convolutional, neural networks (CNN), and a

combination of CNN and LSTM (CONV-LSTM). The actual

measured pressure signal was compared with the predicted

response for the non-leak situation, and then the error was

calculated as an indicator of the CO2 leakage (anomaly). The

conclusion was that LSTM outperformed the others in the

pressure anomaly detection tests and the proposed approach

could provide early warnings to the CO2 leakage in a CCUS

project.

Lima and Lin206 integrated geological data andML techniques

to predict the CO2 and brine leakage in a 200 years’ duration in

geological carbon sequestration (GCS) project. The database used

for the employed machine-learning approaches was acquired

from 500 simulations that were generated to model underground

water flow and understanding effects at GCS sites attributed to

CO2 injection. Those models contain an injection well, a legacy

well and three geological layers. The seismic data and legacy well

pressure was used as inputs for function predicting CO2 and

brine leakage amount. The Inception model was used to train the

seismic data and CNN model was used to handle pressure data.

Here, 50 out of 500 simulations were utilised as test sets, and

models’ performance was compared between the model only

using seismic data and other using both seismic data and well

pressure. It was found that including pressure data would

provide small improvements in the prediction of CO2 and brine

leakage. Moreover, employing this developed approach was able

to provide an accurate prediction of the CO2 and brine leakage on

GCS sites.

Zhong et al.207 used a combined CNN and LSTM model,

designated as ConvLSTM, to detect the CO2 leakage in a CCUS

project. The CNN model was used to handle the spatial features

and the LSTM was used for temporal features. The spatial

features considered porosity and permeability and the temporal

features included the CO2 injection rate and the bottomhole

pressures of a production well and a leak well. The temporal

features were transferred into 2D images and the pixel value at

the injection well location was the injection rate and the pixel

values at the production and monitor wells were corresponding

bottomhole pressures. Thus, the total inputs for the ConvLSTM

model were three 2D images including one image containing

the injection rate and bottomhole pressure at the production

well, and the other two are areal distributions of the porosity

and permeability. The output from the model was the predicted

bottomhole pressure at the monitoring well, which was com-

pared with a real monitored pressure to determine whether

there is an anomaly in the CO2 injection. The database used to

train the ConvLSTMmodel was from a pulse testing experiment

where the CO2 is injected cyclically with an injection duration

of 90 minutes. The injected CO2 was artificially produced at

a constant production rate of 60 kg min�1 to mimic a CO2

leakage at the production well. A detection function was

defined to calculate the probability of the test data point being

in a user-defined normal data range given a user-defined

threshold. They also pointed out that insufficient datasets

or existing noises in the raw data may lead to inaccurate

prediction.

Singh208 introduced a workflow to monitor and detect CO2

leakage from a reservoir using injection rates and bottomhole

pressures. A deconvolution response was defined as the func-

tion of time-dependent well bottomhole pressure and injection

rates to measure the fluid leakage, which could be simulated

using MLR of all the wells present in the reservoir. The model

training process followed a strategy that field history without

any leakage was used to train and validate the model. Then the

model prediction was the simulated scenarios where no leakage

took place. The deviation between the predictions and real

monitoring deconvolution responses was employed to deter-

mine the leakage. The capability of the proposed workflow was

demonstrated by applying it to three case studies: (1) a naturally

fractured tight reservoir with five injectors and four monitoring

wells; (2) a reservoir with a barrier and the same well pattern as

case 1; (3) a real deep offshore saline aquifer with thick shale

layer above and below the reservoir. It was concluded that the

proposed method was able to detect leakage of both incom-

pressible and compressible fluids from a simple reservoir to a

fully heterogeneous and structurally complex field. The author

also pointed that this method could provide preliminary

insights into the location of the leakage, but still required the

help of expensive surveys (such as seismic, etc.) to identify the

actual location of a leak and the severity of the leak.

4.2.2 CO2 utilisation

4.2.2.1 CO2-Enhanced oil recovery. The utilisation of CO2 as

an injecting phase for enhanced oil recovery (EOR) has decades’

of history.209–211 CO2-EOR is a widely used technique that

injecting CO2 into a reservoir after waterflooding to lower the

residual oil saturation and hence improving hydrocarbon

production.212–215 When the injection CO2 enters the sub-

surface, a large volume of the injected CO2 will be trapped

underground due to the effects of the aforementioned trapping

mechanisms.216 Thus, the applications of CO2-EOR with CCS

would have dual benefits that both extracting more oil and

injecting and sequestering anthropogenic CO2.
217,218

The applications of ML-based approaches mostly seek to

reduce the computational overhead required by calling for the

original high-fidelity numerical model,219,220 hence shortening
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the time needed by running the numerical model and further

enabling some complicated jobs such as optimisation,221,222

and uncertainty assessment.214 This type of application is often

considered as generating a proxy model or surrogate model

using various ML-based approaches.

Vida et al.223 introduced a work that couples grid-based

surrogate reservoir model (SRM_G) and well-based surrogate

reservoir model (SRM_W) to simulate a CO2-EOR project at the

Scurry Area Canyon Reef Operators Committee (SACROC) oil-

field. The SRM_W models were used to investigate the flooding

front and simulate the changes in properties along with time

in each grid block in the reservoir. The properties that were

handled by SRM_G included pressure, phase saturation, or

composition of reservoir fluid components at any desired time

step. The SRM_Ws were used to deal with simulation related to

well production data, such as oil rate, water rate and water oil

ratio, etc. SRM_Ws could be used to estimate response of the

reservoir at the well level (rate) to various reservoir parameters

or operational constraints. An ANN model with one hidden

layer was used to train the SRMs. The values of each property at

each timestep were predicted using one trained SRM. For the

SRM_G, a total of 60 neural networks were generated to predict

the interested properties at each timestep (15 models per

property). The integration of the SRM_Gs and SRM_Ws con-

tained the following steps: at the initial timestep, SRM_Gs ran

first and the calculated pressure, phase saturation, and CO2

mole fraction for all grids were processed to obtain the well

productivity index and tiering computations pertaining to grid-

based and well-based systems. The information along with well-

based initial information was then fed to SRM_Ws to calculate

water, oil and CO2 production at each well and entire field at

first timestep. This process then proceeded to next timestep

and information of each grid was updated until final timestep

was reached. It was reported that total time for running

60 neural network models to deploy the SRMs’ calculation

was around 800 seconds. The original numerical model took

more than 48 hours to run one realization that was used for opti-

mization design on a machine with 24 GB RAM and a 3.47 GHz

processor. By using coupled SRM models, one simulation job was

finished in 15 seconds on the same computer.

Artun224 studied single-well cyclic gas (N2, CO2 and CH4)

injection in fractured and depleted reservoirs. Various simula-

tion scenarios were conducted based upon compositional reser-

voir model with hydraulically fractured well and low-permeable

formations. This study focused on assessing impacts of design

parameters on both volumetric and economic utilisation effi-

ciency factors. Factors considered included the injection rate,

duration (and volume), soaking duration, economic rate limit,

and injected gas composition. A fast economic efficiency indicator

was also constructed using neural networks based on the

prepared simulating data. It was concluded that N2 was better

than other gases for short-term (5 or 10 years) benefits. Amini

et al.225,226 used SRM_G to replace the numerical reservoir

model of a field located in Otway Basin in Australia with a

CO2 sequestration pilot project. The SRM model was trained

through neural networks that used well data, static data and

dynamic data as training inputs. It was concluded that the

developed SRM model could generate outputs of complex

reservoir models with high accuracy in a short time.

Amini and Mohaghegh227 proposed work to develop proxy

fluid flow model for the reservoir responses (pressure, saturation,

and CO2 mole fraction) undergoing a CO2 sequestration process.

The proposed approach was applied to a heterogeneous reservoir

with 100000 active grid blocks to verify its capability. During the

reservoir simulation, properties at a certain grid block would

depend on its interactions with the surrounding grids. For

instance, the CO2 movement and gas saturation at one grid

would be affected by the pore volumes and degree of tightness

of the grids in the vicinity of this grid. To account for this kind

of dependence, tier systems were introduced to express the

relationship between one specific grid to its surrounding grids.

An ANN-based SRM model was generated using the data

gathered from a CO2 injection reservoir with one injector and

one producer. Five different simulating scenarios were pre-

pared by varying the CO2 injection rates and cumulative injec-

tion volume. The training inputs included static data (grid

location, grid top, porosity, permeability), calculated static data

(distance to the injection well, distance to the sealing and

non-sealing boundaries, user-defined parameters), well data

(injection rate, cumulative injection) and the average porosities

and permeabilities of the tier system; the training outputs were

the dynamic data (pressure, gas saturation and CO2 mole

fraction at any timestep). An ANN model with one hidden layer

was used to train the proxy. It was concluded that the computa-

tional speed was increased by about 20 times for this specific

simulation case with an acceptable error margin.

Besides boosting computational speed, another reason for

the employment of ML techniques is to ease the complexity of

solving a problem, figuring out the unclear input–output

patterns and structures that exist in the obtained experimental/

simulated database. This mostly occurs when traditional

methods fail to work properly due to missing information.

As one of the critical parameters considered in the CO2 flooding

process, the precise prediction of minimum miscibility pres-

sure (MMP) of oil in the CO2-EOR process are widely studied.

Sinha et al.28 used ML techniques to predict MMP. The

proposed method included using an analytical correlation that

employed the SVM to tune the coefficients and a hybrid method

that combined RF regression and generated correlation.

A correlation was used to predict the MMP and linear SVM

was used to tune the coefficients included in this correlation.

It was reported the proposed correlation would work for

spectrum of MMP from 6 to 34 MPa.

Xiong et al.228 used two different methods to forecast

unconventional reservoir well production, namely ANN and

Time Series Analysis. Traditional methods such as decline

curve analysis may not be as powerful as they normally would

be when dealing with conventional reservoir well production

due to limitations with shale oil production such as boundary

dominated flow and constant operation condition. Peak pro-

duction rate and hydraulic fracture parameters were considered

as factors influencing oil production. DNN and autoregressive

Energy & Environmental Science Review

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

1
 N

o
v
em

b
er

 2
0
2
1
. 
D

o
w

n
lo

ad
ed

 o
n
 5

/2
5
/2

0
2
2
 2

:1
0
:2

3
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



This journal is © The Royal Society of Chemistry 2021 Energy Environ. Sci., 2021, 14, 6122–6157 |  6145

integrated moving average (ARIMA) models were employed for

the study. The ARIMA models updated their training data as

function of time, thus a smaller time step will lead to more

accurate predictions compared with real data. Moosavi et al.229

tested the capability of four different hybrid-RBF networks in

predicting oil recovery factor and oil rate in a foam-CO2 flood-

ing reservoir. The RBF network was combined with various

evolutionary algorithms, namely particle swarm, imperialist

competitive, genetic and teaching–learning based algorithm,

to build the prediction model. These algorithms were employed

to optimise the values for the weights and biases applied to the

network nodes. It was claimed that teaching–learning-based

optimization hybrid model (TLBO-RBF) achieved the greatest

accuracy in predicting based on the datasets used in this study.

Chen et al.230 developed a work to characterise the CO2-EOR

in residual oil zones (ROZ). ROZs are aquifers (or parts of

aquifers) in which oil has migrated from source rock but is

subsequently swept by the natural movement of aquifer waters

over geologic time and remains at residual saturation. The

main distinction between CO2 storage in ROZs and conven-

tional oil reservoir and brine was also assessed. Here, a ML

models to predict potential of hydrocarbon production and

CO2 sequestration amount in ROZs were developed. Three ML

models, namely Multivariate Adaptive Regression Splines

(MARS), SVR and RF, were used and compared in terms of

predictive capability in this work. It was concluded that when

crude oil was present, more CO2 would be dissolved in oil than

brine water; while when there was no oil within the system,

more gas would be trapped in the pore structure than be

dissolved in the aquifer.

4.2.2.2 Optimising CO2-CCS-EOR and uncertainty assessment.

The utilization of ML algorithms in CO2-CCS-EOR is often

accompanied by optimization and uncertainty assessment

work, in which a large volume of computations is needed.

The ML model can be applied to generate proxy models as

alternative to numerical model and reducing total computa-

tional time. Sun231 employed a deep reinforcement learning

method, namely the deep Q-learning (DQL) algorithm, to

handle optimization of carbon storage reservoir management.

The problem was treated as a Markov Decision Process (MDP),

which was to model the intelligent agent’s sequential interac-

tions with an environment to obtain maximal returns. The key

procedure of solving a MDP was to find the optimal value of the

state-action function (Q-function) to have the best reward at

each state without concerns about future states.231 In DQL, the

deep Q network (DQN) was used to approximate Q-function for

quick investigation and response. Another target network was

used to calculate the rewards at future states. To speed up the

evaluation of a large number of system transitions by using

DQL, a DL-based surrogate model was built up to accelerate the

policy search process. The deep multi-task learning (deepMTL)

was utilised to reflect correlations between pressure/saturation

and selected inputs. A U-shaped architecture employing CNN as

the building block was adopted to facilitate prediction of

saturation and pressure simultaneously.

Menad and Noureddine232 introduced a methodology to

optimise CO2 water-alternating-gas (CO2-WAG) processes using

NSGA-II (Non-Dominated Sorting Genetic Algorithm version II)

coupled with a hybrid model based on MLP. LM, Bayesian

Regularization (BR) and scaled conjugate gradient (SCG) algo-

rithms were utilised in training proxy model. The objectives of

this work were to optimise total oil recovery and total field

water production. A total of 75 simulation realizations were

generated using Latin Hyper Cube method and then fed to train

a proxy model. The author concluded that the MLP-LMA model

was the most accurate proxy. Zhang and Sahinidis233 employed

polynomial chaos expansion (PCE) to generate a proxy model

used in uncertainty quantification in CO2 sequestration.

A mixed-integer programming (MIP) formulation was introduced

to identify the best subset of basic terms to lower the degree of

expansion and to assist in deriving PCE models. Then, Monte

Carlo (MC) simulation was subsequently performed by substitu-

ting values of uncertain parameters into closed-form polynomial

functions to determine uncertainties of injecting CO2 under-

ground into a saline aquifer. For each grid at a specific timestep,

a PCE model was built to estimate two outcomes: pressure and

gas saturation. Uncertain parameters considered included per-

meability and porosity. Here, 100 numerical simulations were

prepared using LHS method to construct many PCEs. This

approach was also used to find optimal injection rates with

uncertain porosity and permeability.

You et al.234 studied the multi-objective optimisation of

a CCUS project located at Andarko Basin, USA. Their work used

both weighted summethod222,234 and Pareto-theory-based opti-

misation algorithm235,236 to optimise hydrocarbon production,

CO2 sequestration volume and project economic outcomes

simultaneously. The constructed workflow employed ANNs to

build robust proxy models and then coupling the proxies with

the particle swarm algorithm to carry out the optimisation

process. The work emphasised the importance of computation-

ally effective training of ANN proxies and how hyperparameters

of trained proxies impact prediction performance. Almasov

et al.237 proposed to optimise the design parameters of a

single-well CO2 huff-n-puff process in unconventional oil reser-

voirs. The optimised objective was to obtain the net present

value (NPV) of the process that is estimated using either LS-SVR

or GPR. The parameters were optimised using the SQP method.

Amar et al.238 introduced a method to optimise the parameters

of the CO2-WAG process to maximise oil production. SVR was

used to build the proxy model and then the proxy was used with

the GA to find the combinations of parameters that led to the

optimal oil production. GA was also utilised as the approach

to optimise the hyperparameters of SVR for better proxy

performance.

Nwachukwu et al.239 coupled the XGBoost model with a

modified version of Mesh Adaptive Direct Search (MADS) to

deal with well placement and control optimization in a CO2-

WAG project to obtain maximal NPV. MADS is a pattern search-

based method. In the modified MADS, a multidirectional

pooling scheme was employed within every iteration to increase

the search efficiency. More importantly, the author introduced
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a method to reduce the uncertainty existing in the optimised

solutions. Since the proxy model will have prediction errors

compared with the numerical model, an error model was

constructed as a function of control parameters and objective

functions (i.e., well placement, water/gas injection rates and

NPV) based on the training information. In the optimisation

process, if the difference between two candidate optimal solu-

tions was smaller than the estimated proxy errors using the

error model, then the original numerical model would be

invoked to determine the ‘‘true value’’ of the candidate optimal

solutions. This method increased the accuracy of the optimisa-

tion and lowered the simulator calls. The optimisation results

were compared with the results of joint and sequential schemes

using MADS with a full reservoir simulator, it showed that the

proposed approach could yield a median error of 0.6% and an

R2 of 0.99.

Ampomah et al.186 introduced a method to handle the

co-optimization of the cumulative oil production and CO2

storage within the Farnsworth Unit (FWU). This work combined

these two objectives into a single objective function and

assigned a unit weight to each one to reduce computational

overhead and accelerating optimisation convergence. The com-

bined objective function was used to find the optimal solution

incorporating a quadratic response surface that was generated

as the proxy model. The proposed method proves computa-

tionally efficient in dealing with the co-optimisation problem.

Ampomah et al.240 presented an optimisation under uncer-

tainty workflow to ascertain optimum solution in the presence

of geological heterogeneity. A neural network optimisation

algorithm was utilised to optimise the multi-objective function

both with and without geological uncertainty. This work selected

vertical permeability anisotropy (Kv/Kh) as the geological uncer-

tain parameter. A developed risk aversion factor was used to

quantify and/or represent the confidence levels to assist in

decision making. Ampomah et al.241 presented a performance

assessment of storage and corresponding oil recovery utilising

a Latin hypercube sampling technique to access sensitivity

of uncertain parameters towards the pre-defined objective

function. A response surface model was constructed using

Box–Behnken (BB) deterministic sampling algorithm. A total

of 49 simulations were required for training data using this BB

design. Forty-nine additional simulations were required to

validate the constructed polynomial response surface method

(PRSM) model using the BB sampling algorithm. This work

elaborated a comprehensive reservoir characterisation frame-

work to quantify heterogeneity uncertainty that led to robust

prediction of long-term fate of CO2 stored within a subject

reservoir. Bromhal et al.242 introduced a work to summarise

how the National Risk Assessment Partnership (NRAP) handles

the long-term quantitative risk assessment for carbon storage.

NRAP’s method was to divide the carbon storage system into

components—reservoir, wells, seals, groundwater, atmosphere.

And reduced-order models (ROM) were developed for each

component using different approaches, such as look up table

(LUT), ANNs and PCEs, Polynomial Regression, RBFs,188 or

Response Surface techniques. The ROMs were mostly used to

study concentration and pressure information within the reservoir,

especially at the reservoir-seal interface during CO2 injection and

for up to 1000 years post-injection period. These pressures and

saturations could then be used as input parameters of wellbore or

seal leakage models to predict rates and volumes of leakage of

CO2. Different components could be assembled to simulate the

entire system within fractions of seconds. The integrated model

could also be used to estimate the probability of failure of a carbon

storage system with the help of the MC method.

Nwachukwu et al.243 used XGBoost to teach a proxy model

learning the structure of inputs-reservoir responses. They also

proposed a method to use physical well locations and well-to-

well connectivity as the input variables, which increased the

prediction accuracy. The Fast-Marching Method (FMM) intro-

duced by Sethian (1996) was used to calculate the propagation

of the pressure front and could be expressed as eqn (2):

ffiffiffiffiffiffiffiffiffi

a ~xð Þ
p

rt ~xð Þj j ¼ 1 (2)

where the a = k/+mct is the diffusivity, and t is the diffusive

time of flight in the Fourier domain. The diffusive time of flight

can be computed given the location of a well to indicate the

peak of pressure front to reach any point in the reservoir.

It could be obtained by solving the Eikonal equation and used

to represent the connectivity between any two points in the

reservoir; a higher t means lower connectivity. The proposed

approach was applied on five different scenarios to demon-

strate its feasibility, including (i) a homogeneous waterflooding

reservoir model with one injection well, (ii) a waterflooding

reservoir with channels and two injection wells, (iii) an ensemble

of 20 waterflooding reservoirs with two injection wells, (iv) a CO2-

flooding heterogeneous reservoir with two injection wells, and

(v) a CO2-flooding heterogeneous reservoir with spatially-varying

initial fluid saturation and three injectors. It was concluded that

the proposed method was able to build a suitable alternative

to numerical simulations with reasonable accuracy and this

method could be used to deal with problems concerning well-

placement optimisation.

4.2.2.3 CO2-Enhanced coalbed methane. CO2-Enhanced coalbed

methane (CO2-ECBM) takes the dual benefits of sequestering

CO2 in coal seams and displacing the coalbed methane to be

produced. The injection of CO2 in coal seams will induce

significant changes in the physical and chemical properties of

coal (such as pore structure, strength, elastic modulus, etc.),

which in turn affects the CO2 sequestration performance in coal

seams.244 There are few studies relate CO2-ECBM with ML

techniques, but most of those studies apply ML techniques to

predict properties of coal and gas, such as coal strength,244

CO2/CH4 adsorption isotherm,245,246 crack initiation pressure

of coal,247 coal identification,248 permeability,249,250 methane

production.251 Yan et al.244 proposed a hybrid artificial intelli-

gence model integrating back propagation neural network

(BPNN), GA and adaptive boosting algorithm (AdaBoost) to

predict the unconfined compressive strength of coal according

to coal rank, CO2 interaction time, CO2 interaction temperature

and CO2 saturation pressure. The adsorption behaviour of CO2
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and methane in coal seams plays a pivotal role in determining

the storage amount of the injected greenhouse gas. Feng

et al.245 employed seven ML algorithms in the prediction of

methane adsorption isotherm on coals. Meng et al.246 used the

ANN to predict the excess adsorption amount of supercritical

CO2 on coal from the fundamental physicochemical para-

meters of coal. The ML model was compared with other seven

traditional isothermmodels. It was concluded the proposed ML

model is not limited to the isothermal conditions and does

not require excessive tedious experimental. Yan et al.247 used

several ML approaches to estimate the crack initiation pressure

(CIP) of supercritical CO2 fracturing (SCDF) in coal samples.

BPNN, extreme learning machine (ELM), and SVM were used to

construct the relation from inputs (vertical principal stress,

horizontal maximum principal stress, horizontal minimum

principal stress, fracturing fluid injection rate, fracturing fluid

temperature, tensile strength, elastic modulus, and Poisson’s

ratio) to the output (e.g., CIP). They pointed out that ground

stress, fracturing fluid injection rate, and fracturing fluid

temperature would have the highest impacts on the CIP of

SCDF. Coal permeability is controlled by various parameters

such as confining pressures, temperature, gas pressure, effec-

tive stresses, and cleat anisotropy. Sharma et al.249 predicted

the CO2 permeability of India coal at varied injection pressure

and effective stress using ANFIS. Yan et al.250 compared differ-

ent SVM-based approaches in the prediction of the change of

coal permeability in the CO2-ECBM process. The inputs consider

CO2 injection pressure, effective stress, temperature, buried depth

and coal rank. The model output is CO2 permeability.

Injecting CO2 into shale gas reservoirs is also known as one

type of CCUS. When the pressure and temperature is high, CO2

will have a higher adsorption capacity than methane, especially

in the micropore volume fraction, thus enhance gas recovery.

Researches regarding CO2 sequestration and shale gas recovery

with ML applications focus on the prediction of kerogen com-

ponents and types,252 methane/CO2 adsorption capacity,253–256

and process optimisation.237 The types, molecular components,

and structures of shale kerogen directly influence its adsorp-

tion and hydrocarbon generation. Kang et al.9 proposed a

method to combine ML with nuclear magnetic resonance

(NMR) spectra to predict the kerogen components and types

in shale. NMR spectrum was used as the inputs since the

kerogen molecule’s carbon skeleton information was mainly

concerned.256 The 2D spectrum was firstly converted into a 1D

matrix where the values representing the NMR spectrum’s

normalized values, and then was fed into fully connected

neural networks (FCNNs). The outputs of the FCNNs were

molecular structure labels corresponding to different NMR

spectrums. They concluded this method gives excellent perfor-

mance in the prediction of kerogen skeleton components and

types. Meng et al.253 utilised classical approaches and ML

approaches in the forecasting of the methane adsorption in

shale. Amar et al.254 applied gene expression programming

(GEP) and group method of data handling (GMDH) to predict

methane adsorption in shale gas formations. The pressure,

temperature, total organic carbon, and moisture were considered

as input parameters, while gas content (expressed in SCF per ton)

was the models’ single output. Bemani et al.255 estimated the

adsorption capacity of CO2, CH4 and CO2/CH4 mixture in shale

through an ML-based approach. They utilised the LS-SVM to

mimic the relationship between four inputs (pressure, tem-

perature, gas composition and TOC) to the gas adsorption

capacity. Wang et al.256 utilised different ML algorithms to

predict the adsorbed shale gas content using reservoir tem-

perature, TOC, vitrinite reflectance, Langmuir pressure, and

Langmuir volume. The methods used include MLR, SVM, RF

and ANN. Almasov et al.237 optimized the CO2 Huff-N-Puff

Process in a shale oil reservoir. The NPV was calculated using

proxies trained through LS-SVR and GPR. The well control

parameters were then optimized to have the optimal NPV.

4.2.2.4 Chemicals, fuels and building materials. CO2 can be

converted into valuable products (chemicals,257 fuels258 and

building materials259) through various physical, chemical or

biological pathways.260 One popular field is CO2 electrochemical

reduction to chemical feedstocks (such as carbon monoxide,

formic acid, methanol, methane, ethanol and ethylene) that

utilises both CO2 and hydrogen from renewable energy, to

achieve a circular economy.261 Catalyst development is one of

the key steps to realise selective, fast, and efficient reduction

processes of CO2 into valuable products.262 The ML algorithms

showed great advances in efficiently screening the huge number

of catalysts for the CO2 catalytic or electro-catalytic conversion.

Ulissi et al.263 proposed to use a neural-network-based surrogate

model together with DFT calculations to enable exhaustive

searches for active bimetallic facets and reveal active site motifs

for CO2 reduction. Recently, Zhong et al.264 claimed that Cu–Al

electrocatalysts can efficiently convert CO2 to ethylene with the

highest faradaic efficiency reported so far through ML and DFT

calculations. A ML-augmented chemisorption model has also

been proven to be an effective way for CO2 electroreduction to

valuable C2 species.265,266 Wu et al.267 found that the computa-

tional time and prediction errors could be reduced significantly by

employing an extreme GBR. Herein, 80 adsorbate–pair combina-

tions were identified to simultaneously enhance CH4 and C2

production on copper after screening 289 combinations. Wan

et al.268 also proved that GBR model exhibited the best prediction

performance to select the superior electrocatalysts for CO2

reduction. Moreover, Chen et al.269 developed a ML model based

on an extreme gradient boosting regression algorithm and simple

features, which can successfully and rapidly predict the Gibbs free

energy change of CO adsorption of 1060 atomically dispersed

metal–nonmetal co-doped graphene systems, and significantly

decrease time and costs. The ML methods show a great potential

in accelerating the catalyst development based on the existing

experimental results.270 Li et al.271 evaluated five ML algorithms

(SVM, KNN, DT, SGD and ANN) trained by experimental data to

classify the characteristics and performance of MOFs for fixing

carbon dioxide into cyclic carbonate. The results indicated the six

best metal ions (Mn, V, Cu, Ni, Zr and Y) and four best ligands

(tactmb, tdcbpp, TCPP, H3L) for new MOFs catalysts for carbon

dioxide fixation. In addition, biological fixation is also an
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attractive method to convert CO2 into organic compounds by

using organisms such as microalgae. Most of the work are focused

on experimental investigations of the CO2 conversion or utilisa-

tion efficiency.272 Recently, Cos-gun et al.273 studied the effect of

CO2 content on the lipid production performance by ML. They

indicates that ML is helpful to determine the optimum cultivation

conditions and guide for the future scale-up. Thus, the ML

approaches should be further applied in the biofixation processes

to identify the best CO2 fixation rate and provide the most

beneficial products.

CO2 can also be utilised to produce the building materials

through CO2 mineralisation. Machine learning is a powerful

tool to predict the durability and performance of concrete.

Taffese et al.274 applied ANN, DT and ensemble methods to

predict the carbonation depth with rationally low error, and the

ML models indicated that the CaPrM model can help designers

to optimise the concrete mix or structural design as well as to

define proactive maintenance plan. Song et al.275 developed a

machine-learning-aided platform (ANNs) to enable the rapid,

accurate, and high-throughput screening of fly ashes by pre-

dicting a structure-based proxy for their reactivity solely on the

basis of bulk chemical composition, which has potential to

maximise the beneficial utilisation of fly ashes such as CO2

adsorbents and construction materials.

4.2.3 Perspectives and prospects. ML has been widely

applied in CO2 storage and CO2-EOR projects. ML was utilised

accompanied with numerical simulation to assess the effects of

trapping mechanisms on how CO2 plume spreads and migrates

in the underground structure. Several researches focused on

CO2 solubility in oleic and aqueous phases. Various ML algo-

rithms has been employed to investigate relation between CO2

solubility and factors such as diffusivity, oil/gas–brine IFT,

temperature, pressure and brine salinity.

One critical reason for the employment of ML technologies

is to construct input–output relations when some critical

information is missed or fundamental theory is unclear, which

is challenging through traditional approaches. Studies have

been performed on how to monitor and detect CO2 leakage in

CCS projects using ML techniques with direct or in-direct

monitoring data. The data used include seismic data, downhole

monitoring information (such as pressure or TDS), porosity and

permeability maps, and injection/production rate, etc. Some

studies focused on employing ML to predict MMP that is a

critical parameter for CO2-EOR. When coupling CO2-EOR and

CCS, ML-based surrogate models (proxies) have been developed

to mimic the original high-fidelity numerical models and to

realise part of their functions. This can reduce computational

overhead and accelerate exponentially those time-consuming

jobs, such as running tens or hundreds of simulations to

optimise development schedules or performing uncertainty

analysis.

It is important to recognise that ML has been utilised in

numerous studies regarding CO2 storage, utilisation and CO2-

EOR, however, there are still expectations that a more universal

workflow will be generated to handle the whole process of

a CO2-EOR-CCS project including data interpretation, storage

effect modelling, leakage detection and optimisation jobs, etc.

Researchers and scientists are also encouraged to study increasing

the computational accuracy when building ML-based surrogate

models to substitute the original model. Effective use of databases

when applying ML warrants further studies.

5. Conclusions

In this work, we have reviewed and discussed the applications

of ML in CO2 capture, transport, storage and utilisation. Firstly,

we summarised ML algorithms and suitable platforms that

researchers can utilise to accelerate their CCUS research. ML

has been extensively applied in both absorbent- and adsorbent-

based CO2 capture processes. For ML in CO2 absorption, the

research is focused on process simulation and optimisation,

thermodynamic analysis, and solvent selections and design.

As for ML in CO2 adsorption, the research is focused on

applying ML in adsorbent synthesis and characterisation,

process modelling and optimisation, and process inversion.

It is clear that ML is a powerful tool for screening solvents and

adsorbents as well as process modelling and optimisation,

which can reduce the development time, capital and operating

costs for CO2 capture. ML is also utilised in oxyfuel combustion

for CO2 capture, in applications such as predictions of combus-

tion characteristics and pollutants emissions and monitoring

the combustion process via flame images. There are also some

studies available that utilise ML models for calcium looping

and/or chemical looping combustion for CO2 capture and this

is an area that requires more work. Some researchers have

started to apply ML to predict the performance of oxygen

carriers and Ca-based sorbents, process control and techno-

economic assessment. The experience so far for ML in CO2

absorption and adsorption, is that it can be adapted to the

calcium looping and chemical looping combustion for CO2

capture. For instance, using QSPR to find the optimal proper-

ties of oxygen carriers and Ca-based sorbents for CO2 separa-

tion. ML is also expected to play a vital role in the development

of CO2 utilisation technologies, such as screening catalysts for

CO2 catalytic or electro-catalytic conversion, combined with the

DFT calculations, and predicting suitable microalgae types and

optimal cultivation conditions for carbon fixation.

ML is also widely applied in CO2 transportation and storage.

It can be incorporated through low-cost sensing techniques to

find the hidden relationships in large, complex, and multi-

variate datasets, to measure the gas–liquid two-phase CO2 flow

with high accuracy and detect leakages during CO2 transporta-

tion. For ML in CO2 storage, several ML algorithms have been

used to investigate the effects of trapping mechanisms on the

dispersal and migration of the CO2 plume, to predict and

monitor CO2 leaking to ensure the safe and long-term storage

of injected CO2 and create the surrogate models for the

optimisation of CO2 CCS-EOR process and uncertainty analysis.

The distinct advantages of applying ML in CCS are that it

provides the potential to identify links between data/results

that aren’t readily identifiable, and it also provides alternative
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lower computing cost pathways. Researchers in CCS can apply

ML to accelerate the design and development of materials for

CO2 separation and conversion, measure the multiphase CO2

flow, evaluate the trapping mechanisms for CO2 storage, and

develop the surrogate model for process optimisation and

uncertainty analysis. It is important to mention that ML is a

data-driven method, which always requires a large quantity of

data to develop a generalised and robust model. The quality

of training dataset, the selections of input–output features

and the type of ML algorithms play a vital role to develop a

comprehensive model. As mentioned before, researchers have

illustrated suitable methods for feature selection, avoiding the

overfitting, and issues with small datasets, when applying ML

in CCUS. With the development of ML in CCUS, it is expected

that ML will be an efficient and vital tool to accelerate the

development of cost-effective CCUS systems to tackle the climate

change.

5.1 Overarching perspectives

The authors make the following recommendations to the

community for future work and research to increase the take

up of CCUS and encourage the development of ML in this field:

(1) Education of ML and CCUS. The education of future

generations in ML techniques and CCUS at undergraduate and

graduate levels is important and something that is not always

part of mainstream curriculums in engineering courses.

We therefore recommend ML and CCUS take a greater role in

Higher Education practices.

(2) Models should be generalised. Greater emphasis

should be placed on transferable learning-focused methods,

so that models do not need to be retrained for each material

and/or process. Generalised models, which can infer functional

information should be explored in CCUS.

(3) Models should offer a combined approach. The devel-

opment of combined models for materials and process and

systems optimisation (performed simultaneously) would prove

useful for deployment of CCUS technologies at commercial

scale. Most applications of ML so far have been limited to

evaluating the technical performance of various processes.

Efforts should be made to extend these to incorporate economic,

safety and reliability aspects, particularly through techno-

economic and life-cycle assessments.

(4) Models need to be tested at scale. More detailed

investigations on the effect of process scale (in capture/utilisation)

need to be performed. We need to know whether models/designs/

optimisation conducted at lab/pilot scales hold at industrial

scales, or will models need to be retrained and optimisation

redone during scaling up? Can ML models be truly multi-scale

(accounting for chemical properties of materials to overall

reactor performance) in their CCUS applications? This infor-

mation will be needed to increase collaboration with industrial

partners.

(5) Models need to compensate for lack of data. Further

develop hybrid ML methods that find ways to incorporate

intuition/domain knowledge to compensate for a lack of data.

(6) Models should go beyond black-boxes. Develop models

that are interpretable and explainable, otherwise there is a risk

of a lack of trust and acceptability in their take up.

(7) Process control models need developing. Process

control is challenging in many CCUS (and other chemical)

processes, more work needs to be conducted to understand if

ML can be applied to improve process control.

(8) Data and models should be open. We recommend that

when ML research is conducted in CCUS, then the training data

and ML models should be made publicly accessible in the open

domain to enable greater take up and deployment.

(9) Scale up CCUS and use ML where possible. As a final

statement, the Paris Agreement and the latest IPCC 6th working

group report provide the impetus for both CCUS deployment at

scale and harnessing ML to optimise and improve the perfor-

mance of CCUS technologies. We do not have much time to

mitigate the worst effects of climate change, and therefore we

must move from CCUS concepts to full scale plants as soon as

possible, and ML will be a key enabler of this goal.
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Nomenclature

KGa Mass-transfer coefficient

o Acentric factor

Na-Phe Sodium salt of L-phenylalanine

3DMA1P 3-Dimethylamino-1-propanol

R2 Coefficient of determination

CP Heat capacity

a Diffusivity

t Diffusive time of flight in the Fourier domain

Abbreviations

AAD Average absolute deviation

AARD% Average absolute relative deviation in percent

ANFIS Adaptive network-based fuzzy inference system

ABC Artificial bee colony

AE Acoustic emission
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AI Artificial intelligence

ANN Artificial neural network

ARIMA Autoregressive integrated moving average

BPNN Back-propagation neural network

BR Bayesian regularization

BECCS Biomass energy with carbon capture and storage

BB Box–Behnken

CCS Carbon capture and storage

CCUS Carbon capture, utilisation and storage

CLC Chemical-looping combustion

CFB Circulating fluidised bed

CART Classification and regression tree

CAMD Computer-aided molecular design

CSA Concentration swing adsorption

CNN Convolutional neural networks

COFs Covalent organic frameworks

CSS Cyclic-steady state

DFT Density functional theory

DTs Decision trees

DBN Deep belief network

DNN Deep neural network

DQN Deep Q network

DQL Deep Q-learning

DBSCAN Density-based spatial clustering of applications

with noise

DOE Design of experiments

DAC Direct air capture

DFB Dual-fluidised bed

ESA Electric swing adsorption

EOR Enhanced oil recovery

EOS Equation of state

EU-ETS European Union Emission Trading Scheme

ELM Extreme learning machine

FMM Fast-marching method

FWU Farnsworth unit

GRU Gate recurrent unit

GPR Gaussian process regression

GRNN General regression neural network

GA Genetic algorithm

GA-ANN Genetic algorithm-artificial neural network

GP Genetic programming

GCS Geological carbon sequestration

GBR Gradient boosted regression

GCMC Grand Canonical Monte Carlo

SRM_G Grid-based surrogate reservoir model

GC Group contribution

GMDH Group method of data handling

GRU Gate recurrent unit

GVF Gas volume fraction

HPT Harmonic pulse testing

HDMR High dimensional model representation

IPC Intelligent predictive controller

IFT Interfacial tension

ILs Ionic liquids

KSVM Kernel support vector machine

LHS Latin hypercube sampling

LS-SVM Least square support vector machine

LSTM Long short-term memory

LMA Levenberg–Marquardt algorithm

LUT Look up table

ML Machine learning

MAPLE Machine-assisted adsorption process learner and

emulator

MDP Markov decision process

MAE Mean absolute error

MERQ Material, energy, rate and equilibrium

MADS Mesh adaptive direct search

MESH Mass, equilibrium summation and enthalpy

MOFs Metal–organic frameworks

MSA Microwave swing adsorption

MMP Minimum miscibility pressure

MIP Mixed-integer programming

MD Molecular dynamics simulations

MM Molecular mechanically

MEA Monoethanolamine

MC Monte Carlo

MLP Multi-layer perceptron

MLP-ANN Multi-layer perceptron artificial neural network

MLP-LMA Multi-layer perceptron Levenberg–Marquardt

algorithm

MARS Multivariate adaptive regression splines

MLR Multivariate linear regression

NRAP National risk assessment partnership

NDCs Nationally determined contributions

NET Negative emissions technologies

MDEA N-Methyl diethanolamine

NLP Non-linear programming

PDE Partial differential equations

PLS Partial least-squares

PLSR Partial least squares regression

PMI Partial mutual information

PSO Particle swarm optimization

PI Permutation importance

PZ Piperazine

PCE Polynomial chaos expansion

PRSM Polynomial response surface method

POCs Porous organic cages

PSA Pressure swing adsorption

PCA Principal component analysis

PCA–RWN Principal component analysis and random

weight network

PCR Principal component regression

QSPR/QSAR Quantitative-structure property/activity

relationship

QM Quantum-mechanically

RBF Radial basis function

RBFNN Radial basis function neural network

RF Random forest

RNN Recurrent neural network

ROM Reduced-order models

RL Reinforcement learning

ROZ Residual oil zones
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RSM Response surface methodology

RMSE Root mean square error

RPB Rotating packed bed

SCG Scaled conjugate gradient

SQP Sequential quadratic programming algorithm

SMR Steam methane reforming

SE-SMR Sorption enhanced steam methane reforming

SVM Support vector machine

SVMr SVM with a radial basis kernel

SVR Support vector regression

TLBO-RBF Teaching–learning-based optimization hybrid

model

TRL Technology readiness level

TSA Temperature swing adsorption

TVSA Temperature-vacuum swing adsorption

TGA Thermogravimetric analysis

TDS Total dissolved solids

VSA Vacuum swing adsorption

VLE Vapour–liquid equilibrium

WAG Water alternating gas

SRM_W Well-based surrogate reservoir model

ZIFs Zeolitic imidazolate frameworks
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133 G. Hüllen, J. Zhai, S. H. Kim, A. Sinha, M. J. Realff and

F. Boukouvala, Comput. Chem. Eng., 2020, 136, 106519.

134 K. T. Leperi, D. Yancy-Caballero, R. Q. Snurr and F. You,

Ind. Eng. Chem. Res., 2019, 58, 18241–18252.

135 L. M. C. Oliveira, H. Koivisto, I. G. I. Iwakiri, J. M. Loureiro,

A. M. Ribeiro and I. B. R. Nogueira, Chem. Eng. Sci., 2020,

224, 115801.

136 A. K. Rajagopalan, A. M. Avila and A. Rajendran, Int.

J. Greenh. Gas Control, 2016, 46, 76–85.

137 K. Nagesh Pai, V. Prasad and A. Rajendran, ACS Sustainable

Chem. Eng., 2021, 9(10), 3838–3849.

138 Z. Yao, B. Sánchez-Lengeling, N. S. Bobbitt, B. J. Bucior,

S. G. H. Kumar, S. P. Collins, T. Burns, T. K. Woo,

O. K. Farha, R. Q. Snurr and A. Aspuru-Guzik, Nat. Mach.

Intell., 2021, 3, 76–86.

139 Q. Zhu, J. M. Jones, A. Williams and K. M. Thomas, Fuel,

1999, 78, 1755–1762.

140 J. Chen, C. Xie, J. Liu, Y. He, W. Xie, X. Zhang, K. Chang,

J. Kuo, J. Sun, L. Zheng, S. Sun, M. Buyukada and

F. Evrendilek, Bioresour. Technol., 2018, 250, 230–238.

141 C. Xie, J. Liu, X. Zhang, W. Xie, J. Sun, K. Chang, J. Kuo,

W. Xie, C. Liu, S. Sun, M. Buyukada and F. Evrendilek,

Appl. Energy, 2018, 212, 786–795.

142 B. Govindan, S. Chandra Babu Jakka, T. K. Radhakrishnan,

A. K. Tiwari, T. M. Sudhakar, P. Shanmugavelu,

A. K. Kalburgi, A. Sanyal and S. Sarkar, Energy Fuels,

2018, 32, 3995–4007.

143 H. Qiao and S. Zeng, Pet. Sci. Technol., 2019, 37, 215–219.

144 P. Debiagi, H. Nicolai, W. Han, J. Janicka and C. Hasse,

Fuel, 2020, 274.

145 J. Krzywanski, T. Czakiert, A. Blaszczuk, R. Rajczyk,

W. Muskala and W. Nowak, Fuel Process. Technol., 2015,

137, 66–74.

146 X. Bai, G. Lu, M. M. Hossain, J. Szuhánszki, S. S. Daood,
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