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Abstract. Prospective studies with linked image and genetic data, such
as the UK Biobank (UKB), provide an unprecedented opportunity to ex-
tract knowledge on the genetic basis of image-derived phenotypes. How-
ever, the extent of phenotypes tested within so-called genome-wide asso-
ciation studies (GWAS) is usually limited to handcrafted features, where
the main limitation to proceed otherwise is the high dimensionality of
both the imaging and genetic data. Here, we propose an approach where
the phenotyping is performed in an unsupervised manner, via autoen-
coders that operate on image-derived 3D meshes. Therefore, the latent
variables produced by the encoder condense the information related to
the geometry of the biologic structure of interest. The network’s train-
ing proceeds in two steps: the first is genotype-agnostic and the second
enforces an association with a set of genetic markers selected via GWAS
on the intermediate latent representation. This genotype-dependent op-
timisation procedure allows the refinement of the phenotypes produced
by the autoencoder to better understand the effect of the genetic mark-
ers encountered. We tested and validated our proposed method on left-
ventricular meshes derived from cardiovascular magnetic resonance im-
ages from the UKB, leading to the discovery of novel genetic associations
that, to the best of our knowledge, had not been yet reported in the lit-
erature on cardiac phenotypes.

1 Introduction

The emergence of population-scale prospective studies with linked imaging and
genetic data, such as the UK Biobank [7], has enabled research into the ge-
netics of image-derived phenotypes, a field called imaging genetics. One of the
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main challenges of this field is the high dimensionality of both the imaging and
genetic datasets. This problem is usually addressed on the imaging side by de-
riving handcrafted features from the images, based on prior expert knowledge
supporting their clinical relevance. For example, in the case of cardiac images,
these phenotypes could be the volumes of the different cardiac chambers, the
myocardial mass, or functional parameters such as the ejection fraction.

In this work, we propose a different approach, based on unsupervised learning,
to extract phenotypes from image-derived 3D meshes which describe the organs
of interest’s geometry. This approach is outlined in figure 1. Its input consists of

Fig. 1. Scheme of the encoder-decoder network implemented in this work. 1 is the
indicator function. The numbers V × C within the downsampling and upsampling
operators represent the dimension of their output, where V is the number of vertices
and C is the number of channels.

a set of 3D meshes representing the geometry of the organs of interest, obtained
by previous segmentation of the images. A graph-convolutional autoencoder is
trained for t∗ epochs to perform dimensionality reduction on the 3D meshes,
without any genetic data being input to the network. Each component of the
latent representation found by the autoencoder, which will encode the modes of
variation of the set of meshes, are employed as a phenotype in a genome-wide
association study (GWAS), where a reduced set of candidate loci are chosen
based on a significance criterion. Then, the autoencoder is further trained adding
to the cost function a term that enforces an association between each of the
chosen loci and the corresponding latent variables; this step aims to produce
a fine-tuning of the phenotype. Finally, the latent representation is tested in
a GWAS using an independent set. We applied this approach to cardiovascular
magnetic resonance (CMR) images from the UK Biobank, where the left ventricle
(LV) at end-diastole was our object of study.

Our contributions are, therefore, two-fold: on the one hand, we propose an
approach to study the genetic basis of image-derived phenotypes, based on unsu-
pervised deep learning; on the other hand, we discover novel genetic associations
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that have not been previously reported in the literature on cardiac phenotypes,
to the best of our knowledge.

1.1 Related work

Other studies using unsupervised approaches to derive phenotypes have been
performed. Studies on the genetic basis of 3D-mesh-derived facial features have
been published [8], which used hierarchical clustering to obtain distinctive re-
gions of the face. Each of these regions was projected onto a linear space using
principal component analysis (PCA), and canonical correlation analysis (CCA)
was used to find linear combinations of region-specific PCs that are maximally
correlated with each of the single nucleotide polymorphisms (SNPs) tested.

On the other hand, several studies have been published in the recent years in
the field of cardiac imaging genetics using CMR data, which focused on hand-
crafted phenotypes. In [3], the authors investigate left-ventricular wall thickness
at end-diastole, performing and association test with a set of genetic variants in
a vertex-by-vertex fashion. Other studies ([2] and [12]) perform GWAS on global
LV phenotypes: chamber volume at end-diastole and end-systole, stroke volume,
ejection fraction and myocardial mass.

Also, work has been performed on CMR images to extract biomarkers using
unsupervised dimensionality reduction approaches [4]. Still, this work has not
relied on an intermediate 3D mesh representation of the cardiac chambers, nor
has been used for the purpose of genetic discovery.

2 Methods

2.1 Description of the data

All the data used for this work comes from the UK Biobank project, data ac-
cession number 11350.

Cardiovascular Magnetic Resonance (CMR) data. The CMR imaging
protocol used to obtain the raw imaging data is described elsewhere [11]. For a
given individual and time point, this data consists of a stack of 10-12 short-axis
view slices (SAX) along with three long-axis view (LAX) slices. The cardiac
segmentation algorithm utilised is described in detail in [1]. This algorithm pro-
duces as output a set of registered meshes, i.e. meshes with the same number of
vertices and the same connectivity. For LV, the meshes encompass the endocar-
dial and epicardial surfaces. As mentioned before, in this work we studied only
end-diastole.

The LV mesh for subject i, i = 1, ..., N , can then be represented as pairs
(Si, A), where Si =

[

xi1 yi1 zi1 | ... |xiM yiM ziM
]

∈ R
M×3 is the shape and A is

the adjacency matrix of the mesh. The number of individuals and mesh vertices
are N = 29051 and M = 2677, respectively.
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Genotype data SNP microarray data is available for all the individuals in the
UK Biobank cohort. This microarray covers ∼800k genetic variants including
SNPs and short indels. The design of this microarray has been described in detail
in [6]. An augmented set of ∼9.5Mvariants was obtained from these genotyped
markers through imputation, after filtering by a minor allele frequency (MAF)
threshold of 1%, a Hardy-Weinberg equilibrium p-value threshold of 10−5 and an
imputation info score of 0.3. Also, only the autosomes (chromosomes 1 through
22) were used.

2.2 Graph-convolutional autoencoder

To perform dimensionality reduction, we propose using an encoder-decoder ap-
proach. The encoder E consists of convolutional and pooling layers, whereas D
consists of unpooling layers. To leverage the topology of the mesh, we utilise
graph-convolutional layers. Since the vertices are not in a rectangular grid, the
usual convolution, pooling and unpooling operations defined for such geometry
are not adequate for this task and need to be suitably generalised. There are
several methods to achieve this, but they all can be classified into two large
groups: spatial or spectral [14]. In this work we applied a method belonging to
the latter category, which relies on expressing the features in the Fourier basis
of the graph, as will be explained below after providing some background of
spectral graph theory.

The Laplace-Beltrami operator of a graph with adjacency matrix A is defined
as L = D − A, where D is the degree matrix, i.e. a diagonal matrix where
Dii =

∑

j Aij is the number of edges connected to vertex i. The Fourier basis

of the graph can be obtained by diagonalising the Laplace operator, L = U tΛU .
The columns of U constitute the Fourier basis, and the operation of convolution
⋆ for a graph can be defined in the following manner

x ⋆ y = U(U tx⊙ U ty), (1)

where ⊙ is the element-wise product (also known as Hadamard product).

All spectral methods for convolution rely on this definition, and differ from
one another in the form of the kernel. In this work, a parameterisation proposed
in [9] was used. The said method is based on the Chebyshev family of polynomials
{Ti}. The kernel gξ is defined as:

gξ(L) =

K
∑

i=1

ξiTi(L), (2)

whereK is the highest degree of the polynomials considered (in this work K =
6). Chebyshev polynomials have the advantage of being computable recursively
through the relation Ti(x) = xTi−1(x) − Ti−2(x) and the base cases T1(x) = 1
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and T2(x) = x. It is also worth mentioning that the filter described by equation
2, despite its spectral formulation, has the characteristic of being local.

Following [13], each of the three spatial coordinates of each vertex are in-
put as a separate channel of the autoencoder. Downsampling and upsampling
operations used in this study are based on a surface simplification algorithm
proposed in [10]. These operations are defined before training each layer, using

a single template shape. Here we utilise the mean shape S̄ = (1/N)
∑N

i=1 Si as
a template.

2.3 GWAS

According to the traditional GWAS scheme [5], we tested each genetic variant
l, with dosage Xl ∈ [0, 2], for association with each of the LV latent features zj
through a univariate linear model zk = βlkXl + ǫlk, where ǫlk is the component
not explained by the genotype, which we model as a normal random variable.
The null hypothesis tested is that βlk = 0. From linear regression, one obtains an
estimate β̂lk of the effect size βlk, along with the standard error of this estimate,
se(β̂lk). Finally, the p-value for the association can be computed from these
values.

Before GWAS, the phenotypes (i.e. latent variables) were adjusted for a set of
covariates: height, BMI, age, sex, diastolic and systolic blood pressure. For this, a
multilinear model is used, and the new phenotypes are the residues obtained from
there. Also, rank-based inverse normalisation is performed on these phenotypes
so that the usual closed-form formulas for hypothesis testing can be utilised.

To avoid issues related to population stratification, only individuals with
British ancestry were utilised, leading to the aforementioned sample size of N =
29051. No filtering was performed based on pathologies.
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2.4 Proposed algorithm

The proposed method is described in Algorithm 1.

Data: 3D meshes Si and linked genotype dosages Xil

Result: Network weights, GWAS summary statistics.
Hyperparameters: network architecture, wKL > 0, wSNP > 0.
ProcrustesAlignment(Si);
PartitionDataset(Si, Xil);
InitialiseWeights();
while Stop criterion is not met do

Perform optimisation step with loss L1;
end
Select the best epoch within the validation set;
for each latent variable k do

Perform GWAS within the training set;
Extract set of genetic markers Sk based on a significance criterion;
for each SNP lk in Sk do

if Corr(Xlk , zk) < 0 then
Xlk 7→ 2−Xlk

end

end

end
while Stop criterion is not met do

Perform optimisation step with loss L2;
end
Select the best epoch within the validation set;
Perform GWAS within the test set;

Algorithm 1: Workflow of the proposed method.

Loss function The loss function L1 for the first training stage consists of two
terms:

L1 = Lrec + wKLLKL, (3)

where Lrec is the reconstruction loss and LKL is the variational regularisation
term, computed as the Kullback-Leibler divergence of the latent representation
z with an isotropic normal distribution. For the second training stage, another
term is added, LSNP, which encourages a stronger association between each of
the latent variables k and a set of SNPs Sk:

L2 = L1 + wSNPLSNP (4)

LSNP = −
∑

k

∑

lk∈Sk

Corr(Xlk , zk) (5)
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During training, the correlation in equation 5 is computed as the sample
correlation for each batch. The reference and alternative alleles are chosen so
that the correlation is positive within the training set6.

In this work, our criterion for SNP selection was passing the Bonferroni
significance threshold (taken as the usual genome-wide threshold of 5 × 10−8

divided by the number of latent variables tested). As we explain below, this
criterion led to a single term in the summation.

2.5 Implementation details

The architecture of the network is detailed in figure 1. After each convolutional
layer, a ReLU activation function was applied. Importantly, the latent represen-
tation’s size dim(z) was chosen as 4. We found this number enough to capture the
most salient global features explaining the variability in LV shape. The recon-
struction loss employed was the vertex-wise mean squared error (MSE), averaged
across the vertices of each mesh. An ablation study was performed to assess the
impact of different parameters: learning rate γ, wKL and wSNP. γ was chosen as
10−3, whereas for the first training stage wKL = 10−3. Batch size was 100. Also,
in the second training stage and for each parameter configuration, experiments
with different seeds were performed. These seeds controlled the partition of the
full dataset into training, validation and test sets. The sizes of these sets were
5000, 1000 and 23051, respectively.

3 Results and discussion

After the first training stage, GWAS was performed on each of the 4 components
of z. Only one of them, z1, yielded a Bonferroni-significant association. Figure 2
shows both the morphological impact of changes in this variable, and the Man-
hattan plot displaying the GWAS p-values. The association lies on chromosome
6, and we mapped it to gene PLN with high confidence, based on the literature
on the genetics of cardiac phenotypes.

As can also be determined visually, latent variable z1 was found to correlate
with LV sphericity index s. Spearman correlation between s and z1 is 0.432 (com-
puted across real meshes). The index s was calculated as s = Asph(VCH)/ACH,

where Asph(V ) = (36πV 2)
1

3 is the surface area of a sphere of volume V , whereas
ACH and VCH are the surface area of and the volume enclosed by the convex hull
of the LV, respectively. To the best of our knowledge, this association between
PLN and LV sphericity had not been previously reported.

For the second training stage, the effect of the LSNP term on the strength of
the genetic association was studied. LSNP consists of a single term, corresponding
to the leading SNP in the PLN locus, rs11153730. Results are displayed in figure
3. Each observation corresponds to a different experiment. In each experiment,
the sets of training and testing samples varies according to the random seed,

6 Swapping the alleles corresponds to performing the transformation Xl 7→ 2−Xl.
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Fig. 2. Effect of latent variable z1 (before re-training) and corresponding Manhattan
plot.

Fig. 3. Distribution of p-values for the z1-rs11153730 associations after re-training, for
experiments with different values of wSNP with wKL = 0.1. Each box contains 60±10
experiments.

Fig. 4. Morphologic effect of latent variable z1, after re-training. Color represents the
deviations in shape with respect to the meshes from figure 2.
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but their size is fixed. We confirmed that the additional training is beneficial for
obtaining a better phenotype, i.e. a phenotype that yields a stronger association
on the GWAS. It is worth noting that the effectiveness of this procedure was
not obvious in advance, since individual SNPs’ effect sizes on complex traits
are generally small. We studied the change in shape modeled by the z1 latent
variable after retraining with wSNP = wKL = 0.1, for one particular experiment.
This change is shown in figure 4. The wKL coefficient was increased with respect
to the first training stage to avoid overfitting of the LSNP term.

4 Conclusions

We have proposed and validated an approach based on graph-convolutional au-
toencoders to extract phenotypes from 3D meshes of biological structures, for
genetic discovery through GWAS; and applied it to CMR-derived left-ventricular
meshes.

In particular, a genetic association was found between a genetic locus linked
to PLN gene and a latent variable that correlates with LV sphericity. To the
best of our knowledge, this had not been reported before, even though mutations
PLN have been linked to dilated cardiomyopathy, a disease characterised by an
increase in LV sphericity. Furthermore, we have shown that an additional stage
of training that aims to refine the phenotype effectively improves the genetic
association, and is therefore recommended.

On the other hand, we acknowledge that our method as presented here re-
sults in a loss of information as compared to the original CMR images, since
it only captures the LV myocardial surface’s geometry. However, this is not a
drawback of the method itself, since texture information can be added seam-
lessly as node features (in addition to spatial coordinates). Besides, diseases
could be investigated in this context by encouraging the latent representation to
be discriminative of disease status, whenever diagnosis information is available.
Finally, UKB provides images for the whole cardiac cycle, from which dynamic
patterns could be extracted. These ideas are left as future work.
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