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ABSTRACT  58 

Tropical forests are some of the most biodiverse ecosystems in the world, yet their 59 

functioning is threatened by anthropogenic disturbances and climate change. Global actions 60 

to conserve tropical forests could be enhanced by having local knowledge on the forests 61 

functional diversity and functional redundancy as proxies for their capacity to respond to 62 

global environmental change. Here, we create estimates of plant functional diversity and 63 

redundancy across the tropics by combining a dataset of 16 morphological, chemical and 64 

photosynthetic plant traits sampled from 2461 individual trees from 74 sites distributed 65 

across four continents, together with local climate data for the last half century. Our findings 66 

suggest a strong link between climate and functional diversity and redundancy with the three 67 

trait groups responding similarly across the tropics and climate gradient. We show that drier 68 

tropical forests are overall less functionally diverse than wetter forests and that functional 69 

redundancy declines with increasing soil water and vapour pressure deficits. Areas with high 70 

functional diversity and high functional redundancy tend to better maintain ecosystem 71 

functioning, such as aboveground biomass, after extreme weather events. Our predictions 72 

suggest that the lower functional diversity and lower functional redundancy of drier tropical 73 

forests, in comparison to wetter forests, may leave them more at risk of shifting towards 74 

alternative states in face of further declines in water availability across tropical regions. 75 

INTRODUCTION 76 

Tropical forests are amongst the most biodiverse ecosystems on the planet 1, they harbour 77 

more than 50% of global biodiversity including between 67-88% of all tree species and are 78 

responsible for more than 30% of terrestrial productivity 2, 3. Given the large distribution of 79 

tropical forests on earth, small but widespread changes in their tree community composition 80 

can have global impacts in the removal of CO2 from the atmosphere 4. Tropical forests are 81 

also essential to help mitigate the effects of climate change, as intact tropical forests are 82 

carbon sinks of around 1.26 Pg C yr−1 5. However, carbon storage can be negatively impacted 83 

by changes in water availability 6. For example, the Amazon forest, which contains close to 84 

123 Pg C of above and belowground biomass7 lost 1.2-1.6 Pg C 8 – the equivalent of 1% of its 85 

total carbon stocks 9 – during the extreme drought of 2005 and it is now suggested to be a 86 

carbon source 10. Besides impacting the carbon storage capacity of forests, changes in climate 87 

mean states and variability are key potential drivers of biodiversity declines around the world 88 
11, 12. Understanding how climate may affect tropical forests’ capacity to store carbon thereby 89 

requires evaluation of how plants respond to drought stress. To do so, the Maximum Climatic 90 

Water Deficit (MCWD) and Vapour Pressure Deficit (VPD) are two fundamental proxies of 91 

hydric stress for plants 13, 14, with increases in VPD leading to greater plant transpiration stress 92 
15, 16 (but see Costa et al.17 for a review on the water table depth as another highly relevant 93 

metric under drought). Although it has been generally expected that communities historically 94 

adapted to high MCWD and VPD should be better adapted to increasing drier conditions, it 95 

could also be that such communities might already be at their climatic physiological limits and 96 

thus further droughts may increase water stress to such an extent that they are driven 97 

towards alternative states 18, 19. To disentangle these two possibilities, evaluating functional 98 

trait composition may provide clues on their possible historical adaptations to water stress 99 
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conditions 20, 21. Although changes in MCWD and VPD are prominent features of climate 100 

change across tropical forests, detailed analyses that show their relationship with plant 101 

morphology/structure, leaf chemistry and photosynthesis related traits across climatic and 102 

elevation gradients at a pantropical scale remain scarce. Thus, understanding the functional-103 

climatic gradients relationship is key to disentangling the long-term role of tropical forests for 104 

mitigating climate change and is crucial for deciphering the resilience of key ecosystem 105 

properties such as diversity and carbon stocks under a changing climate. 106 

Ecosystem resilience may increase through different pathways, for example, by 107 

species having the same traits that affect a given ecosystem process, such as carbon capture, 108 

but different traits to respond to environmental changes, such as droughts. Arguably 109 

functional traits may respond differently to diverse drivers of change (e.g. temperature or 110 

precipitation change) which may be reflected in trait diversity but not necessarily in species 111 

richness 22 given that there is not always a tight relation between species richness and 112 

functional trait diversity 23, 24. According to the biodiversity-ecosystem functioning insurance 113 

hypothesis 25, ecosystem functions should be less affected by a changing environment when 114 

1) the ecosystem possesses both high functional diversity (e.g. large range of trait values; FD), 115 

2) but also a wide set of species with similar functional characteristics 23 conferring the system 116 

with high functional redundancy (FRed) 26, 27. Thus, in communities with high functional 117 

diversity and high functional redundancy, the loss of a given species is less likely to result in 118 

the disruption of the ecosystem function 28, as other species will probably continue carrying 119 

out the same functions, compensating the lost species 29, 30. High FD and high FRed may 120 

enhance the temporal stability of ecosystem functions (e.g., biomass productivity) 31 and thus 121 

provide a buffering effect against environmental changes 25, conferring higher resilience. 122 

Nonetheless, these hypotheses have never been tested across the tropics, and the role of FD 123 

and FRed for maintaining the tropical forests ability to capture and store carbon remains to 124 

be tested and quantified at this global scale. Quantifying the FD and FRed is crucial to 125 

advancing our understanding of the resilience of these forests  in the Anthropocene. 126 

Here, we address this knowledge gap by combining a new pantropical dataset of 16 127 

plant traits related to morphology/structure (leaf area, leaf dry and fresh mass, leaf dry 128 

matter content, leaf water content, specific leaf area, leaf thickness, wood density), foliar 129 

nutrients (leaf calcium, potassium, magnesium, nitrogen and phosphorus content) and 130 

photosynthesis (photosynthetic rate, dark respiration). These plant traits are hypothesised to 131 

be of importance for tropical forests to adapt or respond to a drying climate (see Table S1 for 132 

a description of their hypothesised importance). The importance of such traits relies on their 133 

influence on the capacity of species to capture energy for growth and conserve resources (e.g. 134 

water) for survival under stressful environmental conditions, such as droughts, and have been 135 

shown to change in response to a changing climate 32, 33, 34. The plant traits were collected 136 

from 2461 individual trees belonging to 1611 species distributed across 74 plots that 137 

contained 32,464 individual trees equal to or greater than 10 cm diameter at breast height 138 

from 2497 species (Fig. S1, Table S2, See Methods). The vegetation plots are free of obvious 139 

local anthropogenic disturbance (i.e., far from forest edges, and no evidence of logging or 140 
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fires) and cover a wide range of the climatic conditions found across tropical and subtropical 141 

dry and moist broadleaf forests (Fig. S2; Fig. S3). This dataset was combined with estimates 142 

of MCWD and VPD from 1958-2017 and of soil chemistry (cation exchange capacity) and 143 

texture (clay content) (Fig. S3).  144 

We address three fundamental questions: 1) Does the long-term mean ambient water 145 

stress environment (MCWD and VPD) or its changes (ΔMCWD and ΔVPD) over the last half-146 

century determine current functional diversity (Fig. S3)? First, we examine the relationship 147 

between the functional diversity (here calculated as functional dispersion 35) and redundancy 148 

levels across tropical regions. The relationship between changes in climate and long-term FD and 149 

FRed can be understood as a proxies of the effects of climate change on the functional diversity levels  150 

of the ecosystem given that we do not quantify their direct effect on changes in FD and FRed.  2) What 151 

is the spatial distribution of functional diversity and redundancy across tropical forests? 3) Is 152 

there a relationship between functional diversity or functional redundancy and one metric of 153 

ecosystem functioning (above ground biomass) during extreme drought events?  We expect 154 

that: 1) Communities that are found in drier climate conditions and that have experienced 155 

stronger decreases in water availability across the last half century will be less functionally 156 

diverse but may be more functionally redundant as a result of climate filtering for better 157 

adapted traits than communities in less extreme conditions such as wetter forests; 2) Across 158 

the full spatial distribution of tropical forests, tropical wet forests communities, which are 159 

more species-rich than drier tropical forests, have higher functional diversity given a broader 160 

set of ecological strategies available as a result of more stable and favourable climate; 3) 161 

There is a positive relationship between functional diversity, functional redundancy and 162 

ecosystem functioning (i.e. above ground biomass) as more functionally diverse and 163 

redundant communities may attenuate the negative effects of a changing climate and may 164 

be therefore be considered to be more resilient.  165 

Results 166 

Functional diversity and redundancy across tropical forests as a proxy for their susceptibility 167 

to climate change 168 

Fundamental knowledge on the climate-FD and climate-FRed relationships across tropical 169 

forest ecosystems has been missing. To fill this knowledge gap, we calculated, for vegetation 170 

plots distributed across the tropics, the FD and FRed for morphological/structural, leaf 171 

chemistry and photosynthetic traits that are hypothesised to be of importance for tropical 172 

forests to respond to a drying climate. The selected traits play a role in plant establishment, 173 

growth and/or survival 20, 21, 36 (Table S1). Then, we investigated variation in FD and FRed 174 

across tropical forests by modelling their relation with MCWD, VPD and their interaction, 175 

the ΔMCWD and ΔVPD and their interaction (see Methods section), where more positive 176 

values in MCWD and VPD reflect stronger water deficits. In our models, we also accounted 177 

for soil characteristics (see Methods) such as texture (Clay %) and chemistry (cation 178 

exchange capacity, CEC). Soils high in clay content may have high water holding capacity 179 

over longer periods of time which is important for vegetation under drought conditions 32. 180 

Moreover, it is widely acknowledged that tropical forests in drier regions are generally 181 

associated with soils that are richer in nutrients in comparison to wet tropical forests 37. The 182 
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feedbacks between soil–rainfall and their effects on plant distributions could be disrupted 183 

under a changing climate and therefore have adverse effects on the functioning of tropical 184 

forest ecosystems. A principal component analysis (PCA) of climate conditions (long-term 185 

trends and recent changes) indicated that the first two axes explained 71.3% of the variation 186 

among plots (Fig. S4a) and the first two axes of the soil-based PCA (with soil chemistry and 187 

texture) account for 83% of the variation among plots (Fig. S4b).  188 

Based on the long-term mean MCWD, our results show that drier tropical forests are 189 

clearly morphologically less diverse (slope= -0.18 [-0.31, -0.05], median and 90% highest 190 

density intervals) than wet forests (Table S2). The effect of MCWD on morphological FD was 191 

modulated by atmospheric VPD, where the FD of communities with low VPD (blue fitted line 192 

in Fig. 1a) strongly decreased as MCWD increased, but FD tended to increase with MCWD in 193 

communities where VPD was high (red fitted line in Fig. 1a). Morphological/structural FD 194 

increased linearly with increases in clay content (slope= 0.08 [0.01, 0.16]; Fig. 1b). Foliar 195 

nutrients FD also tended to decrease towards drier forests (slope= -0.15 [-0.24, -0.05]; Fig. 196 

1c). Overall, foliar nutrients FD increased towards communities with higher soil CEC (slope= 197 

0.17 [0.12, 0.22]; Fig. 1d), while photosynthetic FD also increased towards areas that 198 

experienced stronger increases in MCWD (slope= 0.14 [0.02, 0.25]; Fig. 1e) but did not 199 

respond to the long-term mean MCWD. For the trait groups (morphology, nutrients, 200 

photosynthesis) for which a clear relationship with climate and soil was found (90% Highest 201 

Density Interval, HDI, of the posterior distribution does not overlap 0; Table S3), the models 202 

explained (R2) 44%, 75% and 75% of the variation in morphology/structure, nutrients and 203 

photosynthetic FD, respectively.  204 

 205 

Figure 1.  Long-term water availability and its recent changes  and soil conditions drive functional diversity of 206 
morphological (a, b), leaf nutrients (c-d) and photosynthetic (e) plant traits across the tropics. Only climatic 207 
variables (X-axis) with a clearly important relationship (90% Highest Density Interval, HDI, of the posterior 208 
distribution does not overlap 0) with functional diversity (FD) are shown. Models for each group 209 
(morphology/structure, leaf nutrients, photosynthetic) were fitted as a function of long-term and recent changes 210 
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in climate and of soil chemistry (CEC) and texture (Clay).  Thick black lines show the average response and shaded 211 
lines show 300 random draws from the model posterior distribution representing variability of the expected model 212 
fit. The blue fitted line in a) shows the effect of MCWD at the lowest value of VPD and the red fitted line at the 213 
highest values of VPD. Larger positive values in MCWD and VPD reflect stronger water deficits. MCWD: maximum 214 
climatic water deficit, VPD: vapour pressure deficit, CEC: cation exchange capacity. Δ: change. The Y-axis shows 215 
the FD of morphology/structure (FDMO), leaf nutrients (FDNU) and photosynthetic (FDPHO) traits. For details about 216 
the single traits that form each of the groups (morphology/structure, leaf nutrients, photosynthetic) see Table S1. 217 
For full statistical results see Table S3.  218 

The models of FRed as a function of climate and soil explained 53%, 73% and 33% of the 219 

variation in morphology/structure, nutrients and photosynthetic functional redundancy 220 

respectively across the tropical forest. The FRed models (Table S3) showed that redundancy 221 

of morphological/structural (slope= -0.06 [-0.11, -0.01]) traits declines with higher long-term 222 

mean MCWD and that photosynthetic FRed declines as long-term VPD increases (slope= -0.11 223 

[-0.23, -0.01]; Fig. 2a and Fig. 2e respectively). While redundancy of morphological/structural 224 

and foliar nutrients traits decreased with increases in MCWD through time (ΔMCWD) in areas 225 

that also increased the most in VPD (ΔVPD; Fig. 2b and Fig. 2d red fitted line) the opposite 226 

was predicted for areas that experienced larger increases in MCWD but smallest increases in 227 

VPD (Fig. 2b and Fig. 2d blue fitted line). FRed of morphological/structural traits also tended 228 

to decrease with increases in soil clay content (slope= -0.04 [-0.07, -0.003]; Fig. 2c). 229 

 230 

 231 

Figure 2. Long-term water availability and its recent changes  and soil texture drive functional redundancy of 232 
morphological (a-c), leaf nutrients (d) and photosynthetic (e) plant traits across the tropics. Only climatic 233 
variables (X-axis) with a clearly important relationship  (90% Highest Density Interval, HDI, of the posterior 234 
distribution does not overlap 0) with functional redundancy are shown but in e) where the effect of VPD on FRedPHO 235 
is marginal. Models for each group (morphology/structure, leaf nutrients, photosynthetic) were fitted as a function 236 
of long-term and changes in climate and of soil chemistry (CEC) and texture (Clay).  Thick black lines show the 237 
average response and shaded lines show 300 random draws from the model posterior distribution representing 238 
variability of the expected model fit. The blue fitted line in b) and d) shows the effect of ΔMCWD at the largest 239 
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decrease in ΔVPD and the red fitted line at the larger increase in ΔVPD. Larger positive values in MCWD reflect 240 
stronger water deficits. MCWD: maximum climatic water deficit, VPD: vapour pressure deficit, Δ: change. The Y-241 
axis shows the FRed of morphology/structure (FRedMO), leaf nutrients (FRedNU) and photosynthetic (FRedPHO) 242 
traits. For details about the single traits that form each of the groups (morphology/structure, leaf nutrients, 243 
photosynthetic) see Table S1. For full statistical results see Table S3. 244 
  245 

Mapping functional diversity and functional redundancy across tropical forests 246 

Based on our understanding of the relation of FD and FRed of morphological/structural, leaf 247 

nutrients and photosynthetic trait groups with climate and soil (Fig. 1 and Fig. 2), and to fill 248 

the knowledge gap on the pantropical distribution of functional diversity and redundancy  we 249 

created pantropical maps of both FD (Fig. 3) and FRed (Fig. 4) distribution. With our map 250 

predictions we aim to uncover the locations of forests with potentially higher and lower 251 

resilience to a changing climate. To this end, we used the statistical models built above (Table 252 

S3) to predict FD and FRed across the pantropical dry and moist broadleaf forests, for which 253 

our field sampling locations have a wide representation of the climatic conditions across those 254 

tropical forests (Fig. S2; Fig. S5 and Fig. S6). Based on the FD and FRed predictions, we 255 

calculated the percent area that had ‘low’, ‘intermediate’ and ‘high’ diversity and redundancy 256 

for each trait group (see methods). We also created bivariate maps that combine the FD and 257 

FRed scores in a single map to visualise where FD and FRed are both maximized and minimized 258 

across the tropics (Fig. 5). We further developed the same statistical models as described 259 

above but by removing from the analysis all plots from each continent (Asia and Australia out 260 

at the same time) to determine which regions have higher contribution to determining the 261 

observed spatial predictions (those of Fig. 5). For morphology/structure, foliar nutrients and 262 

photosynthesis we found high correlations between the bivariate maps developed with the 263 

full dataset and when Asia and Australia were left out (r= 0.96, 0.82 and 0.94; Fig. S7, Fig. S8, 264 

and Fig. S9 respectively; Also Fig. S10). For morphology/structure and photosynthesis there 265 

were also high correlations between the patterns based on the full dataset and those based 266 

on the one where Africa was removed (r= 0.92 and 0.93 respectively; Fig. S7 and Fig. S9 267 

respectively). Low correlations between the maps generated with the full dataset and those 268 

based on smaller datasets depict those regions contributed significantly for the full model 269 

predictions (Fig. S10), which is also correlated to the number of observations available for 270 

each continent (Table S2 and Table S4). 271 

As predicted, our results show that wetter tropical forests tend to be more 272 

functionally diverse than drier tropical forests, especially for morphological/ structural traits 273 

and foliar nutrients traits, but also more functionally redundant for foliar nutrients and 274 

photosynthetic traits than drier tropical forests (Fig. 3 and Fig. 4). While FD levels across our 275 

sampling locations are not significantly related to their taxonomic diversity (number of 276 

species, genera and families; P-val > 0.05),  FRedNU appears to be positively correlated to 277 

taxonomic diversity (P-val < 0.05; Table S5). Our results suggest that given the lower FD (Fig. 278 

3) and FRed (Fig. 4) of drier tropical forests for most of the analysed trait groups, these forests 279 

may be more at risk in the face of further water availability reductions. 280 

The bivariate predictions maps combining FD and FRed (Fig. 5) highlight how wet 281 

tropical regions, such as the Western Amazon, Central Africa, and several regions in South 282 

East Asia maintain high functional diversity and high functional redundancy of 283 
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morphological/structural (FDMO max=3.5, FRedMO max=1.5) and leaf nutrients traits (FDNU 284 

max=2.5, FRedNU max=1.5), and also in several wet regions for  leaf photosynthetic traits 285 

(FDPHO max=2.5, FRedPHO max=1.5). We expect these wet tropical regions to be more resilient 286 

to a changing climate given their large combined FD (Fig. 3) and FRed (Fig. 4). To evaluate 287 

which are the different levels FD and FRed across tropical and subtropical dry and moist 288 

broadleaf forests, we distinguished low, intermediate and high scores based on the range of 289 

the spatial predictions (Table S6; see methods section). We predicted that only 2.4% of the 290 

tropical and subtropical dry and moist broadleaf forests have high morphological FD and 2.3% 291 

high morphological FRed. In contrast, the drier tropical forests show a functional diversity of 292 

morphological/structural traits that reach only about half of that in the wet tropics (FDMO 293 

min=~1.5) and some of the lowest FRed (<0.6). From the total area of tropical and subtropical 294 

dry and moist broadleaf forests, 30.4% shows low morphological/structural FD and 5.5% have 295 

low morphological/structural FRed. Moreover, FD and FRed of leaf nutrients traits are lowest 296 

to intermediate across the tropical dry forest regions, such as the southernmost parts of the 297 

forests in Brazil, in parts of Mexico, and West Africa (Fig. 3 and Fig. 4).  298 

 299 

 300 

Figure 3. Global predictions of functional diversity (FD) for morphological/structural (top panel), leaf nutrients (middle 301 
panel) and photosynthetic (bottom panel) traits across the tropical and subtropical dry and moist broadleaf forests. Dark 302 
brown colours depict areas where FD is lowest, light brown and light blue where FD is intermediate and dark blue where FD 303 
is predicted to be highest. Functional diversity predictions across the tropics were made using the statistical models for which 304 
details are shown in  Table S3. The location of field sites whose data informed this analysis is shown in Figure S5. 305 

 306 
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  307 

Figure 4. Global predictions of functional redundancy (FRed) for morphological/structural (top panel), leaf nutrients (middle 308 
panel) and photosynthetic (bottom panel) traits across the tropical and subtropical dry and moist broadleaf forests.  Dark 309 
brown colours depict areas where FRed is lowest, light brown and light blue where FRed is intermediate and dark blue where 310 
FRed is predicted to be highest. Functional redundancy predictions across the tropics were made using the statistical models 311 
for which details are shown in  Table S3. 312 

While 14.8% of the forest area has low foliar nutrients FD and 3.7% low FRed, 14.1% 313 

shows high nutrients FD and 7% high FRed. Drier tropical forests in Western Mexico, the 314 

southern forest portion of Brazil and parts of central and West Africa show intermediate to 315 

high photosynthetic FD (max=2.5) but they also tend to show intermediate to low levels of 316 

FRed (FRedPho min=0.3). However, photosynthesis FD and FRed do not seem to have a clear 317 

difference between wetter and drier forests. About 36.8% of the tropical and subtropical dry 318 

and moist broadleaf forest area is predicted to have low photosynthetic FD and 16.9% to have 319 

low photosynthetic FRed, while only 2.4% is expected to have high photosynthetic FD and 320 

6.8% high photosynthetic FRed. Overall, a large amount of forest area has intermediate 321 

photosynthetic FD and/or FRed levels (60.7% and 76.3% respectively). The bivariate FD-FRed 322 

predictions show that most tropical forests across West Amazon and Central Africa reach 323 

some of the highest predicted morphological and photosynthesis FD and FRed, while a smaller 324 

area of western South America reaches some of the highest predicted nutrients FD and FRed 325 

(Fig. 5). In general forests in drier areas show lower FD and FRed combined scores (grey 326 

colour; Fig. 5 bottom panel) for the three functional groups (morphology/structure, nutrients 327 

and photosynthesis) but this is more evident for the photosynthesis traits (Fig. 5).  328 

 329 
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 330 

Figure 5. Global bivariate maps combining the scores of the Functional Diversity (FD) and Functional Redundancy (FRed) 331 
for morphological/structural (top panel), leaf nutrients (second panel) and photosynthetic (third panel) traits across the 332 
tropical and subtropical dry and moist broadleaf forests. The bottom panel shows the combination of the 333 
morphological/structural, nutrient and photosynthesis bivariate maps, after standardizing (with values 0 to 1) and 334 
summing them to obtain a general bivariate map of global functional diversity and functional redundancy. Purple-red 335 
colours depict areas where both FD and FRed are highest, while yellow points to areas with higher FD and blue to areas with 336 
higher FRed. Gray colours show areas where both FD and FRed are predicted to be lowest. See full details of the statistical 337 
models underlying these predictions in Table S3. 338 

Testing the link between functional diversity, functional redundancy and resilience in 339 

ecosystem functions under climate change 340 

We tested to what extent the long-term FD and FRed model predictions (Fig. 3 and Fig. 4), 341 

could capture the functioning of tropical forests after climatic disturbances such as El Niño 342 

events. By obtaining the above ground biomass data (AGB) from a set of 86 vegetation plots 343 

in tropical Africa before and after the 2015 El Niño event 38, we calculated the change in 344 

aboveground biomass (ΔAGB) and modelled it as a function of the predicted long-term FD 345 

and FRed map scores. Bennett et al. 38 did not detect a strong decline in AGB for most forests 346 

they analysed after the 2015 El Niño event. We show that, on average, smaller decreases or 347 

larger increases in AGB  (Fig. 6; Table S7) can be found at locations that are predicted to have 348 

higher long-term FD and FRed of morphology/structure (slope= 1.97, [0.28, 3.65]; Fig. 6a) and 349 

nutrients traits (slope= 2.94, [0.25, 5.69]; Fig. 6b) and also higher FRed of photosynthesis traits 350 

(slope= 2.96, [0.94, 5.13]; Fig. 6d) (Table S9). The effect of FDNU on ΔAGB was mediated by  351 

recent changes in MCWD (ΔMCWD), with positive FDNU effects found in areas that 352 
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experienced larger increases in mean MCWD (Fig. 6b). There was no strong effect of FDPHO in 353 

areas where ΔVPD was smaller (blue fitted line in Fig. 6c) but the effect became negative for 354 

areas where ΔVPD was larger (becoming drier, red fitted line in Fig. 6c). The effect of FRedNU 355 

on ΔAGB was mediated by ΔMCWD with a positive effect only in regions that experienced 356 

increases in water availability (Fig. 6e blue fitted line;  slope= 2.94 [0.25, 5.69]).  357 

 358 

Figure 6. The strength of changes in aboveground biomass (ΔAGB) after extreme events such as the 2015 El 359 

Niño (from Bennett et al. 38) are related to the local functional diversity (FD; a-c) and functional redundancy 360 

(FRed; d-e) for sites in Africa.  The x axis shows the FD or FRed scores for the morphological/structural (MO), 361 

nutrients (NU) and photosynthetic (PHO) traits as extracted from Fig. 3 and Fig. 4 and the Y axis shows the 362 

relation with ΔAGB. The  ΔAGB shows a clear relation (90% Highest Density Interval, HDI, does not overlap 0) 363 

with the diversity indices (Table S7). Thick black lines show the average response and grey shaded lines show 364 

700 random draws from the posterior distribution representing variability of the expected model fit. The blue 365 

fitted line in b) shows the effect of FDNU at the largest decrease in ΔMCWD and the red fitted line at the larger 366 

increase in ΔMCWD. The blue fitted line in c) shows the effect of FDPHO at the largest decrease in ΔVPD and the 367 

red fitted line at the larger increase in ΔVPD. In e) the effect of FRedNU is shown for the largest decrease in 368 

ΔMCWD with the blue fitted line, and the red fitted line shows the effect at the largest increase in ΔMCWD. In 369 

b, c and e the thick blue and red fitted lines represent the slopes of the interaction between the variable in the 370 

X axis and the moderator (i.e. ΔMCWD or ΔVPD). The FD and FRed scores for each trait group (i.e. 371 

morphology/structure, nutrients and photosynthetic) are predictions extracted from Fig. 3 and Fig. 4 for the 372 

vegetation plots where the ΔAGB was collected. Only model covariates with a clear relationship with the ΔAGB 373 

are shown. For full statistical results see Table S7. 374 

Discussion 375 

Changes in forest cover affect the local surface temperature by means of the exchanges of 376 

water and energy 39. At the same time climate change is altering land conditions affecting the 377 

regional climate and in the near future global warming is likely to cause the emergence of 378 

unprecedented climatic conditions in tropical regions 39. Therefore, determining the 379 

distribution of more and less resilient tropical forests (e.g. regarding the maintenance of their 380 

functioning) to a changing climate and understanding the mechanisms causing such changes 381 

in resilience is pivotal for the conservation of biodiversity and ecosystem functioning. Here 382 
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we provide spatially explicit models of forest functional diversity and functional redundancy 383 

that may aid on this endeavour. However, such predictions may not directly reflect the actual 384 

resilience of forest towards climate change as other biological (e.g. competition, dispersal) 385 

and climatic (e.g. ground water depth, microclimate) may also play a pivotal role on the 386 

responses of tropical forests to a changing environment. 387 

Theory on niche complementarity predicts that more diverse systems make more 388 

efficient use of ecosystem properties given the complementarity of species in the use of 389 

resources available 40, 41. High functional complementarity and functional redundancy may be 390 

more easily achieved in areas with high taxonomic richness. Such complementarity may also 391 

increase the performance of diverse communities in the face of more stressful environments 392 

given facilitative interaction between species 42. It can be therefore expected that more 393 

functionally diverse and more functionally redundant communities would experience lower 394 

change in performance (e.g. lower mortality, lower biomass decrease) with changes in 395 

environmental conditions (e.g. ΔMCWD, ΔVPD). In our study we observed that the functional 396 

diversity levels are not significantly related to the taxonomic diversity found in the study sites 397 

across the tropics but that functional redundancy tends to be, especially for redundancy in 398 

morphological/structure and foliar nutrients traits. This points to the role of taxonomic 399 

diversity on the possible resilience of tropical ecosystems. We show that forest communities 400 

located in areas with lower soil and atmospheric water stress are generally more functionally 401 

diverse and more functionally redundant in morphological/structural, nutrients and 402 

photosynthetic traits than communities in drier areas. Such higher functional diversity and 403 

higher functional redundancy may be one reason why such forests have experienced weaker 404 

compositional and ecosystem functioning changes (e.g. carbon capture) as a result of a drying 405 

climate in comparison to forests in drier areas, as shown for forests across water availability 406 

gradients in West Africa 32, 33 and the Amazon 25, 34. The higher functional diversity in these 407 

wetter forests can be the result of their high water availability (low MCWD and VPD, Table 408 

S2) 43, 44. These conditions facilitate the adaptation, by means of a varied species morphology 409 

and structure 45, to a diverse set of light and moisture conditions under and at the canopy. 410 

Overall, our results support our expectation of lower functional diversity in the sites with 411 

lower long-term water availability, and are in agreement with what has been recently found 412 

not only for functional diversity but also for taxonomic and phylogenetic diversity in some 413 

local forests 32, 46. Higher diversity and higher redundancy in functional traits may enhance 414 

ecosystem functioning, such as the ability of plant communities for carbon capture 47, 48, and 415 

thus show smaller reductions in biomass and lower mortality 49 under changes in climatic 416 

conditions. Our results are consistent with recent studies carried out in temperate forests 48 417 

and with few tree taxa 26, which suggest a positive functional diversity-productivity 418 

relationship.  419 

Tropical forests that experienced the largest decreases in soil water availability across 420 

the last half century, which corresponds to intermediate to high long-term average MCWD 421 

(e.g. some forests in Panama, Peru and southern Mexico), tend to have high 422 

morphology/structure and nutrients FD and FRed and high photosynthetic FD. The high 423 

functional diversity and high functional redundancy potentially points to the capabilities of 424 

such forests to better withstand the effects of a drying environment than other locations with 425 
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low FD and FRed levels. Our findings show that atmospheric water availability (VPD) and its 426 

changes in the last decades mediate the FD and FRed levels across tropical forest ecosystems. 427 

Forests that experienced larger decreases in VPD over the last half century tend to be 428 

functionally redundant in morphological and nutrients traits even with increases in soil water 429 

availability (here the MCWD). However, such forests are not necessarily redundant in 430 

photosynthesis traits. One explanation for this pattern of higher redundancy of forests that 431 

experienced larger increases in MCWD and VPD is that such increases in water stress occurred 432 

in a variety of forests which are located all across the long-term mean MCWD and VPD 433 

spectrum (See Table S2). That means that these forests may well be composed of species with 434 

a wide range of functional adaptations to local conditions, adaptations that could have a 435 

possible mechanistic link via leaf phenology 50, some adapted to long periods of droughts but 436 

also others adapted to high water availability across the year. As tropical forests that 437 

increased the most in soil and atmospheric water availability are located across the long-term 438 

water availability gradient, these forests might be composed of species that have evolved 439 

with different leaf strategies ranging from evergreen to sclerophyllous and deciduous 21. Leaf 440 

adaptations to different environments may thus also explain the pattern of increasing 441 

diversity and redundancy of leaf nutrients and photosynthesis traits in these forests that 442 

experienced larger decreases in water availability. An important further step in future 443 

analyses will be to include as much information as possible not only on the changes in climate 444 

but also on the contemporary changes in functional diversity and functional redundancy. This 445 

would allow establishing a more direct link between the effects of a changing climate on 446 

forest functioning. Moreover, while our study showed clear relations with proxies of water 447 

availability at a pantropical scale (MCWD and VPD), other environmental variables at fine 448 

scale including local topography and ground water availability may also contribute for 449 

determining local FD and FRed levels. 450 

Forests with larger functional diversity and larger functional redundancy pools may be 451 

more resilient to further climate change. Extreme El Niño events bring about higher 452 

temperatures and droughts across tropical forests which can impact the establishment, 453 

survival and persistence of tropical forest vegetation, thus also impacting their functioning 38. 454 

The 2015-2016 El Niño event did not seem to strongly reduce carbon gains in African tropical 455 

forests. Although we did not measure the functional composition of those tropical forests in 456 

Africa before and after the El Niño event, our modelling framework provides a general 457 

understanding of the functional diversity and functional redundancy of such forest given long-458 

term climate conditions. Our results show that areas with higher long-term functional 459 

diversity and functional redundancy tended to show smaller decreases or larger increases in 460 

AGB, thus being more resilient to changes in environmental conditions caused by the 2015-461 

2016 El Niño event. Overall, our results highlight that tropical dry forests, such as those in 462 

drier parts of Mexico, Colombia, south-eastern Amazonia and much of West Africa, which 463 

have experienced high long-term soil water and atmospheric water stress over the last half 464 

century, could be at higher risk than wetter forests of further functional declines given the 465 

projected changes in climatic conditions for the coming decades 51. Further droughts may 466 

increase the water stress of drier tropical forests, which may already be at their climatic 467 

physiological limits, and could potentially drive them towards alternative stable states 19. This 468 
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is in agreement with recent findings for West African 32 and South American drier tropical 469 

forests 6, 50, where large and consistent changes in functional diversity 34 and functioning 6 470 

have been observed. It has been hypothesised that low functional diversity and low functional 471 

redundancy may pinpoint areas that could be less resilient to further changes in 472 

environmental conditions 52. Recent work in the wet tropics of Australia shows that tree 473 

growth has been reduced the most by positive anomalies in atmospheric water deficits in 474 

drier forests and for species growing faster in drier conditions than in wetter ones 36. The net 475 

carbon sink of tropical seasonal forests has decreased by 0.13 Mg C ha-1 year-1 amounting to 476 

carbon losses of 3.4% per year, highlighting how the driest and warmest sites are experiencing 477 

the largest carbon sink declines and becoming carbon sources 6. Moreover, the effects of a 478 

changing climate on drier tropical forest ecosystems may not only affect tree growth and 479 

survival but also strongly decrease their functional trait space available, possibly also affecting 480 

their functioning 50. Both the species-level and forest-level differential demographic 481 

sensitivities to a drying climate support this hypothesis of potentially less resilience in already-482 

drier environments.  483 

We also highlight the need for measuring more widely other plant functional traits 484 

that have a more direct link to the availability, accessibility and transport of water resources 485 

and to adaptations to a drying climate such as plant hydraulic traits (e.g. vessel density, P50, 486 

hydraulic safety margin, hydraulic conductivity, osmotic potential, root size and depth) which 487 

are seldom available for most tropical plant species but that may shed more light into the 488 

possible responses of tropical forest to a changing climate 53, 54.  However, recent work has 489 

shown there is strong correlation between plant hydraulics  and economic traits. For instance 490 

wood density may serve as a proxy for hydraulic traits 55 and has been shown to corelated 491 

with vessel diameter, branch and tree leaf specific conductivity 56, 57, 58, resistance to 492 

embolism 57, 59, sapwood capacitance 60, 61, minimum leaf water potential 62 and leaf water 493 

potential at turgor loss 60. Also, significant relationships between SLA and conduit diameter, 494 

seasonal change in pre-dawn leaf water potential and stomatal conductance have been found 495 
62, together with significant correlation between leaf P50 and leaf mass per area (LMA) and 496 

leaf hydraulic conductivity and LMA 63. Moreover, the leaf osmotic potential at full turgor and 497 

leaf nitrogen content have been shown to be largely correlated 64. Given that within the 498 

hydraulics traits, and thus their leaf and wood economics correlates, and in face of a changing 499 

environment,  there is a trade-off involving drought avoidance and hydraulic safety. Such 500 

trade-off forms an important axis of variation across tropical forests where it is expected that 501 

fast-growing species have lower hydraulic safety compared to slow-growing species 54. Across 502 

the tropics species that can quickly transport water resources would tend to be the ones with 503 

low wood density, short leaf life span and high rates of resources acquisition 53. We expect 504 

this relationship to scale up from the individual to the ecosystem level and that this is thus 505 

reflected in ecosystem characteristics such as above ground biomass. 506 

In summary, this study addresses the need to understand and monitor the responses 507 

of tropical forest ecosystems to climate change, such as the negative impacts of a drying 508 

climate on the capacity of tropical forests to sequester and store carbon. Current models of 509 

ecosystem contribution to climate mitigation lack information on earth systems feedbacks. 510 

Our results show how contemporary climate shapes the functional diversity and functional 511 
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redundancy of tropical forest communities. Across the tropics a diverse set of climatic 512 

conditions support a myriad of tropical tree communities with diverse combinations of plant 513 

functional traits and different functional diversity and functional redundancy levels. Tropical 514 

communities more at risk of shifting towards alternative states could be expected to be 515 

currently the ones where lower functional diversity and redundancy is found and that are 516 

under already high water stress, such as in the drier tropical forests. From the ecosystems 517 

conservation point of view, it is of critical importance to inform decisions by mapping tropical 518 

regions in terms of their resilience to future changes in the environment. Conservation efforts 519 

need to prioritise and manage ecosystems accordingly, especially including drier tropical 520 

forests in the conservation agenda, but also considering that wet tropical forests with higher 521 

functional diversity and higher functional redundancy are likely to continue to be long term 522 

carbon stores and be more resilient in the face of climate extremes and pathogens. 523 

Methods 524 

Vegetation plots. We collected vegetation census data from 74 permanent vegetation plots 525 

that are part of the Global Ecosystems Monitoring network (GEM; 526 

www.gem.tropicalforests.ox.ac.uk) 65. These plots are located in wet tropical forests, 527 

seasonally dry tropical forests, and tropical forest-savanna transitional vegetation. The 528 

sampled vegetation plots ranged in area from 0.1 to 1 ha, with most (67%) being 1 ha and 529 

only one of them being 0.1 ha (Table S2). The plots are located in Australia, Brazil, Colombia, 530 

Gabon, Ghana, Malaysian Borneo, Mexico and Peru across the four tropical continents (Table 531 

S2). In each plot, all woody plant individuals with a diameter ≥ 10 cm at breast height (DBH) 532 

or above buttress roots were measured. In the plots NXV-01 and NXV-10 in Nova Xavantina, 533 

here onwards referred to as Brazil-NX, the diameter was measured at 30 cm from the ground 534 

level as is standard in drier shorter vegetation monitoring protocols. 535 

Plant functional traits. We directly collected plant functional trait measurements from the 536 

most abundant species that would cover at least 70% of plot basal area and that were located 537 

in most of the 74 vegetation plots mentioned above (Fig. S1; Table S1). All traits were 538 

collected following the GEM network standardised methodology across plots. Forest 539 

inventory data were used to stratify tree species by basal area dominance. The tree species 540 

that contributed most to basal area abundance were sampled with 3–5 replicate individuals 541 

per species. Eighty percent or more of basal area was often achieved in low diversity sites 542 

(e.g., montane or dry forests). For each selected tree a sun and a shade branch were sampled 543 

and in each branch 3–5 leaves were used for trait measurements. This represented a total 544 

sample of 2461 individual trees across the tropics (Fig. S1). We collected plant functional traits 545 

related to photosynthetic capacity Amax (μmol m−2 s−1): light-saturated maximum rates of net 546 

photosynthesis at saturated CO2 (2000 ppm CO2), Asat (μmol m−2 s−1): light-saturated rates of 547 

net photosynthesis at ambient CO2 concentration (400 ppm CO2), RDark (μmol m−2 s−1): dark 548 

respiration. Leaf nutrient concentration traits (%) of Ca: leaf calcium, K: leaf potassium, Mg: 549 

leaf magnesium, N: leaf nitrogen and P: leaf phosphorus. Plant morphological and structural 550 

traits, A (cm2): leaf area, DM (g): leaf dry mass, FM (g): leaf fresh mass, LDMC (mg/g): leaf dry 551 

matter content, LWC (%): leaf water content, SLA (g/m2): specific leaf area, T (mm): leaf 552 

thickness and WD (g/cm3): wood density. Further details of measurements for the Peruvian 553 
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Andes campaign are given in Martin et al. 66 and Enquist et al. 67, for the Malaysian campaign 554 

in Both et al. 68, and for the Ghana and Brazil campaigns in Oliveras et al. 69,, Gvozdevaite et 555 

al. 70 and  for Colombia campaigns in González-M. et al. 50. For the specific dates of plant 556 

functional traits collection see ref. 71
. For the FD and FRed calculations, as both only accept 557 

one trait value per species, from the individual level plant functional traits, we averaged the 558 

values at species level and when the species had no trait values available, we filled the gaps 559 

by averaging the trait values at the genus level. This protocol allowed us to have at least 70% 560 

of the plot’s basal area covered by traits but often more. Thus, in our analysis the inclusion of 561 

plots is trait dependent in the sense that only plots with at least 70% of the BA covered by the 562 

focus trait were included in the analysis (see Table S2). 563 

Community level functional diversity and functional redundancy 564 

We calculated the functional diversity and functional redundancy of morphological/structural 565 

traits, leaf chemistry and photosynthetic traits, which are hypothesised to be of importance 566 

for tropical forests to respond to a drying climate (Table S1) 14, 21,  based on data for species 567 

covering at least 70% of the plot basal area (Table S2) and following equations from refs. 35, 568 

72, 73, 74. The morphological/structural and nutrient related traits used for this analysis are A, 569 

FM, DM, LDMC, T, LWC, SLA, WD, Ca, K, Mg, N, P; and Asat, Amax and RDark for photosynthesis. 570 

We did not build an index including all functional traits together as this would make their 571 

interpretation rather difficult as they point to different axes of the global spectrum of plant 572 

form and function 75 and also because of the difference in number of records available for 573 

each trait group. Plant functional trait diversity (FD) was calculated at the plot level using the 574 

functional dispersion metric, which is closely related to the RaoQ and which represents the 575 

mean distance, in trait space, of each single species to the weighted centroid of all species 35. 576 

We used the FD as it can handle any number and type of traits, because it is unaffected by 577 

species richness, it weighs the values based on the abundance of species, it is not influenced 578 

by outliers and is relatively insensitive to the effects of undersampling 76. To calculate FD we 579 

applied the equation presented by Laliberté and Legendre 35: 580 

eq. 1               𝐹𝐷 =
∑"#!"	%!"

∑"#!"
			 581 

where BAip reflects the total plot level basal area of species i in plot p and zip is the distance 582 

of species i in plot p to the weighted centroid of the n species in trait space. The plant traits 583 

were weighted by the relative basal area (in m2) of each of the species in the plot. Therefore, 584 

FD summarises the trait diversity and represents the mean distance in trait space of each 585 

species to the centroid of all species in a given community. All numeric traits were 586 

standardised during the FD calculation.  587 

We calculated the functional trait redundancy in the community (vegetation plots), 588 

FRed, as in Pavoine and Ricotta 73 and Ricotta et al. (‘Rstar’) 74 and as developed in the 589 

‘uniqueness’ function of the R ‘adiv’ package 72. ‘Rstar’ quantifies how redundant a plant 590 

community is compared to a scenario where all species would have the most distinct trait 591 

values possible. As in the case of FD, ‘Rstar’ as calculated in Ricotta et al. 72, 73 works with 592 
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multiple traits and takes into account species abundances. The ‘Rstar’ index is complementary 593 

to the community-level functional uniqueness index Ustar described by Ricotta et al. 73 which 594 

is the ratio of the Rao quadratic diversity index Q 77, 78, that accounts for species trait 595 

dissimilarities and the Simpson index D, which considers the species in the community as 596 

equally and maximally dissimilar. Thus Ustar measures the uniqueness of the community in 597 

functional space which is obtained by including interspecies dissimilarities in the calculations 598 

of the index. Rstar, which is the complement of Ustar, represents thus a measure of 599 

community-level functional redundancy and is quantified as: 600 

eq. 2               𝑈𝑠𝑡𝑎𝑟 =
&'(

&')
				601 

eq. 3               𝑅𝑠𝑡𝑎𝑟 = 1 − 𝑈𝑠𝑡𝑎𝑟				602 

For an in-depth description of the functional redundancy index see refs. 72, 73, 74
. 603 

All above-mentioned analyses were carried in the R statistical environment 79 with the 604 

‘FD’ and ‘adiv’ packages.  605 

Climatic and soil data 606 

In order to investigate the role that long-term climate plays on determining the community 607 

trait composition and functional diversity and redundancy across tropical forests we gathered 608 

climatic data on the potential evapotranspiration (PET in mm), precipitation accumulation 609 

(mm) and VPD (kPa) from the TerraClimate project 80 at a spatial resolution of ~4 × 4 km. The 610 

data were obtained for the period from 1958 to 2017. Using the full-term climatic dataset 611 

(1958-2017) we calculated the mean annual VPD, PET, precipitation coefficient of variation 612 

(CV; as a measure of seasonality in water availability) and the maximum climatological water 613 

deficit (MCWD). The MCWD is a metric for drought intensity and severity and is defined as 614 

the most negative value of the climatological water deficit (CWD) over each calendar year. 615 

The VPD is an indicator of plant transpiration and water loss 14. CWD is defined as precipitation 616 

(P) (mm/month) – PET (mm/month) with a minimum deficit of 0. The MCWD was calculated 617 

as in Malhi et al.13 where MCWD=min(CWD1…CWD12). As a final step we converted the 618 

MCWD so that positive values indicate increases in water stress. We also calculated the 619 

change in the climatic variables (ΔMCWD, ΔVPD and ΔCV) between a first period 620 

corresponding to a climatology of 30 years encompassing 1958-1987 and a second period 621 

encompassing the years 1988-2017. The climatology of 30 years to calculate the different 622 

time periods climate was selected as recommended by the World Meteorological 623 

Organization in order to characterise the average weather conditions for a given area 624 

(www.wmo.int/pages/prog/wcp/ccl/faqs.php). There are other possibly relevant predictors 625 

of water stress for plants in tropical forests such as the water table depth 17,81. It has been 626 

hypothesised that water table depth drives the distribution of plant species and functional 627 

composition, and where it is expected that forest in shallow water table areas show higher 628 

mortality during strong drought events (e.g. El Niño) given the presence of species with 629 

shallower roots and less adapted traits 17,81. However, we did not include the water table 630 

depth in our analysis given the lack of spatially explicit predictions across the tropics. 631 
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 632 

We also obtained soil texture (percent clay and sand) and chemistry (soil pH and cation 633 

exchange capacity, CEC) gridded data from the SoilGrids project (www.soilgrids.org) and used 634 

this as extra covariates in our modelling framework. Although the CEC includes the acid 635 

aluminium, which is not a plant nutrient and may be toxic to plants, this is one of the best 636 

estimates of the overall potential of the soil to exchange cations (Ca, Mg, and K) that is 637 

available at a pantropical extent 82. 638 

We then tested the correlation between all pairs of climatic variables (full-term and 639 

their changes) and also between the soil variables. We observed that MCWD and CV had 640 

Pearson's correlation coefficients |>0.70| and also CEC and pH and Clay and Sand had 641 

correlation coefficients |>0.70| (Fig. S11) and we thus dropped CV and its change, Sand and 642 

pH from the analyses as to avoid distorting model coefficients in the modelling stage 83. We 643 

then carried out a principal component analysis (PCA) using the MCWD and VPD climatic 644 

variables (average of full-term and their changes) and another with the soil variables to 645 

investigate the distribution of the vegetation plots in climate and soil space and to describe 646 

how much of this distribution can be explained by each of these. For the PCA analysis we used 647 

the ‘stats’ package in R. 648 

Statistical analysis 649 

Functional Diversity and Functional Redundancy statistical analysis 650 

We investigated the variation in morphological/structural, leaf chemistry and photosynthetic 651 

FD and FRed across tropical forests by modelling their relation with mean MCWD, VPD for the 652 

period 1958-2017 and their interaction, the ΔMCWD and ΔVPD between the first and second 653 

periods and their interaction and soil chemistry (CEC) and texture (Clay%). For the 654 

photosynthesis statistical models, given their lower sample size (n=22; Table S2), interaction 655 

terms were not included and to avoid overfitting we first tested by means of leave-one-out 656 

cross-validation (LOO) 84  if the soil covariates improved or not the models with only climate 657 

information. We found soil data did not improve our models (Table S8) and thus left CEC and 658 

Clay out of the photosynthesis models. We also calculated the relative change (%) in climatic 659 

conditions but this did not improve model predictions (data not shown) and thus we only 660 

present results that include the absolute changes in MCWD and VPD. We included the change 661 

in MCWD and VPD as we wanted to understand if areas that have experienced stronger 662 

changes in climate showed lower or higher functional diversity and functional redundancy 663 

than others that have experienced milder climate changes. In the same way we included the 664 

interaction between MCWD and VPD (and also between ΔMCWD and ΔVPD) as there may be 665 

regions where high values of one of these variables may not be related to the values of the 666 

other, e.g. high MCWD may not be related to high VPD. Prior to the statistical modelling we 667 

centred and standardised (generated z-scores) all climatic and soil variables.  668 

We tested for spatial autocorrelation effects in the FD and FRed model residuals using 669 

the Moran’s I test and found a significant effect for the photosynthesis and nutrients FD 670 
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models and for the FRed nutrients model (Table S9). Thus, for those data we calculated the 671 

spatial distance at which such spatial effect decreased and found that a distance of 2 km was 672 

sufficient. We then generated an ID for each group of plots (group ID) that were at most 2 km 673 

away from each other and included such group ID as a random factor in those statistical 674 

models. As some plots were smaller than 1 ha (Table S2) we included the z-scores of plot size 675 

as a covariate in all statistical models to account for its possible effect. We log transformed 676 

the FD and FRed indices to improve the normality of the data and applied linear mixed-effects 677 

models with a Gaussian error structure accounting for difference in plot size and spatial 678 

autocorrelation as described above under a Bayesian framework. The mixed-effects models 679 

were run with normal diffuse priors with mean 0 and 2.5 standard deviation to adjust the 680 

scale of coefficients and 10 standard deviations to adjust the scale of the intercept, three 681 

chains and 10000 iterations to avoid issues with model convergence. We computed the 682 

highest density intervals (HDI) rendering the range containing the 90% most probable effect 683 

values and calculated the ROPE values using such HDI as suggested in Makowski et al. 85. The 684 

95% HDI was not used as this range has been shown to be unstable with ESS < 10,000 685 

(effective sample size) 86. We considered a climatic variable had an important (significant) 686 

effect on the response variable if the 90% HDI did not overlap 0. Posterior density 687 

distributions for all models and covariates included in the models are shown in Fig. S12 and 688 

Fig. S13. 689 

Based on the statistical models described above we created spatial predictions of 690 

Functional Diversity (FD) and Functional Redundancy (FRed) at a pantropical scale. We 691 

defined the ‘low’, ‘intermediate’ and ‘high’ FD and FRed groups by defining the range in FD 692 

and FRed values and dividing that range between three in order to allocate the FD and FRed 693 

predicted values to each of these groups and be able to state what is the predicted percent 694 

area of tropical and subtropical dry and moist broadleaf forests with low, medium and high 695 

FD and FRed. We also tested the robustness of the spatial predictions of FD and FRed by also 696 

developing the models by leaving out the data from one continent (South East Asia and 697 

Australia together), fitting the model again, and comparing the resulting spatial predictions 698 

to the full model prediction maps by means of Spearman correlations. In Fig. S14 we also 699 

highlight locations across the tropics with climate and soil conditions outside of our climatic 700 

and soil calibration space, thus not covered by the range in our sampling locations, which may 701 

represent locations where our models are extrapolating the relationships found. 702 

Relations between Functional Diversity, Functional Redundancy and Aboveground biomass  703 

We obtained the above ground biomass data (AGB) from an independent set of 100 704 

vegetation plots in Africa before (AGBpre) and after (AGBpost) the 2015 El Niño event from 705 

Bennett et al. 38 . The plots from Bennet et al. include censuses from 2000 onward where the 706 

median plot size is 1 ha, the mean initial census was May 2008, with the mean pre-El Niño 707 

census in April 2014, and mean post-El Niño census in February 2017. The plots have a mean 708 

monitoring length pre-El Niño of 8.3 years, with a mean length of the El Niño interval being 709 

2.7 years. To calculate AGB Bennet et al. 38 used the BiomasaFP R package, including the 710 
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calculation of the census interval corrections for AGB where Pre-El Niño means of these 711 

variables are time weighted using the census interval lengths. For a full description of the AGB 712 

data see Bennett et al. 38. We calculated the ΔAGB as:  713 

eq. 4 ΔAGB= (AGBpost - AGBpre)  714 

Before modelling we eliminated statistical outliers in the AGB values, this is values more 715 

than 1.5 the interquartile range above the third quartile or below the first quartile. We 716 

therefore only used 86 plots in our analysis. We modelled the ΔAGB as a function of the 717 

predicted (see methods above) FD and FRed maps scores from each functional group 718 

(morphology/structure, nutrients and photosynthesis; Fig. 3 and Fig. 4), one model was built 719 

per functional group. Each model included the FD and FRed index (e.g. FD and FRed of 720 

nutrients) and their interaction with ΔMCWD and ΔVPD as to test the effect of a changing 721 

climate on the effects of FD and FRed on above ground biomass change. We accounted for 722 

plot size by including as a covariate in the models and used a Gaussian error structure model 723 

under a Bayesian framework. The ΔAGB statistical models were run with normal diffuse priors 724 

with three chains and 5000 iterations. 725 

We carried out all statistical analysis in the R statistical environment 79 using the, ‘rstanarm’, 726 

‘loo’, ‘bayestestR’, ‘egg’ and ‘BEST’ packages. 727 

Data availability 728 

The vegetation census and plant functional traits data that support the findings of this study are 729 

available from their sources (www.ForestPlots.net and gem.tropicalforests.ox.ac.uk/). The processed 730 

community-level data used in this study will be made available in a public repository. 731 

Code availability 732 

The main R code used in this study will be deposited in a public repository and can be accessed 733 

through the principal investigator upon request.734 
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