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Abstract

High-resolution monitoring of water quality and ecosystem functioning over large spatial scales in
expansive lowland river catchments is challenging. Therefore, we need modeling tools to predict these pro-
cesses at locations where observations are absent. Here, we present a new approach to estimate ecosystem
metabolism underpinned by a high-resolution, process-based model of in-stream flows and water quality.
The model overcomes the current challenges in metabolism modeling by accounting for oxygen transport
under varying flows and oxygen transformations due to biogeochemical processes. We implement the
model in a 62-km-long stretch of the River Thames, England, using observations spanning 2 yr. Model out-
puts suggest that the river is primarily autotrophic from mid-spring to mid-summer due to high biomass
during low-flow periods, and is heterotrophic during the rest of the year. Ecosystem respiration in upstream
reaches is driven mainly by biochemical oxygen demand, autotrophic respiration, and nitrification pro-
cesses, whereas downstream sites also show a control of benthic oxygen demand in addition to the afore-
mentioned processes. Using empirical modeling, we analyze the sensitivity of our estimated metabolism
rates to multiple environmental stressors. Results demonstrate that empirical models could be useful for
rapid river health assessments, but need improvements to reproduce peak metabolism rates. The process-
based model, although more complex than existing in situ approaches to metabolism quantification, allows
inference when gaps in continuous observations are present. The model offers additional benefits for
predicting metabolism rates under future scenarios of environmental change incorporating multiple stressor
effects.

Assessments of river ecosystem health have traditionally
relied on structural indicators such as channel morphology,
water quality, or the composition of biological communities
(Von Schiller et al. 2017). However, with the advances in
high-resolution monitoring techniques (Rode et al. 2016),
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sensor networks and linked modeling tools are gaining trac-
tion for prediction of functional indicators such as ecosystem
metabolism. Conventional methods of metabolism modeling,
based on Odum’s (1956) open-channel approach, estimate
metabolism rates at a river-reach level using continuous dis-
solved oxygen (DO) measurements at a single site (e.g., single
station method, Izagirre et al. 2007) or two sites over a reach
(e.g., two station method, Hall Jr and Tank 200S5; Halbedel
and Biittner 2014). These models do not account for the influ-
ence of upstream changes on the downstream DO advection
and transformations within the river network. Moreover,
these models do not specifically account for changes in river
hydrology and biogeochemistry (exceptions include Payn
et al. (2017); Segatto et al. 2020), which could have a critical
impact on DO dynamics in the river. Therefore, such models
may provide biased interpretations of metabolism estimates
(Payn et al. 2017) if the metabolic regime is sensitive to
changes in these environmental stressors at the time-step of
calculation.
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Ecosystem metabolism characterizes carbon fixation and
mineralization through gross primary production (GPP) and
ecosystem respiration (ER). GPP and ER are sensitive to multi-
ple stressors, which act independently or in combination with
other stressors (Heathwaite 2010; Von Schiller et al. 2017)
often presenting a complex interplay of controls. ER is regu-
lated by water temperature (Demars et al. 2011; Perkins
et al. 2012) and organic matter supply (Young et al. 2008).
Often, light (Mulholland et al. 2001) and in some cases, nutri-
ent availability (Guasch et al. 1995) control GPP. Flow is also
an important regulator of GPP. Flooding disrupts GPP season-
ality through scouring of benthic producers and organic mat-
ter (Uehlinger 2006) as well as by reducing light availability in
sediment-mobilized turbid waters (Aspray et al. 2017). Slow-
flowing rivers with clear waters are typically autotrophic due
to high light availability and stable flow regimes (Acufia
et al. 2011) whilst faster-flowing rivers are typically heterotro-
phic. Measuring these spatial and temporal dynamics can be
difficult, since the spatial resolution of sensor networks is
largely limited by logistics of multi-site set up, maintenance,
and data collection/validation.

GPP and ER estimates from conventional DO mass-balance
models are usually empirically related to different environ-
mental stressors to evaluate their sensitivity to these stressors
(Izagirre et al. 2008; Beaulieu et al. 2013; Aspray et al. 2017).
However, it is also important to associate these stressors mech-
anistically to GPP and ER to better understand the underlying
controls of metabolic regimes in rivers as well as to predict
changes in river metabolism outside the range of the available
observations. Whereas several mechanistic water quality
models (e.g.,, QUAL2E (Brown and Barnwell 1987), RWQM
(Reichert et al. 2001)) include biochemical processes that
affect DO transformations in the water column, they are gen-
erally only tested at daily to weekly time-steps. The coarse test-
ing limits their use for metabolism estimation, which is
susceptible to sub-daily changes in hydrology and biochemical
water quality (Roberts et al. 2007; Izagirre et al. 2008). There-
fore, here we combine DO and metabolism modeling using an
existing, hourly scale, mechanistic water quality model, the
hourly Quality Evaluation and Simulation Tool for River-
systems (QUESTOR) model (Pathak et al. 2021). We imple-
ment this approach in a lowland river, the River Thames, in
southern England.

QUESTOR is a process-based, in-stream water quality model,
which simulates hourly scale variation and transport of river
flows, water temperature, DO, nutrients, and phytoplankton
biomass in a river network. The model has been previously
tested to predict diel variation in physico-chemical water qual-
ity and phytoplankton biomass in the lower River Thames
(Pathak et al. 2021). We advance this study to estimate metabo-
lism rates from the DO mass-balance module. The hourly
QUESTOR model simulates diel changes in the environmental
stressors (e.g., light, temperature, flow, nutrients) and their
resulting impact on ecosystem productivity and respiration.

Water quality and metabolism modeling

The model, however, has a relatively more complex structure
with many model parameters, thus carrying a risk of attached
uncertainties and parameter equifinality during the calibration.
Nonetheless, we reduce parameter uncertainties during the cali-
bration process by making use of the abundant literature on
water quality modeling that exists for the River Thames catch-
ment (Whitehead and Hornberger 1984; Waylett et al. 2013;
Whitehead et al. 2015; Hutchins et al. 2018).

Whilst process-based models realistically represent the sen-
sitivities of the system to key drivers (Hrachowitz et al. 2014)
and capture the short term dynamics (Jankowski et al. 2021),
empirical models have long-standing pedigree in providing
insight into ecosystems’ response to multiple stressors
(Izagirre et al. 2008; Beaulieu et al. 2013). Specifically, with
the development of machine learning techniques, empirical
models can utilize data to learn and increasingly improve
model performance (Elith et al. 2008; Feld et al. 2016). There-
fore, in addition to the process-based model, we also use an
empirical approach to assess the sensitivity of modeled metab-
olism rates to multiple stressors. A comparison of both models
enables us to test if the empirical approach can provide accu-
rate predictions and substitute process-based modeling for
rapid assessments of river ecosystem health.

Our main aims here are as follows.

1. To develop a process-based approach for coupled modeling
of in-stream hydrology, biochemical water quality, and eco-
system metabolism in lowland rivers.

2. To analyze spatio-temporal variation in the metabolic regime
within the modeled river network (Thames, England).

3. To perform a sensitivity analysis of GPP and ER to physico-
chemical determinands using random forest machine
learning technique and generalized least squares (GLS)
regression modeling.

Methods

Modeling approach

We use the process-based, hourly QUESTOR model tested in
the lower Thames by Pathak et al. (2021). The model is a
pseudo 1-D model (strictly speaking 0-D) and assumes perfect
mixing within a reach (river network description in Table S1).
The model assumes a fixed channel width with rectangular
cross section and represents river reaches as a set of non-linear
reservoirs or well-mixed tanks in series (Fig. 1). Solute dynamics
and transport in the model are described with a mass-balance
approach using ordinary differential equations, which are
numerically solved using an explicit fourth-order Runge-Kutta—
Merson differential equation solver (DASCRU; Fox 1962).
The key variables represented by equations are flow, water tem-
perature, photosynthetically active radiation (PAR), chlorophyll
a (Chl a), BOD (biochemical oxygen demand), DO, nitrate
(NO™3), ammonium (NH™,), particulate organic nitrogen (PON),
organic phosphorus (Pory), and inorganic phosphorus (SRP).
A detailed set of equations for all the key variables is provided
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Fig. 1. Model structure and processes (modified after Pathak et al. 2021). (a) The schematic of a typical reach, (b) the conceptualization of reaches (C,
solute concentration; Q, flow; V, volume), and (c) describes the water quality determinands and processes in the model. BOD, biochemical oxygen
demand; PON, particulate organic nitrogen; Py, organic phosphorus; SRP, inorganic phosphorus; SS, suspended sediment.

in Text S1. Here, we summarize the flow and DO modules of
the hourly model, and describe the equations for ecosystem
metabolism estimation.

Flow routing module

A simple mass-balance of incoming and outgoing flows is
used. The incoming flow in the reach is the balance of the
upstream flows plus point-source discharges minus abstractions.
Flow inputs from the tributaries at the main channel confluence
are scaled upwards based on the location (often some distance
upstream) of the gauging station and the contributing catch-
ment area (Hutchins et al. 2020). Therefore, this indirectly
includes groundwater contribution at the tributary confluences
with the main Thames. Groundwater contribution to and from
the main Thames is assumed to be in balance. Outflow of water
from a reach is calculated as

onut _ Qin - Qout (1)
dt 7(1-c¢)
where Q, is the total flow into the reach (m® s™'), Qo is

the flow out of the reach (m® s™), t is the time-step (h), 7 is
the residence time (h) derived by I/bQ,.:", I is the length of the
reach (m), b and c¢ are reach-specific constants. Constants
b and c are calibrated from flow-velocity relationships
(v = bQoy), which characterize the hydromorphology and
lock operations in the river (Whitehead and Hornberger 1984;
Waylett et al. 2013). The flow routing model facilitates model-
ing of river residence time, which allows us to account for the
influence of hydrological variation on DO dynamics as dis-
cussed in the next section.

Dissolved oxygen module
The processes controlling DO concentrations within a
reach include (1) DO advection; (2) production of oxygen

from GPP; (3) loss of oxygen from ER; and (4) oxygen change
from reaeration

dcC 1
% - T (CDO,I' —Cpo,0+ W) +Pepp — Rep +F

(2)
where Cpgo,; is the input DO concentration (mg LY, Cpo,o
is the output DO concentration (mgL™"), W is the aeration
at weirs (mg O, LY, Pgpp is the gross primary produc-
tion (mg O, L' h™Y, Rpr is the ecosystem respiration
(mg O, L™' h™'), and F is the aeration at the air-water surface
(mg O, L 'h™).

Ecosystem metabolism

Oxygen production.  Rate of oxygen production (Pgpp, mg

0, L™' h™') in the river (Eq. 3) is given by

Pgpp =Pp+Pn (3)
where Pp is the photosynthetic production (mg O, L™' h™')
and Py is the oxygen produced during nitrate assimilation
by phytoplankton (mg O, L™' h™'). Although the hourly
model supports modeling of macrophytes and benthic algae,
this study only includes modeling of phytoplankton bio-
mass, since it is the dominant driver of metabolism in the
study stretch (Whitehead and Hornberger 1984; Lazdar
et al. 2012).

The hourly model not only includes the influence of phy-
toplankton biomass on DO variations, but also accounts for
the influence of light, temperature, and nutrient availability
on photosynthesis. These details are explained in the descrip-
tion of the phytoplankton model in Text S1. Here, we only
summarize the equations directly relevant to the DO model.
Pp is a function of photosynthetic rate and phytoplankton
concentration in the water column
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32
__1pho
Pp=k (—1 A) (4)

where kPP is the gross photosynthetic rate of autotrophs rep-
resenting increase in Chl a during photosynthesis
(mg L! h™!) and A is the ratio of carbon to Chl a in auto-
trophs (50) (Bowie et al. 1985). The ratio of 32/12 represents
the mass of oxygen produced in photosynthesis or consumed
in respiration per unit mass of carbon fixed.

Py is estimated as

Py =KP" (1 — Hprer) (5)
where 1, is the autotroph preference for ammonia (Eq. 6)
and a is the ratio of nitrogen to Chl a in autotrophs

(10) (Bowie et al. 19835)

kprefCNH4,o
KpretCNt4,0 + (1 = Kpret) CnO3,0

(6)

Npref =

Here, Cnpa,o is the NH4 concentration (mg LY, Cno3,o 1S
the NO™; concentration (mg LY, and kprer is the preference
factor for ammonia over nitrate (Table S2).

Oxygen depletion. Rate of oxygen depletion (Rgr, mg
0, L' h™') in the river includes four pathways

RER = RA + Rnitri + Rben + ch (7)

where R, is the autotrophic respiration (mg O, L' h™%), Ry
is the assimilation of oxygen in the process of nitrification of
ammonium to nitrate (mg O, L™' h™'), Ry, is the sediment
oxygen demand (benthic respiration) (mg O, L' h™'), and
Ry is the BOD in the water column (mg O, L™ h™1).

R, is a function of phytoplankton respiration rate (K™,
mg L' h™!) and temperature (Eq. 8). kK™ is modeled in the
phytoplankton model as described in Text S1.

__pres g
Ry=k (124) (8)

where R,y involves conversion of ammonium to nitrate and
requires oxygen for this conversion

C
Rnitri:4.57knitCNH4ro( D00 ) o

Cpo,0 + Snitri

where k,; is the nitrification rate (h™!) and S, is the DO half-
saturation concentration for nitrification (mgL™!). The coeffi-
cient, 4.57 is derived from the stoichiometry of the reactions and
represents the oxygen required to convert ammonia to nitrate.
Rpen (Eq. 10) represents the transfer of oxygen between the
overlying water and the sediments (Cox 2003). The benthic
respiration rate (Kpen, h™1 (Eq. 11) is simulated as a function

Water quality and metabolism modeling

of stream depth and temperature, where the stream depth and
water column oxygen concentration represents the availability
of oxygen to the bed.

Rben = kbenCDO,o (10)

k
Kben :—beznz‘) T~ Trer) (11)

where kpenzo is a unitless coefficient provided by the user dur-
ing the calibration, z is the mean water depth of the reach
(m), T is the water temperature (°C), Tif is the reference tem-
perature (20°C), and @ is a temperature correction fac-
tor (1.08).

Ry represents the carbonaceous deoxygenation where oxy-
gen in the water column is consumed by heterotrophic bacteria

C
ch = kbodCBOD,u (ﬁ) (12)
,0 0

where kpoq is the rate of loss of DO as BOD decays (h™Y) and
Sboa is the half-saturation concentration for the use of DO to
satisfy BOD (mgL™'). Note that sedimentation and phyto-
plankton death also influence BOD, as described in Text S1.

Process rate coefficients for nitrification and BOD in the
model are temperature-dependent

kT :kTrefa(TiTmf) (13)

where kr is the process rate at T°C (h™) and kqyer is the
process rate (h™1) at a reference temperature (20°C).

Reaeration. Reaeration estimation (K) in the model
accounts for reaeration at the water surface and at weirs.
Reaeration at the water surface represents the rate of change
in DO concentration (F, mg O, L~! h™!) in the water column
via the exchange at the air-water interface. F is represented by
a transfer coefficient (kreo, h™', see Text S1) and a DO deficit
term, which is the difference between the saturated DO con-
centration (Ogy;, Mg LY and the actual DO concentrations
(Cpo,,, mg L) in the water column

F= krea(osat - CDO,O) (14)

Weirs in the river create a head loss, which can aerate or
deaerate water depending upon the upstream DO concentra-
tions, creating an instantaneous change in the DO concentra-
tions. Hence, it is important to consider weirs, especially in a
heavily regulated river like the Thames. The aeration effect of
weirs (W, mg L) is calculated as

Osat - CDO,0:| (15)

W= Osat - |: RODR

where Ropgr is the oxygen deficit ratio (Text S1).

1316



Pathak et al.

Study area and model application

The Thames is a lowland river in southern England with a
length of 354 km and a catchment area of around 10,000 km?
(Marsh and Hannaford 2008). Much of the catchment is
underlain by Chalk and Oolitic Limestone aquifers that pro-
vide around 40% of the public water supply in the catchment
(Bloomfield et al. 2011). In this study, we focused on a 62-km
stretch in the lower part of the catchment from Caversham
to Runnymede (see Fig. S1). This river stretch comprises
14 locks and weirs. Effluents from six sewage treatment works
along the river stretch affect the water quality. During the
monitoring period (2013-2014), flow varied from 5 to
360 m* s~'. Residence time varied from 9 to 112 h at 90"
and 10" percentile flows, respectively. A favorable combina-
tion of light availability, high temperatures, and long resi-
dence times during mid-spring to mid-summer causes
excessive phytoplankton production, which results in large
fluctuations in river DO levels (Bowes et al. 2016; Pathak
et al. 2021).

River hydrology and water quality monitoring is routinely
carried out in the River Thames. Detailed description of data
sources, model development, and application is given by
Pathak et al. (2021) and in Text S1. The model estimates GPP
and ER at the end of each reach in the network (Table S1), but
for brevity, we focus our discussion on outputs at Sonning
(upstream site) and Runnymede (downstream end).

Empirical analysis

We performed site-wise (Sonning and Runnymede) GLS
regression at weekly resolution to examine the sensitivity of
GPP and ER to observations of multiple physico-chemical
determinands. The observations of physico-chemical deter-
minands were available on a weekly basis and comprised flow,
PAR, T, dissolved inorganic nitrogen (DIN), SRP, dissolved
organic carbon (DOC), and suspended sediment (SS) concen-
tration. Temperature observations were transformed to 1/(k,T)
as per the Metabolic Theory of Ecology, where T is the tem-
perature in Kelvin and k;, is the Boltzmann constant
(8.62 x 107> eV K~1). GLS was used to account for the residual
autocorrelation using the nlme package (Pinheiro et al. 2017).
Selection of relevant predictors for GLS models was carried out
following Feld et al. (2016). Specifically, we performed an
exploratory analysis using the random forest (Breiman 2001)
machine learning technique (randomForestSRC package,
Ishwaran and Kogalur 2017) to derive the hierarchy of the
most influential stressors and interactions that explain GPP
and ER dynamics. Please see Text S1 for details.

We also used river water fluorescence observations (col-
lected at weekly resolution from January to July in 2013 and
less frequently at other times during 2013-2014 at Sonning
and Runnymede sites: for details, see Old et al. 2019) to
explore whether ER prediction could be improved by adding
water fluorescence information in the GLS models. Fluores-
cence signals contain information about organic matter

Water quality and metabolism modeling

composition. Specifically, tryptophan-like fluorescence repre-
sents degradable organic matter from farm wastes and sewage
discharges and hence, can be related to river BOD (here, Ry.)
(Hudson et al. 2008). Therefore, our goal was to check if
the modeled Ry, could be explained in terms of tryptophan-
like fluorescence.

Results

Model performance

The model satisfactorily reproduced flow, physico-chemical
water quality, and biomass variation along the river stretch
(Table S4, Fig. S2) (details in Pathak et al. 2021). High diel fluc-
tuations in DO coincided with high phytoplankton blooms
and low flows (Fig. S2). DO levels were slightly over-estimated
in spring and under-estimated during the rest of year. Season-
ality and timings of high diel fluctuations were well-captured
by the model with Nash-Sutcliffe Efficiency > 0.47 and per-
centage error in mean up to 11% (Table S4). Sonning showed
overall over-estimation (up to 14%) of DO concentrations as
opposed to Taplow and Windsor, which showed slightly
under-estimated (up to 8%) DO concentrations (Table S4).
Overall, the model satisfactorily captured the seasonality of
DO concentrations along the river stretch.

Spatio-temporal variation in ecosystem metabolism

GPP followed phytoplankton seasonality showing maximum
productivity during the biomass-growing season and low pro-
ductivity during the rest of the year (Fig. 2). Peak GPP was higher
in 2013 (up to 21 mg O, L' d~') compared to 2014 (> 10 mg
O, L' d") due to relative inter-annual magnitudes of phyto-
plankton blooms (Fig. S2). Increase in nutrient concentrations
did not result in increase in GPP. In contrast, primary produc-
tion during the growing season reduced nutrient concentrations
through uptake (Fig. S8). During the growing season, ER was
dominated by autotrophic respiration and more or less mirrored
the GPP trend, although with a lesser magnitude (<10 mg
O, L7 d Y. In comparison to Runnymede (downstream end),
Sonning (upstream site) was characterized by higher nitrification
loss throughout the year and higher R, during the growing sea-
son, resulting in generally higher ER upstream.

Values of ke, varied from 0.2-1.1 d~! to 0.3-2.6 d™! at the
upstream (Sonning) and downstream (Runnymede) site,
respectively. Higher k.., values at the downstream site were
due to shallower depths (mean depth = 1.7 m) and faster
velocities (mean velocity = 0.73ms ') compared to the
upstream site, which showed mean depth and velocity of
2.3m and 0.49 ms~! as calculated in the model. Total esti-
mated reaeration ranged from —1.6 to +1.1 mg O, L' dt
and —4.6 to 2.2 mg O, L' d"' at Sonning and Runnymede,
respectively. Runnymede showed higher reaeration during the
biomass-growing season when DO saturation went up to 130-
150% (Fig. S3). On average over a day during the growing sea-
son, Og,e at Sonning and Runnymede varied by 14% and 18%,
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Fig. 2. River Thames catchment and time-series of modeled gross primary production (GPP), ecosystem respiration (ER), and reaeration (K) aggregated at daily
scale at Sonning, Taplow, Windsor, and Runnymede sites during 2013-2014. The catchment map at the top left corner is adapted from Bowes et al. (2016).

respectively. During the 2-yr modeling period, DO at Sonning
was super-saturated for around 40% of the time (more fre-
quently than at Runnymede [20%]), as reflected by the nega-
tive reaeration at Sonning during most of the modeling
period (Fig. 2).

The lower River Thames, particularly in the downstream
reaches, was dominantly autotrophic during April-June with
GPP/ER > 1 and mainly heterotrophic (GPP/ER < 1) during the
rest of the year (Fig. 3a). GPP increased up to four times as
high as ER during April-June due to large algal blooms.
Annual net ecosystem productivity (= GPP - ER) estimates
were —192mg O, L' yr ! and 87 mg O, L' yr !, and annual
GPP/ER ratios were 0.8 and 1.1 at Sonning and Runnymede,
respectively. Mid-reaches showed both overall autotrophy at
Taplow (net ecosystem productivity = 102 mg O, L' yr ',
GPP/ER = 1.2) and heterotrophy (net ecosystem
productivity = —14 mg O, L' yr !, GPP/ER = 1) at Windsor.
Excluding the upstream reaches, annual GPP/ER ratio along
the channel was close to 1 in the lower Thames.

Downstream reaches showed a lag of up to 4 h for GPP
to peak from the upstream site, Sonning. Hourly GPP

increased downstream, but ER variation showed no such
trend. Average annual hourly ER increased in response to
temperature increase during the day and subsided during
the night with temperature decrease, showing a hysteresis
effect (Fig. S4). Average annual hourly GPP also showed a
hysteresis effect with PAR (Fig. S4). Mean daily GPP and ER
at upstream (Sonning) and downstream (Runnymede) sites
during the 2-yr period varied from 1.7 + 3.2 to 2.0 = 3.8 mg
O, L' d', and 22412 to 1.5+1.2mg O, L' d},
respectively.

Relative contribution of autotrophic primary production
and respiration was maximum during April-June (Fig. 4). The
rest of the year was characterized by low oxygen production
and R, throughout the river stretch. These months, however,
showed another oxygen source through diffusion from air at
all sites except Sonning, where diffusion was mainly into the
atmosphere (DO sink). During autumn and winter at
Windsor and Runnymede, oxygen addition from reaeration
exceeded oxygen production from GPP. Ry. and Ry at
Sonning (total 79% of ER) and Taplow (total 70% of ER)
mainly governed ER. At Windsor and Runnymede, ER also
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Rben, benthic oxygen demand; R,,., DO loss due to BOD decay; Ry, DO loss from nitrification.

included significant contribution from benthic communities
(17-19%) in addition to the aforementioned pro-
cesses (~ 60%).

Sensitivity of river metabolism to multiple stressors
The variables retained in the best approximating GLS
models of GPP included PAR, 1/k,T, SRP, flow, and seasonality
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components. For ER, the best approximating GLS models
included SRP, flow, SS, and seasonality components. Inclusion
of seasonality components (sine/cosine terms) improved GLS
model performance in all cases. For GPP at Sonning for exam-
ple, a model with seasonality plus physico-chemical predictors
(Akaike information criterion = 75.58) performed better than
the model with either only seasonality predictors (Akaike
information criterion = 136.77) or only physico-chemical pre-
dictors (Akaike information criterion = 82.61). Final GLS
models at both sites showed good agreement between
observed and fitted values with r> 0.8 (Table 1). However,
high values were under-estimated by these models, especially
for ER (Fig. 5). Under-estimation of ER, when investigated
using a comparison of Ry and tryptophan-like fluorescence

Water quality and metabolism modeling

component (Fig. S10), revealed a positive relationship at
Sonning (r = 0.45, p <0.05). Runnymede, however, did not
show a significant relationship between R,. and the
tryptophan-like fluorescence component.

Significant interaction effects between 1/k,T x SRP and
PAR x 1/k,T were found at Sonning for GPP variation (Table 1).
The interaction between 1/k,T and SRP at Sonning (Fig. 6a) is
an opposing interaction, i.e., the effect of one variable is
reversed above a certain limit of another variable. Another sig-
nificant interaction between PAR and 1/k,T is observed to be
antagonistic, i.e., one variable attenuates the effect of the other
variable (Fig. 6b). Similar to Sonning, Runnymede also showed
an opposing interaction between 1/k,T and SRP (Fig. 6¢). The
final GLS models of ER did not include any interaction effects.

Table 1. Summaries for best approximating generalized least squares models for gross primary production (GPP) and ecosystem respi-
ration (ER) with autoregressive structure of order 1 including standardized effect size (SES), standard error of the estimate (SE), t-test
value of the coefficient and its associated p value and the Pearson’s product moment correlation coefficient (r) for the model fits.

Variable SES SE t value p r
GPP-Sonning

(intercept) 0.132 0.118 1.124 0.264 0.89
PAR 0.369 0.052 7.088 0.000

1/kyT —-0.223 0.140 -1.599 0.114

SRP —0.048 0.074 —0.647 0.520

Flow 0.370 0.107 3.445 0.001

Sine component —0.063 0.173 —0.363 0.718

Cosine component —0.540 0.159 —3.395 0.001

1/kyT x SRP 0.273 0.093 2.950 0.004

PAR x 1/k,T 0.071 0.044 1.615 0.110

GPP-Runnymede

(intercept) 0.078 0.171 0.453 0.651 0.81
PAR 0.416 0.058 7175 0.000

1/kyT 0.136 0.180 0.752 0.454

SRP —0.102 0.085 -1.195 0.235

Flow 0.497 0.126 3.950 0.000

Sine component —0.304 0.230 -1.321 0.190

Cosine component —0.667 0.209 -3.194 0.002

1/kyT x SRP 0.259 0.107 2.428 0.017

ER-Sonning

(intercept) —0.005 0.109 —0.047 0.963 0.87
Cosine component —0.640 0.130 —4.932 0.000

Sine component 0.067 0.172 0.389 0.698

SRP —0.385 0.069 —5.540 0.000

SS 0.147 0.068 2.163 0.033

Flow —-0.255 0.163 -1.570 0.120

ER-Runnymede

(intercept) —0.003 0.107 —-0.032 0.975 0.88
SRP —0.544 0.060 -9.023 0.000

SS 0.127 0.067 1.902 0.061

Flow 0.312 0.152 2.052 0.043

Sine component -0.176 0.160 —1.104 0.273

Cosine component -0.612 0.120 -5.092 0.000
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Discussion

Estimating metabolism with process-based modeling

The model presented here has several advantages over con-
ventional open-channel methods. The hourly model supports
network-scale prediction of metabolism rates unlike open-
channel methods that are generally applied at a river-reach
scale. Network-scale modeling allows us to translate the
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Fig. 5. Fitted vs. observed values of standardized gross primary produc-
tion (GPP) and ecosystem respiration (ER) in generalized least squares
models at Sonning (a, b) and Runnymede (c, d) sites. The black line in
the plots is the y = x line.
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influence of what is happening upstream in the river
(e.g., flow management, sewage discharges, etc.) to the down-
stream DO dynamics. The model presented here is also partic-
ularly advantageous over open-channel methods when DO
observations are not continuously available. In such scenarios,
the estimation of metabolism rates outside of the available
data periods relies on further assumptions (see Bernhardt
et al. 2018). The hourly model overcomes this challenge as it
simulates DO using observations of environmental variables
and their process-linkages with DO dynamics, thus eliminat-
ing the dependence of metabolism estimation strictly on con-
tinuous DO measurements. The model can derive the relative
contribution of autotrophic and heterotrophic respiration
(here R4/Pgpp = 0.32 and 0.35 for Sonning and Runnymede,
respectively). Estimates of R4/Pgpp are useful to estimate the
autotrophic base of food webs (Hall Jr and Beaulieu 2013) and
to calculate carbon spiraling in rivers (Newbold et al. 1982).
Furthermore, the model can be adapted to study the impact of
land use changes by translating diffuse nutrient fluxes into
tributary inputs. The model is also useful to predict changes in
metabolic regime of rivers under different climate and man-
agement scenarios (Hutchins et al. 2018).

In spite of the satisfactory reproduction of river water qual-
ity dynamics, process-based models invariably include some
uncertainties linked to input data quality, process simplifica-
tions in the model structure, and/or from process knowledge
gaps (Hrachowitz et al. 2014). For example, the model in this
study assumes that Stephanodiscus hantzschii diatoms dominate
phytoplankton biomass in the lower Thames throughout the
year as found by Read et al. (2014). In reality, multiple algal
groups may thrive together and result in within-year composi-
tional change. However, testing of the model using parameters
reflecting different phytoplankton groups has reinforced the
assumption of diatom dominance (Pathak et al. 2021).

The model also takes a simple approach to calculate
reaeration flux. The model uses a previously developed

~ o kT

GPP

©),
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— 10th
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17k, T PAR
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Fig. 6. Pairwise interactions in generalized least squares models for gross primary production (GPP) at (a) Sonning (1/k,T, SRP), (b) Sonning (PAR,
1/kpT), and (€) Runnymede (1/k,T, SRP). Lines represent fitted response to one variable while keeping the second variable values fixed at minimum, max-
imum, 10%", 50", and 90" percentiles. 1/k;,T, transformed water temperature; PAR, photosynthetically active radiation; SRP, inorganic phosphorus.
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empirical equation (Owens et al. 1964) to calculate the
reaeration coefficient. Out of several equations reported in the
literature, it is recommended (Young et al. 2004; Aristegi
et al. 2009) to use the Owens et al. (1964) equation for rivers
with low velocities such as the River Thames. Additionally, by
comparing the commonly used empirical equations
(O’Connor and Dobbins 1958; Churchill et al. 1962; Owens
et al. 1964) in water quality models (Chapra 2008), we found
that the choice of equation did not affect metabolism rates
largely because the reaeration coefficients were relatively low
(average k., 0.5-1.3 d™') in the River Thames (Fig. S6). These
approaches may be unreliable to use with open-channel
methods as (1) it is possible to get a good model fit to the
observations because of equifinality in the model and (2) the
errors in reaeration estimates will directly translate to GPP and
ER estimates (Holtgrieve et al. 2010). However, GPP and ER in
our model are simulated from biomass variation and underly-
ing biochemical processes. Moreover, we found that metabo-
lism rates were insensitive to the reaeration values derived for
the flow regime of the River Thames (Fig. S6), thus reducing
the uncertainties related to reaeration fluxes.

Using the process-based model, we made a detailed quanti-
fication of metabolism fluxes, and although the application
presented here is data intensive, it can be implemented with
lower resolution inputs as shown by Pathak et al. (2021). The
model application here uses hourly scale inputs of light, water
temperature, DO, and Chl a, and daily scale input of flow.
However, model sensitivity analysis by Pathak et al. (2021)
suggests that the model outputs are not sensitive to the time-
scale of water quality inputs, but are highly sensitive to that of
radiation inputs. If the model is driven by weekly DO, temper-
ature, and Chl a observations, instead of hourly as presented,
there is little loss of performance at the downstream sites
(e.g., at Windsor, NSE values for DO and Chl a change from
0.59 to 0.57 and from 0.80 to 0.73, respectively). The outcome
from the model sensitivity analysis is reassuring for model
applications elsewhere since water quality determinands are
irregularly monitored at high-resolution in rivers. Unlike water
quality, flow is often routinely (e.g., daily) monitored in rivers,
and high-resolution (e.g., hourly) radiation information is eas-
ier to obtain either directly or indirectly based on catchment
location and sunshine hours (Pathak et al. 2021).

It is still difficult to gather process-rate information in rivers,
which is also the case in the lower Thames. For this study, BOD
information was only available at a monthly scale and data on
benthic oxygen demand were absent. Despite scarce data, our
estimates of GPP and ER rates agree well with the findings of
Hutchins et al. (2020), who used the Delta method (Chapra and
Di Toro 1991) to estimate metabolism rates in the lower Thames.
For prediction of the specific metabolic pathways, we still have
more confidence at a larger temporal scale due to the lack of
high-resolution process-rate information. Though these limita-
tions may introduce uncertainties during model calibration,
other extensive applications of the QUESTOR model in the River
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Thames (Waylett et al. 2013; Hutchins et al. 2018, 2020) provide
confidence in the parameter calibration in this study as the cali-
brated values (Pathak et al. 2021) lie within similar ranges.

Multiple stressor controls on metabolism dynamics

Faster decline of GPP than ER (Fig. 3a) indicates a decrease
in primary productivity compared to biological activity and a
shift in river energetics from autotrophic to heterotrophic.
The shift in river energetics implies reliance of the metabolic
regime on stored algae from summer and/or allochthonous
carbon sources during autumn and winter. We find that PAR,
water temperature, SRP, and flow variation mainly control the
GPP dynamics in the lower Thames (Table 1). Nitrate concen-
trations in the river are present in excess throughout the year
and do not limit primary production. Phosphorus concentra-
tions, on the other hand, decrease with high biomass growth
and become limiting in summer (Pathak et al. 2021). Light
availability, as commonly observed (Bott et al. 1985; Mul-
holland et al. 2001), increases the GPP with increase in photo-
synthetic production. High GPP occurred at mid-temperatures
(Fig. 6), which is similar to the findings of Bowes et al. (2016)
and Pathak et al. (2021), who reported optimum temperature
ranges (~ 11-18°C) for high phytoplankton growth in the
lower River Thames. An opposing interaction between 1/k,T
and SRP (Fig. 6) shows that GPP increases with water tempera-
ture, but only at low SRP levels. SRP depletion with increased
GPP (Fig. S8) indicates biomass uptake (Bowes et al. 2016).
Hence, we believe that the opposing interaction between
1/k,T and SRP is more of a causal effect that occurs during the
growing season when phytoplankton utilizes SRP and peaks
with increase in temperature.

The GLS model derived a positive slope to represent the
overall response of GPP to flow variation. However, a closer
look at the partial dependence plot of the GPP-flow relation-
ship (Fig. S8) showed that GPP increased only up to a certain
flow threshold and began decreasing with further increase in
flow (Pathak et al. 2021). Maximum GPP occurred during mid-
spring to mid-summer due to the presence of large phyto-
plankton blooms during periods of low flows (Bowes
et al. 2016; Pathak et al. 2021). The rest of the year represen-
ted extremely low GPP due to low phytoplankton biomass
(Figs. S2 and 2). Such a seasonal variation in GPP is commonly
observed in temperate rivers, where GPP peaks during periods
of high light availability and low flows (Roberts et al. 2007)
and significantly reduces during high flows that flush away
primary producers (Wang et al. 2019).

High ER occurred during mid-spring to mid-summer in
response to high GPP, reflecting high autotrophic respiration
of phytoplankton biomass (Fig. 2). A strong coupling between
GPP and ER is common in rivers as a major part of the organic
matter produced during photosynthesis is immediately
respired by autotrophs and their closely associated hetero-
trophs (Hall Jr and Beaulieu 2013). During the biomass-
growing season, Sonning represented higher overall ER
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compared to Runnymede because of added contributions from
nitrification and BOD decay processes. Lower velocity at
Sonning may have promoted higher respiration from organ-
isms suspended in the water column with more residence time
to utilize the DO in the reach. Through empirical modeling,
we derived SRP, flow, and SS to be the most important con-
trols of ER in the river (Table 1). Addition of nutrients in the
river did not result in increased biomass growth. On the con-
trary, we observed high biomass growth coinciding with low
SRP levels, suggesting algal uptake. Higher biomass should
have resulted in increased decomposer activity (Pascoal
et al. 2003) and high resource availability for feeders (Niyogi
et al. 2003), causing higher microbial respiration in addition
to the high R, and both contributing to increase in ER. Thus,
the co-occurrence of high ER (from algal growth) and SRP
depletion may have put SRP in the list of important predictors
for ER variation.

On the other hand, high ER in response to high suspended
sediments probably indicates organic matter delivery attached
to sediments (Roberts et al. 2007; Aspray et al. 2017). Runny-
mede showed high ER in response to increase in flow, which
can again be related to flushing of upstream biomass and
organic matter supply along with sediment delivery. However,
Sonning showed a negative correlation between flow and
ER. Similar to the relationship between flow and GPP, the par-
tial dependence plot (Fig. S9) of ER in response to flow at
Sonning showed high ER at mid-flows that decreased at
very high flows, as opposed to Runnymede that showed con-
stant ER after a certain flow threshold was reached. GPP at
Runnymede still decreased after a certain flow threshold was
reached. The relationship between flow-ER at Runnymede
indicates that in spite of the biomass flushing, there is still
an allochthonous organic matter supply that supports high
respiration.

Comparing modeling approaches

In spite of the overall good model performance (r>0.8),
peak metabolism rates were under-estimated in the GLS
models. Some information about rapidly changing dynamics
could have been lost in the empirical modeling as this
approach uses weekly time-scale information about the envi-
ronmental stressors to predict GPP and ER. The under-
estimation of GPP can be attributed to the under-estimation
of Chl a concentrations in the process-based model (Table S4).
ER under-estimation suggests that some important metabo-
lism controls might be missing in the empirical analysis. For
example, only a limited number of physico-chemical controls
were directly included. Land use pressures can also be impor-
tant as these can contribute large amounts of nutrients and
fine particles in the river, and influence primary producers
and heterotrophs (dos Reis Oliveira et al. 2019). However, we
have accounted for these influences through proxy variables
such as suspended sediment and nutrient concentrations.
Although we included flow as a control variable, specific
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matrices of hydrology (e.g., low-flow events and duration)
may improve the model performance. Grazers may also influ-
ence ER through phytoplankton predation (Welker and
Walz 1998) and oxygen consumption through respiration
(Garnier et al. 1999) with strong seasonal patterns (Schol
et al. 2002). Hence, further research on these controls will be
useful to improve model predictions and explain the role of
seasonality components in the GLS models. The process-based
model, on the other hand, includes the influences of these
controls directly (e.g., simulation of hydrology, nutrients, and
sediment concentrations) or indirectly (e.g., grazing through
calibration of death constant).

Additionally, information about organic matter composi-
tion may help explain ER under-estimation and improve
model performance. R,. at Sonning increased with the
tryptophan-like fluorescence component (Fig. S10), which is
expected because it represents the presence of organic matter
that can be easily degraded by microbes, resulting in high Ry..
Runnymede, on the other hand, did not show a significant
relationship, probably because of the limited ability of the
process-based model to accurately represent BOD fluxes. As
discussed earlier, there is a paucity of BOD data, making it dif-
ficult to estimate the BOD decay rate parameter precisely in
the model. The process-based model cannot incorporate any
additional site-specific sources/sinks of BOD (e.g., internal
BOD sources from higher trophic levels). Additionally, the
poorer fits and the under-estimation of Chl a concentrations
at Runnymede (Table S4) suggest that R, from phytoplank-
ton death is not represented accurately at this site, which may
have resulted in a weak relationship between Ry, and organic
matter availability. Nevertheless, a strong relationship at
Sonning still suggests that empirical model performance at
the upstream end can be improved with detailed information
about organic matter composition as it can be directly linked
to BOD (Hudson et al. 2008). Use of water fluorescence indica-
tors (such as full spectra fluorescence excitation—emission
matrix or sensors designed to identify tryptophan at specific
wavelengths) as an alternative in the absence of BOD informa-
tion in the river is an important area of future research as it
can potentially improve ER prediction in both process-based
and empirical approaches.

Although the empirical approach under-estimates the peak
values, it is mostly able to mimic the process-based predic-
tions. Combining a physics-based approach with empirical
analysis provides powerful possibilities. For example, the
empirical models derived in this study can be used for rapid
river health assessments across large areas when setting up a
complex, process-based model is not feasible. Empirical
approaches also provide information about important envi-
ronmental stressors and their interactions for GPP and ER vari-
ation. These established relationships between metabolism
rates and environmental stressors can be useful to infer the
degradation or recovery of river health following management
actions (Jankowski et al. 2021), although the wvariable
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importance and effect sizes of environmental stressors should
be considered (Feld et al. 2016). A process-based approach, on
the other hand, presents a readily available tool to study river
ecosystem functioning in response to changing multiple envi-
ronmental stressors (Heathwaite 2010). The process-based
model in this study can be improved further to create a man-
agement tool by linking it with multiple stressor effects such
as flow, temperature, nutrients and sediment modifications
derived from the empirical approach. Overall, the comparison
of empirical and process-based approach provides useful
insights into modeling limitations and directions for
future work.

Summary

An approach to estimate ecosystem metabolism rates (GPP,
ER) in lowland rivers with a network-scale, process-based
water quality model overcomes the current challenges in
metabolism modeling by accounting for oxygen advection
under varying flows and oxygen transformations due to bio-
geochemical processes. Only a few river modeling studies
(Payn et al. 2017; Segatto et al. 2020) have attempted to over-
come these challenges, but at a much smaller spatial scale
(e.g., reach level). The model can easily be extended to an
entire catchment if more observations in the catchment are
available (Hutchins et al. 2020). The approach presented here
uses a previously tested high-resolution river model for water
quality prediction in the lower Thames (Pathak et al. 2021).
Instead of continuous DO measurements, the process-based
approach relies on biomass variation, and the physics of the
underlying hydrological- and biochemical-process dynamics
to estimate GPP and ER. Therefore, the model has a potential
to predict metabolism rates (1) for periods when gaps in con-
tinuous DO observations are present; (2) at sites within the
modeled river network where continuous monitoring is not
carried out; and (3) under future environmental and anthro-
pogenic changes. The model presented here is a step forward
in high-resolution modeling of long-term, network-scale pre-
dictions of river ecosystem functioning, which in turn, can
support ecosystem health assessments using functional indica-
tors (Von Schiller et al. 2017).

Data availability statement

The hourly data for water temperature, chlorophyll, and
dissolved oxygen in the lower Thames were made available
from the Environment Agency and can be downloaded from
Zenodo data repository (Pathak et al. 2020). Daily flow data
are available at the NRFA (NERC, National River Flow Archive,
http://www.ceh.ac.uk/data/nrfa/). Weekly water quality data
can be found at (1) the UK Centre for Ecology & Hydrology’s
Thames Initiative research platform (https://doi.org/10.5285/
€4c300b1-8bc3-4df2-b23a-e72e67eef2fd) hosted by the UK
NERC Environmental Information Data Centre and (2) Envi-
ronment Agency’s water quality data archive (http://
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environment.data.gov.uk/water-quality/view/landing). Radia-
tion information is available at British Atmospheric Data Cen-
tre (MIDAS Landsat data) (http://archive.ceda.ac.uk/).
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