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Abstract 11 

Aim: Addressing global environmental challenges requires access to biodiversity data across 12 

wide spatial, temporal and biological scales. Recent decades have witnessed an exponential 13 

increase of biodiversity information aggregated by biodiversity databases (hereafter ‘databases’). 14 

However, heterogeneous coverage, protocols, and standards of databases hampered the data 15 

integration among databases. To stimulate the next stage of data integration, here we present a 16 

synthesis of major databases, and investigate i) how the coverages of databases vary across 17 

taxonomy, space, and record type; ii) the degree of integration among databases; iii) how 18 

integration of databases can increase biodiversity knowledge; iv) the barriers to databases 19 

integration. 20 

Location: Global 21 

Time period: Contemporary 22 

Major taxa studied: Plants and Vertebrates 23 

Methods:  We reviewed the scope of twelve well-established databases and assessed the status 24 

of their integration. We synthesized information from these databases to assess major knowledge 25 

gaps and barriers to fully integration. We estimated how improved integration can increase the 26 

coverage and depth of biodiversity knowledge.  27 

Results: Each reviewed database had unique focus of data coverages. Data flows were common 28 

among databases, though not always clearly documented. Functional trait databases were more 29 

isolated than those pertaining to species distributions. Poor compatibility between taxonomic 30 

systems used by different databases posed a major challenge to integration. We demonstrated 31 

that integration of distribution databases can lead to greater taxonomic coverage that corresponds 32 

to 23 years’ advancement in knowledge accumulation, and improvement in taxonomic coverage 33 

could be as high as 22.4% for trait databases.  34 

Main conclusions: Rapid increase of biodiversity knowledge can be achieved through the 35 

integration of databases, providing the data necessary to address critical environmental 36 

challenges. Our synthesis provides an overview of the integration status of databases. Full 37 

integration across databases will require tackling the major impediments to data integration – 38 

taxonomic incompatibility, lags in data exchange, barriers to effective data synchronization, and 39 

isolation of individual initiatives. 40 

 41 

Keywords: Big Data, Biodiversity Informatics, Biogeography, Database integration, Functional 42 

trait, Taxonomic System 43 

  44 
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1. Introduction 45 

In the face of rapid global changes, a grand challenge is how to efficiently catalogue, assess, 46 

anticipate, and respond to changes in biodiversity and associated ecosystem services (Chapin et 47 

al., 2000; Ceballos et al., 2015; Díaz et al., 2019). Addressing this challenge requires 48 

unprecedented access to biodiversity data across fine to broad spatial, temporal and biological 49 

scales (Beck et al., 2012). The past few decades have witnessed fast growth of biodiversity 50 

information (Bisby, 2000; Hardisty et al., 2013; Hobern et al., 2019). Rapid digitization of 51 

existing biodiversity collections and ongoing collection of new information are expanding data 52 

availability worldwide (Sullivan et al., 2014; Page et al., 2015; Chandler et al., 2017b). Indeed, 53 

the Global Biodiversity Information Facility (GBIF) – the world’s leading repository of 54 

biodiversity observations – recently reached 1.6 billion records (accessed March 2021). 55 

However, we are still a long way from fully characterizing the taxonomy, geographic ranges and 56 

functions of all species on Earth (Lomolino, 2004; Hortal et al., 2015; Stork, 2018). Addressing 57 

these shortfalls requires novel efforts in data synthesis to integrate the information held in the 58 

world’s biodiversity projects, some 600+ of which had been created as of 2014 (Belbin, 2014) 59 

and nearly half of which are essentially invisible or inaccessible to the research community due 60 

to lack of cataloguing and integration (Blair et al., 2020).  61 

 62 

Data aggregation has been an ongoing goal of the biodiversity community (Nelson & Ellis, 63 

2019), and a tremendous amount of work has been done by existing biodiversity data 64 

aggregators, such as GBIF, iDigBio, and VertNet. However, the challenges are many: existing 65 

biodiversity data aggregators often have singular objectives and consequently adhere to different 66 

protocols and standards (Mesibov, 2018) (termed “data domains” in (König et al., 2019)), and 67 

datasets are highly heterogeneous spatially, temporally, and taxonomically (Reichman et al., 68 

2011; Cornwell et al., 2019). The differences among biodiversity data aggregators can 69 

accumulate over time; thus, biodiversity data aggregators run the risk of “speciating,” or 70 

becoming isolated, which can impede data sharing and integration. In response, the community 71 

has been calling for greater alignment between efforts and actively working on coordination 72 

mechanisms for developing shared roadmaps for biodiversity informatics (Hobern et al., 2019). 73 

We therefore assert that a new synthesis is needed for the next stage of biodiversity data 74 

integration, i.e., information from existing biodiversity data aggregators should be further 75 

integrated to reduce shortfalls in biodiversity knowledge and achieve a more complete picture of 76 

Earth’s biodiversity (Hobern et al., 2019; König et al., 2019; Kattge et al., 2020).  77 

 78 

To facilitate better integration among biodiversity data domains, we first need to assess the 79 

current state of connectivity and integration among databases. Though biodiversity data 80 

generally are well organized in individual databases, overlaps in their data coverage and the 81 

extent of communication between databases remains unclear. Indeed, attention has rarely been 82 

paid to the post-aggregation processes and interactions among commonly used databases (such 83 

as nontransparent data flows between two databases) and synthesis studies of biodiversity data 84 

from multiple databases are still scarce in the literature (Cornwell et al., 2019; König et al., 85 

2019). To address this gap, we conducted a synthesis of existing biodiversity databases, and 86 

aimed to answer four questions: (i) How does the coverage of a suite of major biodiversity 87 

databases differ across taxon, space, and record type? (ii) How are existing biodiversity 88 

databases integrated? (iii) How would the integration of databases increase biodiversity 89 

knowledge?  and (iv) What are the barriers that prevent data integration? To answer these 90 
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questions, we first reviewed the scope of existing major biodiversity databases and assessed the 91 

status of their integration. We also demonstrated that the integration of biodiversity databases 92 

could rapidly narrow major knowledge gaps. Finally, we discussed barriers that need to be 93 

overcome to obtain a more complete picture of the biodiversity on Earth.  94 

 95 

2. Review of biodiversity databases 96 

Many biodiversity databases have been built over the past two decades, with varying emphases 97 

on taxonomy, spatial location, and record type. To synthesize the major attributes of existing 98 

biodiversity databases, we selected twelve well-established biodiversity databases: Atlas of 99 

Living Australia (ALA; Belbin & Williams, 2016), Botanical Information and Ecology Network 100 

(BIEN; Enquist et al., 2016), Biodiversity Information Serving Our Nation (BISON; U.S. 101 

Geological Survey, 2018), eBird (Sullivan et al., 2014), Encyclopedia of Life (EOL; Parr et al., 102 

2014), Global Biodiversity Information Facility (GBIF), Global Inventory of Floras and Traits 103 

(GIFT; Weigelt et al., 2017), Integrated Digitized Biocollections (iDigBio, 2018a), iNaturalist 104 

(iNaturalist), Map of Life (MOL; Jetz et al., 2012), a global database of plant traits (TRY; Kattge 105 

et al., 2011), and VertNet (Constable et al., 2010). Our selection can not cover every notable 106 

database because of limited effort and the accessibility of database content or documentations, 107 

though they were chosen to represent the breadth of the most commonly used, well-established 108 

large-scale biodiversity databases (MacFadden & Guralnick, 2016; Chandler et al., 2017a; James 109 

et al., 2018; Singer et al., 2018; Cornwell et al., 2019; König et al., 2019) to maximize the 110 

generalizability of our results and conclusions. We acknowledge that these databases are 111 

typically under active development; thus our synthesis is based on a snapshot of their status on 112 

the access date (March 2021; see Appendix 1).  113 

 114 

2.1 Varied focuses among biodiversity databases  115 

We reviewed associated metadata for biodiversity databases from project websites or 116 

publications. We recorded database name, taxonomic scope, taxonomic system, record type, 117 

number of records, and spatial coverage. We classified the record types into three categories: 118 

geographic distribution, media type, and biological information (standardized trait databases or 119 

generalized text descriptions). Within geographic distribution, we further classified the 120 

information as specimen records, observations, checklists of geographic regions, or distribution 121 

maps. Specimen records and observations both have information on specific occurrences of a 122 

species at a georeferenced point location, but only specimen records are associated with physical 123 

specimens. Checklists usually contain lists of species known to be present in defined geographic 124 

regions (e.g., political divisions or protected areas). Distribution maps are those that were drawn 125 

by experts or generated through models with various degrees of complexity. Media data type 126 

were classified as image, audio, and video. Biological information included standardized trait 127 

and generalized text descriptions. 128 

 129 

Our review showed that each of these biodiversity databases holds unique scientific value 130 

because they cover different spatial extents, taxonomic groups, and record types (Fig. 1a). The 131 

databases could be grouped into different clusters based on similarities of focus and data 132 

coverage. For example, EOL, iNaturalist, and eBird form a cluster of databases that indexes 133 

media data and biological descriptions, while also sharing public education objective (Fig. 1b). 134 

TRY and GIFT form another cluster that mainly focuses on indexing functional traits of plants. 135 

GBIF, BISON, iDigBio, and VertNet form yet another cluster that emphasizes indexing species 136 



4 

 

occurrences. The cluster of ALA, MOL, and BIEN share the property of indexing both species 137 

occurrences and geographic range maps. Here our grouping of databases considered the different 138 

attributes equally, though assigning different weights on the attributes can lead to different 139 

grouping outcomes. For example, many of the databases seek to document all taxa across the 140 

globe (e.g., GBIF, EOL, eBird) or to index many types of data (e.g., EOL, ALA, iNaturalist).  141 

 142 

2.2 Data integration status among biodiversity databases 143 

To understand how existing biodiversity databases are integrated, we reviewed the data flow 144 

among the databases. Biodiversity databases (e.g., GBIF) are typically data aggregators of 145 

digitalized information from data providers, such as museums, herbariums, and research data 146 

repositories, and detailed information about data providers are usually acknowledged on a 147 

databases’ website (e.g., BIEN data contributors-148 

https://web.archive.org/web/20210511034441/https://bien.nceas.ucsb.edu/bien/data-149 

contributors/). However, it is usually not straight forward to understand whether one database is 150 

aggregated by another database, probably because of the concern of losing uniqueness of data 151 

coverage, i.e. acknowledging to be aggregated by another aggregator can be interpreted as one 152 

database becoming a subset of the other database. Regardless, understanding such relationships 153 

among databases is important for users, as this immediately affects the determination of most 154 

comprehensive data coverage (e.g., whether or not GBIF has the most complete occurrence set of 155 

a species) or evaluation of data quality (e.g., whether or not to consider duplicated records when 156 

using multiple databases). Therefore, we assessed data integration among biodiversity databases 157 

based on their documentation and publications. 158 

 159 

Overall, the data flows between biodiversity databases are not always clearly documented and at 160 

times the relationships need to be inferred. Key technical details of data flow, such as time and 161 

frequency of data exchange/flow, and the version or date of the imported data, are usually 162 

lacking. The lack of ‘snapshot’ data archives hinders the reproduction of data content, as well as 163 

the reproducibility of associated scientific research (Feng et al., 2019). Unclear documentation of 164 

data exchange may also lead to compliance issues with data licensing, and can prevent 165 

assignment of proper credit to data collectors.  166 

 167 

We found that data flow, unidirectional or bidirectional, is common among biodiversity 168 

databases (Fig. 2 & Table S1). Among the network of databases, GBIF serves as a central 169 

aggregator at a global scale that ingests species occurrence data from many databases, such as 170 

BISON, iDigBio, and eBird. ALA and BISON have bidirectional data flows with GBIF – they 171 

both i) aggregate biodiversity data collected from their focal regions (i.e., Australia and North 172 

America respectively) and pass the data to GBIF, and ii) import other data collected from 173 

Australia or North America from GBIF to their respective databases (Table S1). There are also 174 

cases of unidirectional data flow from GBIF to specialized databases. For example, MOL 175 

aggregates multiple types of information of species geographic distributions, including 176 

occurrences from GBIF; as does BIEN.  177 

 178 

We summarized the status of data integration across databases into four categories: synced, 179 

lagged, impeded, and isolated (Fig. 3). Ideally, information in databases could be fully integrated 180 

in either one or multiple directions in real (or near-real) time (i.e., synced). For example, data 181 

published to iDigBio is automatically published to GBIF (iDigBio, 2018b; Singer et al., 2018), 182 
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thus the content of iDigBio is considered synced with GBIF (Fig. 3). However, differences may 183 

arise between otherwise fully integrated databases in the time between synchronization events 184 

(lagged). For example, BIEN imports and integrates data from GBIF and other sources at annual 185 

or longer intervals, which provides more stable and easily archived datasets, but the imported 186 

GBIF content can be different from the most up-to-date GBIF data until the next 187 

synchronization. This lag can be addressed by increasing the frequency of data exchange, shared 188 

data import protocols, or developing novel database architecture designed for data integration 189 

(LeBauer et al., 2013). Differences between databases may also arise from obstacles that prevent 190 

subsets of data from being shared (impeded). For example, iNaturalist only publishes data to 191 

GBIF that are properly licensed (iNaturalist, 2018)). Differences in data licensing is one of the 192 

major impediments to integration and is a problem that was rarely emphasized in biodiversity 193 

data aggregation prior to the last decade. For example, GBIF initialized a license requirement in 194 

2014 (GBIF, 2014) and excluded approximately 49 million existing records without appropriate 195 

licenses. Clearly defined data licenses will make future data use and integration legally 196 

straightforward, and will also provide a cornerstone for the Open Science movement (Escribano 197 

et al., 2018). Creative commons licenses are the most widely used mechanism to ensure proper 198 

attribution while allowing others to copy and distribute data (Fitzgerald et al., 2007). 199 

 200 

Unlike the distribution databases discussed above, trait databases are characterized by isolation 201 

status. These databases typically capture data within particular taxa or focus on a single trait, 202 

such as GlobTherm for thermal tolerance (Bennett et al., 2018) and AmphiBIO for amphibian 203 

ecological traits (Oliveira et al., 2017) (Fig. 3). A degree of isolation is unavoidable due to the 204 

complex nature of trait data, which varies greatly in terms of data types, units, and measurement 205 

methods (Deans et al., 2015) and the taxon-specific nature of many traits (e.g., seed traits apply 206 

only to seed plants). Such complexity is not resolved by following existing standard commonly 207 

used by occurrence data such as Darwin Core (Wieczorek et al., 2012). Effective synthesis and 208 

integration of trait information will require trait-specific specifications such as trait ontologies 209 

(Walls et al., 2012), trait data standards (Schneider et al., 2019) and embracing of Open Science 210 

principles via initiatives like the Open Traits Network (Gallagher et al., 2020).  211 

 212 

Poor compatibility between taxonomic systems adopted by different databases has posed a major 213 

impediment for database integration (Fig. 2 & Table S2). As biodiversity information is 214 

generally indexed by species’ scientific names, a crucial step is to index information based on 215 

one unified or multiple compatible taxonomic systems. Taxonomic systems reflect decisions of 216 

database developers; some databases maintain flexibility in nomenclature, especially when the 217 

taxa are in flux (e.g., vertebrate species stored in VertNet), whereas some databases impose 218 

stronger rules. For example, EOL maintains multiple independent taxonomic systems to avoid 219 

potential conflicts between non-compatible nomenclature; GBIF and COL have both employed a 220 

comprehensive but single-backbone system designed to be compatible with different taxonomic 221 

systems; MOL developed a backbone that includes Catalogue of Life (a global effort to compile 222 

existing catalogued species) and manually curated taxonomic datasets for synonym issues; BIEN 223 

standardizes taxon names according to external, expert-curated taxonomic reference databases 224 

(Boyle et al., 2013). The different approaches and strategies to accommodating taxonomic 225 

systems among biodiversity databases may solve taxonomic issues locally for that specific 226 

database (Jorge & Peterson, 2004), but deepen differences that prevent future data integration, 227 
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thus facilitating the “speciation” of databases. Still, resolving differences between existing 228 

taxonomic systems is just an initial step. Creation of a single authoritative list of names will take 229 

time; full reconciliation of synonyms and distinct taxon concepts may take decades (Berendsohn, 230 

1997; Franz & Peet, 2009; Boyle et al., 2013; Wiser, 2016; Garnett et al., 2020). This will 231 

require a global effort, as envisioned by the Global Taxonomy Initiative (Samper, 2004). 232 

 233 

3. Enhanced data coverage via database integration 234 

To quantify the improvement of combining multiple databases, we compared leading databases 235 

that focus on similar taxonomic groups and similar record types. We used terrestrial plants 236 

(Embryophyta; hereafter “plants”) and vertebrates (Vertebrata) as test cases, because these 237 

taxonomic groups are comparatively well collected and documented in biodiversity databases 238 

compared to others (Clark & May, 2002; Fazey et al., 2005; Hecnar, 2009; Titley et al., 2017; 239 

Cornwell et al., 2019; König et al., 2019; Kattge et al., 2020). We did not use taxon, such as 240 

microbes or invertebrates, that account for large portions of biodiversity on Earth but face huge 241 

data gaps (Locey & Lennon, 2016). Specifically, we combined (i) the distribution of terrestrial 242 

plants from GBIF and non-GBIF sources, and (ii) one crucial and commonly measured trait for 243 

plants and vertebrates, respectively: maximum height (Moles et al., 2009; Guralnick et al., 2016) 244 

using the Botanical Information and Ecology Network (BIEN (Enquist et al., 2016)), TRY 245 

initiative (Kattge et al., 2011), and EOL (Parr et al., 2014), and body length using VertNet 246 

(Constable et al., 2010) and EOL (see Appendix 1). Our study goes beyond recent gap analyses 247 

of biodiversity data (Meyer et al., 2016; Cornwell et al., 2019; König et al., 2019), by expanding 248 

the scope to multiple data aggregators with similar missions, in two major clades (i.e., plants and 249 

vertebrates), and using an ecological trait characterized by continuous values.  250 

 251 

3.1 Better coverage through data integration  252 

3.1.1 Overall trend in data collection 253 

We found that the total number of distribution records (spatial coordinates) for plants has 254 

increased exponentially since the 1750s (Lomolino et al., 2010) (Fig. 4a) as documented in GBIF 255 

and the combined dataset. A similar exponential increase was found when only spatially unique 256 

records were examined (Fig. 4b). This pattern is also supported by a model selection analysis 257 

among linear, exponential, and logistic functions (Table S3). This trend in the growth of 258 

biodiversity data is analogous to many accelerating processes in the Anthropocene (Steffen et al., 259 

2015), such as urbanization, globalization, transportation, and telecommunications. One 260 

prominent example in Information Technology (IT) is the exponential growth in the number of 261 

transistors in a dense integrated circuit, which doubles roughly every two years (Moore, 1965). 262 

This pattern, termed “Moore’s Law”, is also evident in the accelerating development of cyber 263 

infrastructures for many disciplines in science. Based on the similar exponential curve for 264 

biodiversity data, we estimated that the total number of plant distribution records doubles every 265 

17 years and the number of spatially unique records doubles every 21 years. The high speed of 266 

biodiversity data accumulation represents the great power of data collection, digitization, 267 

processing, and publishing, which lays the basis for and presents the opportunities for 268 

biodiversity database integration.   269 

 270 

In contrast to the number of distribution records, the number of species identified is gradually 271 

reaching saturation (Fig. 4c). Based on a fitted logistic curve (Table S3), we predicted that the 272 

number of catalogued plant species in distribution databases would be saturated at 365,519 ± 273 
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2,233 (mean ± SD of the coefficient from the fitted logistic model), i.e. the saturation point of 274 

predicted number of terrestrial plant species in the integrated biodiversity distribution databases, 275 

with species names resolved using the Taxonomic Name Resolution Service (TNRS; version 5.0) 276 

(Boyle et al., 2013). This estimate is higher than the current catalogued number of terrestrial 277 

plants in Catalogue of Life (COL; 354,327), though within the previously estimated range for the 278 

total number of plant species on Earth (334,000 - 403,911) (Lughadha et al., 2016). The slowing 279 

trend in plant species discovery started in ~1949 (the inflection point of the logistic curve of the 280 

cumulative number of species in GBIF; Table S1), and is in line with previous estimations 281 

(Christenhusz & Byng, 2016). Such trends may suggest that we are gradually reaching saturation 282 

and closing the Linnean shortfall, the lack of knowledge in describing and cataloging species 283 

(Hortal et al., 2015), for plants. The slowing trend could also be caused by species extinctions, 284 

reduced funding for natural history studies, and increasing difficulties in detecting the remaining 285 

rare species (Joppa et al., 2011). 286 

 287 

3.1.2 Improvement in distribution data 288 

Integration of biodiversity databases would powerfully increase our knowledge of biodiversity. 289 

For instance, GBIF is the world’s largest biodiversity repository, but adding ~15 million records 290 

from additional sources (compiled by BIEN) would improve its coverage by ~3.7 million 291 

spatially unique records and ~20 thousand species (Fig. 4d-f). The number of distribution records 292 

per taxon in GBIF could be increased by 4.4% – an average of 19 additional records per species. 293 

The improvement of taxonomic coverage in GBIF would be equivalent to 23 years of new data 294 

accumulation, based on extrapolation of the fitted logistic curve (Fig. 4c, Table S3). GBIF and 295 

non-GBIF datasets together provide distribution data for ~ 307,985 species (76-92% of the 296 

estimated richness of all plants (Lughadha et al., 2016)), suggesting we are gradually decreasing 297 

the Wallacean shortfall, the lack of knowledge in species distribution, for plant species, in 298 

accordance with findings in Cornwell et al. (2019).  299 

 300 

3.1.3 Improvement in trait data  301 

Database integration also substantially improves the taxonomic coverage of trait information 302 

(i.e., maximum height in plants; body length in vertebrates; see Methods). Under standardized 303 

taxonomy, we found that individual plant and vertebrate trait databases always include unique 304 

species-trait combinations and cover different portions of taxonomic diversity (Fig. 5). For 305 

instance, trait knowledge increased in 69-82 plant orders and 86-124 vertebrate orders through 306 

database integration, while the range of increase varied by database. The average improvement 307 

of species-trait combination across these databases ranged from 2.0 to 8.7% for plant orders and 308 

21.5-22.4% for vertebrate orders. The number of plant orders that were sparsely-sampled in 309 

BIEN (i.e., <10% of species with trait observations), for example, decreased from 99 to 65 310 

through data integration; a similar decrease was seen for sparsely-sampled vertebrate orders in 311 

EOL from 53 down to nine (Fig. 5).  312 

 313 

3.1.4 Limitations of our assessment 314 

Data integration can effectively decrease the gaps in our knowledge, and the resulting more 315 

comprehensive data can facilitate global scale studies of biodiversity and help identify and 316 

reduce potential data biases (Reddy & Dávalos, 2003). We note that our assessment of the 317 

possibilities for data integration does not address how different data sources (or “data 318 

resolutions,” as defined in (König et al., 2019)) should be best integrated for different study 319 
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objectives. These mismatches are apparent in cases, such as distribution data represented 320 

by presences vs. abundances, or a trait value measured at individual level vs. species level.  321 

However, indexing the availability of trait data for a focal species is a major step toward more 322 

rigorous data integration and scientific research. With the integrated data, one could cross-323 

validate the values from different sources to ask questions such as: “Do trait values vary by 324 

methods of measurements?” or “Can species-level trait data well represent the range of values 325 

measured at the individual level?” Cross-validations will be especially useful if the user of one 326 

database is mainly the general public while the user of the other is the science community, so 327 

that more rigorous information is delivered from the science community to the general public. 328 

With the integrated data, one could also conduct scientific research at broader scales and study, 329 

for example, trait variation across time or across spatial or environmental gradients (Siefert et al., 330 

2015), or species-trait combinations within communities.  331 

 332 

3.2 A clearer picture of what we do not know 333 

Importantly, database integration can provide an improved assessment of gaps in biodiversity 334 

knowledge (Meyer et al., 2015; Cornwell et al., 2019; König et al., 2019). Following our 335 

integration of various databases (Appendix 1), approximately 58,000 plant species still lacked 336 

publicly available distribution records. This gap corresponds to approximately 15.8% of the 337 

species in Catalogue of Life – a global effort to compile existing catalogued species. The 338 

coverage of distribution records in plant orders varied from 47% (in order Hypnales) to fully 339 

covered in some orders with small number of extant species (Cornwell et al., 2019) (e.g. 340 

Ceratophyllales). Further, 30.8 million km2 of ice-free land surface, as assessed using Eckert IV 341 

equal area projection, currently has no valid plant geolocations (Fig. 4g). These areas are mainly 342 

in Russia (despite the considerable recent progress of data sharing by the Russian GBIF 343 

community (Shashkov & Ivanova, 2019)), central Asia, and northern Africa, and are 344 

approximately 13% of the Earth’s land area.  345 

 346 

Trait data have considerably larger gaps: height information is absent for 333,597 plant species 347 

from 102 orders from BIEN, TRY and EOL, and body length information is absent for 38,992 348 

vertebrate species from 127 orders from VertNet and EOL. In total, height data is unavailable for 349 

approximately 92.6% of plant species and body length for 56.8% of vertebrate species in 350 

Catalogue of Life. The data coverages were mostly below 60% for plant orders and percentages 351 

were relatively higher for vertebrate orders. Plant height and vertebrate body length are 352 

commonly used traits in ecological research that are frequently recorded in databases (Moles et 353 

al., 2009; Guralnick et al., 2016), suggesting other biological traits (e.g., life span, metabolic 354 

rate) or essential biodiversity variables (e.g., population abundances) (Pereira et al., 2013) will 355 

likely have much larger shortfalls (but see analyses of plant growth form in (König et al., 2019)). 356 

In the face of accelerating increases in biodiversity data availability, recognizing the remaining 357 

knowledge gaps could help guide future data compilation efforts (e.g. the gap filling activity in 358 

eBird (eBird, 2014)) and potentially turn our enhanced power of compiling information into 359 

efforts that generate critically needed knowledge (Cornwell et al., 2019).  360 

 361 

4. Challenges and Opportunities  362 

4.1 A catalogue and synthesis of biodiversity databases 363 

To achieve global integration of biodiversity knowledge, we would first need to know what 364 

databases are available. To facilitate this process, we need a catalogue of biodiversity databases 365 
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with their metadata recorded, such as spatial, temporal, taxonomic scope, as well as the types of 366 

data aggregated, so that existing or new databases can be easily known, compared, and 367 

effectively used. Lee Belbin has maintained the Biodiversity Information Projects of the World 368 

(Belbin, 2014) – essentially containing metadata of 685 biodiversity projects. The recorded 369 

metadata includes project summary, geographic, temporal, and taxonomic scope, and key 370 

technique attributes (though this list is no longer accessible after 2019; but see (Blair et al., 371 

2020)). Similarly, GBIF has a registry system that indexes the metadata of GBIF participants, 372 

institutions, and datasets; however, data associated with this registry mainly focuses on a few 373 

record types, including occurrences, checklists, and sampling events 374 

(https://web.archive.org/web/20210514141441/https://www.gbif.org/article/5FlXBKbirSiq0ascK375 

YiA8q/gbif-infrastructure-registry). Another example is Global Index of Vegetation Plot 376 

Databases that indexes the metadata of vegetation-plot data that are publicly available (Dengler 377 

et al., 2011). In contrast, DataONE has a broader scope that indexes the metadata of large variety 378 

of biological and environmental data (Michener et al., 2012). Those existing efforts form a good 379 

basis for a catalogue of biodiversity databases that can continuously keep track of existing data 380 

aggregators and index new aggregation efforts. Still, the relationships among the biodiversity 381 

databases are not always obvious. Therefore, a synthesis, ideally updated regularly, would be 382 

helpful to clarify the relationships among the biodiversity databases, in particular what is the 383 

unique data coverage of one database and what are the data flows among biodiversity databases.  384 

 385 

4.2 Overcoming the barriers to database integration 386 

After cataloguing the metadata and synthesizing the relationships among biodiversity databases, 387 

many technical barriers remain. As a prerequisite to integration, the data in a database should be 388 

openly available with proper data licenses to minimize impediments to data sharing (see section 389 

2.2); another major barrier is the incompatible taxonomic systems. A promising effort is 390 

Catalogue of Life Plus (Banki et al., 2019) that builds upon existing but disconnected efforts 391 

(such as the COL and GBIF backbone taxonomy) to create an open, shared and sustainable 392 

consensus taxonomy, which can serve as the infrastructure for individual biodiversity databases 393 

or database integration. Thirdly, existing databases adopt different mechanisms of data standards 394 

and database architecture (Hardisty et al., 2019), thus leading to incompatibilities for database 395 

integration. For example, during the data cleaning stage, one collection of a specimen without 396 

coordinates could be georeferenced differently based on different georeferencing algorithms, 397 

thus likely leading to two different coordinates, and therefore appear to be two different records 398 

after data integration. One solution could be creating a community-wide standard and tools for 399 

data evaluation and cleaning (e.g. Belbin et al., 2018; Serra-Diaz et al., 2018). Community-400 

driven standards for biodiversity data, such as Darwin Core (Wieczorek et al., 2012), Humboldt 401 

Core (Guralnick et al., 2018), and trait-data standard (Schneider et al., 2019) have emerged; 402 

expanding the use of those community-developed data standards by individual databases would 403 

enable more effective database integration. Overall, the essential goal is to maximize 404 

compatibility, and thus minimize barriers to data flow and synthesis. After solving the technical 405 

barriers, the integrated content from multiple databases could be organized in multiple non-406 

exclusive ways: i) a single centralized database, ii) some decentralized but connected databases 407 

(Gallagher et al., 2020), or iii)  multiple synced databases (LeBauer et al., 2013).  408 

 409 

4.3 Challenges for individual aggregators after database integration 410 



10 

 

It is also worth thinking the uniqueness and destiny of individual databases after integration. 411 

Seemingly, integration may render individual databases irrelevant, e.g., an individual database 412 

may be considered a subset of an integrated database. However, this should not the case. While 413 

data integration occurs at shared data element (e.g., taxon, place, time) and data standard, each 414 

individual database could still have unique domain information. For example, while GBIF 415 

aggregates species occurrence data from iNaturalist, the latter still uniquely host the media data. 416 

Also, an individual database can make a unique contribution by aiming to fill data gaps (e.g., 417 

spatial or taxon gaps revealed by the integrated knowledge base).  418 

 419 

On the other side, there has been a process of specialization of databases along the whole 420 

workflow of data aggregation. Specifically, the developers of some databases have expanded 421 

their scope to development of infrastructure, such as tools for data integration, data cleaning, and 422 

hosting data portals. There are prominent examples among the databases that have close 423 

relationships with GBIF. For example, ALA develops open-access modules for the platform that 424 

can be implemented by other biodiversity initiatives (Belbin et al., 2021). VertNet has been 425 

actively providing data maintenance services, including data cleaning and indexing, among the 426 

network of collaborative biodiversity databases (Constable et al., 2010). 427 

 428 

Besides specialized roles in data aggregation or tool development, individual databases can also 429 

play unique roles for users, even when based on the same shared knowledge base. For example, 430 

ALA is prominent in the education of Australian biodiversity to its Australian users, as well as in 431 

facilitating scientific research by putting this biodiversity in the context of its environment. 432 

 433 

 434 

5. Concluding remarks 435 

The accelerating increase of biodiversity data offers numerous exciting prospects and challenges 436 

for documenting and forecasting the location, status, function and potential fate of species on the 437 

planet. However, increases in biodiversity data do not directly translate to similar increases in the 438 

knowledge needed to address many fundamental and applied questions. In the face of urgent 439 

environmental challenges, new approaches are urgently needed to increase biodiversity 440 

knowledge and accessibility of the knowledge. We demonstrate that rapid progress can be made 441 

toward better biodiversity knowledge through the integration of database infrastructures. 442 

Integration can lead to large and rapid increases in knowledge of species distributions and traits 443 

(see (Conde et al., 2019; König et al., 2019)), but the benefit goes beyond just more complete 444 

knowledge: it can reduce biases and doubled efforts in biodiversity research, allow cross-445 

validations to compare conclusions drawn from different sources, and provide a clearer picture of 446 

where gaps remain, thereby helping to focus future sampling and research (König et al., 2019). 447 

To address the shortfalls in biodiversity knowledge and achieve full integration across databases, 448 

we need to fund and maintain the foundations of biodiversity information science including 449 

biological surveys, taxonomic assessment (Australian Academy of Science, 2018), and 450 

digitization of legacy data (Ariño, 2010), as well as tackle the major impediments to data 451 

integration – taxonomic incompatibility, lags in data exchange, barriers to effective synthesis, 452 

and isolation of individual initiatives.   453 
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data from TRY are accessible from https://try-db.org/TryWeb/dp.php. The data from Catalogue 693 

of Life are accessible from https://download.catalogueoflife.org/col/monthly/2021-04-694 

05_dwca.zip. The administrative boundary dataset is accessible from 695 

https://biogeo.ucdavis.edu/data/gadm3.6/gadm36_shp.zip.  696 

 697 

  698 

https://eol.org/docs/what-is-eol/traitbank
http://portal.vertnet.org/search
https://try-db.org/TryWeb/dp.php
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 699 

Figure 1. Overview of biodiversity databases reviewed in this paper. The coverages of their data 700 

are shown in panel (a) indicated by “X”. Based on the data coverages, the biodiversity databases 701 

are grouped into several clusters (b), where the height of the dendrogram is the relative distance 702 

between clusters. Notes: a) GBIF, iDigBio, and VertNet indexes and displays images on its 703 

website, while the images are mainly hosted by external institutions or facilities. b) TRY and 704 

GIFT also stores geographic information about where the trait was measured.   705 
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  706 

  707 

 708 

Figure 2. Data exchange between biodiversity databases with different taxonomic systems. Each 709 

box represents one database and its adopted taxonomic system (lower half). The taxonomic 710 

systems are shown in different colors, while the same color represents compatible systems. A 711 

variety of taxonomic systems exist: some databases develop backbone systems (e.g. BIE 712 

backbone, GBIF backbone, MOL backbone), some databases adopt a name scrubbing tool that 713 

standardizes names towards pre-selected taxonomic systems (e.g. BIEN, GIFT, TRY), some rely 714 

on multiple taxonomic systems (e.g. iNaturalist, EOL), and some do not implement a strong 715 

regulation on taxonomic names (e.g. VertNet). The one-way or two-way arrow represents 716 

unidirectional or bidirectional data flow between databases. ALA: Atlas of Living Australia; 717 

BIE: Biodiversity Information Explorer; BIEN: Botanical Information and Ecology Network; 718 

BISON: Biodiversity Information Serving Our Nation; EOL: Encyclopedia of Life; GBIF: 719 

Global Biodiversity Information Facility; GIFT: Global Inventory of Floras and Traits; iDigBio: 720 

Integrated Digitized Biocollections; ITIS: Integrated Taxonomic Information System; IUCN: 721 

International Union for Conservation of Nature; MOL: Map of Life; TNRS: Taxonomic Name 722 

Resolution Service; TRY: TRY, a global database of plant traits; uBio: Universal Biological 723 

Indexer and Organizer. As the databases continue to grow and develop, this figure represents the 724 

best of our knowledge as of March 2021. 725 

  726 
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  727 

Figure 3. Data integration among biodiversity databases. The status of data integration is 728 

classified as four categories: synced, lagged, impeded, and isolated . Synced refers to the status 729 

of full integration, in either one or multiple directions, between different databases in or near 730 

real-time. For example, data published to iDigBio is automatically published to GBIF. Lagged 731 

refers to the difference between otherwise fully integrated databases between two sync events. 732 

For example, BIEN imports and integrates data from GBIF and other sources (e.g., The Forest 733 

Inventory and Analysis or FIA) annually or at longer intervals and publishes the results as 734 

versioned database releases. The most recent data in those sources will not be available via BIEN 735 

until the next import and versioned release. Impeded refers to differences between databases 736 

caused by barriers that prevent subsets of the data from being shared. For example, iNaturalist 737 

only publishes data to GBIF that are properly licensed for open sharing (iNaturalist, 2018). 738 

Contrary to distribution databases, trait databases are generally isolated from one another in 739 

different databases, though there are flows/exchanges of plant trait data between TRY and GIFT, 740 

and TRY and EOL (Table S1). We caution that the data flow between or among databases is not 741 

well documented, and this figure represents the best of our knowledge as of March 2021. 742 
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   743 

Figure 4. Spatial and taxonomic coverage of terrestrial plant occurrence data. Georeferenced 744 

plant observations, as illustrated by observation dates in GBIF, the largest biodiversity 745 

informatics infrastructure, have increased exponentially over the past 200 years (panel a,b), 746 

though the number of species recorded in these databases is reaching saturation (panel c). By 747 

integrating additional data sources compiled by BIEN (i.e. non-GBIF sources; ~15 million 748 

records; panel d), the georeferenced plant observations in GBIF can be expanded by an 749 

additional ~4 million spatially unique records (panel e) and ~20 thousand species (panel f). Still, 750 

the gaps in plant distributions warrant our attention: large areas in Russia, central Asia, and 751 

northern Africa (red area in panel g) are missing publicly available occurrences. The black color 752 

in panel g represents ice covered areas.  753 
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  754 

 755 

Figure 5. Increased taxonomic coverage of plant and vertebrate trait data through data 756 

integration. By combining trait databases, coverage could be expanded in 69-82 plant orders 757 

(panel a) and 86-124 vertebrate orders (panel b) compared to individual data sources (panel c & 758 

d). The taxonomic coverage of a database is measured as the percentage of the species in that 759 

plant or vertebrate order that are represented. Panels c & d show the taxonomic coverages of 760 

individual databases and the combined dataset; the positions of the points on the x-axis are re-761 

ordered from low to high based on the combined taxonomic coverage (orders with low coverage 762 

on the left and orders with high coverage on the right).  763 

  764 
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Table S1. Summary of data flow among biodiversity databases. 765 

From To Details References/Links 

ALA GBIF ALA is a GBIF publisher, though data 

hosted by ALA may not be fully 

available on GBIF because of, for 

example, data licenses.  

https://web.archive.org/web/2021050615

1646/https://www.gbif.org/publisher/3c5e

4331-7f2f-4a8d-aa56-81ece7014fc8 

GBIF ALA ALA includes exported data from GBIF 

that occur in Australia. 

https://web.archive.org/web/2021040703

4945/https://collections.ala.org.au/public
/showDataResource/dr695 

GBIF MOL MOL includes exported data from GBIF. https://web.archive.org/web/2021050615

2723/https://mol.org/datasets/9905692e-

6a28-4310-b01e-476a471e5bf8 

BISON GBIF BISON is a product of the United States 

Geological Survey (USGS) 

(Administrator of the U.S. Node of 

GBIF), and thus works closely and 
shares data with GBIF. 

https://bison.usgs.gov/#help 

GBIF BISON The Canadian and U.S. data added 

directly to GBIF would  

become available through BISON. 

https://bison.usgs.gov/#help 

iNaturalist GBIF iNaturalist is a GBIF publisher.  https://web.archive.org/web/2021050616

1424/https://www.gbif.org/publisher/28eb

1a3f-1c15-4a95-931a-4af90ecb574d 

GBIF iNaturalist iNaturalist displays data from GBIF on 

the interactive map.  

https://www.inaturalist.org/taxa/71130-

Polyphaga 

GBIF EOL EOL incorporates data from GBIF. https://web.archive.org/web/2021050616

2446/https://opendata.eol.org/dataset/gbi

f-data-summaries 

eBird GBIF eBird Observational Dataset is published 
on GBIF. 

https://web.archive.org/web/2021032922
5357/https://ebird.org/news/gbif/ 

TRY EOL TRY summarized records are available 

from EOL. 

https://web.archive.org/web/2021032617

4302/https://eol.org/resources/504 

TRY GIFT Co-develop and exchange trait data on 

plant growth form. 

(Kattge et al., 2020) 

GIFT TRY Co-develop and exchange trait data on 
plant growth form. 

(Kattge et al., 2020) 

GBIF BIEN BIEN includes data exported from GBIF. https://web.archive.org/web/2021050616

3327/https://bien.nceas.ucsb.edu/bien/bie

ndata/bien-2/sources/ 

https://web.archive.org/web/20210506151646/https:/www.gbif.org/publisher/3c5e4331-7f2f-4a8d-aa56-81ece7014fc8
https://web.archive.org/web/20210506151646/https:/www.gbif.org/publisher/3c5e4331-7f2f-4a8d-aa56-81ece7014fc8
https://web.archive.org/web/20210506151646/https:/www.gbif.org/publisher/3c5e4331-7f2f-4a8d-aa56-81ece7014fc8
https://web.archive.org/web/20210506161424/https:/www.gbif.org/publisher/28eb1a3f-1c15-4a95-931a-4af90ecb574d
https://web.archive.org/web/20210506161424/https:/www.gbif.org/publisher/28eb1a3f-1c15-4a95-931a-4af90ecb574d
https://web.archive.org/web/20210506161424/https:/www.gbif.org/publisher/28eb1a3f-1c15-4a95-931a-4af90ecb574d
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iDigBio GBIF iDigBio is a GBIF publisher. https://web.archive.org/web/2021050616

4312/https://www.gbif.org/publisher/205

3a639-84c3-4be5-b8bc-96b6d88a976c 

VertNet GBIF VertNet is a GBIF publisher. https://web.archive.org/web/2021032919

2932/http://vertnet.org/join/ipt.html 

VertNet iDigBio The majority of the data in the datasets 

published by VertNet are available in 

other portals such as GBIF, Canadensys, 

and iDigBio. 

https://web.archive.org/web/2020101220

4516/vertnet.org/resources/datalicensing

guide.html 

 766 

  767 

https://web.archive.org/web/20210329192932/http:/vertnet.org/join/ipt.html
https://web.archive.org/web/20210329192932/http:/vertnet.org/join/ipt.html
https://web.archive.org/web/20201012204516/vertnet.org/resources/datalicensingguide.html
https://web.archive.org/web/20201012204516/vertnet.org/resources/datalicensingguide.html
https://web.archive.org/web/20201012204516/vertnet.org/resources/datalicensingguide.html
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Table S2. Summary of taxonomic system of biodiversity databases. 768 

Name  Taxonomic system References 

GBIF GBIF backbone https://doi.org/10.15468/39omei 

ALA Biodiversity Information Explorer (BIE) backbone https://web.archive.org/web/202104070

32823/https://www.ala.org.au/blogs-

news/updates-to-alas-name-and-

taxonomy-index/ 

MOL MOL developed a backbone that includes Catalogue of Life and manually 

curated taxonomic datasets for synonym issues. 

Anonymous reviewer  

BISON Integrated Taxonomic Information System (ITIS) https://web.archive.org/web/202105051

85337/https://bison.usgs.gov/ 

iNaturalist iNaturalist backbone is composed of global taxonomic authorities. regional 

taxonomic authorities, primary literature, and other  name providers including 

Catalogue of Life and uBio. 

https://web.archive.org/web/202105051

85713/https://www.inaturalist.org/page

s/curator+guide 

EOL The EOL Dynamic Hierarchy is curated by EOL staff based on a suite of 

classification providers (including Catalog of Life, the International Union for 

Conservation of Nature (IUCN), the National Center for Biotechnology 

Information (NCBI) and the World Register of Marine Species (WoRMS)) for 
different branches and layers of the tree of life, and can be manually patched 

and curated. 

https://web.archive.org/web/202105051

90456/https://eol.org/docs/what-is-

eol/whats-new 

TRY Plant taxonomy of the TRY database is consolidated using the Taxonomic 

Names Resolution Service (TNRS) with a taxonomic backbone based on the 

Plant List, Tropicos, the Global Compositae Checklist, the International 

Legume Database and Information Service, and USDA's Plants Database. 

(Kattge et al., 2020) 

GIFT The GIFT database standardized non-hybrid species names in The Plant List 

1.1 and additional resources available via iPlant's Taxonomic Name 
Resolution Service (TNRS).  

(Weigelt et al., 2017) 

BIEN Taxon names were corrected and standardized using the Taxonomic Name 

Resolution Service v5.0 (TNRS) with Tropicos, The Plant List and USDA 

Plants as taxonomic references, and all other options at their default settings. 

(Enquist et al.) 

eBird eBird/Clements Checklist 

The eBird species and subspecies taxonomy follows the Clements Checklist. 

In addition to the formal taxonomic concepts that are included in the 
Clements Checklist, the eBird taxonomy includes an expanded list of other 

bird taxa that birders may report.  

https://web.archive.org/web/202105052

32653/https://ebird.org/science/use-

ebird-data/the-ebird-taxonomy 

iDigBio The scientific names are matched to the GBIF backbone to correct typos and 

older names. 

https://web.archive.org/web/202105052

33105/https://www.idigbio.org/wiki/ind

ex.php/Data_Ingestion_Guidance 

Vertnet Flux system 

VertNet does not have a simple taxon resolution mechanism, and vertebrate 

species names are particularly in flux.  

(Zermoglio et al., 2016) 

 769 

https://www.itis.gov/
http://www.catalogueoflife.org/
http://www.iucnredlist.org/
http://www.iucnredlist.org/
https://www.ncbi.nlm.nih.gov/guide/taxonomy/
https://www.ncbi.nlm.nih.gov/guide/taxonomy/
http://www.marinespecies.org/
https://paperpile.com/c/pNepVw/SeHX
http://www.birds.cornell.edu/clementschecklist?__hstc=60209138.ef8d65c113332296f992587f47c992ef.1620256668821.1620256668821.1620256668821.1&__hssc=60209138.1.1620256668822&__hsfp=639316031
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Table S3. Summaries of model fitting for the temporal trend in plant distribution data.  770 

Data source Data Model AIC Inflection 

point 

combined 

  

  

  

  

  

  

  

number of records 

  

exponential -1686 n/a 

linear -239 n/a 

logistic NA NA 

number of spatially unique 

records 

  

exponential -1916 n/a 

linear -258 n/a 

logistic NA NA 

number of species 

  

exponential -739 n/a 

linear -510 n/a 

logistic -1682 1947 

GBIF 

  

  

  

  

  

  

  

number of records 

  

  

exponential -1816 n/a 

linear -315 n/a 

logistic NA 2059 

number of spatially unique 

records 

  

exponential -1957 n/a 

linear -301 n/a 

logistic NA NA 

number of species 

  

exponential -804 n/a 

linear -552 n/a 

logistic -1762 1949 

 771 

  772 
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Appendix 1. Materials and Methods 773 

Metadata review 774 

Many biodiversity databases have been built over the past decade, with varying emphases on 775 

taxonomy, spatial location, and record type. Associated metadata for biodiversity databases is 776 

typically found in publications or project websites. To synthesize the major attributes of existing 777 

biodiversity databases, we selected 12 well-established biodiversity databases: Atlas of Living 778 

Australia (ALA (Belbin & Williams, 2016)), Botanical Information and Ecology Network (BIEN 779 

version 4.1 (Enquist et al., 2016)), Biodiversity Information Serving Our Nation (BISON (U.S. 780 

Geological Survey, 2018)), eBird (Sullivan et al., 2014), Encyclopedia of Life (EOL (Parr et al., 781 

2014)), Global Biodiversity Information Facility (GBIF), Global Inventory of Floras and Traits 782 

(GIFT (Weigelt et al., 2017)), Integrated Digitized Biocollections (iDigBio (iDigBio, 2018a)), 783 

iNaturalist (iNaturalist), Map of Life (MOL (Jetz et al., 2012)), a global database of plant traits 784 

(TRY version 1.0 (Kattge et al., 2011)), and VertNet (Constable et al., 2010). The twelve 785 

databases we examined were chosen among the most commonly used, well-established, large-786 

scale biodiversity databases (MacFadden & Guralnick, 2016; Chandler et al., 2017a; James et 787 

al., 2018; Singer et al., 2018; Cornwell et al., 2019; König et al., 2019) to maximize the 788 

generalizability of our results and conclusions. Selections were also limited to databases from 789 

which we could either access the entirety of the data or the ones with clear documentations. We 790 

compiled information from online documentation and relevant publications, though the design 791 

and architecture of a database can be in continuous development. Specifically, we recorded 792 

database name, taxonomic scope, taxonomic system, record type, number of records, and spatial 793 

coverage. We classified the record types into three categories: geographic distribution, media 794 

(image, audio, or video), and biological information (standardized trait databases or generalized 795 

text descriptions). Within geographic distribution, we further classified the information as 796 

specimen records, observations, checklists of geographic regions, and distribution maps. 797 

Specimen records and observations both have information on species’ geolocations, but only 798 

specimen records are associated with physical specimens. Checklists usually contain lists of 799 

species known to be present in certain geographic regions (e.g., political divisions or protected 800 

areas). Distribution maps are either drawn by experts or generated through models. There are 801 

frequent data exchanges among biodiversity databases, but many are not transparent to database 802 

users. Consequently, we compiled data exchange information and assessed the status of data 803 

integration between databases. We used geographic distribution and trait data as examples, 804 

which are the most prominent record type among the reviewed databases. We assessed the 805 

integration status by taxonomy groups, which are all organisms, plants, or vertebrates 806 

 807 

Improvement of data coverage by database integration 808 

To quantify the improvement gained by combining multiple databases, we compared leading 809 

databases that focus on similar taxonomic groups and record type. We used terrestrial plants 810 

(Embryophyta) and vertebrates as test cases, because these are the taxonomic groups that are 811 

comparatively better collected and documented in biodiversity databases compared to other 812 

taxonomic groups (Clark & May, 2002; Fazey et al., 2005; Hecnar, 2009; Titley et al., 2017; 813 

Cornwell et al., 2019; König et al., 2019; Kattge et al., 2020). We did not use taxoa, such as 814 

microbes, that account for large portions of biodiversity on Earth but face huge data gaps (Locey 815 

& Lennon, 2016). More specifically, we compared (1) plant distribution data from GBIF and 816 

non-GBIF sources compiled by BIEN (Enquist et al., 2016), (2) plant trait data (i.e. plant height) 817 
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from BIEN, TRY, GIFT, and EOL, and (3) animal trait data (i.e. vertebrate body length) from 818 

VertNet and EOL. 819 

 820 

We obtained plant distribution data from BIEN (version 4.2; accessed March 2021) that 821 

compiled plant distribution data from GBIF (https://doi.org/10.15468/dl.87zyez) and non-GBIF 822 

sources, such as the Forest Inventory and Analysis (U.S. Department of Agriculture Forest 823 

Service) (FIA) and NeoTropTree (Oliveira-Filho, 2017). The GBIF and non-GBIF sources have 824 

been fused through a series of data scrubbing and standardization workflows (e.g. TNRS (Boyle 825 

et al., 2013)) and here we only included data with valid collection year and spatial coordinates. 826 

We classified the data into three groups: data from GBIF, data from non-GBIF sources, and the 827 

combined full dataset. We quantified the numbers of distribution records, numbers of spatially 828 

unique records, and numbers of species with distribution records in all three data sources. A 829 

spatially unique record is defined as a record of the distribution of a species (a pixel at 30 arc-830 

seconds resolution in WGS84 coordinate reference system that its coordinate corresponds to) that 831 

is unique to a dataset. We standardized all species names against multiple reference taxonomies, 832 

including Tropicos and The Plant List, through the TNRS (Boyle et al., 2013). The 833 

standardization process parses and corrects misspelled names and authorities, standardizes 834 

variant spellings, and converts nomenclatural synonyms to currently accepted names. To reveal 835 

the temporal trend of data accumulation, we quantified the cumulative numbers of observations 836 

made over time, from 1750 to present (2020).  837 

 838 

To describe and quantify those temporal trends, we fitted the cumulative numbers (dependent 839 

variable) and years (independent variable) with simple linear (eqn 1), exponential (eqn 2), and 840 

logistic regression (eqn 3) using ordinary least squares (“nls” function in stats package version 841 

3.4.2 in R version 3.4.2):  842 𝑦 = 𝑎 + 𝑏 ∗ 𝑥 (𝑒𝑞𝑛 1) 843 𝑦 = 𝑒𝑎+𝑏∗𝑥  (𝑒𝑞𝑛 2) 844 𝑦 = 𝑎1 + 𝑒−𝑏−𝑐∗𝑥  (𝑒𝑞𝑛 3) 845 

where x represents time and y represents either number of records, number of spatially unique 846 

records, or the number of species. We determined the best model fit from the lowest Akaike 847 

Information Criterion value (AIC). To reveal the contribution of GBIF or non-GBIF sources to 848 

the combined dataset, we quantified the commonalities and uniqueness of GBIF and non-GBIF 849 

subsets in terms of number of records, number of spatially unique records, and number of species 850 

with distribution data. For our quantification of the temporal trend in the number of species 851 

observed, we also retained only currently accepted names to reduce uncertainty (Berendsohn, 852 

1997; Franz & Peet, 2009; Boyle et al., 2013), which yield comparable temporal pattern.  853 

We identified knowledge gaps in two ways. We showed the pixels (at 30 arc-seconds resolution 854 

in WGS84 coordinate reference system) for which there were no valid plant geolocation data, 855 

and quantified the geographic area of those pixels (in Eckert IV equal area projection). We 856 

caution that the gap here may be an overestimation because the plant distribution data compiled 857 

by BIEN (including the data exported from GBIF) do not include all possible data sources, but 858 

rather shareable data that are mainly publicly available. We then calculated the taxonomic 859 

completeness of the distribution data at the level of plant orders. We obtained a list of accepted 860 

names of extant terrestrial plant species from the Catalogue of Life (Catalogue of Life, 2021) and 861 

considered that as the master list of known species. All taxonomic names were standardized 862 
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through TNRS (Boyle et al., 2013). We obtained the order level completeness by calculating the 863 

percentage of species in a plant order that have distribution information in the combined dataset. 864 

 865 

In addition to distribution data, we also investigated the improvement in taxonomic coverage of 866 

trait data through database integration, specifically terrestrial plant height and vertebrate body 867 

length. We downloaded plant height data from BIEN, EOL, and TRY (accessed March 2021). 868 

We also obtained a list of accepted names of extant terrestrial plant species from Catalogue of 869 

Life (accessed March 2021) and considered that as the master list of known species. All 870 

taxonomic names were standardized through TNRS (Boyle et al., 2013). We calculated the 871 

taxonomic completeness of species trait information at the species and order levels. We obtained 872 

the species level completeness by checking species whose heights were recorded in BIEN, EOL, 873 

TRY, or the combined dataset, against the names recorded in COL. We obtained the order level 874 

completeness by calculating the percentage of species in a plant order that have height 875 

information in either dataset. We calculated the improvement in percentages by comparing 876 

individual datasets to the combined dataset. The improvement in taxonomic coverage represents 877 

the benefit of using multiple databases. 878 

 879 

Following the same workflow, we quantified the taxonomic coverage of animal trait and 880 

percentage improvement between individual dataset and the combined dataset. Body length of 881 

vertebrates were downloaded from VertNet and EOL (accessed March 2021). Accepted names of 882 

extant vertebrates were obtained from Catalogue of Life. The taxonomic names were 883 

standardized through Global Names Resolver using the Taxize package (Chamberlain & Szocs, 884 

2013) (version 0.9.4.9100) in R (version 3.4.2). The Global Names Resolver resolves names 885 

against specific name databases, which is Catalogue of Life in this study. The resolution process 886 

includes a series of exact and fuzzy matches based on the full or part of the name input (see more 887 

details in https://resolver.globalnames.org/about). The matching process also considers the 888 

context of taxonomy and reduces the likelihood of matches to taxonomic homonyms. The 889 

matching process yields a series of confidence scores for all possible matches; here we only kept 890 

the best matching records. However, the creation of a single authoritative list of names will take 891 

time; full reconciliation of synonyms and distinct taxon concepts may take decades (Berendsohn, 892 

1997; Franz & Peet, 2009; Boyle et al., 2013). The standardization of taxonomic names based on 893 

either TNRS or Global Names Resolver will not solve all issues of taxonomic name integration, 894 

but this step represents the state-of-the-art in standardizing taxonomy names in biodiversity 895 

databases and provides a baseline for the comparisons of different biodiversity databases.  896 

 897 

https://resolver.globalnames.org/about

